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Abstract

Robust out-of-distribution (OOD) detection is an indispensable component of mod-1

ern artificial intelligence (AI) systems, especially in safety-critical applications2

where models must identify inputs from unfamiliar classes not seen during training.3

While OOD detection has been extensively studied in the machine learning litera-4

ture—with both post hoc and training-based approaches—its effectiveness under5

noisy training labels remains underexplored. Recent studies suggest that label6

noise can significantly degrade OOD performance, yet principled solutions to this7

issue are lacking. In this work, we demonstrate that directly combining existing8

label noise-robust methods with OOD detection strategies is insufficient to address9

this critical challenge. To overcome this, we propose a robust OOD detection10

framework that integrates loss correction techniques from the noisy label learning11

literature with low-rank and sparse decomposition methods from signal processing.12

Extensive experiments on both synthetic and real-world datasets demonstrate that13

our method significantly outperforms the state-of-the-art OOD detection techniques,14

particularly under severe noisy label settings.15

1 Introduction16

Artificial intelligence (AI) models have achieved remarkable performance across myrid of domains17

including computer vision and natural language processing. Yet, a persistent challenge arises in18

real-world deployment: these models often fail to recognize inputs from unfamiliar data distributions,19

leading to overly confident and potentially misleading predictions [1]. This limitation underscores the20

importance of out-of-distribution (OOD) detection for building trustworthy AI systems, particularly21

in high-stakes domains such as autonomous driving [2] and medical diagnostics [3]. The goal of22

OOD detection is not only to provide accurate prediction on seen data distributions but also to flag23

inputs from novel or unobserved distributions [4].24

OOD detection has been an active topic of research in the field of AI for many decades; a recent25

survey can be found in [5]. A key focus in this field is detecting semantic shifts—scenarios where26

new, previously unseen classes appear in the test data, resulting in a mismatch between the label27

spaces of in-distribution (ID) and OOD samples. A wide range of methods have been proposed for28

OOD detection, including softmax/logit-based post-hoc techniques [4, 6, 7, 8, 9, 10] and feature29

distance-based strategies [11, 12, 13, 14, 15]. Nonetheless, most existing OOD detection methods are30

developed under the assumption that models are trained on clean, correctly labeled data. However, in31

practice, training datasets often contain noisy labels, stemming from the scarcity of expert annotators32

and the high cost of accurate label acquisition [16]. Recent empirical studies have brought serious33

attention to this issue, revealing that the presence of label noise can significantly degrade the34

performance of state-of-the-art OOD detection methods [17]. This highlights a critical gap in current35
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Figure 1: The effect of label noise for OOD detection. The figure shows the UMAP representations
of the latent feature vectors h(x) learned using the cross entropy loss-based training using the noisily
labeled dataset {xn, ŷn} for various synthetic noise rates. The false positive ratio (FPR) for OOD
detection using kNN score is also reported. The clusters are more distorted for the training data,
losing the ID-ness characteristics, resulting in degraded performance in OOD detection during test
time.

research and underscores the need to develop robust OOD detection frameworks that remain reliable36

under real-world label noise.37

The effect of label noise on the classification performance of the deep learning models has been38

extensively studied in recent years; see the survey [18]. It is now well-established that training deep39

neural network (DNN) models with noisy labels can severely degrade classification performance,40

leading to poor generalization and overfitting [19, 20]. To address this, a variety of label noise-robust41

methods have been proposed, including loss correction strategies such as probabilistic modeling42

techniques [21, 22, 23, 24, 25, 26], robust loss function designs [27, 28, 29], and in-built sample43

selection strategies [30, 31, 32, 33, 34], However, their effectiveness in OOD detection under label44

noise remains largely unexplored. The key challenge lies in the misalignment of objectives: while45

label noise methods aim to correct the prediction probabilities within the training distribution, OOD46

detection requires learning discriminative feature representations to detect the samples that does not47

belong to the training distribution. Hence, most existing label-noise approaches exhibit poor OOD48

detection performance when applied directly, as we will demonstrate in detail in subsequent sections.49

Our Contributions. In this work, we investigate the critical challenge of robust OOD detection in the50

presence of noisy labels in the training set. Unlike existing studies that focus solely on the empirical51

limitations of current OOD detection methods [17], we identify a key gap, where the label noise-52

robust methods improves generalization under noisy supervision for classification settings, yet are53

largely ineffective when directly applied for OOD detection. To address this limitation, we propose54

a novel learning framework, named as Noise-robust Out-Of-Distribution Learning (NOODLE), by55

leveraging the loss correction techniques with low-rank and sparse decomposition methods. To the56

best of our knowledge, this work is the first to offer a principled solution to the problem, achieving57

substantial improvements over state-of-the-art OOD detection methods in the presence of label noise.58

Notation. Notations are defined in the supplementary materials.59

2 Problem Statement60

Consider an input feature space X ⊂ RD, where D denotes the dimensionality of the input features.61

Let the label space be defined as Y = {1, . . . ,K}, corresponding to K distinct classes for the ID62

data. We define the training dataset D as:63

D = {(xn, yn)}Nn=1, xn ∈ X , yn ∈ Y,
where xn is the feature vector of the n-th training example, yn is its associated ground-truth class64

label, and N denotes the total number of training samples. Each pair (xn, yn) is assumed to65

be drawn independently and identically distributed (i.i.d.) from an underlying joint distribution66

PXY . Let h : RD → RL denote a DNN that maps each input xn to an L-dimensional latent67

feature representation h(xn). For the task of multi-class classification, we employ a projection head68

c : RL → RK to produce pre-softmax logits. Thus, the overall label prediction function is given by:69

f(xn) = σ(c(h(xn))),
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where σ denotes the softmax function that output the class probabilities. We often learn the parameters70

of these functions by training via cross-entropy (CE) minimization as follows:71

minimizeθ LCE(θ; {xn, yn}) = −
N∑

n=1

K∑
k=1

I[yn = k] log(f(xn)))), (1)

where θ denotes the DNN parameters of both h and c functions.72

OOD Detection. AI systems are generally learned under the closed-world assumption, where it73

is presumed that test samples are drawn from the same distribution as the training data. However,74

this assumption often fails in practical scenarios, where models inevitably encounter samples that75

lie outside the training distribution. These unfamiliar samples are known as OOD inputs [4]. In76

classification tasks, such distributional shift may manifest as a semantic shift, wherein some test77

instances originate from an unknown label space Yo, disjoint from the known label space, i.e.,78

Y ∩ Yo = ∅. The objective of OOD detection is to identify whether a given test input belongs to the79

in-distribution (ID) or not, thereby preventing the model from making confident predictions on OOD80

inputs. Thus, OOD detection can be considered as a binary classification task that distinguishes ID81

samples from OOD ones. This can be formalized by a detection function:82

gτ (x) =

{
ID if s(x) ≥ τ,

OOD if s(x) < τ,
(2)

where s(x) is a scoring function that quantifies the likelihood of x belonging to the ID distribution,83

and τ is a predefined threshold.84

Typically, scoring function s(x) is derived from the trained parameters of the underlying DNN model.85

Several scoring functions have been proposed in the literature. Early OOD detection methods directly86

used the softmax outputs f(x) to score "OOD-ness" [4, 6], but they suffered from overconfidence87

issues, reducing the desired ID-OOD separability. Further, pre-softmax activations-based approaches88

(e.g., by using the logits c(h(x))) were introduced [7, 8, 9, 10], though they remained sensitive to89

architecture and still faced overconfidence issues. Recently, distance-based methods such as those90

based on Mahalanobis [11] and k-nearest neighbor (kNN) [12, 13, 14, 15] have gained traction by91

leveraging the clusterability of latent feature representations h(x). In essence, the success of OOD92

detection lies in the careful design and learning of the scoring function s(x) that can ensure the93

ID-OOD separability during test time.94

Learning under Label Noise. Most studies in the domain of OOD detection assume that the DNN95

classifier f and the scoring function s are learned using ground-truth labels yn. However, the lack of96

access to reliable ground-truth annotations is a significant challenge for robust OOD detection–see an97

example in Fig. 1 where the clusterability of the latent representations h(x) is severely compromised98

under label noise, leading to significant degradation in ID-ODD separability for the kNN score99

function.100

In scenarios where ground-truth labels yn are difficult to obtain, we often rely on their noisy counter-101

parts, denoted by ŷn ∈ {1, . . . ,K}, associated with each data item xn. In noisy label settings, for102

many data items, the observed label does not match the true label, i.e., ŷn ̸= yn.103

The goal of label noise-robust OOD detection is two-fold: (i) accurately classify ID sam-
ples through a well-generalized predictor f , and (ii) reliably detect OOD instances us-
ing a robust decision function gτ , despite learning them using the noisily labeled dataset
D̂ = {(xn, ŷn)}Nn=1, xn ∈ X , ŷn ∈ Y .

