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Abstract

Robust out-of-distribution (OOD) detection is an indispensable component of mod-
ern artificial intelligence (AI) systems, especially in safety-critical applications
where models must identify inputs from unfamiliar classes not seen during training.
While OOD detection has been extensively studied in the machine learning litera-
ture—with both post hoc and training-based approaches—its effectiveness under
noisy training labels remains underexplored. Recent studies suggest that label
noise can significantly degrade OOD performance, yet principled solutions to this
issue are lacking. In this work, we demonstrate that directly combining existing
label noise-robust methods with OOD detection strategies is insufficient to address
this critical challenge. To overcome this, we propose a robust OOD detection
framework that integrates loss correction techniques from the noisy label learning
literature with low-rank and sparse decomposition methods from signal processing.
Extensive experiments on both synthetic and real-world datasets demonstrate that
our method significantly outperforms the state-of-the-art OOD detection techniques,
particularly under severe noisy label settings.

1 Introduction

Artificial intelligence (AI) models have achieved remarkable performance across myrid of domains
including computer vision and natural language processing. Yet, a persistent challenge arises in
real-world deployment: these models often fail to recognize inputs from unfamiliar data distributions,
leading to overly confident and potentially misleading predictions [[1]. This limitation underscores the
importance of out-of-distribution (OOD) detection for building trustworthy Al systems, particularly
in high-stakes domains such as autonomous driving [2] and medical diagnostics [3]]. The goal of
OOD detection is not only to provide accurate prediction on seen data distributions but also to flag
inputs from novel or unobserved distributions [4].

OOD detection has been an active topic of research in the field of Al for many decades; a recent
survey can be found in [3]]. A key focus in this field is detecting semantic shifts—scenarios where
new, previously unseen classes appear in the test data, resulting in a mismatch between the label
spaces of in-distribution (ID) and OOD samples. A wide range of methods have been proposed for
OQOD detection, including softmax/logit-based post-hoc techniques [4, (6} (7} |8, [9, [10] and feature
distance-based strategies [[11}/12}[13}14}15]. Nonetheless, most existing OOD detection methods are
developed under the assumption that models are trained on clean, correctly labeled data. However, in
practice, training datasets often contain noisy labels, stemming from the scarcity of expert annotators
and the high cost of accurate label acquisition [16]]. Recent empirical studies have brought serious
attention to this issue, revealing that the presence of label noise can significantly degrade the
performance of state-of-the-art OOD detection methods [17]]. This highlights a critical gap in current

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



36
37

38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58

59

60

61
62
63

64
65
66
67
68

Noise Rate = 0% Noise Rate = 30% Noise Rate = 50%

(0T-¥vdID) sessepd al

FPR =21.06% FPR =36.38% FPR =49.70%

00D
|

Figure 1: The effect of label noise for OOD detection. The figure shows the UM AP representations
of the latent feature vectors h(x) learned using the cross entropy loss-based training using the noisily
labeled dataset {x,,, §y, } for various synthetic noise rates. The false positive ratio (FPR) for OOD
detection using kNN score is also reported. The clusters are more distorted for the training data,
losing the ID-ness characteristics, resulting in degraded performance in OOD detection during test
time.

research and underscores the need to develop robust OOD detection frameworks that remain reliable
under real-world label noise.

The effect of label noise on the classification performance of the deep learning models has been
extensively studied in recent years; see the survey [18]). It is now well-established that training deep
neural network (DNN) models with noisy labels can severely degrade classification performance,
leading to poor generalization and overfitting [[19} 20]. To address this, a variety of label noise-robust
methods have been proposed, including loss correction strategies such as probabilistic modeling
techniques [21} 22 23] 24} 25| 26]], robust loss function designs [27, 28] 29], and in-built sample
selection strategies 1304 1314 [32} 133} 134]], However, their effectiveness in OOD detection under label
noise remains largely unexplored. The key challenge lies in the misalignment of objectives: while
label noise methods aim to correct the prediction probabilities within the training distribution, OOD
detection requires learning discriminative feature representations to detect the samples that does not
belong to the training distribution. Hence, most existing label-noise approaches exhibit poor OOD
detection performance when applied directly, as we will demonstrate in detail in subsequent sections.

Our Contributions. In this work, we investigate the critical challenge of robust OOD detection in the
presence of noisy labels in the training set. Unlike existing studies that focus solely on the empirical
limitations of current OOD detection methods [[17], we identify a key gap, where the label noise-
robust methods improves generalization under noisy supervision for classification settings, yet are
largely ineffective when directly applied for OOD detection. To address this limitation, we propose
a novel learning framework, named as Noise-robust Qut-Of-Distribution Learning (NOODLE), by
leveraging the loss correction techniques with low-rank and sparse decomposition methods. To the
best of our knowledge, this work is the first to offer a principled solution to the problem, achieving
substantial improvements over state-of-the-art OOD detection methods in the presence of label noise.

Notation. Notations are defined in the supplementary materials.

2 Problem Statement

Consider an input feature space X C R, where D denotes the dimensionality of the input features.
Let the label space be defined as ) = {1, ..., K}, corresponding to K distinct classes for the ID
data. We define the training dataset D as:

D= {(wmyn)}nNzh T €X, yYn €Y,

where x,, is the feature vector of the n-th training example, y,, is its associated ground-truth class
label, and N denotes the total number of training samples. Each pair (x,,y,) is assumed to
be drawn independently and identically distributed (i.i.d.) from an underlying joint distribution
Pxy. Let b : RP? — RE denote a DNN that maps each input x,, to an L-dimensional latent
feature representation h(x,,). For the task of multi-class classification, we employ a projection head
c: R — R to produce pre-softmax logits. Thus, the overall label prediction function is given by:

f(@n) = o(c(h(zn))),
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where o denotes the softmax function that output the class probabilities. We often learn the parameters
of these functions by training via cross-entropy (CE) minimization as follows:

minimizeg Lcg(0; {n, yn}) = ZZ kllog(f(xn)))), (1)
n=1k=1

where 0 denotes the DNN parameters of both h and ¢ functions.

OOD Detection. Al systems are generally learned under the closed-world assumption, where it
is presumed that test samples are drawn from the same distribution as the training data. However,
this assumption often fails in practical scenarios, where models inevitably encounter samples that
lie outside the training distribution. These unfamiliar samples are known as OOD inputs [4]. In
classification tasks, such distributional shift may manifest as a semantic shift, wherein some test
instances originate from an unknown label space ), disjoint from the known label space, i.e.,
Y N Y° = (). The objective of OOD detection is to identify whether a given test input belongs to the
in-distribution (ID) or not, thereby preventing the model from making confident predictions on OOD
inputs. Thus, OOD detection can be considered as a binary classification task that distinguishes ID
samples from OOD ones. This can be formalized by a detection function:

__[ID if s(x) > T,
g-(x) = {OOD if s(x) < T, )

where s(x) is a scoring function that quantifies the likelihood of & belonging to the ID distribution,
and 7 is a predefined threshold.

Typically, scoring function s(a) is derived from the trained parameters of the underlying DNN model.
Several scoring functions have been proposed in the literature. Early OOD detection methods directly
used the softmax outputs f () to score "OOD-ness" [4l 6], but they suffered from overconfidence
issues, reducing the desired ID-OOD separability. Further, pre-softmax activations-based approaches
(e.g., by using the logits c(h(x))) were introduced [[7, 8,9, [10]], though they remained sensitive to
architecture and still faced overconfidence issues. Recently, distance-based methods such as those
based on Mahalanobis [11]] and k-nearest neighbor (KNN) [12} 13} |14, [15] have gained traction by
leveraging the clusterability of latent feature representations h(x). In essence, the success of OOD
detection lies in the careful design and learning of the scoring function s(x) that can ensure the
ID-OOD separability during test time.

