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Abstract

This paper investigates the global convergence of stepsized Newton methods for1

convex functions with Hölder continuous Hessians or third derivatives. We propose2

several simple stepsize schedules with fast global convergence guarantees, up3

to O
(
k−3

)
. For cases with multiple plausible smoothness parameterizations4

or an unknown smoothness constant, we introduce a stepsize linesearch and a5

backtracking procedure with provable convergence as if the optimal smoothness6

parameters were known in advance. Additionally, we present strong convergence7

guarantees for the practically popular Newton method with exact linesearch.8

1 Introduction9

Second-order methods are fundamental to scientific computing. With its rich history that can be traced10

back to works Newton (1687), Raphson (1697), (Simpson, 1740), they have remained widely used up11

to the present day (Ypma, 1995; Conn et al., 2000). The main advantage of second-order methods12

is their independence from the conditioning of the underlying problem, enabling an extremely fast13

local quadratic convergence rate, where precision doubles with each iteration. Additionally, they14

are inherently invariant to rescaling and coordinate transformations, which greatly simplifies their15

implementation. In contrast, the convergence of first-order methods is highly dependent on the16

problem’s conditioning, resulting in a slower linear convergence rate and a greater sensitivity to17

parameter choice. Despite their natural geometry and extremely fast local convergence, second-order18

methods often lack global convergence guarantees. Even the classical Newton method,19

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk), (1)

can diverge when initialized far from the solution (Jarre & Toint, 2016; Mascarenhas, 2007). Global20

convergence guarantees are typically achieved through various combinations of stepsize schedules21

(Nesterov & Nemirovski, 1994), line-search procedures (Kantorovich, 1948; Nocedal & Wright,22

1999), trust-region methods (Conn et al., 2000), and Levenberg-Marquardt regularization (Levenberg,23

1944; Marquardt, 1963).24

The simplest globalization strategy is to employ stepsize schedules αk,25

xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk), (2)

often based on implicit descent conditions, requiring an additional subroutine per iteration, such as26

exact linesearch (Cauchy, 1847; Shea & Schmidt, 2024a), Armijo linesearch (Armijo, 1966), Wolfe27

condition (Wolfe, 1969), Goldstein condition (Nocedal & Wright, 1999). However, those methods28

often lack global convergence guarantees achieved by simple stepsize schedules. Notably, Nesterov &29

Nemirovski (1994) introduced a damped stepsize schedules with global rate O
(
k−

1
2

)
. Hanzely et al.30
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(2022) improved this result by discovering duality between Lavenberg-Marquardt regularization and31

Newton stepsizes and proposing a stepsize with global rate O
(
k−2

)
matching regularized Newton32

methods (Nesterov & Polyak, 2006; Mishchenko, 2023; Doikov & Nesterov, 2024).33

Despite recent advances, existing guarantees still fall short of the optimal rate Ω
(
k−

7
2

)
for functions34

with Hölder-continuous Hessians (Gasnikov et al., 2019; Agarwal & Hazan, 2018; Arjevani et al.,35

2019), leaving open the question of whether more efficient step-size schedules remain to be36

discovered.37

In the context of first-order methods, several nontrivial step-size schedules are known to improve38

the convergence of Gradient Descent. Young (1953) introduced a Chebyshev polynomial–based39

schedule that attains the optimal rate for quadratic objectives. Polyak (1987) proposed a schedule40

that is optimal for nonsmooth convex functions, and Altschuler & Parrilo (2023); Grimmer et al.41

(2024) developed schedules achieving semi-accelerated rates for general convex, Lipschitz-smooth42

objectives. These results naturally prompt the question of whether improved stepsize schedules for43

Newton’s method can be found.44

We answer this positively. We show that a stepsized Newton method can be analyzed under an45

alternative assumption – Hölder continuity of the third derivatives – yielding convergence guarantees46

reminiscent of third-order tensor methods, up to O(k−3)1. Analyzing Newton’s method through47

assumptions on third derivatives is, to the best of our knowledge, a novel and somewhat unexpected48

perspective, given that Newton’s method is typically viewed as the canonical second-order method.49

1.1 Benefits of simple methods50

While it is possible to achieve optimal rates using acceleration techniques with a more complex51

structure (Gasnikov et al., 2019), simple methods are often preferred in practice for several reasons.52