3 Proposed Approach104

In this section, we present our label noise-robust OOD detection framework. Our strategy is based105

on cleansing the noise-corrupted latent feature space using an end-to-end training strategy, thereby106

making it robust for OOD detection at test time. Towards this goal, our framework encompasses three107

main components: i) loss correction module ii) low rank and sparse decomposition of latent feature108

matrix iii) OOD detection using distance-based metrics, e.g., kNN.109
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3.1 Loss Correction110

As demonstrated in Fig. 1, training directly with noisy labels (e.g., by using the CE minimization111

as in (1) where the unobserved ground-truth labels yn are replaced by the observed noisy labels112

ŷn) leads to a corrupted latent feature space. To address this, we first integrate a loss correction113

module to reduce the effect of label noise in learned features. Loss correction strategies have attracted114

considerable attention in noisy label learning literature. Among these, probabilistic noise modeling115

via the so-called transition matrices [22, 35, 23, 36] and robust loss function-based approaches116

[27, 28, 29] are particularly well-received, owing to their strong theoretical foundations and robust117

empirical performance in classification tasks.118

In general, loss correction strategies design a modified cross-entropy loss to train the classifier f on119

the noisy dataset {xn, ŷn}, while aiming to predict the ground-truth labels, i.e.,120

minimize
θ,η

Lmod
CE (θ,η; {xn, ŷn}) (3)

where η typically refers to additional model parameters according to specific loss designs. For121

instance, in the case of transition matrix-based approaches [22, 35, 23, 36], η refers to the noise122

transition probabilities that learns the probabilistic label confusion terms Pr(ŷn = k|yn = k′). In123

sample selection approaches [30, 31, 32, 33, 34] , η instead represents sample-weighting terms that124

regulate the contributions of clean and noisy sample–label pairs. In contrast, robust loss function-125

based methods, e.g., [27, 29], often do not introduce additional parameters—they directly design loss126

functions that are inherently less sensitive to incorrect labels. For instance, symmetric cross-entropy127

(SCE) [29] and generalized cross-entropy (GCE) [27] can be viewed as hybrids of CE loss and mean128

absolute error (MAE) loss, thereby combining the favorable convergence properties of CE with the129

robustness of MAE against outliers.130

Nonetheless, these loss correction strategies primarily operate by modifying the softmax prediction131

outputs of the ID samples rather than directly correcting their feature embeddings. However, feature132

embeddings are often more critical for OOD detection, particularly for the competitive, distance-based133

OOD metrics such as k-nearest neighbor [12] and Mahalanobis [11]. This misalignment of objectives134

results in suboptimal performance in mitigating the effect of label noise in OOD detection.135

3.2 Low-rank plus Sparse Decomposition136

To overcome the limitation of loss correction modules in handling feature correction, we introduce137

the next key component of our framework. A critical observation underlying its design is that, in the138

absence of label noise, latent feature vectors naturally exhibit certain clustering patterns, reflecting139

their low-rank structure due to their class-specific organization—see the first UMAP plot in Fig.140

1. This intrinsic structural tendency can be explicitly leveraged in the training phase to encourage141

low-rank properties in the feature representations. To this end, we adopt a low-rank and sparse142

decomposition strategy, drawing inspiration from classical signal processing techniques [37, 38].143

Consider the latent feature representation h(x) of the input image x (e.g., the penultimate layer144

encoding of the DNN model). Let us represent the latent feature matrix H as follows:145

H =
[
h(x1), . . . ,h(xN )

]
∈ RD×N (4)

where D is the feature dimension and N is the batch size. In order to exploit the low-rankness of146

the latent matrix H along with a sparse structure, we assume that H ≈ L+ S, where L ∈ RD×N147

is the low-rank component and S ∈ RD×N is a column sparse matrix, i.e., most columns of S has148

zero ℓ2 norm. That means, the low-rank term captures the underlying class structure information,149

whereas the sparse term can handle the outlier data items that does not strictly conform to the low-rank150

assumption.151

Learning L and S from the observed matrix H generally involves solving optimization problem of152

the form [39, 40]:153

min
L,S
∥L∥∗ + λ∥S∥2,1 s.t. H = L+ S,

where ∥L∥∗ denotes the nuclear norm of L to promote the low-rankness and ∥S∥2,1 denotes the154

matrix mixed norm that promotes column sparsity in S. Here, λ > 0 is a regularization parameter that155

balances the contributions of the low-rank and sparse terms. As computing the nuclear norm involves156
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costly operations like singular value decomposition, we adopt an efficient power iteration (PI)-based157

low-rank approximation strategy [41, 42] in our training phase. Specifically, The method estimates the158

top-K left singular vectors of the latent representation H by iteratively refining a randomly initialized159

orthonormal basis Q ∈ RD×K through alternating projections of H and orthonormalization via QR160

decomposition. Here, The rank K can be selected according to the number of classes (or based on161

the number of coarse-grained classes in the case of datasets with very large label space). Using the162

learned Q, we decompose the feature matrix as163

HID = [hID(x1), . . . ,hID(xN )] = (QQ⊤)H, HOOD = [hOOD(x1), . . . ,hOOD(xN )] = H−HID,

where HID ∈ RD×N represents the ID component and HOOD ∈ RD×N contains residual features164

that may potentially carry non-ID information. Further, to enforce the column sparsity in the matrix165

HOOD, we employ the following regularization term:166

Lsparse = ∥HOOD∥2,1 =

N∑
j=1

√√√√ D∑
i=1

(HOOD)
2
ij . (5)

Finally, the proposed method is trained by minimizing a joint objective that combines the modified167

cross-entropy loss as explained in (3) with the regularizer in (5):168

LF = Lmod
CE + λLsparse,

where λ > 0 is a regularization hyperparameter that controls the strength of the column-sparsity term.169

The detailed algorithm is presented in the supplementary section.170

3.3 OOD Detection with Refined Feature Representations171

After training, we adopt a distance-based approach for OOD detection using the cleaned latent features172

hID(x). Towards this, we extract the ℓ2-normalized feature vectors uID(xn) = hID(xn)/∥hID(xn)∥2173

for all ID training samples and store them as reference embeddings. At test time, a query sample174

x∗ is mapped to its normalized feature u(x∗) = h(x∗)/∥h(x∗)∥2, whose distance to the stored ID175

embeddings uID(xn) is then evaluated. Following prior work, we adopt different distance metrics,176

such as k-nearest neighbor [12] and Mahalanobis distance [11]. To be specific, in the case of k-nearest177

neighbor metric, we select the k-th smallest distance to define the OOD score s(x) (also see (2)):178

skNN(x
∗) = −

∥∥u(x∗)− u
(k)
ID

∥∥
2
,

where u
(k)
ID denotes the k-th nearest neighbor embedding from the cleaned latent features of the179

training data. A decision threshold τ of the detection function gτ is chosen based on a validation set180

such that a high fraction (e.g., 95%) of ID samples are correctly classified as ID.181

4 Experiments182

In this section, we present a series of experiment results to showcase the effectiveness of our label183

noise-robust OOD detection framework.184

Datasets. For synthetic label noise settings, we consider CIFAR-10 [43] as ID dataset. CIFAR-10185

consists of 50,000 training images and 10,000 test images across 10 different classes. For synthetic186

label noise generation, we adopt class-independent symmetric noise, where every true label has the187

same probability of being corrupted, and when corrupted, it is flipped uniformly at random to any of188

the other K − 1 classes, regardless of the original class. We vary the noise rate at 10%, 30%, and189

50% to simulate different levels of noise severity.190

To test under realistic label noise, we also consider the human-annotated noisy label datasets CIFAR-191

10N, CIFAR-100N [44], and Animal-10N [45]. These are annotated by the crowd workers from192

the popular crowdsourcing platform Amazon Mechanical Turk (AMT). CIFAR-10N provides five193

types of noisy label sets: worst, aggregate, random1, random2, and random3, while we use the fine194

type label noise for CIFAR-100N. Similar to CIFAR-10, Animal-10N contains 50,000 training and195

5,000 test images across 10 classes, with human-annotated noisy labels. CIFAR-100N contains the196

same number of images but is divided into 100 fine-grained classes, making both classification and197
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OOD detection more challenging. As OOD datasets during test time, we consider several benchmark198

datasets, including SVHN [46], FashionMNIST [47], LSUN [48], iSUN [49], Texture [50], and199

Places365 [51].200

Baselines. We compare our proposed method with several OOD detection baselines as well as201

different label noise-robust techniques.202

Regarding the OOD detection baselines, we consider MSP [52], ODIN [6], Energy [53], ReAct [9],203

Mahalanobis [11], KNN [12], CIDER [13], SSD+ [14], and SNN [15]. MSP, ODIN and Energy are204

softmax-based approaches. MSP relies only on softmax output of the model, while ODIN uses an205

additional temperature scaling hyperparameter. Energy method computes an energy-based metric206

from the model outputs, identifying test samples with higher energy as OOD. ReAct is a logit-based207

approach. Mahalanobis, KNN, CIDER, SSD+, and SNN are distance-based approaches. For MSP,208

ODIN, Energy, ReAct, and SNN, the DNN encoder is trained using the standard cross-entropy loss.209

For KNN and SSD+, supervised contrastive loss [54] is used. CIDER is trained using a maximum210

likelihood estimation-based loss together with dispersion regularization. As previously discussed,211

most recent distance-based methods—such as KNN, CIDAR, and SNN all advocate the use of212

non-parametric kNN-based score [12] for OOD detection.213

Regarding label-noise-robust learning methods, we consider different lines of approach for our214

evaluation. Specifically, we consider CM [55], VolMinNet [55], SCE [56], GCE [57], DivideMix215