Learning under Label Noise. Most studies in the domain of OOD detection assume that the DNN
classifier f and the scoring function s are learned using ground-truth labels y,,. However, the lack of
access to reliable ground-truth annotations is a significant challenge for robust OOD detection—see an
example in Fig. where the clusterability of the latent representations h(x) is severely compromised
under label noise, leading to significant degradation in ID-ODD separability for the kNN score
function.

In scenarios where ground-truth labels y,, are difficult to obtain, we often rely on their noisy counter-
parts, denoted by y,, € {1,..., K}, associated with each data item «,,. In noisy label settings, for
many data items, the observed label does not match the true label, i.e., ¥, 7# Yn.

The goal of label noise-robust OOD detection is two-fold: (i) accurately classify ID sam-
ples through a well-generalized predictor f, and (ii) reliably detect OOD instances us-
ing a robust decision function g, despite learning them using the noisily labeled dataset

D = {(@n,Jn) 11, Tn €EX, Jr € V.

3 Proposed Approach

In this section, we present our label noise-robust OOD detection framework. Our strategy is based
on cleansing the noise-corrupted latent feature space using an end-to-end training strategy, thereby
making it robust for OOD detection at test time. Towards this goal, our framework encompasses three
main components: i) loss correction module ii) low rank and sparse decomposition of latent feature
matrix iii) OOD detection using distance-based metrics, e.g., KNN.
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3.1 Loss Correction

As demonstrated in Fig. [T} training directly with noisy labels (e.g., by using the CE minimization
as in where the unobserved ground-truth labels y,, are replaced by the observed noisy labels
Yn) leads to a corrupted latent feature space. To address this, we first integrate a loss correction
module to reduce the effect of label noise in learned features. Loss correction strategies have attracted
considerable attention in noisy label learning literature. Among these, probabilistic noise modeling
via the so-called transition matrices [22, |35, 23} 136] and robust loss function-based approaches
[27, 128, 29]] are particularly well-received, owing to their strong theoretical foundations and robust
empirical performance in classification tasks.

In general, loss correction strategies design a modified cross-entropy loss to train the classifier f on
the noisy dataset {x,,, ¥, }, while aiming to predict the ground-truth labels, i.e.,

mi%imize LEYO,m;{xn, Yn}) 3
i

where 7 typically refers to additional model parameters according to specific loss designs. For
instance, in the case of transition matrix-based approaches [22} [35] 23] [36]], 7 refers to the noise
transition probabilities that learns the probabilistic label confusion terms Pr(y,, = k|y, = k’). In
sample selection approaches [30, 131} 32,133 134]] , i) instead represents sample-weighting terms that
regulate the contributions of clean and noisy sample—label pairs. In contrast, robust loss function-
based methods, e.g., [27,129]], often do not introduce additional parameters—they directly design loss
functions that are inherently less sensitive to incorrect labels. For instance, symmetric cross-entropy
(SCE) [29] and generalized cross-entropy (GCE) [27] can be viewed as hybrids of CE loss and mean
absolute error (MAE) loss, thereby combining the favorable convergence properties of CE with the
robustness of MAE against outliers.

Nonetheless, these loss correction strategies primarily operate by modifying the softmax prediction
outputs of the ID samples rather than directly correcting their feature embeddings. However, feature
embeddings are often more critical for OOD detection, particularly for the competitive, distance-based
OOD metrics such as k-nearest neighbor [[12] and Mahalanobis [11]]. This misalignment of objectives
results in suboptimal performance in mitigating the effect of label noise in OOD detection.

3.2 Low-rank plus Sparse Decomposition

To overcome the limitation of loss correction modules in handling feature correction, we introduce
the next key component of our framework. A critical observation underlying its design is that, in the
absence of label noise, latent feature vectors naturally exhibit certain clustering patterns, reflecting
their low-rank structure due to their class-specific organization—see the first UMAP plot in Fig.
[I] This intrinsic structural tendency can be explicitly leveraged in the training phase to encourage
low-rank properties in the feature representations. To this end, we adopt a low-rank and sparse
decomposition strategy, drawing inspiration from classical signal processing techniques [37,38].

Consider the latent feature representation h(x) of the input image « (e.g., the penultimate layer
encoding of the DNN model). Let us represent the latent feature matrix H as follows:

H = [h(z1),...,h(zn)] € RPN “4)

where D is the feature dimension and [V is the batch size. In order to exploit the low-rankness of
the latent matrix H along with a sparse structure, we assume that H ~ L + S, where L € RP*N
is the low-rank component and S € RP*N is a column sparse matrix, i.e., most columns of S has
zero {5 norm. That means, the low-rank term captures the underlying class structure information,
whereas the sparse term can handle the outlier data items that does not strictly conform to the low-rank
assumption.

Learning L and S from the observed matrix H generally involves solving optimization problem of
the form [39, 40]:
Iiliél |L|« + A|S||21 st H=L+S,

where ||L||. denotes the nuclear norm of L to promote the low-rankness and ||.S||2,; denotes the
matrix mixed norm that promotes column sparsity in S. Here, A > 0 is a regularization parameter that
balances the contributions of the low-rank and sparse terms. As computing the nuclear norm involves
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costly operations like singular value decomposition, we adopt an efficient power iteration (PI)-based
low-rank approximation strategy [41}42]] in our training phase. Specifically, The method estimates the
top-K left singular vectors of the latent representation H by iteratively refining a randomly initialized
orthonormal basis @ € R”*¥ through alternating projections of H and orthonormalization via QR
decomposition. Here, The rank K can be selected according to the number of classes (or based on
the number of coarse-grained classes in the case of datasets with very large label space). Using the
learned @, we decompose the feature matrix as

Hyp = [hp(21), ..., hip(@n)] = (QQT)H, Hoop = [hoon(®1), - - ., hoop(xy)] = H—Hp,

where Hyp, € RP*YN represents the ID component and Hoop € RP*Y contains residual features
that may potentially carry non-ID information. Further, to enforce the column sparsity in the matrix
Hoop, we employ the following regularization term:

‘Csparse = HHOOD”Q,I = Z

Jj=1

&)

Finally, the proposed method is trained by minimizing a joint objective that combines the modified
cross-entropy loss as explained in (@) with the regularizer in (3)):

‘C}- = *Cg](i)d +A Esparsev

where A > 0 is a regularization hyperparameter that controls the strength of the column-sparsity term.
The detailed algorithm is presented in the supplementary section.

3.3 OOD Detection with Refined Feature Representations

After training, we adopt a distance-based approach for OOD detection using the cleaned latent features
hip(x). Towards this, we extract the £2-normalized feature vectors wip (@, ) = hip(x,)/||hip (25 )]|2
for all ID training samples and store them as reference embeddings. At test time, a query sample
a* is mapped to its normalized feature w(x*) = h(x*)/||h(x*)||2, whose distance to the stored ID
embeddings up(x,,) is then evaluated. Following prior work, we adopt different distance metrics,
such as k-nearest neighbor [[12] and Mahalanobis distance [[11]. To be specific, in the case of k-nearest
neighbor metric, we select the k-th smallest distance to define the OOD score s(x) (also see (2)):

sinn(2") = —Hu(w*) - UI(S)HQ’

where ul(]];) denotes the k-th nearest neighbor embedding from the cleaned latent features of the
training data. A decision threshold 7 of the detection function g, is chosen based on a validation set
such that a high fraction (e.g., 95%) of ID samples are correctly classified as ID.

4 Experiments

In this section, we present a series of experiment results to showcase the effectiveness of our label
noise-robust OOD detection framework.

Datasets. For synthetic label noise settings, we consider CIFAR-10 [43] as ID dataset. CIFAR-10
consists of 50,000 training images and 10,000 test images across 10 different classes. For synthetic
label noise generation, we adopt class-independent symmetric noise, where every true label has the
same probability of being corrupted, and when corrupted, it is flipped uniformly at random to any of
the other K — 1 classes, regardless of the original class. We vary the noise rate at 10%, 30%, and
50% to simulate different levels of noise severity.