Firstly, they are simple and easy to understand. They are also inherently robust, typically53

involving fewer hyperparameters, which minimizes the need for complex and costly hyperparameter54

tuning. In contrast, accelerated methods often require multiple sequences of iterates and additional55

hyperparameters, significantly increasing the complexity of tuning.56

Moreover, basic methods can be seamlessly integrated with various techniques to enhance practical57

performance, such as parameter searches, data sampling strategies, momentum estimation, and58

gradient clipping. Combining these techniques with accelerated methods, however, introduces59

significant challenges. In the context of first-order methods, acceleration with parameter searches60

provides limited improvement over Gradient Descent with stepsize linesearch (Shea & Schmidt,61

2024b; Fox & Schmidt, 2024).62

For second-order methods, the stepsized Newton method is popular due to its affine invariance (i.e.,63

invariance to changes in basis and scaling), making it an efficient and convenient optimization tool.64

1.2 Notation65

For convex function f : Rd → R, we consider the optimization objective66

min
x∈Rd

f(x), (3)

where f is twice differentiable with nondegenerate Hessians that is potentially ill-conditioned. We67

denote any minimizer of the function as x∗ ∈ argminx∈Rd f(x) and the optimal value f∗
def
= f(x∗).68

We define norms based on a symmetric positive definite matrix H ∈ Rd×d. For all x, g ∈ Rd,69

∥x∥H
def
= ⟨Hx, x⟩1/2 , ∥g∥∗H

def
=
〈
g,H−1g

〉1/2
.

As a special case H = I, we get l2 norm ∥x∥I = ⟨x, x⟩1/2. We will be utilizing local Hessian norm70

H = ∇2f(x), with a shorthand notation ∥h∥x
def
= ∥h∥∇2f(x), ∥g∥

∗
x

def
= ∥g∥∗∇2f(x) for h, g ∈ Rd.71

1Under Hölder continuity of third derivatives, the attainable lower bound is Ω
(
k−5

)
(Gasnikov et al., 2019).
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For the Hessians and third derivatives we will be measuring them in an operator norm. Given the72

iterate x, operator norm of matrix H and three dimensional tensor T are defined as73

∥H∥op
def
= sup

y∈Rd

∥Hy∥∗x
∥y∥x

, ∥T∥op
def
= sup

y,z,w∈Rd

|T[y, z, w]|
∥y∥x∥z∥x∥w∥x

.

In this work, we use these operator norms exclusively with x = xk and y = z = w = xk+1 − xk.74

1.3 Stepsizes as a form of regularization75

Hanzely et al. (2022) demonstrated that a stepsize schedule for the Newton method is equivalent76

to cubical regularization of the Newton method (Nesterov & Polyak, 2006) if the regularization77

is measured in the local Hessian norms. As the regularized Newton methods leverage the Taylor78

polynomial, we denote the second-order Taylor approximation of f(y) by information at point x as79

Φx(y)
def
= f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x.

In particular, Hanzely et al. (2022) showed that80

xk+1 = T (xk), T (x)
def
= argmin

y∈Rd

{
Φx(y) +

σ

3
∥y − x∥3x

}
is equivalent to a Newton method with stepsize AICN281

xk+1 = xk − αk[∇2f(xk)]−1∇f(xk), for αk =
2

1 +
√
1 + 2σ∥∇f(xk)∥∗xk

. (4)

Note that stepsize schedule (4) preserves much larger stepsize when initialized far from the solution,82 ∥∥∇f(x0)
∥∥∗
x0 ≫ 1, compared to the stepsize of Damped Newton method (Nesterov & Nemirovski,83

1994), which sets stepsize for Lsc-self-concordant functions as αk = 1
1+Lsc∥∇f(xk)∥∗

xk
. Aiming to84

extend these results beyond L2,1-Hölder continuous functions (Definition 1), in Section 2 we present85

algorithm RN that under general Lp,ν-Hölder continuity (Def 1) and q = p + ν ∈ [2, 4] supports86

stepsize αk = 1

1+(9Lp,ν)
1

q−1 ∥∇f(xk)∥
∗ q−2
q−1

xk

, matching AICN’s asymptotic dependence on gradient87

norm and smoothness constant (for L2,1-Hölder continuous functions, q = 3) and constant stepsizes88

of Karimireddy et al. (2018b); Gower et al. (2019a) (for L2,0-Hölder continuous functions, q = 2).89

Remark. Stepsized Newton methods often enjoy much simpler analysis compared to Newton methods90

regularized in l2 norms, as they can seamlessly transition between gradients and model differences,91 ∥∥xk+1 − xk
∥∥
xk

(4)
= αk

∥∥∇f(xk)
∥∥∗
xk . (5)