[58], and Co-Teaching [59]. Here, CM and VolMinNet are probabilistic noise-modeling approaches216

that rely on transition matrices to correct label noise. GCE and SCE are robust loss function–based217

approaches that are variants of the cross-entropy loss. DivideMix and Co-Teaching are sample-218

selection-based approaches that focus on reweighting samples based on the presence of label noise.219

Here, DivideMix identifies small-loss (likely clean) samples and applies semi-supervised learning220

to the noisy labeled samples, while Co-Teaching uses two networks that are trained simultaneously221

and exchange small-loss samples with each other. For OOD performance evaluation, we use the222

kNN-based metric for all these methods, unless specified otherwise.223

Implementation Settings. We use a CNN-based architecture, DenseNet-101[60], as the backbone224

model for all datasets. We train the model from scratch using the ID datasets. During training225

for CIFAR-10N and Animal-10N, we set the number of epochs to 100 and use a batch size of 64.226

First, we extract penultimate layer’s features and then apply global average pooling following by227

ℓ2-normalization before performing the PI-based low-rank decomposition module of our NOODLE228

approach. We initialize the transition matrices as identity matrices of appropriate size in the case of229

CM-based approaches. For all datasets, we choose stochastic gradient descent (SGD) as the optimizer230

with a momentum of 0.9 and a weight decay of 1× 10−4. We tune the hyperparameters λ from the231

set of values {0.0001, 0.0005, 0.001, 0.005, 0.1}. For the NOODLE approach, we consider different232

options for loss correction strategies such as CM and SCE. In terms of distance metrics in NOODLE233

approach, we consider both kNN and Mahalanobis scores as OOD detection metrics. We present234

the best performing variants of the NOODLE approach in the main result tables, yet present the235

detailed ablation study across different combinations of loss correction and distance metrics in the236

later sections.237

Evaluation metrics. We evaluate the OOD detection performance using three widely recognized238

metrics. The false positive rate at 95% true positive rate (FPR@95) indicates the proportion of239

OOD samples erroneously classified as ID when the true positive rate is fixed at 95%; lower values240

correspond to better detection. The area under the receiver operating characteristic curve (AUROC)241

indicates the trade-off between true and false positive rates across thresholds and the higher value242

corresponds to better OOD performance. Finally, ID Accuracy (ID ACC) measures how accurately the243

model classifies the ID samples during testing. ID accuracy results are presented in the supplementary244

section.245

Results. Table 1 presents the OOD detection performance of the baselines and our method under246

symmetric label noise across different noise rates for CIFAR-10 dataset. We can observe that247

OOD detection baselines that lack label noise-robust training strategy are significantly impacted by248

high levels of label noise. In contrast, the label noise-robust approaches, especially those based on249

probabilistic modeling such as CM and VolMinNet maintain relatively strong performance under noisy250

conditions. Notably, our proposed method, NOODLE, consistently outperforms all other approaches251
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Table 1: OOD detection performance on CIFAR10 with synthetic label noise across different OOD
datasets; The top two performing algorithms (in terms of average FPR95) are highlighted in bold.

Method SVHN FashionMNIST LSUN iSUN DTD/Texture Places365 Average

FPR95↓ AUROC↑ FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Noise rate = 10%
KNN 34.23 93.92 38.51 93.57 17.71 96.66 21.72 95.93 28.58 94.04 62.26 84.62 33.84 93.12
MSP 73.54 84.82 54.92 88.64 32.84 94.49 55.18 89.70 77.02 75.86 69.01 80.33 60.42 85.64
ODIN 87.82 60.19 64.22 79.77 24.42 94.56 32.99 91.49 80.30 56.06 78.84 66.87 61.43 74.82
Energy 80.31 77.93 57.89 84.84 17.74 96.65 54.63 88.38 82.43 62.42 78.29 72.39 60.37 79.12
ReAct 96.77 53.22 63.00 87.87 49.38 90.45 72.98 81.08 92.89 44.08 75.21 75.29 75.04 72.00
Mahalanobis 31.71 91.10 72.56 74.47 28.29 93.87 52.77 81.81 49.11 80.53 94.74 44.55 54.86 77.72
CIDER 99.64 51.13 99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.80 29.83
SSD+ 90.96 73.67 98.72 46.18 99.69 40.58 100.00 26.23 98.06 33.48 99.15 37.90 97.76 43.01
SNN 49.71 91.73 29.72 95.06 20.96 96.25 25.36 95.23 34.26 92.53 56.29 86.46 36.05 92.88
SCE 5.97 98.96 12.60 97.80 2.93 99.44 15.62 97.01 27.16 94.28 59.64 85.79 20.66 95.55
GCE 7.81 98.50 16.20 97.33 5.88 98.96 12.03 97.92 31.63 93.56 47.83 89.35 20.23 95.94
Co-teaching 40.12 90.87 99.29 59.93 75.83 76.34 96.95 54.21 49.45 82.48 93.19 48.57 75.81 68.73
DivideMix 62.65 87.37 68.10 81.99 49.01 91.24 42.84 91.52 37.48 92.79 77.16 75.03 56.21 86.66
CM 6.14 98.90 15.80 97.05 6.03 98.91 10.40 98.12 19.08 96.47 53.54 87.17 18.50 96.10
VolMinNet 2.64 99.47 5.18 98.94 5.00 98.98 9.26 98.24 21.60 95.86 56.16 87.43 16.64 96.49

NOODLE 3.51 99.28 5.03 98.97 3.31 99.33 3.05 99.22 16.61 96.78 48.02 89.62 13.26 97.20

Noise rate = 30%
KNN 23.80 95.80 36.15 93.43 27.04 94.61 22.03 95.86 39.50 90.40 69.76 83.53 36.38 92.27
MSP 76.88 80.34 56.16 87.14 29.90 93.92 58.82 88.30 79.04 71.54 74.98 76.61 62.63 82.97
ODIN 83.79 61.60 50.70 83.57 22.26 94.83 35.64 89.98 79.68 54.97 83.19 60.62 59.21 74.26
Energy 76.67 76.82 51.45 86.81 19.38 95.65 66.77 84.97 80.89 62.95 77.32 72.32 62.08 79.92
ReAct 88.89 67.41 62.61 85.50 21.63 95.34 90.19 65.23 91.33 51.51 82.51 68.95 72.86 72.33
Mahalanobis 37.86 90.25 50.42 85.21 26.98 93.29 60.92 79.60 52.75 77.45 95.94 40.86 54.15 77.78
CIDER 99.64 51.13 99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.82 29.81
SSD+ 91.27 73.92 98.72 46.08 99.69 40.36 100.00 26.00 98.06 33.49 99.15 37.93 97.82 42.96
SNN 23.37 95.72 34.55 94.11 25.91 94.90 34.38 92.36 42.27 89.39 65.06 84.19 37.59 91.78
SCE 19.48 96.45 25.84 95.37 16.58 96.57 61.71 87.42 35.50 91.76 74.66 79.27 38.96 91.14
GCE 58.38 91.40 20.37 96.64 11.32 97.95 12.38 97.73 30.53 94.08 51.59 88.18 30.76 94.33
Co-teaching 50.10 83.16 99.99 20.37 96.73 64.14 97.86 41.70 53.71 79.45 93.84 48.63 82.04 56.24
DivideMix 58.39 90.07 31.17 94.93 27.86 95.59 16.38 96.93 36.28 92.76 59.28 84.34 38.22 92.44
CM 22.04 96.76 8.79 98.04 10.17 98.12 23.30 95.64 23.71 94.99 55.42 86.90 23.90 95.08
VolMinNet 4.99 99.04 14.01 97.09 9.48 98.33 51.23 89.68 27.84 93.44 59.25 85.42 27.80 93.84

NOODLE 1.84 99.60 19.66 96.36 7.28 95.53 10.76 97.89 20.67 95.85 57.50 85.87 19.62 95.68

Noise rate = 50%
KNN 65.53 85.64 37.84 93.71 30.61 93.38 45.41 89.21 43.81 89.06 74.98 79.58 49.70 88.43
MSP 96.92 53.68 80.68 77.70 47.78 89.67 67.84 83.23 82.50 68.45 81.12 73.63 76.14 74.40
ODIN 94.94 44.15 71.46 80.28 34.04 91.82 47.51 88.11 79.61 60.80 82.87 66.17 68.40 71.89
Energy 97.93 46.79 83.41 76.67 39.77 90.87 67.60 81.00 85.43 60.47 82.28 69.91 76.07 70.95
ReAct 99.19 24.75 90.11 64.20 50.47 85.45 78.12 67.79 93.79 39.56 86.40 62.25 83.02 57.33
Mahalanobis 55.77 83.12 59.93 85.98 31.23 93.54 45.17 88.63 48.90 81.70 93.28 51.47 55.71 80.74
CIDER 99.65 51.22 99.91 27.39 100.00 9.42 99.84 27.25 93.72 39.31 99.81 24.37 98.82 29.83
SSD+ 91.35 74.03 98.75 46.17 99.74 40.57 100.00 25.89 98.06 33.47 99.15 37.91 97.84 43.01
SNN 71.41 83.96 68.22 87.66 53.56 89.27 63.49 80.99 56.95 85.48 82.28 77.12 65.99 84.08
SCE 14.10 97.40 42.30 90.96 25.18 94.09 67.17 80.81 51.51 84.65 70.67 77.75 45.15 87.61
GCE 19.19 96.43 29.10 95.06 22.98 95.40 53.92 86.31 48.35 87.54 65.83 83.58 39.89 90.72
Co-teaching 57.05 76.43 99.97 28.21 99.23 55.11 96.99 52.50 54.45 78.87 94.22 47.36 83.65 56.41
DivideMix 24.69 95.75 40.94 93.32 37.02 94.36 20.81 96.10 53.10 89.35 56.39 86.71 38.82 92.60
CM 17.37 96.91 21.93 95.56 17.16 96.58 39.52 92.86 30.23 93.36 61.88 84.82 31.35 93.35
VolMinNet 13.01 97.74 15.36 97.11 14.18 97.24 60.13 80.22 45.85 87.40 55.26 86.94 33.96 91.11