To test under realistic label noise, we also consider the human-annotated noisy label datasets CIFAR-
10N, CIFAR-100N [44], and Animal-10N [45]. These are annotated by the crowd workers from
the popular crowdsourcing platform Amazon Mechanical Turk (AMT). CIFAR-10N provides five
types of noisy label sets: worst, aggregate, randoml, random2, and random3, while we use the fine
type label noise for CIFAR-100N. Similar to CIFAR-10, Animal-10N contains 50,000 training and
5,000 test images across 10 classes, with human-annotated noisy labels. CIFAR-100N contains the
same number of images but is divided into 100 fine-grained classes, making both classification and
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OOD detection more challenging. As OOD datasets during test time, we consider several benchmark
datasets, including SVHN [46], FashionMNIST [47/], LSUN [48], iSUN [49]], Texture [50], and
Places365 [51]].

Baselines. We compare our proposed method with several OOD detection baselines as well as
different label noise-robust techniques.

Regarding the OOD detection baselines, we consider MSP [52], ODIN [6], Energy [53], ReAct [9],
Mahalanobis [11], KNN [12], CIDER [13]], SSD+ [14], and SNN [15]. MSP, ODIN and Energy are
softmax-based approaches. MSP relies only on softmax output of the model, while ODIN uses an
additional temperature scaling hyperparameter. Energy method computes an energy-based metric
from the model outputs, identifying test samples with higher energy as OOD. ReAct is a logit-based
approach. Mahalanobis, KNN, CIDER, SSD+, and SNN are distance-based approaches. For MSP,
ODIN, Energy, ReAct, and SNN, the DNN encoder is trained using the standard cross-entropy loss.
For KNN and SSD+, supervised contrastive loss [54] is used. CIDER is trained using a maximum
likelihood estimation-based loss together with dispersion regularization. As previously discussed,
most recent distance-based methods—such as KNN, CIDAR, and SNN all advocate the use of
non-parametric kNN-based score [12]] for OOD detection.

Regarding label-noise-robust learning methods, we consider different lines of approach for our
evaluation. Specifically, we consider CM [55]], VolMinNet [55], SCE [56], GCE [57]], DivideMix
[58]], and Co-Teaching [S9]]. Here, CM and VolMinNet are probabilistic noise-modeling approaches
that rely on transition matrices to correct label noise. GCE and SCE are robust loss function—based
approaches that are variants of the cross-entropy loss. DivideMix and Co-Teaching are sample-
selection-based approaches that focus on reweighting samples based on the presence of label noise.
Here, DivideMix identifies small-loss (likely clean) samples and applies semi-supervised learning
to the noisy labeled samples, while Co-Teaching uses two networks that are trained simultaneously
and exchange small-loss samples with each other. For OOD performance evaluation, we use the
kNN-based metric for all these methods, unless specified otherwise.

Implementation Settings. We use a CNN-based architecture, DenseNet-101[60], as the backbone
model for all datasets. We train the model from scratch using the ID datasets. During training
for CIFAR-10N and Animal-10N, we set the number of epochs to 100 and use a batch size of 64.
First, we extract penultimate layer’s features and then apply global average pooling following by
{2-normalization before performing the PI-based low-rank decomposition module of our NOODLE
approach. We initialize the transition matrices as identity matrices of appropriate size in the case of
CM-based approaches. For all datasets, we choose stochastic gradient descent (SGD) as the optimizer
with a momentum of 0.9 and a weight decay of 1 x 10~%. We tune the hyperparameters A from the
set of values {0.0001, 0.0005,0.001, 0.005, 0.1}. For the NOODLE approach, we consider different
options for loss correction strategies such as CM and SCE. In terms of distance metrics in NOODLE
approach, we consider both kNN and Mahalanobis scores as OOD detection metrics. We present
the best performing variants of the NOODLE approach in the main result tables, yet present the
detailed ablation study across different combinations of loss correction and distance metrics in the
later sections.

Evaluation metrics. We evaluate the OOD detection performance using three widely recognized
metrics. The false positive rate at 95% true positive rate (FPR@95) indicates the proportion of
OOD samples erroneously classified as ID when the true positive rate is fixed at 95%; lower values
correspond to better detection. The area under the receiver operating characteristic curve (AUROC)
indicates the trade-off between true and false positive rates across thresholds and the higher value
corresponds to better OOD performance. Finally, ID Accuracy (ID ACC) measures how accurately the
model classifies the ID samples during testing. ID accuracy results are presented in the supplementary
section.

Results. Table[T] presents the OOD detection performance of the baselines and our method under
symmetric label noise across different noise rates for CIFAR-10 dataset. We can observe that
OOD detection baselines that lack label noise-robust training strategy are significantly impacted by
high levels of label noise. In contrast, the label noise-robust approaches, especially those based on
probabilistic modeling such as CM and VolMinNet maintain relatively strong performance under noisy
conditions. Notably, our proposed method, NOODLE, consistently outperforms all other approaches
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Table 1: OOD detection performance on CIFAR10 with synthetic label noise across different OOD
datasets; The top two performing algorithms (in terms of average FPR95) are highlighted in bold.

Method SVHN FashionMNIST LSUN iSUN DTD/Texture Places365 Average
FPR95] AUROCT FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

Noise rate = 10%

KNN 34.23 93.92 38.51 93.57 17.71 96.66 21.72 95.93 28.58 94.04 62.26 84.62 33.84 93.12
MSP 73.54 84.82 54.92 88.64 32.84 9449 55.18 89.70 77.02 75.86 69.01 80.33 60.42 85.64
ODIN 87.82 60.19  64.22 79.77 2442 94.56 32.99 91.49 80.30 56.06 78.84 66.87 61.43 74.82
Energy 80.31 77.93 57.89 84.84 17.74 96.65 54.63 88.38 82.43 62.42 7829 72.39 60.37 79.12
ReAct 96.77 53.22  63.00 87.87 49.38 90.45 72.98 81.08 92.89 44.08 75.21 75.29 75.04 72.00
Mahalanobis 31.71 91.10 72.56 74.47 28.29 93.87 52.77 81.81 49.11 80.53 94.74 44.55 54.86 T77.72
CIDER 99.64 51.13  99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.80 29.83
SSD+ 90.96 73.67 98.72 46.18 99.69 40.58 100.00 26.23 98.06 33.48 99.15 37.90 97.76 43.01
SNN 49.71 91.73 29.72 95.06 20.96 96.25 25.36 95.23 34.26 92.53 56.29 86.46 36.05 92.88
SCE 5.97 98.96 12.60 97.80 2.93 99.44 15.62 97.01 27.16 94.28 59.64 85.79 20.66 95.55
GCE 7.81 98.50 16.20 97.33 5.88 98.96 12.03 97.92 31.63 93.56 47.83 89.35 20.23 95.94