1.4 Higher order of regularization92

Extending cubic regularization (Nesterov & Polyak, 2006), tensor methods achieve better convergence93

guarantees by regularizing p-th order Taylor approximations by (p+ 1)-th order regularization (see94

survey in Kamzolov et al. (2023)). In particular, for third-order tensor methods, Nesterov (2021)95

showed that regularization can avoid computation of third-order derivatives, and Doikov et al. (2024)96

simplified this regularization using technique of Mishchenko (2023) to97

xk+1 = T (xk), where T (x) = argmin
y∈Rd

{
Φx(y) +

σ

2
∥y − x∥22∥∇f(x)∥

β
2

}
, (6)

for β, σ ≥ 0. Combining insights about higher-order regularization with the regularization-stepsize98

duality of Hanzely et al. (2022), we show that the higher-order regularization in local norms99

xk+1 = Tσ,β

(
xk
)
, where Tσ,β (x) = argmin

y∈Rd

{
Φx(y) +

σ

2 + β
∥y − x∥2+β

x

}
, (7)

2Hanzely et al. (2022) expressed the stepsize as αk =
−1+

√
1+2σ∥∇f(xk)∥∗

xk

σ∥∇f(xk)∥∗
xk

, we simplified this form.
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Table 1: Global convergence guarantees of stepsized Newton methods under various notions of Hölder
continuity (Definition 1). For simplicity, we report dependence only on the number of iterations k.

Stepsize schedule
Stepsize for

gx
def
= ∥∇f(x)∥∗x

Smoothness
assumption Global rate Reference

Damped Newton B 1
1+Lscgx

(0) Lsc
(0) O

(
k− 1

2

)
(1) (Nesterov & Nemirovski, 1994)(1)

AICN 2

1+
√

1+2L2,1gx

(2) L2,1 O
(
k−2

)
(Hanzely et al., 2022)

RN
(Algorithm 1)

1

1+(9Lp,ν)
1

q−1 g

q−2
q−1
x

(3) Lp,ν
(3) O

(
k−(p+ν−1)

)
(3) This work

(Theorem 4)

GRLS (16) Linesearched Lp,ν
(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) This work

(Corollary 1)

UN
(Algorithm 2) Backtracked Lp,ν

(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) This work

(Theorem 5)

Greedy Newton
(18) Linesearched Lp,ν

(3)

(unknown) minp,ν O
(
k−(p+ν−1)

)
(3) Folklore

Rate: Corollary 2 (new)
(0) Constant Lsc represents self-concordance constant and is implied by L2,1-Hölder continuity.
(1) Authors show global decrease f(xk+1) ≤ f(xk)− c for some c > 0. Rate O(k− 1

2 ) is reported in Hanzely
et al. (2022), but we were unable to find or prove or the rate for Damped Newton B of the form O(k−α).

(2) Authors expressed the stepsize as
−1+

√
1+L2,1gx

L2,1gx
, we present a simplified equivalent form.

(3) Parameters p, ν are fixed and satisfy p ∈ {2, 3} , ν ∈ [0, 1] and p+ ν − 1 ∈ [1, 3].

is equivalent to a Newton method with stepsize αk ∈ (0, 1], and αk is the unique positive root of the100

polynomial P [α]
def
= 1− α− α1+βσ

∥∥∇f(xk)
∥∥∗β
xk . Even though the polynomial P lacks an explicit101

formula for its roots, we derive algorithm RN with a simple and exactly computed stepsize.102

This method can leverage similarity of the third-derivatives similarly to Nesterov (2021, Lemma 3).103

Lemma 1. Let function f : Rd → R be third-order L3,ν-Hölder continuous (Definition 1). Then104

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗
xk ≤ 2

(
L3,ν

1 + ν

) 1
1+ν ∥∥xk+1 − xk

∥∥2
xk ∀xk, xk+1 ∈ Rd.

Notably, formulation (7) is very general, and it also encapsulates all polynomial upper bounds of105

polynomials P [∥x− y∥x] with smaller exponents. We refer the reader for more details to Appendix F.106

107

1.5 Contributions108

We summarize our contributions below, with detailed comparison to the most relevant literature109

discussed in Section 1.6.110

• Newton method under third-order tensor similarity:111

We analyze the stepsized Newton method for functions with Hölder continuous third-derivatives112

(Definition 1), connecting the classical second-order Newton method to third-order tensor methods.113

• Simple stepsizes for fast global convergence:114

We propose multiple stepsize schedules for the Newton method (RN, Algorithm 1), leveraging115

various Hölder continuity assumptions (Definition 1). Although the stepsize is chosen to be a root116

of a non-quadratic polynomial, it is surprisingly simple and directly computable.117