NOODLE 6.35 98.43 17.83 96.58 7.09 98.50 32.28 93.92 30.09 92.47 70.41 81.24 27.34 93.52

under test in terms of both average FPR95 and AUROC. Our approach is particularly effective at252

higher noise rates. For example, at 50% noise rate, NOODLE achieves the best performance, with an253

average FPR95 of 27.34% which represents a reduction in FPR95 of up to 12.5% compared to the254

best baseline method.255

Table 2 presents the OOD detection performance on the real noise datasets which are annotated by256

unreliable crowd workers. For CIFAR-10N “worst” noise level (the noise rate is about 40.21%),257

NOODLE achieves a 9.5% reduction in FPR95 and a 1.07% increase in AUROC compared to258

the best performing baseline SNN. Across other noise settings of CIFAR-10N as well, NOODLE259

consistently outperforms all baselines. A similar trend is observed on the Animal-10N dataset: while260

label noise-robust methods such as SCE, CM, and VolMinNet improve FPR95 over other non-robust261

techniques, NOODLE achieves an additional reduction of approximately 14% compared to the closest262

baseline. For CIFAR-100N which is more challenging under noisy settings, NOODLE substantially263

outperforming all the baselines with an improvement of about 15% in FPR95 compared to the best264

performing baseline. More experiment results and discussion are presented in the supplementary265

section.266
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Table 2: Average OOD detection performance on noisy real datasets; The top two performing
algorithms (in terms of average FPR95) are highlighted in bold.

Method CIFAR-10N Animal-10N CIFAR-100N

Clean Worst Agg Rand1 Rand2 Rand3 FPR95 AUROC FPR95 AUROC
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

KNN 21.06 95.80 32.48 92.89 23.95 94.84 35.48 92.65 31.99 92.70 27.27 94.09 70.44 77.04 43.20 86.54

MSP 56.43 90.07 60.15 85.49 55.04 88.21 60.75 86.62 56.44 86.50 53.90 86.70 90.64 59.90 81.08 72.66

ODIN 33.10 92.47 45.31 86.69 43.83 89.03 49.12 86.56 46.71 84.24 41.91 87.37 76.97 62.55 71.72 76.64

Energy 39.15 92.03 47.30 87.75 56.03 87.90 54.89 87.24 50.31 86.11 42.74 88.90 75.60 74.52 78.93 51.74

ReAct 60.31 83.12 65.89 78.86 47.17 91.01 68.77 76.92 65.46 79.83 57.81 81.24 79.00 71.15 76.24 67.63

Mahalanobis 47.22 82.91 53.57 80.61 51.14 81.76 55.26 80.05 44.25 84.60 48.37 83.37 54.54 73.00 75.15 65.47

CIDER 98.03 48.64 97.80 41.06 86.49 42.86 74.94 62.46 98.01 48.64 91.04 43.09 98.44 39.78 98.59 38.10

SSD+ 99.10 48.36 99.84 26.24 99.47 29.79 95.86 40.95 94.99 45.45 99.38 32.76 85.60 48.86 98.62 38.03

SNN 22.60 95.53 30.87 92.78 25.14 94.18 29.87 93.76 30.74 92.94 34.26 92.12 31.43 93.65 43.15 87.13

SCE 19.71 95.62 34.53 92.11 22.87 94.76 22.90 94.77 24.42 94.25 24.81 94.40 31.97 93.47 46.13 83.15

GCE 18.56 96.33 35.75 91.50 19.44 96.03 23.47 95.11 18.89 95.86 19.78 95.61 36.62 91.65 68.54 77.54

DivideMix 40.81 89.16 39.32 91.53 65.83 81.83 66.64 84.52 59.27 84.22 24.81 94.40 34.27 91.77 56.28 82.92

Co-teaching 81.94 58.15 82.14 60.68 77.98 63.71 53.42 74.23 77.59 62.76 81.94 58.15 68.47 61.72 81.68 59.61

CM 18.32 96.33 36.28 89.66 21.22 95.17 24.72 94.61 23.62 95.04 20.70 95.51 33.50 92.75 49.52 85.41

VolMinNet 15.00 96.89 37.52 91.60 23.37 94.96 22.90 95.15 18.80 96.15 22.19 95.02 29.26 94.09 56.65 81.39

NOODLE 14.42 96.78 27.94 93.78 17.78 96.05 17.60 96.07 16.21 96.52 16.07 96.39 25.25 95.13 36.54 89.41

Figure 2: The effect of label noise on OOD detection for robust methods. The figure shows the UMAP
representations of the latent feature vectors h(x) learned using (a) CM approach (transition matrix-
based label noise correction) with cross-entropy loss, and (b) NOODLE, our proposed approach, on
the CIFAR-10 dataset with synthetic label noise. The FPR95 metric for OOD detection is reported
for each method under different label noise settings. While both methods mitigate the effect of noisy
labels in learned features, NOODLE better preserves the ID-ness characteristics, reducing the mix-up
of ID and OOD samples that results in improved OOD detection performance compared to CM.

ID and OOD Feature Representation. From Fig. 1, it is evident that higher noise levels distort the267

feature space, leading to less compact and more intermixed clusters. This feature distortion degrades268

the overall OOD detection performance, as we see in our experiments. To illustrate how label269

noise-robust methods mitigate this issue, we examine the UMAP visualizations in Fig. 2 where the270

learned features h(x) of the test data for both ID and OOD samples are presented. Here, we compare271

the feature representations from one of the competing baseline, i.e., CM and our approach NOODLE.272

For CM, one can observe that cluster distortions are mitigated compared to the scenarios as in Fig. 1,273

showing that loss correction strategy helps in feature cleaning to some extend. Nonetheless, ID and274

OOD sample mixups are still present significantly, especially near the boundaries.275

In contrast, NOODLE produces more compact and well-separated clusters even under high noise rates276

with much reduced feature mix-up between ID and OOD samples. This implies that the low-rank277

sparse decomposition strategy in NOODLE is effective in better retaining the ID-ness characteristics278

of the learned features, which helps in separating the ID and OOD samples more effectively during279

testing. The tighter clusters in NOODLE’s feature space indicates that the samples from the same280

class are grouped better and the classes are kept more separate, which helps it achieving lower FPR95281

than CM under the same noisy label conditions.282

Ablation Study Here, we study the effect of the low-rank and sparse decomposition module283

in the NOODLE framework under different loss correction strategies and OOD detection metrics.284

Specifically, we analyze CM and SCE strategies for loss correction, and kNN and Mahalanobis285
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(a) (b)

Figure 3: Comparison of OOD detection performance (FPR95↓) on CIFAR-10N. (a) Different KNN
variants of NOODLE (b) Different Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)"
refers to NOODLE with X as loss correction strategy and Y as OOD distance metric.

(a) (b) (c)

Figure 4: Comparison of OOD detection performance (FPR95↓) on Animal-10N and CIFAR-100N
datasets. (a) CM vs NOODLE with KNN metric (b) SCE vs NOODLE with KNN metric (c) Different
Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)" refers to NOODLE with X as loss
correction strategy and Y as OOD distance metric.

scores for the feature distance-based OOD detection. Fig. 3a shows how the NOODLE variant with286

CM as loss correction and kNN as the distance metric substantially advance the OOD detection287

performance for CIFAR-10N dataset. The SCE variant of the NOODLE version is also reasonably288

good, yet CM variant (i.e., NOODLE(CM, KNN)) performs much better in all scenarios in CIFAR-289

10N. For example, in worst case noise version, NOODLE (CM, KNN) reduces FPR95 to 27.94%290

from 32.48% by KNN, showing its robustness even in challenging settings. We can also observe291

similar improvement in performance in Fig. 3b, where CM-Mahalanobis variant of the NOODLE292

also exhibits impressive OOD detection performance across scenarios. These results suggest that293

under different strategies of loss correction and various OOD detection metrics, the feature cleansing294

strategy of the NOODLE is effective in improving the ID-OOD separability. We also present similar295

analysis for other datasets such as Animal-10N and CIFAR-100N in Fig. 4. In CIFAR-100N dataset,296

the SCE-Mahalanobis variant of NOODLE achieves the best performance, likely because estimating297

transition matrices for CM-based methods becomes increasingly difficult as the number of classes298

grows. Nevertheless, our key idea of feature cleaning via low-rank sparse decomposition consistently299

enhances performance across different settings.300

5 Conclusion301

In this work, we introduce a novel framework for OOD detection under noisy labels that addresses302

the limitations of existing methods by correcting label noise and enhancing OOD performance.303