Co-teaching 40.12 90.87 99.29 59.93 75.83 76.34 96.95 54.21 49.45 82.48 93.19 48.57 75.81 68.73
DivideMix 62.65 87.37 68.10 81.99 49.01 91.24 42.84 91.52 37.48 92.79 77.16 75.03 56.21 86.66

cM 6.14 98.90 15.80 97.05 6.03 98.91 10.40 98.12 19.08 96.47 53.54 87.17 18.50 96.10
VolMinNet 2.64 99.47 5.18 98.94 5.00 98.98 9.26 98.24 21.60 95.86 56.16 87.43 16.64 96.49
NOODLE 3.51 99.28 5.03  98.97 3.31 99.33 3.05 99.22  16.61 96.78 48.02 89.62 1326 97.20
Noise rate = 30%
KNN 23.80 95.80 36.15 93.43 27.04 94.61 22.03 95.86 39.50 90.40 69.76 83.53 36.38 92.27
MSP 76.88 80.34 56.16 87.14 29.90 93.92 58.82 88.30 79.04 71.54 74.98 76.61 62.63 82.97
ODIN 83.79 61.60 50.70 83.57 22.26 94.83 35.64 89.98 79.68 54.97 83.19 60.62 59.21 74.26
Energy 76.67 76.82 51.45 86.81 19.38 95.65 66.77 84.97 80.89 62.95 77.32 72.32 62.08 79.92
ReAct 88.89 67.41 62.61 85.50 21.63 95.34 90.19 65.23 91.33 51.51 82.51 68.95 72.86 72.33
Mahalanobis 37.86 90.25 50.42 85.21 26.98 93.29 60.92 79.60 52.75 77.45 95.94 40.86 54.15 77.78
CIDER 99.64 51.13  99.90 27.39 99.81 24.37 99.84 27.25 93.72 39.31 100.00 9.42 98.82 29.81
SSD+ 91.27 73.92  98.72 46.08 99.69 40.36 100.00 26.00 98.06 33.49 99.15 37.93 97.82 42.96
SNN 23.37 95.72  34.55 94.11 25.91 94.90 34.38 92.36 42.27 89.39 65.06 84.19 37.59 91.78
SCE 19.48 96.45 25.84 95.37 16.58 96.57 61.71 87.42 35.50 91.76 74.66 79.27 38.96 91.14
GCE 58.38 91.40 20.37 96.64 11.32 97.95 12.38 97.73 30.53 94.08 51.59 88.18 30.76 94.33

Co-teaching 50.10 83.16 99.99 20.37 96.73 64.14 97.86 41.70 53.71 79.45 93.84 48.63 82.04 56.24
DivideMix 58.39 90.07 31.17 94.93 27.86 95.59 16.38 96.93 36.28 92.76 59.28 84.34 38.22 92.44

cM 22.04 96.76 8.79 98.04 10.17 98.12 23.30 95.64 23.71 94.99 55.42 86.90 2390 95.08
VolMinNet 4.99 99.04 14.01 97.09 9.48 98.33 51.23 89.68 27.84 93.44 59.25 85.42 27.80 93.84
NOODLE 1.84 99.60 19.66 96.36 7.28 95.53 10.76  97.89 20.67 95.85 57.50 85.87 19.62 95.68
Noise rate = 50%
KNN 65.53 85.64 37.84 93.71 30.61 93.38 45.41 89.21 43.81 89.06 74.98 79.58 49.70 88.43
MSP 96.92 53.68 80.68 77.70 47.78 89.67 67.84 83.23 82.50 68.45 81.12 73.63 76.14 74.40
ODIN 94.94 44.15 71.46 80.28 34.04 91.82 47.51 88.11 79.61 60.80 82.87 66.17 68.40 71.89
Energy 97.93 46.79  83.41 76.67 39.77 90.87 67.60 81.00 85.43 60.47 82.28 69.91 76.07 70.95
ReAct 99.19 24.75 90.11 64.20 50.47 85.45 78.12 67.79 93.79 39.56 86.40 62.25 83.02 57.33
Mahalanobis 55.77 83.12  59.93 85.98 31.23 93.54 45.17 88.63 48.90 81.70 93.28 51.47 55.71 80.74
CIDER 99.65 51.22  99.91 27.39 100.00 9.42 99.84 27.25 93.72 39.31 99.81 24.37 98.82 29.83
SSD+ 91.35 74.03 98.75 46.17 99.74 40.57 100.00 25.89 98.06 33.47 99.15 37.91 97.84 43.01
SNN 71.41 83.96 68.22 87.66 53.56 89.27 63.49 80.99 56.95 85.48 82.28 77.12 65.99 84.08
SCE 14.10 97.40 42.30 90.96 25.18 94.09 67.17 80.81 51.51 84.65 70.67 77.75 45.15 87.61
GCE 19.19 96.43 29.10 95.06 22.98 9540 53.92 86.31 48.35 87.54 65.83 83.58 39.89 90.72

Co-teaching 57.05 76.43  99.97 28.21 99.23 55.11 96.99 52.50 54.45 78.87 94.22 47.36 83.65 56.41
DivideMix 24.69 95.75  40.94 93.32 37.02 94.36 20.81 96.10 53.10 89.35 56.39 86.71 38.82 92.60
CcM 17.37 96.91 21.93 95.56 17.16 96.58 39.52 92.86 30.23 93.36 61.88 84.82 3135 93.35
VolMinNet 13.01 97.74 15.36 97.11 14.18 97.24 60.13 80.22 45.85 87.40 55.26 86.94 33.96 91.11

NOODLE 6.35 98.43 17.83 96.58 7.09 98.50 32.28 93.92 30.09 92.47 70.41 81.24 2734 93.52

under test in terms of both average FPR95 and AUROC. Our approach is particularly effective at
higher noise rates. For example, at 50% noise rate, NOODLE achieves the best performance, with an
average FPRO5 of 27.34% which represents a reduction in FPR9S5 of up to 12.5% compared to the
best baseline method.

Table 2] presents the OOD detection performance on the real noise datasets which are annotated by
unreliable crowd workers. For CIFAR-10N “worst” noise level (the noise rate is about 40.21%),
NOODLE achieves a 9.5% reduction in FPR95 and a 1.07% increase in AUROC compared to
the best performing baseline SNN. Across other noise settings of CIFAR-10N as well, NOODLE
consistently outperforms all baselines. A similar trend is observed on the Animal-10N dataset: while
label noise-robust methods such as SCE, CM, and VolMinNet improve FPR95 over other non-robust
techniques, NOODLE achieves an additional reduction of approximately 14% compared to the closest
baseline. For CIFAR-100N which is more challenging under noisy settings, NOODLE substantially
outperforming all the baselines with an improvement of about 15% in FPR95 compared to the best
performing baseline. More experiment results and discussion are presented in the supplementary
section.
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Table 2: Average OOD detection performance on noisy real datasets; The top two performing
algorithms (in terms of average FPR95) are highlighted in bold.

Method CIFAR-10N Animal-10N CIFAR-100N

Clean Worst Agg Rand1 Rand2 Rand3 FPR95 AUROC FPR95 AUROC

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

KNN 21.06 95.80 3248 92.89 2395 9484 3548 92.65 31.99 92.70 2727 94.09 7044 77.04 43.20 86.54
MSP 56.43  90.07 60.15 8549 55.04 8821 60.75 86.62 56.44 86.50 53.90 86.70 90.64 59.90 81.08 72.66
ODIN 33.10 9247 4531  86.69 43.83 89.03 49.12 86.56 46.71 84.24 41.91 87.37 76.97 62.55 TL.72 76.64
Energy 39.15  92.03 47.30 87.75 56.03 87.90 54.89 87.24 50.31 86.11 42.74 88.90 75.60 74.52 7893 51.74
ReAct 60.31 83.12 65.89 78.86 47.17 91.01 68.77 76.92 65.46 79.83 57.81 81.24 79.00 71.15 76.24 67.63
Mahalanobis 47.22 8291 53.57 80.61 51.14 81.76 55.26 80.05 44.25 84.60 4837 8337 54.54 73.00 75.15 65.47
CIDER 98.03  48.64 97.80 41.06 86.49 42.86 7494 6246 98.01 48.64 91.04 43.09 9844 39.78 98.59  38.10
SSD+ 99.10 4836  99.84 26.24 99.47  29.79 9586 40.95 94.99 4545 99.38 32.76 85.60 48.86 98.62  38.03
SNN 22.60  95.53 92.78 2514 9418 29.87 93.76 30.74 9294 3426 9212 31.43 93.65 43.15 87.13
SCE 19.71  95.62 92,11  22.87 9476 2290 9477 2442 9425 2481 9440 31.97 9347 46.13 83.15
GCE 18.56  96.33 91.50 19.44 96.03 23.47 9511 1889 9586 19.78 95.61 36.62 91.65 68.54 77.54