Depending on the considered variant of the Hölder continuity assumption, they achieve a global118

convergence rate up to O
(
k−3

)
(Thm 2). These are the first Newton method stepsizes improving119

upon the rate O
(
k−2

)
of Hanzely et al. (2022). Additionally, we establish the following rates:120

– a local superlinear convergence rate (Theorem 3),121

– a global linear convergence (Theorems 8, 9) under additional assumption of finite s-relative122

size (Definition 2) (Doikov et al., 2024),123
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– and a global superlinear convergence (Theorem 7) under the additional assumption of uniform124

star-convexity (Definition 3) of degree s ≥ 2.125

• Stepsize linesearches for unknown parameters:126

In practice, smoothness constants are often unknown, requiring approximation or fine-tuning. To127

address this, we introduce a theoretical linesearch procedure GRLS (16) and a practical stepsize128

backtracking method UN (Algorithm 2), both of which provably converge as if the optimal129

parameterization was known in advance (Corollary 1, Theorem 5).130

• Guarantees for popular Newton linesearch:131

As a byproduct of our analysis, we obtain convergence guarantees for the popular Newton method132

with greedy linesearch (18) (Col 2, Thm 7). This is, to our best knowledge, the first such result.133

• Experimental comparison:134

In Section 5, we compare the proposed algorithms (RN, UN, and GRLS) with existing methods and135

demonstrate that they outperform their counterparts in most of the considered scenarios. Also, we136

show that the linesearch procedure GRLS resemble stepsizes of popular Greedy Newton linesearch.137

1.6 Detailed comparison to the most relevant literature138

Our theoretical framework builds on several insights from Hanzely et al. (2022) and Doikov et al.139

(2024). We now outline the key differences between these approaches and ours.140

Compared to our approach, the AICN method of Hanzely et al. (2022) is restricted to cubic141

regularization and achieves only an O
(
k−2

)
convergence rate. In contrast, our schedules142

accommodate a broader range of smoothness notions, including Hölder continuity of the third143

derivative, enabling Algorithm 1 to achieve rates up to O
(
k−3

)
. Moreover, while AICN requires144

prior knowledge of the smoothness constant, our backtracking linesearch Algorithm 2 provably145

converges as if the optimal parametrization were known in advance.146

Furthermore, while cubic regularization in Hanzely et al. (2022) lead to the stepsize defined as the147

root of a quadratic polynomial, higher-order regularizations require a stepsize given by a root of148

a higher-order polynomial. Surprisingly, we show that even with higher-order regularization there149

exists a unique positive root in the interval (0, 1], and we propose algorithms (Algorithm 1 and150

Algorithm 2) that can operate without any additional linesearch.151

In comparison to Doikov et al. (2024), which utilizes standard l2 norms for regularization, our152

approach employs the local Hessian norms suggested by Hanzely et al. (2022). With local norms,153

the minimizers of the various regularization models (7) lie on the same line, providing a natural154

geometric connection between different regularizations. Local norms also yield a simpler algorithm155

that is invariant under linear transformations (e.g., data scaling or change of basis), a highly practical156

property that reduces hyperparameter tuning.157

From a technical point of view, although our proofs draw on techniques from Doikov et al. (2024),158

they cannot be directly adapted to the setting of local norms. The main difficulty is that the stepsize159

αk appears raised to the power 1 + β, which propagates nontrivially throughout the analysis and160

complicates adaptation. Our key insight is a reparametrization (line 141) in which a single implicit161

parameter θ encapsulates both β and σ. This reparametrization allows us to recover a proof structure162

similar to that of Doikov et al. (2024) while avoiding direct manipulations of α1+β
k .163

We also emphasize that our results provide a theoretical explanation for the success of popular stepsize164

linesearch rules along the Newton direction. These insights have implications well beyond our newly165

proposed methods. By contrast, the results of Doikov et al. (2024) do not offer a new theoretical166

explanation for any already established method.167

2 Novel stepsize schedule168

Now we are ready to present our new stepsize schedule based on the higher-order regularization.169

Theorem 1. For any σ, β ≥ 0, the following adjustments of the Newton method are equivalent:170
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Regularization: xk+1 = xk + argmin
y∈Rd

Tσ,β

(
xk
)
, (8)