By leveraging low-rank ID feature representations and a carefully designed learning criterion, our304

approach provides greater flexibility and effectiveness in improving ID–OOD separability, even305

in highly noisy settings. Experimental results across multiple benchmarks and challenging OOD306

scenarios demonstrate the superiority of our method, highlighting its ability to tackle the challenging307

problem of OOD detection under noisy labels.308
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Supplementary Material of “Tackling the Noisy Elephant in the Room: Label Noise-robust469

Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition”470

A Notation471

We use the following notation throughout the paper: x, x, X , and X represent a scalar, a vector,472

a matrix, and a tensor, respectively. Both xi and [x]i denote the ith entry of the vector x. [X]i,j473

denote the (i, j)th entry of the matrix X . xi denotes the ith row of the matrix X; [I] means an474

integer set {1, 2, . . . , I}. ⊤ denote transpose. X ≥ 0 implies that all the entries of the matrix X are475

non-negative. I[A] denotes an indicator function for the event A such that I[A] = 1 if the event A476

happens, otherwise I[A] = 0. CE(x, y) = −
∑K

k=1 I[y = k] log(x(k)) denotes the cross entropy477

function. I denotes an identity matrix of appropriate size. 1K denotes an all-one vector of size K.478

|C| denotes the cardinality of the set C. ∆K denotes a (K − 1)-dimensional probability simplex such479

that ∆K = {u ∈ RK |u ≥ 0,1⊤u = 1}.480

B Algorithm Description481

In this section, we present the NOODLE algorithm. Algorithm 1 provides the complete, step-by-step482

procedure of our approach using the transition matrix-based loss correction strategy. As discussed483

earlier, we obtain ID features via a low-rank sparse decomposition. The decomposition routine is484

detailed in Algorithm 2.485

Algorithm 1 Proposed approach NOODLE

Input: Noisily labeled data {(xn, ŷn)}Nn=1, where xn ∈ X , ŷn ∈ Y , niter, stopping criterion,K
as number of classes
Output: Estimated parameters θ and T

1: Initialize Transition Matrix T to identity matrices IK
2: Initialize the parameters θ of the neural network function class F
3: while stopping criterion is not reached do
4: while stopping criterion is not reached do
5: Draw a random batch B
6: H ← [h(x1), . . . ,h(xN ) ] // features from batch B as per Eq. 4
7: Q← ApproxTopKSingularVectors(H,K, niter)
8: HID ← (QQ⊤)H
9: HOOD ←H −HID

10: Compute∇LF (T ,B,HOOD))
11: T ,θ ← SGDOptimizer(T ,∇LF (T ,B,HOOD))
12: end while
13: end while

C More Experiment Results486

In this section, we present more detailed evaluations. While the summary results for CIFAR-10N487

were reported earlier, we now provide dataset-wise OOD performance along with ID accuracy in488

Table 3 and Table 4. To ensure fairness, all post-hoc methods are evaluated using the same encoder489

trained with cross-entropy loss, thereby avoiding any bias in performance analysis. For CIDER490

and SSD+, we follow prior work but replace their default ResNet-18 encoder with DenseNet-101491

for consistency. As a result, these methods may require additional fine-tuning to fully realize their492

potential. For Animal-10N, the dataset-specific results are reported in Table 5. We find that most493

baseline methods struggle to achieve a good balance between ID accuracy and OOD detection. In494

contrast, our proposed method NOODLE delivers consistently strong results across both metrics.495

Finally, detailed results on CIFAR-100 are shown in Table 6. As expected, CIFAR-100 is considerably496

more challenging, leading to significant performance degradation for most baselines. Nevertheless,497

NOODLE achieves the best OOD detection performance while maintaining a competitive and498

balanced ID accuracy, highlighting its robustness under difficult conditions.499
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Algorithm 2 ApproxTopKSingularVectors

Input: Feature matrix H ∈ RN×D, target rank k, number of iterations niter

Output: Orthonormal matrix Q ∈ RD×k spanning the approximate top-k right singular vectors
of H

1: Randomly initialize Q ∈ RD×k // D: feature dimension, k: target rank
2: for i = 1 to niter do
3: Z ←H⊤(HQ) // project Q into column space of H
4: Q← QRDecomposition(Z) // obtain orthonormal basis of Z’s column space
5: end for
6: return Q // spans approximate top-k right singular vectors of H

Table 3: OOD detection performance (FPR95↓ / AUROC↑) on CIFAR-10 under different noise
settings using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Clean

KNN 10.25 98.26 10.95 98.03 13.21 97.64 17.05 96.87 25.30 95.31 49.58 88.70 21.06 95.80 93.32

MSP 72.54 87.37 49.86 92.74 34.70 95.33 46.04 93.34 68.51 85.16 66.90 86.46 56.43 90.07 93.32

ODIN 55.88 89.16 16.01 97.23 3.01 99.12 8.47 98.20 60.46 82.84 54.77 88.30 33.10 92.47 93.32

Energy 73.05 87.23 15.64 97.18 4.44 98.86 23.22 96.16 67.02 83.48 51.52 89.30 39.15 92.03 93.32

ReAct 97.03 61.00 44.59 93.52 28.01 95.84 41.26 93.42 88.14 68.86 62.85 86.07 60.31 83.12 93.32

Mahalanobis 4.51 99.13 2.47 99.31 0.63 99.75 14.79 97.38 22.46 95.08 69.08 82.08 18.99 95.45 93.32

CIDER 89.25 86.21 100.00 46.56 100.00 51.96 100.00 29.81 99.04 35.07 99.90 42.25 98.03 48.64 94.03

SSD+ 99.25 62.41 96.42 53.98 100.00 42.95 99.90 43.05 99.18 41.64 99.87 46.14 99.10 48.36 94.03

SNN 8.68 98.35 21.49 96.22 9.22 98.42 19.46 96.72 26.99 94.97 49.74 88.52 22.60 95.53 94.15

SCE 4.59 99.13 15.47 97.06 1.96 99.58 10.60 98.06 29.31 92.84 56.36 87.03 19.71 95.62 91.09

GCE 11.33 98.02 11.73 98.00 7.16 98.73 9.06 98.30 21.70 96.15 50.39 88.80 18.56 96.33 93.54

DivideMix 22.35 94.72 36.90 91.74 33.41 90.87 46.05 87.62 47.11 86.55 58.04 84.45 40.81 89.16 81.22

Co-teaching 56.55 74.88 99.90 36.86 95.18 58.31 96.28 61.89 55.83 78.99 94.03 48.08 81.94 58.15 86.22

CM 8.35 98.64 8.39 98.49 7.16 98.67 15.19 97.31 19.72 96.36 51.14 88.54 18.32 96.33 94.39

VolMinNet 2.45 99.48 13.06 97.57 5.96 98.93 6.25 98.85 15.96 97.07 46.30 89.42 15.00 96.89 94.56

NOODLE 2.78 99.39 5.05 98.88 4.79 99.07 10.05 97.92 15.85 96.80 48.02 88.61 14.42 96.78 94.29

Noise = Worst

KNN 9.17 98.28 27.89 94.95 15.76 96.98 38.41 92.03 36.21 90.94 67.46 84.15 32.48 92.89 80.79

MSP 56.74 87.97 50.54 89.33 38.83 93.72 62.58 87.03 78.16 76.44 74.04 78.44 60.15 85.49 80.79

ODIN 45.45 90.96 33.09 93.31 13.41 97.43 32.36 93.02 71.68 72.39 75.89 73.02 45.31 86.69 80.79

Energy 37.62 93.17 35.78 93.28 14.57 97.00 47.39 90.98 76.06 74.61 72.39 77.45 47.30 87.75 80.79

ReAct 70.94 82.60 52.84 90.05 36.40 93.87 68.31 81.53 88.92 54.21 77.90 70.87 65.89 78.86 80.79

Mahalanobis 4.41 98.97 19.95 96.33 10.05 98.07 30.50 92.65 33.69 89.11 87.96 60.38 31.09 89.25 80.79

CIDER 99.88 30.48 96.13 49.01 99.94 33.75 99.21 35.94 92.91 54.56 98.73 42.62 97.80 41.06 24.22

SSD+ 99.96 43.94 99.94 33.16 99.98 13.02 100.00 16.11 99.50 18.12 99.67 33.06 99.84 26.24 19.85

SNN 10.98 97.95 24.49 95.67 16.61 96.76 31.84 93.96 33.92 90.69 67.36 81.67 30.87 92.78 80.57

SCE 9.84 98.12 19.48 96.06 12.17 97.41 12.14 97.41 35.11 91.21 64.89 82.63 25.61 93.81 83.48

GCE 10.53 98.18 21.72 96.09 15.71 97.05 55.81 87.25 45.69 87.86 65.02 82.54 35.75 91.50 83.49

DivideMix 44.70 93.52 48.20 89.20 38.09 90.29 15.35 96.70 32.06 94.42 57.95 85.09 39.39 91.53 80.23

Co-teaching 50.04 85.37 99.95 29.04 99.61 58.63 96.88 58.36 52.15 82.65 94.22 50.03 82.14 60.68 86.34

CM 8.61 98.29 17.92 96.78 28.37 90.87 56.29 81.97 39.24 88.19 67.23 81.87 36.28 89.66 76.26

VolMinNet 7.58 98.33 42.88 90.42 19.70 95.50 43.71 89.08 40.90 87.46 70.64 77.54 37.57 89.72 76.30