DivideMix 40.81  89.16
Co-teaching 81.94 58.15

91.53 65.83 81.83 66.64 84.52 59.27 84.22 2481 9440 34.27 9177 56.28 82.92
60.68 77.98 63.71 5342 7423 7759 62.76 81.94 58.15 6847 61.72 81.68 59.61

cM 1832 96.33 89.66 2122 9517 2472 9461 2362 9504 2070 9551 3350 9275 49.52 8541
VolMinNet 1500  96.89 91.60 2337 9496 2290 9515 1880 9615 2219 9502 2926 9409 56.65 81.39
NOODLE 1442 96.78 93.78 1778 9605 17.60 96.07 1621 9652 1607 9639 2525 9513 3654 89.41
Noise Rate = 30% Noise Rate = 50% Noise Rate = 30% Noise Rate = 50% _
<
1
o
R @
1]
; 3
[a)
z
»
=
X=]
s
- 00D
|
FPR =23.90% FPR =31.35% FPR =19.62% FPR =27.34%
(a) (b)

Figure 2: The effect of label noise on OOD detection for robust methods. The figure shows the UMAP
representations of the latent feature vectors h(x) learned using (a) CM approach (transition matrix-
based label noise correction) with cross-entropy loss, and (b) NOODLE, our proposed approach, on
the CIFAR-10 dataset with synthetic label noise. The FPR95 metric for OOD detection is reported
for each method under different label noise settings. While both methods mitigate the effect of noisy
labels in learned features, NOODLE better preserves the ID-ness characteristics, reducing the mix-up
of ID and OOD samples that results in improved OOD detection performance compared to CM.

ID and OOD Feature Representation. From Fig.|l] it is evident that higher noise levels distort the
feature space, leading to less compact and more intermixed clusters. This feature distortion degrades
the overall OOD detection performance, as we see in our experiments. To illustrate how label
noise-robust methods mitigate this issue, we examine the UMAP visualizations in Fig. 2] where the
learned features h(x) of the test data for both ID and OOD samples are presented. Here, we compare
the feature representations from one of the competing baseline, i.e., CM and our approach NOODLE.
For CM, one can observe that cluster distortions are mitigated compared to the scenarios as in Fig. [T}
showing that loss correction strategy helps in feature cleaning to some extend. Nonetheless, ID and
OOD sample mixups are still present significantly, especially near the boundaries.

In contrast, NOODLE produces more compact and well-separated clusters even under high noise rates
with much reduced feature mix-up between ID and OOD samples. This implies that the low-rank
sparse decomposition strategy in NOODLE is effective in better retaining the ID-ness characteristics
of the learned features, which helps in separating the ID and OOD samples more effectively during
testing. The tighter clusters in NOODLE’s feature space indicates that the samples from the same
class are grouped better and the classes are kept more separate, which helps it achieving lower FPR95
than CM under the same noisy label conditions.

Ablation Study Here, we study the effect of the low-rank and sparse decomposition module
in the NOODLE framework under different loss correction strategies and OOD detection metrics.
Specifically, we analyze CM and SCE strategies for loss correction, and kNN and Mahalanobis
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Figure 3: Comparison of OOD detection performance (FPR95) on CIFAR-10N. (a) Different KNN
variants of NOODLE (b) Different Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)"
refers to NOODLE with X as loss correction strategy and Y as OOD distance metric.
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Figure 4: Comparison of OOD detection performance (FPR95]) on Animal-10N and CIFAR-100N
datasets. (a) CM vs NOODLE with KNN metric (b) SCE vs NOODLE with KNN metric (c) Different
Mahalanobis variants of NOODLE. Here “NOODLE (X, Y)" refers to NOODLE with X as loss
correction strategy and Y as OOD distance metric.

scores for the feature distance-based OOD detection. Fig. 32 shows how the NOODLE variant with
CM as loss correction and kNN as the distance metric substantially advance the OOD detection
performance for CIFAR-10N dataset. The SCE variant of the NOODLE version is also reasonably
good, yet CM variant (i.e., NOODLE(CM, KNN)) performs much better in all scenarios in CIFAR-
10N. For example, in worst case noise version, NOODLE (CM, KNN) reduces FPR95 to 27.94%
from 32.48% by KNN, showing its robustness even in challenging settings. We can also observe
similar improvement in performance in Fig. [3b] where CM-Mahalanobis variant of the NOODLE
also exhibits impressive OOD detection performance across scenarios. These results suggest that
under different strategies of loss correction and various OOD detection metrics, the feature cleansing
strategy of the NOODLE is effective in improving the ID-OOD separability. We also present similar
analysis for other datasets such as Animal-10N and CIFAR-100N in Fig. @] In CIFAR-100N dataset,
the SCE-Mahalanobis variant of NOODLE achieves the best performance, likely because estimating
transition matrices for CM-based methods becomes increasingly difficult as the number of classes
grows. Nevertheless, our key idea of feature cleaning via low-rank sparse decomposition consistently
enhances performance across different settings.

5 Conclusion

In this work, we introduce a novel framework for OOD detection under noisy labels that addresses
the limitations of existing methods by correcting label noise and enhancing OOD performance.
By leveraging low-rank ID feature representations and a carefully designed learning criterion, our
approach provides greater flexibility and effectiveness in improving ID-OOD separability, even
in highly noisy settings. Experimental results across multiple benchmarks and challenging OOD
scenarios demonstrate the superiority of our method, highlighting its ability to tackle the challenging
problem of OOD detection under noisy labels.
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Supplementary Material of ‘““Tackling the Noisy Elephant in the Room: Label Noise-robust
Out-of-Distribution Detection via Loss Correction and Low-rank Decomposition”

A Notation

We use the following notation throughout the paper: x, , X, and X represent a scalar, a vector,
a matrix, and a tensor, respectively. Both z; and [x]; denote the ith entry of the vector x. [X]; ;
denote the (7, j)th entry of the matrix X. «; denotes the ith row of the matrix X; [I] means an
integer set {1,2,...,I}. T denote transpose. X > 0 implies that all the entries of the matrix X are
non-negative. I[A] denotes an indicator function for the event A such that I[A] = 1 if the event A
happens, otherwise I[A] = 0. CE(z,y) = — Zkl,(:l I[y = k]log(x(k)) denotes the cross entropy
function. I denotes an identity matrix of appropriate size. 1 denotes an all-one vector of size K.
|C| denotes the cardinality of the set C. A¥ denotes a (K — 1)-dimensional probability simplex such
that AKX = {u e RF |u>0,1Tu = 1}.

B Algorithm Description

In this section, we present the NOODLE algorithm. Algorithm [T] provides the complete, step-by-step
procedure of our approach using the transition matrix-based loss correction strategy. As discussed
earlier, we obtain ID features via a low-rank sparse decomposition. The decomposition routine is
detailed in Algorithm[2]

Algorithm 1 Proposed approach NOODLE

Input: Noisily labeled data {(x,,, 7, )}, where &,, € X, U, € V, Niter, Stopping criterion, K
as number of classes
Output: Estimated parameters 6 and T’
Initialize Transition Matrix T to identity matrices I
Initialize the parameters 6 of the neural network function class F
while stopping criterion is not reached do
while stopping criterion is not reached do
Draw a random batch B
H + [h(x1),...,h(xzN)] // features from batch B as per Eq.
Q <+ ApproxTopKSingularVectors(H , K, njter)
Hp + (QQT)H
Hoop <+ H — Hyp
10: Compute VEF(T,B,HOOD))
11: T, 0 < SGDOptimizer(T,VLr(T, B, Hoop))
12: end while
13: end while

PRIN AR

R

C More Experiment Results

In this section, we present more detailed evaluations. While the summary results for CIFAR-10N
were reported earlier, we now provide dataset-wise OOD performance along with ID accuracy in
Table [3]and Table[d] To ensure fairness, all post-hoc methods are evaluated using the same encoder
trained with cross-entropy loss, thereby avoiding any bias in performance analysis. For CIDER
and SSD+, we follow prior work but replace their default ResNet-18 encoder with DenseNet-101
for consistency. As a result, these methods may require additional fine-tuning to fully realize their
potential. For Animal-10N, the dataset-specific results are reported in Table[5] We find that most
baseline methods struggle to achieve a good balance between ID accuracy and OOD detection. In
contrast, our proposed method NOODLE delivers consistently strong results across both metrics.