NOODLE 3.23 99.31 23.67 95.81 8.08 98.40 36.55 93.57 32.98 91.67 63.14 83.91 27.94 93.78 83.54

Noise = Aggre

KNN 11.37 97.91 18.32 96.70 9.93 98.11 18.12 96.35 23.69 95.43 62.26 84.54 23.95 94.84 89.93

MSP 57.75 89.45 47.16 90.89 27.74 95.11 59.89 88.27 67.84 83.15 69.89 82.42 55.04 88.21 89.93

ODIN 49.75 91.54 30.78 94.69 9.29 98.25 33.50 92.13 65.18 82.01 74.50 75.54 43.83 89.03 89.93

Energy 66.66 88.00 40.23 93.66 18.07 97.10 64.95 88.41 71.46 81.96 74.80 78.26 56.03 87.90 89.93

ReAct 66.66 88.00 40.23 93.66 18.07 97.10 64.95 88.41 71.46 81.96 21.61 96.92 47.17 91.01 89.93

Mahalanobis 4.41 98.97 19.95 96.33 10.05 98.07 30.50 92.65 33.69 89.11 87.96 60.38 31.09 89.25 89.93

CIDER 28.18 91.29 99.98 34.71 96.13 49.01 100.00 22.14 94.47 34.71 96.37 48.95 86.49 42.86 25.24

SSD+ 99.64 43.12 99.90 31.72 99.87 36.56 100.00 21.46 97.41 39.38 100.00 6.48 99.47 29.79 19.22

SNN 6.15 98.90 14.36 97.33 8.61 98.32 35.76 92.37 26.12 94.45 59.86 83.74 25.14 94.18 90.00

SCE 4.32 99.14 19.12 96.41 4.92 98.98 19.90 96.39 24.98 94.82 63.95 82.82 22.87 94.76 90.45

GCE 1.94 99.64 11.17 98.11 7.57 98.58 14.44 97.36 28.63 94.62 52.86 87.84 19.43 96.03 91.55

DivideMix 77.88 85.56 84.07 74.54 48.41 87.26 59.81 78.07 49.49 86.58 74.63 78.99 65.72 81.83 73.44

Co-teaching 48.52 80.16 99.49 39.54 94.18 58.15 86.59 72.57 45.46 84.21 93.64 47.65 77.98 63.71 86.15

CM 7.82 98.68 13.01 97.55 8.41 98.30 12.70 97.62 22.45 95.18 62.91 83.70 21.22 95.17 78.82

VolMinNet 3.88 99.17 10.28 98.08 8.46 98.32 31.84 93.84 29.41 93.06 56.36 87.27 23.37 94.96 91.86

NOODLE 1.44 99.67 16.17 97.17 3.42 99.24 9.69 98.15 19.26 95.90 56.68 86.19 17.78 96.05 91.57
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Table 4: OOD detection performance (FPR95↓ / AUROC↑) on CIFAR-10 using a DenseNet-100
encoder under random1, random2, and random3 noise.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Noise = random1

KNN 26.55 95.11 32.22 94.66 19.98 96.43 36.27 92.58 30.12 93.01 67.75 84.12 35.48 92.65 88.03

MSP 63.91 89.44 56.80 88.35 33.35 94.64 70.25 83.87 70.71 81.70 69.47 81.73 60.75 86.62 88.03

ODIN 55.83 87.93 43.60 91.41 11.17 98.01 46.12 89.32 65.07 77.53 72.94 75.16 49.12 86.56 88.03

Energy 81.76 85.45 39.75 92.56 11.32 97.78 63.37 86.34 68.55 80.04 64.57 81.25 54.89 87.24 88.03

ReAct 97.67 60.00 57.46 89.81 28.41 95.32 72.90 78.42 86.65 62.40 69.53 75.58 68.77 76.92 88.03

Mahalanobis 16.86 96.22 48.89 88.49 13.62 97.36 50.63 82.90 36.24 87.86 92.57 50.57 43.14 83.90 88.03

CIDER 54.22 82.56 69.96 72.92 96.13 49.01 100.00 22.14 94.47 34.71 93.35 48.34 74.94 62.46 26.02

SSD+ 90.68 45.50 94.43 48.88 99.66 29.40 99.66 35.47 92.61 39.44 98.11 47.00 95.86 40.95 22.05

SNN 16.25 97.07 35.63 93.93 15.74 97.05 23.81 95.32 26.77 93.92 61.03 85.28 29.87 93.76 87.13

SCE 17.45 97.24 10.51 97.91 5.81 98.81 14.95 97.11 25.83 93.70 62.82 83.86 22.90 94.77 89.81

GCE 6.38 98.87 11.85 97.92 11.48 97.93 23.18 96.11 31.91 93.27 56.04 86.58 23.47 95.11 90.46

DivideMix 89.21 84.82 62.24 86.97 56.76 88.52 68.00 80.74 50.85 86.88 72.78 79.19 66.64 84.52 77.14

Co-teaching 51.32 81.34 49.00 83.00 52.00 87.00 23.18 96.11 74.58 69.89 94.74 62.07 53.42 74.23 86.44

CM 3.13 99.35 18.50 96.55 15.74 97.22 21.04 96.18 25.85 94.65 64.08 83.69 24.72 94.61 90.31

VolMinNet 5.48 99.01 15.74 97.11 6.92 98.75 22.86 95.86 30.30 94.07 56.10 86.06 22.90 95.15 90.53

NOODLE 4.04 99.21 17.33 96.70 4.15 99.18 6.37 98.65 14.57 97.11 59.12 85.57 17.60 96.07 90.52

Noise = random2

KNN 6.29 98.73 41.05 91.75 19.28 96.04 24.92 95.02 30.85 92.20 69.53 82.43 31.99 92.70 87.79

MSP 53.36 89.13 58.24 84.86 30.82 94.26 48.26 91.41 73.00 80.23 74.98 79.10 56.44 86.50 87.79

ODIN 44.99 87.97 56.14 83.96 13.74 97.24 19.78 94.78 68.03 73.23 77.58 68.27 46.71 84.24 87.79

Energy 60.00 87.44 50.75 87.08 17.62 96.63 29.00 93.97 71.31 76.10 73.20 75.42 50.31 86.11 87.79

ReAct 78.12 80.74 56.58 86.77 30.49 94.12 62.46 86.31 87.27 61.33 77.87 69.69 65.46 79.83 87.79

Mahalanobis 11.94 96.96 69.11 81.20 23.57 95.12 36.79 87.81 38.72 86.17 94.13 48.44 45.71 82.62 87.79

CIDER 89.16 86.14 99.99 46.58 99.90 42.25 100.00 29.81 99.04 35.07 100.00 51.96 98.01 48.64 25.46

SSD+ 99.36 35.10 90.31 57.22 93.77 55.07 99.56 33.89 91.78 42.09 95.15 49.31 94.99 45.45 23.45

SNN 4.84 99.05 42.45 92.36 19.44 96.04 17.68 96.06 33.90 91.82 66.09 82.28 30.74 92.94 88.11

SCE 6.17 98.78 15.97 97.16 13.15 97.50 24.60 95.04 25.41 94.60 61.19 82.42 24.42 94.25 89.72

GCE 2.02 99.57 18.91 96.46 5.57 98.84 9.06 98.09 19.47 96.02 55.29 86.18 18.89 95.86 90.29

DivideMix 79.28 78.13 68.73 80.40 55.05 86.76 26.58 94.70 51.37 87.91 74.59 77.40 59.27 84.22 78.30

Co-teaching 51.32 81.34 99.87 32.07 74.58 69.89 94.74 62.07 52.39 81.73 92.63 49.46 77.59 62.76 85.99

CM 1.83 99.62 16.84 97.00 17.64 96.72 18.08 96.81 27.96 94.45 59.38 85.66 23.62 95.04 90.29

VolMinNet 3.95 99.25 15.59 97.29 8.74 98.36 8.31 98.42 22.82 95.84 53.37 87.74 18.80 96.15 94.35

NOODLE 1.22 99.77 12.36 97.84 2.86 99.43 11.00 98.04 14.24 97.35 55.58 86.68 16.21 96.52 89.64

Noise = random3

KNN 8.79 98.41 29.45 93.81 12.45 97.66 28.16 94.63 25.80 94.26 58.99 85.76 27.27 94.09 87.77

MSP 50.92 90.23 44.39 89.13 25.79 95.34 69.78 81.85 67.02 81.86 65.51 81.76 53.90 86.70 87.77

ODIN 41.84 90.63 30.77 92.45 8.82 98.25 42.48 89.24 60.35 77.22 67.20 76.41 41.91 87.37 87.77

Energy 40.77 92.63 26.49 93.06 8.85 98.19 57.99 85.82 64.08 80.66 58.27 83.06 42.74 88.90 87.77

ReAct 77.62 77.76 34.33 92.52 16.16 96.96 67.01 79.29 85.32 62.89 66.42 77.99 57.81 81.24 87.77

Mahalanobis 7.87 98.31 26.49 94.43 7.01 98.64 54.91 82.04 28.95 90.66 87.15 57.60 35.40 86.95 87.77

CIDER 98.96 18.22 98.75 24.24 75.41 69.92 91.38 57.40 88.28 38.09 93.45 50.68 91.04 43.09 23.21

SSD+ 99.54 26.49 99.02 42.89 100.00 33.08 100.00 33.42 98.54 17.58 99.15 43.08 99.38 32.76 19.20

SNN 12.97 97.67 34.27 91.84 16.04 96.81 53.01 89.46 29.40 92.96 59.90 83.95 34.26 92.12 87.94

SCE 6.08 98.81 16.65 96.94 13.47 96.64 24.29 95.55 23.32 95.23 65.06 83.22 24.81 94.40 89.39

GCE 7.30 98.63 17.23 96.88 5.28 98.96 10.88 97.86 20.04 95.84 57.98 85.49 19.78 95.61 90.71

DivideMix 26.15 95.47 57.09 89.78 38.77 92.91 46.40 89.32 49.93 87.99 74.53 80.78 48.81 89.38 69.20

Co-teaching 50.65 80.80 99.96 23.83 99.55 56.65 95.49 58.16 52.45 80.56 93.54 48.86 81.94 58.15 86.53

CM 2.56 99.48 12.00 97.75 6.82 98.60 23.46 95.99 23.74 94.94 55.65 86.32 20.70 95.51 90.79

VolMinNet 9.80 98.06 10.10 98.02 7.61 98.40 24.25 95.63 25.74 94.40 55.65 85.58 22.19 95.02 94.36

NOODLE 2.16 99.55 13.31 97.52 4.11 99.15 5.26 98.79 18.26 95.86 53.31 87.46 16.07 96.39 90.32

Table 5: OOD detection performance (FPR95↓ / AUROC↑) on Animal-10N with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

KNN 45.29 89.55 58.05 90.30 66.19 79.93 90.66 62.18 73.17 74.54 89.26 65.71 70.44 77.04 81.52

MSP 93.12 64.84 82.74 79.61 84.00 74.53 96.60 34.67 96.97 41.18 90.40 64.56 90.64 59.90 81.52

ODIN 79.29 64.67 51.20 88.26 48.52 87.84 96.52 34.97 95.43 36.66 90.85 62.89 76.97 62.55 81.52

Energy 81.91 74.54 66.32 88.64 31.94 94.83 96.32 45.16 89.02 69.24 88.09 74.71 75.60 74.52 81.52

ReAct 79.18 77.62 72.85 85.98 42.96 92.02 95.69 58.85 91.88 52.46 91.43 59.99 79.00 71.15 81.52

Mahalanobis 31.73 91.49 97.47 42.44 68.73 66.87 4.87 98.87 33.39 86.64 91.04 51.67 54.54 73.00 81.52

CIDER 98.86 39.21 98.50 78.80 96.32 61.83 97.93 37.85 99.89 20.98 99.19 39.05 98.44 39.78 20.24

SSD+ 74.30 66.08 89.00 57.00 97.69 31.96 66.50 65.96 91.21 43.10 98.31 37.19 85.60 48.86 19.60

SNN 41.40 91.28 11.58 97.79 12.04 97.63 39.68 91.61 29.22 93.29 54.67 90.27 31.43 93.65 81.52

SCE 29.06 90.96 41.71 93.05 27.00 94.63 9.45 98.39 29.59 94.10 55.03 89.71 31.97 93.47 81.22

GCE 28.98 91.90 43.05 91.28 23.75 94.14 27.02 95.91 30.18 92.52 66.74 84.15 36.62 91.65 80.86

DivideMix 16.15 96.44 19.84 96.28 18.42 95.98 60.56 86.34 40.14 85.92 50.52 89.62 34.27 91.77 79.63

Co-teaching 68.04 83.45 99.90 8.68 84.54 55.97 11.71 97.11 49.72 82.39 96.92 42.70 68.47 61.72 74.08

CM 25.84 95.25 15.41 97.22 13.42 97.44 63.61 84.11 37.06 90.88 45.65 91.58 33.50 92.75 82.48

VolMinNet 15.08 96.79 29.22 94.51 11.80 97.73 40.62 90.67 25.20 94.64 53.63 90.21 29.26 94.09 81.78

NOODLE 26.49 94.77 24.41 95.75 11.36 97.86 17.29 96.70 18.21 96.33 53.76 89.37 25.25 95.13 82.98
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Table 6: OOD detection performance (FPR95↓ / AUROC↑) on CIFAR-100 with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

KNN 11.08 97.63 42.68 92.88 28.07 93.32 53.09 81.81 32.73 91.70 91.56 61.90 43.20 86.54 52.48

MSP 86.65 75.40 76.23 81.21 52.72 88.08 88.69 67.64 92.36 60.23 89.81 63.40 81.08 72.66 52.48

ODIN 93.41 68.56 58.06 87.70 26.85 95.10 70.69 83.42 92.78 59.70 88.51 65.36 71.72 76.64 52.48

Energy 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 99.29 3.46 98.31 6.41 78.93 51.74 52.48

ReAct 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 97.53 38.90 83.94 66.32 76.24 67.63 52.48

Mahalanobis 64.60 82.25 99.38 44.82 95.23 49.37 53.12 83.45 42.13 84.50 96.43 48.47 75.15 65.47 52.48

CIDER 98.86 39.76 99.33 29.09 99.19 39.05 96.36 61.84 97.93 37.85 99.89 20.99 98.59 38.10 19.76

SSD+ 99.00 39.35 99.33 29.07 99.19 39.05 96.36 61.84 97.93 37.85 99.89 20.99 98.62 38.03 15.56

SNN 16.78 96.78 35.98 93.88 91.30 61.59 56.80 84.25 30.82 92.35 27.24 93.93 43.15 87.13 58.06

SCE 16.87 96.64 14.13 97.12 30.67 91.97 75.99 62.21 50.27 86.01 88.84 64.92 46.13 83.15 60.74

GCE 63.18 82.35 58.27 88.42 63.09 77.88 80.78 66.52 58.03 82.63 87.90 67.42 68.54 77.54 58.21

DivideMix 30.53 94.00 37.22 93.63 67.81 83.31 67.09 70.49 48.55 85.01 86.47 71.10 56.28 82.92 33.26

Co-teaching 51.77 83.17 99.96 27.69 85.42 66.48 98.34 47.85 59.41 79.01 95.20 53.47 81.68 59.61 46.18

CM 35.24 92.09 40.79 92.55 36.79 90.95 54.59 79.49 40.46 89.36 89.26 68.02 49.52 85.41 59.06

VolMinNet 36.03 91.87 50.23 91.22 45.13 88.00 74.76 61.76 43.26 88.84 90.49 66.66 56.65 81.39 60.10

NOODLE 44.68 91.36 22.33 96.32 1.78 99.47 23.73 94.97 38.12 89.17 88.61 65.18 36.54 89.41 60.89
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• The proofs can either appear in the main paper or the supplemental material, but if558

they appear in the supplemental material, the authors are encouraged to provide a short559

proof sketch to provide intuition.560

• Inversely, any informal proof provided in the core of the paper should be complemented561

by formal proofs provided in appendix or supplemental material.562

• Theorems and Lemmas that the proof relies upon should be properly referenced.563

4. Experimental result reproducibility564

Question: Does the paper fully disclose all the information needed to reproduce the main ex-565

perimental results of the paper to the extent that it affects the main claims and/or conclusions566

of the paper (regardless of whether the code and data are provided or not)?567

Answer: [Yes]568

Justification: we plan to release code which can be used to reproduce the results.Also sample569

checkpoint will be given to reproduce results.570

Guidelines:571

• The answer NA means that the paper does not include experiments.572

• If the paper includes experiments, a No answer to this question will not be perceived573

well by the reviewers: Making the paper reproducible is important, regardless of574

whether the code and data are provided or not.575

• If the contribution is a dataset and/or model, the authors should describe the steps taken576

to make their results reproducible or verifiable.577

• Depending on the contribution, reproducibility can be accomplished in various ways.578

For example, if the contribution is a novel architecture, describing the architecture fully579

might suffice, or if the contribution is a specific model and empirical evaluation, it may580

be necessary to either make it possible for others to replicate the model with the same581

dataset, or provide access to the model. In general. releasing code and data is often582

one good way to accomplish this, but reproducibility can also be provided via detailed583

instructions for how to replicate the results, access to a hosted model (e.g., in the case584

of a large language model), releasing of a model checkpoint, or other means that are585

appropriate to the research performed.586

• While NeurIPS does not require releasing code, the conference does require all submis-587

sions to provide some reasonable avenue for reproducibility, which may depend on the588

nature of the contribution. For example589

(a) If the contribution is primarily a new algorithm, the paper should make it clear how590

to reproduce that algorithm.591

(b) If the contribution is primarily a new model architecture, the paper should describe592

the architecture clearly and fully.593

(c) If the contribution is a new model (e.g., a large language model), then there should594

either be a way to access this model for reproducing the results or a way to reproduce595

the model (e.g., with an open-source dataset or instructions for how to construct596

the dataset).597

(d) We recognize that reproducibility may be tricky in some cases, in which case598

authors are welcome to describe the particular way they provide for reproducibility.599

In the case of closed-source models, it may be that access to the model is limited in600

some way (e.g., to registered users), but it should be possible for other researchers601

to have some path to reproducing or verifying the results.602

5. Open access to data and code603

Question: Does the paper provide open access to the data and code, with sufficient instruc-604

tions to faithfully reproduce the main experimental results, as described in supplemental605

material?606
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Answer: [No]607

Justification: We have not released the code to open source yet. However we have plans to608

do it.609

Guidelines:610

• The answer NA means that paper does not include experiments requiring code.611

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/612

public/guides/CodeSubmissionPolicy) for more details.613

• While we encourage the release of code and data, we understand that this might not be614