Finally, detailed results on CIFAR-100 are shown in Table[6] As expected, CIFAR-100 is considerably
more challenging, leading to significant performance degradation for most baselines. Nevertheless,
NOODLE achieves the best OOD detection performance while maintaining a competitive and
balanced ID accuracy, highlighting its robustness under difficult conditions.
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Algorithm 2 ApproxTopKSingularVectors

Input: Feature matrix H € RNxD, target rank k£, number of iterations n;ier
Output: Orthonormal matrix Q@ € RP** spanning the approximate top-k right singular vectors

of H

: Randomly initialize Q € RP**
: for ¢ = 1 to njer do
. Z+ H'(HQ)

: end for
: return Q

1
2
3
4: Q< QRDecomposition(Z)
5
6

/! D: feature dimension, k: target rank

// project Q into column space of H
// obtain orthonormal basis of Z’s column space

// spans approximate top-k right singular vectors of H

Table 3: OOD detection performance (FPR95] / AUROCT) on CIFAR-10 under different noise

settings using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.
FPR95| AUROCT FPR95, AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROC?T
Clean
KNN 10.25 98.26 10.95 98.03 13.21 97.64 17.05 96.87 25.30 95.31 49.58 88.70 21.06 95.80 93.32
MSP 72.54 87.37 49.86 92.74 34.70 95.33 46.04 93.34 68.51 85.16 66.90 86.46 56.43 90.07 93.32
ODIN 55.88 89.16 16.01 97.23 3.01 99.12 8.47 98.20 60.46 82.84 54.77 88.30 33.10 92.47 93.32
Energy 73.05 87.23 15.64 97.18 4.44 98.86 23.22 96.16 67.02 83.48 51.52 89.30 39.15 92.03 93.32
ReAct 97.03 61.00 44.59 93.52 28.01 95.84 41.26 93.42 88.14 68.86 62.85 86.07 60.31 83.12 93.32
Mahalanobis  4.51 99.13 2.47 99.31 0.63 99.75 14.79 97.38 22.46 95.08 69.08 82.08 18.99 95.45 93.32
CIDER 89.25 86.21 100.00  46.56 100.00 51.96 100.00 29.81 99.04 35.07 99.90 4225 98.03 48.64 94.03
SSD+ 99.25 62.41 96.42 53.98 100.00 42.95 99.90 43.05 99.18 41.64 99.87 46.14 99.10 48.36 94.03
SNN 8.68 98.35 21.49 96.22 9.22 98.42 19.46 96.72 26.99 94.97 49.74 88.52 22.60 95.53 94.15
SCE 4.59 99.13 15.47 97.06 1.96 99.58 10.60 98.06 29.31 92.84 56.36 87.03 19.71 95.62 91.09
GCE 11.33 98.02 11.73 98.00 7.16 98.73 9.06 98.30 21.70 96.15 50.39 88.80 18.56 96.33 93.54
DivideMix 22.35 94.72 36.90 91.74 33.41 90.87 46.05 87.62 47.11 86.55 58.04 84.45 40.81 89.16 81.22
Co-teaching 56.55 74.88 99.90 36.86 95.18 58.31 96.28 61.89 55.83 78.99 94.03 48.08 81.94 58.15 86.22
cM 8.35 98.64 8.39 98.49 7.16 98.67 15.19 97.31 19.72 96.36 51.14 88.54 18.32 96.33 94.39
VolMinNet 2.45 99.48 13.06 97.57 5.96 98.93 6.25 98.85 15.96 97.07 46.30 89.42 15.00 96.89 94.56
NOODLE 2.78 99.39 5.05 98.88 4.79 99.07 10.05 97.92 15.85 96.80 48.02 88.61 14.42 96.78 94.29
Noise = Worst
KNN 9.17 98.28 27.89 94.95 15.76 96.98 38.41 92.03 36.21 90.94 67.46 84.15 32.48 92.89 80.79
MSP 56.74 87.97 50.54 89.33 38.83 93.72 62.58 87.03 78.16 76.44 74.04 78.44 60.15 85.49 80.79
ODIN 45.45 90.96 33.09 93.31 13.41 97.43 32.36 93.02 71.68 72.39 75.89 73.02 45.31 86.69 80.79
Energy 37.62 93.17 35.78 93.28 14.57 97.00 47.39 90.98 76.06 74.61 72.39 7745 47.30 87.75 80.79
ReAct 70.94 82.60 52.84 90.05 36.40 93.87 68.31 81.53 88.92 54.21 77.90 70.87 65.89 78.86 80.79
Mahalanobis  4.41 98.97 19.95 96.33 10.05 98.07 30.50 92.65 33.69 89.11 87.96 60.38 31.09 89.25 80.79
CIDER 99.88 30.48 96.13 49.01 99.94 33.75 99.21 35.94 92.91 54.56 98.73 42.62 97.80 41.06 24.22
SSD+ 99.96 43.94 99.94 33.16 99.98 13.02 100.00 16.11 99.50 18.12 99.67 33.06 99.84 26.24 19.85
SNN 10.98 97.95 24.49 95.67 16.61 96.76 31.84 93.96 33.92 90.69 67.36 81.67 30.87 92.78 80.57
SCE 9.84 98.12 19.48 96.06 12.17 97.41 12.14 97.41 35.11 91.21 64.89 82.63 25.61 93.81 83.48
GCE 10.53 98.18 21.72 96.09 15.71 97.05 55.81 87.25 45.69 87.86 65.02 82.54 35.75 91.50 83.49
DivideMix 44.70 93.52 48.20 89.20 38.09 90.29 15.35 96.70 32.06 94.42 57.95 5.09 39.39 91.53 80.23
Co-teaching 50.04 85.37 99.95 29.04 99.61 58.63 96.88 58.36 52.15 82.65 94.22 50.03 82.14 60.68 86.34
cM 8.61 98.29 17.92 96.78 28.37 90.87 56.29 81.97 39.24 88.19 67.23 81.87 36.28 89.66 76.26
VolMinNet 7.58 98.33 42.88 90.42 19.70 95.50 43.71 89.08 40.90 87.46 70.64 77.54 37.57 89.72 76.30
NOODLE 3.23 99.31 23.67 95.81 8.08 98.40 36.55 93.57 32.98 91.67 63.14 83.91 27.94 93.78 83.54
Noise = Aggre
KNN 11.37 97.91 18.32 96.70 9.93 98.11 18.12 96.35 95.43 62.26 84.54 23.95 94.84 89.93
MSP 57.75 89.45 47.16 90.89 27.74 95.11 59.89 88.27 83.15 69.89 82.42 55.04 88.21 89.93
ODIN 49.75 91.54 30.78 94.69 9.29 98.25 33.50 92.13 82.01 74.50 75.54 43.83 89.03 89.93
Energy 66.66 88.00 40.23 93.66 18.07 97.10 64.95 88.41 81.96 74.80 78.26 56.03 87.90 89.93
ReAct 66.66 88.00 40.23 18.07 97.10 64.95 88.41 81.96 21.61 96.92 4717 91.01 89.93
Mahalanobis  4.41 98.97 19.95 10.05 98.07 30.50 92.65 89.11 87.96 60.38 31.09 89.25 89.93
CIDER 28.18 91.29 99.98 96.13 49.01 100.00 22.14 34.71 96.37 48.95 86.49 42.86 25.24
SSD+ 99.64 43.12 99.90 99.87 36.56 100.00 21.46 39.38 100.00 6.48 99.47 29.79 19.22
SNN 6.15 98.90 14.36 8.61 98.32 35.76 92.37 94.45 59.86 83.74 25.14 94.18 90.00
SCE 4.32 99.14 19.12 4.92 98.98 19.90 96.39 94.82 63.95 82.82 22.87 94.76 90.45
GCE 1.94 99.64 11.17 7.57 98.58 14.44 97.36 94.62 52.86 87.84 19.43 96.03 91.55
DivideMix 77.88 85.56 84.07 48.41 87.26 59.81 78.07 86.58 74.63 78.99 65.72 81.83 73.44
Co-teaching 48.52 80.16 99.49 94.18 58.15 86.59 72.57 84.21 93.64 47.65 77.98 63.71 86.15
cM 7.82 98.68 13.01 8.41 98.30 12.70 97.62 95.18 62.91 83.70 21.22 95.17 78.82
VolMinNet 3.88 99.17 10.28 8.46 98.32 31.84 93.84 93.06 56.36 87.27 23.37 94.96 91.86
NOODLE 1.44 99.67 16.17 3.42 99.24 9.69 98.15 95.90 56.68 86.19 17.78 96.05 91.57
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Table 4: OOD detection performance (FPR95] / AUROCT) on CIFAR-10 using a DenseNet-100
encoder under random1, random2, and random3 noise.

Method SVHN FashionMNIST LSUN iSUN Texture Places365 Average ID Acc.
FPR95| AUROC?T FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT FPR95| AUROCT

Noise = random1

KNN 95.11 32.22 94.66 19.98 96.43 36.27 92.58 30.12 93.01 67.75 84.12 35.48 88.03
MsP 89.44 56.80 88.35 33.35 94.64 70.25 83.87 70.71 81.70 69.47 81.73 60.75 88.03
ODIN 87.93 43.60 91.41 11.17 98.01 46.12 89.32 65.07 77.53 72.94 75.16 49.12 88.03
Energy 85.45 39.75 92.56 11.32 97.78 63.37 86.34 68.55 80.04 64.57 81.25 54.89 88.03
ReAct 60.00 57.46 89.81 28.41 95.32 72.90 78.42 86.65 62.40 69.53 75.58 68.77 88.03
Mahalanobis 96.22 48.89 88.49 13.62 97.36 50.63 82.90 36.24 87.86 92.57 50.57 43.14 88.03
CIDER 82.56 69.96 72.92 96.13 49.01 100.00 22.14 94.47 34.71 93.35 48.34 74.94 26.02
SSD+ 45.50 94.43 48.88 99.66 29.40 99.66 35.47 92.61 39.44 98.11 47.00 95.86 22.05
SNN 97.07 35.63 93.93 15.74 97.05 23.81 95.32 26.77 93.92 61.03 85.28 29.87 87.13
SCE 97.24 10.51 97.91 5.81 98.81 14.95 97.11 25.83 93.70 62.82 83.86 22.90 89.81
GCE 98.87 11.85 97.92 11.48 97.93 23.18 96.11 31.91 93.27 56.04 86.58 23.47 90.46
DivideMix 84.82 62.24 86.97 56.76 88.52 68.00 80.74 50.85 86.88 72.78 79.19 66.64 77.14
Co-teaching 81.34 49.00 83.00 52.00 87.00 23.18 96.11 74.58 69.89 94.74 62.07 53.42 86.44
cM 99.35 18.50 96.55 15.74 97.22 21.04 96.18 25.85 94.65 64.08 83.69 24.72 90.31
VolMinNet 99.01 15.74 97.11 6.92 98.75 22.86 95.86 30.30 94.07 56.10 86.06 22.90 90.53
NOODLE 99.21 17.33 96.70 4.15 99.18 6.37 98.65 14.57 97.11 59.12 85.57 17.60 90.52
Noise = random2
KNN 6.29 98.73 41.05 91.75 96.04 24.92 95.02 30.85 92.20 69.53 82.43 31.99 87.79
MSP 53.36 89.13 58.24 84.86 48.26 91.41 73.00 80.23 74.98 79.10 56.44 87.79
ODIN 44.99 87.97 56.14 83.96 19.78 94.78 68.03 73.23 77.58 68.27 46.71 87.79
Energy 60.00 87.44 50.75 87.08 29.00 93.97 71.31 76.10 73.20 75.42 50.31 87.79
ReAct 78.12 80.74 56.58 86.77 . 62.46 86.31 87.27 61.33 77.87 69.69 65.46 87.79
Mahalanobis 11.94 96.96 69.11 81.20 23.57 36.79 87.81 38.72 86.17 94.13 48.44 45.71 87.79
CIDER 89.16 86.14 99.99 46.58 99.90 4225 100.00  29.81 99.04 35.07  100.00  51.96 98.01 25.46
SSD+ 99.36 35.10 90.31 57.22 93.77 55.07 99.56 33.89 91.78 42.09 95.15 49.31 94.99 23.45
SNN 4.84 99.05 42.45 92.36 19.44 96.04 17.68 96.06 33.90 91.82 66.09 82.28 30.74 88.11
SCE 6.17 98.78 15.97 97.16 13.15 97.50 24.60 95.04 25.41 94.60 61.19 82.42 24.42 89.72
GCE 2.02 99.57 18.91 96.46 5.57 98.84 9.06 98.09 19.47 96.02 55.29 86.18 18.89 90.29
DivideMix 79.28 78.13 68.73 80.40 55.05 86.76 26.58 94.70 51.37 87.91 74.59 77.40 59.27 78.30
Co-teaching 51.32 81.34 99.87 32.07 74.58 69.89 94.74 62.07 52.39 81.73 92.63 49.46 77.59 85.99
cM 1.83 99.62 16.84 97.00 17.64 96.72 18.08 96.81 27.96 94.45 59.38 85.66 23.62 90.29
VolMinNet 3.95 99.25 15.59 97.29 8.74 98.36 8.31 98.42 22.82 95.84 53.37 87.74 18.80 94.35
NOODLE 1.22 99.77 12.36 97.84 2.86 99.43 11.00 98.04 14.24 97.35 55.58 86.68 16.21 96.52 89.64
Noise = random3
KNN 8.79 98.41 29.45 93.81 12.45 97.66 28.16 94.63 25.80 94.26 58.99 85.76 27.27 94.09 87.77
MSP 50.92 90.23 44.39 89.13 25.79 95.34 69.78 81.85 67.02 81.86 65.51 81.76 53.90 86.70 87.77
ODIN 41.84 90.63 30.77 92.45 8.82 98.25 42.48 89.24 60.35 77.22 67.20 76.41 41.91 87.37 87.77
Energy 40.77 92.63 26.49 93.06 8.85 98.19 57.99 85.82 64.08 80.66 58.27 83.06 42.74 88.90 87.77
ReAct 77.62 77.76 34.33 92.52 16.16 96.96 67.01 79.29 85.32 62.89 66.42 77.99 57.81 81.24 87.77
Mahalanobis  7.87 98.31 26.49 94.43 7.01 98.64 54.91 82.04 28.95 90.66 87.15 57.60 35.40 86.95 87.77
CIDER 98.96 18.22 98.75 24.24 75.41 69.92 91.38 57.40 88.28 38.09 93.45 50.68 91.04 43.09 23.21
SSD+ 99.54 26.49 99.02 42.89 100.00 33.08 100.00 33.42 98.54 17.58 99.15 43.08 99.38 32.76 19.20
SNN 12.97 97.67 34.27 91.84 16.04 96.81 53.01 89.46 29.40 92.96 59.90 83.95 34.26 92.12 87.94
SCE 6.08 98.81 16.65 96.94 13.47 96.64 24.29 95.55 23.32 95.23 65.06 83.22 24.81 94.40 89.39
GCE 7.30 98.63 17.23 96.88 5.28 98.96 10.88 97.86 20.04 95.84 57.98 85.49 19.78 95.61 90.71