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not615

including code, unless this is central to the contribution (e.g., for a new open-source616

benchmark).617

• The instructions should contain the exact command and environment needed to run to618

reproduce the results. See the NeurIPS code and data submission guidelines (https:619

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.620

• The authors should provide instructions on data access and preparation, including how621

to access the raw data, preprocessed data, intermediate data, and generated data, etc.622

• The authors should provide scripts to reproduce all experimental results for the new623

proposed method and baselines. If only a subset of experiments are reproducible, they624

should state which ones are omitted from the script and why.625

• At submission time, to preserve anonymity, the authors should release anonymized626

versions (if applicable).627

• Providing as much information as possible in supplemental material (appended to the628

paper) is recommended, but including URLs to data and code is permitted.629

6. Experimental setting/details630

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-631

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the632

results?633

Answer: [Yes]634

Justification: In the experimental settings, all relevant details are described. Additionally,635

we present the results of an ablation study on various hyperparameters. These experimental636

details and our rationale for choosing each hyperparameter are provided in the supplementary637

material.638

Guidelines:639

• The answer NA means that the paper does not include experiments.640

• The experimental setting should be presented in the core of the paper to a level of detail641

that is necessary to appreciate the results and make sense of them.642

• The full details can be provided either with the code, in appendix, or as supplemental643

material.644

7. Experiment statistical significance645

Question: Does the paper report error bars suitably and correctly defined or other appropriate646

information about the statistical significance of the experiments?647

Answer: [NA]648

Justification: Statistical significance is not a part of our analysis.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The authors should answer "Yes" if the results are accompanied by error bars, confi-652

dence intervals, or statistical significance tests, at least for the experiments that support653

the main claims of the paper.654

• The factors of variability that the error bars are capturing should be clearly stated (for655

example, train/test split, initialization, random drawing of some parameter, or overall656

run with given experimental conditions).657
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• The method for calculating the error bars should be explained (closed form formula,658

call to a library function, bootstrap, etc.)659

• The assumptions made should be given (e.g., Normally distributed errors).660

• It should be clear whether the error bar is the standard deviation or the standard error661

of the mean.662

• It is OK to report 1-sigma error bars, but one should state it. The authors should663

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis664

of Normality of errors is not verified.665

• For asymmetric distributions, the authors should be careful not to show in tables or666

figures symmetric error bars that would yield results that are out of range (e.g. negative667

error rates).668

• If error bars are reported in tables or plots, The authors should explain in the text how669

they were calculated and reference the corresponding figures or tables in the text.670

8. Experiments compute resources671

Question: For each experiment, does the paper provide sufficient information on the com-672

puter resources (type of compute workers, memory, time of execution) needed to reproduce673

the experiments?674

Answer: [Yes]675

Justification: We provide information about the computer resources in supplementary676

materials.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,680

or cloud provider, including relevant memory and storage.681

• The paper should provide the amount of compute required for each of the individual682

experimental runs as well as estimate the total compute.683

• The paper should disclose whether the full research project required more compute684

than the experiments reported in the paper (e.g., preliminary or failed experiments that685

didn’t make it into the paper).686

9. Code of ethics687

Question: Does the research conducted in the paper conform, in every respect, with the688

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?689

Answer: [Yes]690

Justification:We do not believe our work has any harmful effects with respect to the Code of691

Ethics.692

Guidelines:693

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.694

• If the authors answer No, they should explain the special circumstances that require a695

deviation from the Code of Ethics.696

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-697

eration due to laws or regulations in their jurisdiction).698

10. Broader impacts699

Question: Does the paper discuss both potential positive societal impacts and negative700

societal impacts of the work performed?701

Answer: [Yes]702

Justification:We have discussed the positive impacts of our work in the paper. For critical703

AI-based applications—such as autonomous vehicles and medical systems—our approach704

offers substantial benefits. We believe it carries no negative impacts.705

Guidelines:706

• The answer NA means that there is no societal impact of the work performed.707
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• If the authors answer NA or No, they should explain why their work has no societal708

impact or why the paper does not address societal impact.709

• Examples of negative societal impacts include potential malicious or unintended uses710

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations711

(e.g., deployment of technologies that could make decisions that unfairly impact specific712

groups), privacy considerations, and security considerations.713

• The conference expects that many papers will be foundational research and not tied714

to particular applications, let alone deployments. However, if there is a direct path to715

any negative applications, the authors should point it out. For example, it is legitimate716

to point out that an improvement in the quality of generative models could be used to717

generate deepfakes for disinformation. On the other hand, it is not needed to point out718

that a generic algorithm for optimizing neural networks could enable people to train719

models that generate Deepfakes faster.720

• The authors should consider possible harms that could arise when the technology is721

being used as intended and functioning correctly, harms that could arise when the722

technology is being used as intended but gives incorrect results, and harms following723

from (intentional or unintentional) misuse of the technology.724

• If there are negative societal impacts, the authors could also discuss possible mitigation725

strategies (e.g., gated release of models, providing defenses in addition to attacks,726

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from727

feedback over time, improving the efficiency and accessibility of ML).728

11. Safeguards729

Question: Does the paper describe safeguards that have been put in place for responsible730

release of data or models that have a high risk for misuse (e.g., pretrained language models,731

image generators, or scraped datasets)?732

Answer: [No]733

Justification: Our works does not have a risk for misuse.734

Guidelines:735

• The answer NA means that the paper poses no such risks.736

• Released models that have a high risk for misuse or dual-use should be released with737

necessary safeguards to allow for controlled use of the model, for example by requiring738

that users adhere to usage guidelines or restrictions to access the model or implementing739

safety filters.740

• Datasets that have been scraped from the Internet could pose safety risks. The authors741

should describe how they avoided releasing unsafe images.742

• We recognize that providing effective safeguards is challenging, and many papers do743

not require this, but we encourage authors to take this into account and make a best744

faith effort.745

12. Licenses for existing assets746

Question: Are the creators or original owners of assets (e.g., code, data, models), used in747

the paper, properly credited and are the license and terms of use explicitly mentioned and748

properly respected?749

Answer: [Yes]750

Justification: We have cited all the papers and tools which we have mentioned in this work.751

Guidelines:752

• The answer NA means that the paper does not use existing assets.753

• The authors should cite the original paper that produced the code package or dataset.754

• The authors should state which version of the asset is used and, if possible, include a755

URL.756

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.757

• For scraped data from a particular source (e.g., website), the copyright and terms of758

service of that source should be provided.759
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• If assets are released, the license, copyright information, and terms of use in the package760

should be provided. For popular datasets, paperswithcode.com/datasets has761

curated licenses for some datasets. Their licensing guide can help determine the license762

of a dataset.763

• For existing datasets that are re-packaged, both the original license and the license of764

the derived asset (if it has changed) should be provided.765

• If this information is not available online, the authors are encouraged to reach out to766

the asset’s creators.767

13. New assets768

Question: Are new assets introduced in the paper well documented and is the documentation769

provided alongside the assets?770

Answer: [Yes]771

Justification: We have provided details info for new assets.772

Guidelines:773

• The answer NA means that the paper does not release new assets.774

• Researchers should communicate the details of the dataset/code/model as part of their775

submissions via structured templates. This includes details about training, license,776

limitations, etc.777

• The paper should discuss whether and how consent was obtained from people whose778

asset is used.779

• At submission time, remember to anonymize your assets (if applicable). You can either780

create an anonymized URL or include an anonymized zip file.781

14. Crowdsourcing and research with human subjects782

Question: For crowdsourcing experiments and research with human subjects, does the paper783

include the full text of instructions given to participants and screenshots, if applicable, as784

well as details about compensation (if any)?785

Answer: [NA]786

Justification: This work did not involve crowdsourcing or research with human subjects.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Including this information in the supplemental material is fine, but if the main contribu-791

tion of the paper involves human subjects, then as much detail as possible should be792

included in the main paper.793

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,794

or other labor should be paid at least the minimum wage in the country of the data795

collector.796

15. Institutional review board (IRB) approvals or equivalent for research with human797

subjects798

Question: Does the paper describe potential risks incurred by study participants, whether799

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)800

approvals (or an equivalent approval/review based on the requirements of your country or801

institution) were obtained?802

Answer: [NA]803

Justification: This work did not involve crowdsourcing or research with human subjects.804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Depending on the country in which research is conducted, IRB approval (or equivalent)808

may be required for any human subjects research. If you obtained IRB approval, you809

should clearly state this in the paper.810
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• We recognize that the procedures for this may vary significantly between institutions811

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the812

guidelines for their institution.813

• For initial submissions, do not include any information that would break anonymity (if814

applicable), such as the institution conducting the review.815

16. Declaration of LLM usage816

Question: Does the paper describe the usage of LLMs if it is an important, original, or817

non-standard component of the core methods in this research? Note that if the LLM is used818

only for writing, editing, or formatting purposes and does not impact the core methodology,819

scientific rigorousness, or originality of the research, declaration is not required.820

Answer: [NA]821

Justification: The paper’s core method development does not involve LLMs as any important,822

original, or non-standard components.823

Guidelines:824

• The answer NA means that the core method development in this research does not825

involve LLMs as any important, original, or non-standard components.826

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/827

LLM) for what should or should not be described.828
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