DivideMix 26.15 95.47 57.09 89.78 38.77 92.91 46.40 89.32 49.93 87.99 74.53 80.78 48.81 89.38 69.20
Co-teaching 50.65 80.80 99.96 23.83 99.55 56.65 95.49 58.16 52.45 80.56 93.54 48.86 81.94 58.15 86.53

CcM 2.56 99.48 12.00 97.75 6.82 98.60 23.46 95.99 23.74 94.94 55.65 86.32 20.70 95.51 90.79
VolMinNet 9.80 98.06 10.10 98.02 7.61 98.40 24.25 95.63 25.74 94.40 55.65 85.58 22.19 95.02 94.36
NOODLE 2.16 99.55 13.31 97.52 4.11 99.15 5.26 98.79 18.26 95.86 53.31 87.46 16.07 96.39 90.32

Table 5: OOD detection performance (FPR95| / AUROCT) on Animal-10N with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.
FPR95| AUROC?T FPR95| AUROCT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT
KNN 45.29 89.55 58.05 90.30 66.19 79.93 90.66 62.18 73.17 74.54 89.26 65.71 70.44 77.04 81.52
MSP 93.12 64.84 82.74 79.61 84.00 74.53 96.60 34.67 96.97 41.18 90.40 64.56 90.64 59.90 81.52
ODIN 79.29 64.67 51.20 88.26 48.52 87.84 96.52 34.97 95.43 36.66 90.85 62.89 76.97 62.55 81.52
Energy 81.91 74.54 66.32 88.64 31.94 94.83 96.32 45.16 89.02 69.24 88.09 74.71 75.60 74.52 81.52
ReAct 79.18 77.62 72.85 85.98 42.96 92.02 95.69 58.85 91.88 52.46 91.43 59.99 79.00 71.15 81.52
Mahalanobis 31.73 91.49 97.47 42.44 68.73 66.87 4.87 98.87 33.39 86.64 91.04 51.67 54.54 73.00 81.52
CIDER 98.86 39.21 98.50 78.80 96.32 61.83 97.93 37.85 99.89 20.98 99.19 39.05 98.44 39.78 20.24
SSD+ 74.30 66.08 89.00 57.00 97.69 31.96 66.50 65.96 91.21 43.10 98.31 37.19 85.60 48.86 19.60
SNN 41.40 91.28 11.58 97.79 12.04 97.63 39.68 91.61 29.22 93.29 54.67 90.27 31.43 93.65 81.52
SCE 29.06 90.96 41.71 93.05 27.00 94.63 9.45 98.39 29.59 94.10 55.03 89.71 31.97 93.47 81.22
GCE 28.98 91.90 43.05 91.28 23.75 94.14 27.02 95.91 30.18 92.52 66.74 84.15 36.62 91.65 80.86

DivideMix 16.15 96.44 19.84 96.28 18.42 95.98 60.56 86.34 40.14 85.92 50.52 89.62 34.27 9L.77 79.63
Co-teaching 68.04 83.45 99.90 8.68 84.54 55.97 11.71 97.11 49.72 82.39 96.92 42.70 68.47 61.72 74.08
cM 25.84 95.25 15.41 97.22 13.42 97.44 63.61 84.11 37.06 90.88 45.65 91.58 33.50 92.75 82.48
VolMinNet 15.08 96.79 29.22 94.51 11.80 97.73 40.62 90.67 25.20 94.64 53.63 90.21 29.26 94.09 81.78

NOODLE 26.49 94.77 24.41 95.75 11.36 97.86 17.29 96.70 18.21 96.33 53.76 89.37 25.25 95.13 82.98

16



Table 6: OOD detection performance (FPR95) / AUROCT) on CIFAR-100 with real noisy labels
using a DenseNet-100 encoder.

Method SVHN FashionMNIST LSUN iSUN DTD Places365 Average ID Acc.
FPR95/ AUROC?T FPR95| AUROC?T FPR95| AUROCtT FPR95| AUROCtT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCT

KNN 11.08 97.63 42.68 92.88 28.07 93.32 53.09 81.81 32.73 91.70 91.56 43.20 86.54 52.48
MSP 86.65 75.40 76.23 81.21 52.72 88.08 88.69 67.64 92.36 60.23 89.81 81.08 72.66 52.48
ODIN 93.41 68.56 58.06 87.70 26.85 95.10 70.69 83.42 92.78 59.70 88.51 7172 76.64 52.48
Energy 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 99.29 3.46 98.31 78.93 51.74 52.48
ReAct 97.07 47.12 53.27 91.52 35.35 93.49 90.27 68.41 97.53 38.90 83.94 76.24 67.63 52.48
Mahalanobis 64.60 82.25 99.38 44.82 95.23 49.37 53.12 83.45 42.13 84.50 96.43 75.15 65.47 52.48
CIDER 98.86 39.76 99.33 29.09 99.19 39.05 96.36 61.84 97.93 37.85 99.89 98.59 38.10 19.76
SSD+ 99.00 39.35 99.33 29.07 99.19 39.05 96.36 61.84 97.93 37.85 99.89 98.62 38.03 15.56
SNN 16.78 96.78 35.98 93.88 91.30 61.59 56.80 84.25 30.82 92.35 27.24 43.15 87.13 58.06
SCE 16.87 96.64 14.13 97.12 30.67 91.97 75.99 62.21 50.27 86.01 88.84 46.13 83.15 60.74
GCE 63.18 82.35 58.27 88.42 63.09 77.88 80.78 66.52 58.03 82.63 87.90 68.54 77.54 58.21

DivideMix 30.53 94.00 37.22 93.63 67.81 83.31 67.09 70.49 48.55 85.01 86.47
Co-teaching 51.77 83.17 99.96 27.69 85.42 66.48 98.34 47.85 59.41 79.01 95.20
cM 35.24 92.09 40.79 92.55 36.79 90.95 54.59 79.49 40.46 89.36 89.26
VolMinNet 36.03 91.87 50.23 91.22 45.13 88.00 74.76 61.76 43.26 88.84 90.49

56.28 82.92 33.26
81.68 59.61 46.18
49.52 85.41 59.06
56.65 81.39 60.10

NOODLE 44.68 91.36 22.33 96.32 1.78 99.47 23.73 94.97 38.12 89.17 88.61 36.54 89.41 60.89
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract propose label noise robust OOD detectio method and effective
low rank regularization loss to detect OOD data.All of these are also mentioned in main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have explained limitation in experiment section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper has no theoretical analysis

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we plan to release code which can be used to reproduce the results.Also sample
checkpoint will be given to reproduce results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We have not released the code to open source yet. However we have plans to
do it.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the experimental settings, all relevant details are described. Additionally,
we present the results of an ablation study on various hyperparameters. These experimental
details and our rationale for choosing each hyperparameter are provided in the supplementary
material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Statistical significance is not a part of our analysis.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about the computer resources in supplementary
materials.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:We do not believe our work has any harmful effects with respect to the Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the positive impacts of our work in the paper. For critical
Al-based applications—such as autonomous vehicles and medical systems—our approach
offers substantial benefits. We believe it carries no negative impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Our works does not have a risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all the papers and tools which we have mentioned in this work.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided details info for new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work did not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work did not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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811 * We recognize that the procedures for this may vary significantly between institutions

812 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
813 guidelines for their institution.

814 * For initial submissions, do not include any information that would break anonymity (if
815 applicable), such as the institution conducting the review.

816 16. Declaration of LLM usage

817 Question: Does the paper describe the usage of LLMs if it is an important, original, or
818 non-standard component of the core methods in this research? Note that if the LLM is used
819 only for writing, editing, or formatting purposes and does not impact the core methodology,
820 scientific rigorousness, or originality of the research, declaration is not required.

821 Answer: [NA]

822 Justification: The paper’s core method development does not involve LLMs as any important,
823 original, or non-standard components.

824 Guidelines:

825 * The answer NA means that the core method development in this research does not
826 involve LLMs as any important, original, or non-standard components.

827 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
828 L.LM) for what should or should not be described.
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