Damping: xk+1 = xk − αk[∇2f(xk)]−1∇f(xk), (9)

where Tσ,β (x) = argminy∈Rd

{
Φx(y) +

σ
2+β ∥y − x∥2+β

x

}
and αk ∈ (0, 1] is the only

positive root of polynomial P [α]
def
= 1 − α − α1+βσ

∥∥∇f(xk)
∥∥∗β
xk . We call this algorithm

Root Newton (RN), Algorithm 1.171

To simplify calculations, we reparametrize the RN as θ
def
= αβσ∥∇f(x)∥∗βx , where θ ≥ 0 is an172

implicitly defined regularization constant. Using θ, the polynomial P simplifies to Pθ[α] = 1−α−αθ173

and for any fixed θ, the stepsize defined as α = 1
1+θ is the positive root of Pθ. For a given iterate174

xk (and fixed β and σ), θ and α are in one-to-one correspondence via Pθ (specifying either θ or α175

uniquely determines the other), so every admissible θ corresponds to a valid α.176

2.1 Hölder continuity assumption177

Our analysis rely on assumption that the function has Hölder continuous Hessian or third derivative.178

Definition 1. For f : Rd → R, and p ∈ N, we say that p-times differentiable convex function is
Hölder continuous of p-th order, if for some ν ∈ [0, 1] there exists a constant Lp,ν <∞, so that

∥∇pf(x)−∇pf(y)∥op ≤ Lp,ν∥x− y∥νx, ∀x, y ∈ Rd. (10)

We say that the f has Hölder continuous Hessian if L2,ν <∞ (for some ν ∈ [0, 1]) and Hölder
continuous third derivative if L3,ν <∞ (for some ν ∈ [0, 1]).

We would like to emphasize that Definition 1 is extremely general; the most general assumption for179

analysis of Newton methods. In particular, choice L2,0 covers standard Lipschitz smoothness, L3,0180

covers constant bound on the third derivative, and L2,1 is equivalent the semi-strong self-concordance181

(Hanzely et al., 2022). Further discussion of smoothness constants can be found in Appendix E. We182

will use the properties of the Hölder continuity summarized in the proposition below.183

Proposition 1. L2,ν-Hölder continuous functions satisfy184 ∥∥∇f(y)−∇f(x)−∇2f(x)[y − x]
∥∥∗
x
≤ L2,ν

1+ν ∥y − x∥1+ν
x .

L3,ν-Hölder continuous functions satisfy185 ∥∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]− 1

2
∇3f(x)[y − x]2

∥∥∥∗
x
≤ L3,ν

(1 + ν)(2 + ν)
∥y − x∥2+ν

x .

Hölder continuity assumption with a sufficiently large regularization θk implies (for c1 ∈ {1, 2})186 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

2c1(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk ,

which will in turn imply the one-step decrease as187

f(xk)− f(xk+1) ≥ −
〈
∇f(xk+1), xk+1 − xk

〉
=
〈
∇f(xk+1), αk

[
∇2f(xk)

]−1∇f(xk)
〉

≥ αk

2c1(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk =

1

2c1θk

∥∥∇f(xk+1)
∥∥∗2
xk . (11)

Due to the level of technical detail, we defer lemmas for cases p ∈ {2, 3} to Appendix A.2. We188

directly present their unification via reparametrization q
def
= p+ ν ∈ [2, 4], Mq

def
= Lp,ν .189

Theorem 2. Let ∥∇f(x)∥∗x > 0. Hölder continuity (Definition 1) with p ∈ {2, 3}, ν ∈ [0, 1]190
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and q = p+ ν for points xk, xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk), where αk is the positive
root of Pθk . For θk such that

θk ≥ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk (12)

holds 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

2αkθk

∥∥∇f(xk+1)
∥∥∗2
xk . (13)

In particular, in view of (11), we have that the choice θk = (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk

guarantees decrease

f(xk)− f(xk+1) ≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

. (14)

191

Theorem 2 quantifies the amount of regularization θ needed for guaranteed decrease, leading to RN.

Algorithm 1 RN: Root Newton stepsize schedule

1: Requires: Initial point x0 ∈ Rd, Hölder continuity exponent q ∈ [2, 4] and constant Mq <∞.
2: for k = 0, 1, 2 . . . do
3: nk =

[
∇2f(xk)

]−1∇f(xk) ▷ Newton direction

4: gk =
〈
∇f(xk), nk

〉 1
2 ▷ gk =

∥∥∇f(xk)
∥∥∗
xk

5: θk = (9Mq)
1

q−1 g
q−2
q−1

k ▷ Sufficient regularization
6: αk = 1

1+θk
▷ αk is the root of Pθk [α]

7: xk+1 = xk − αkn
k ▷ Step, xk = Tσk,β

(
xk
)

8: end for

192

2.2 Convergence garantees of RN193

We will utilize the standard assumption that the diameter of the initial level set is finite.194

Denote the initial level set Q(x0)
def
=

{
x ∈ Rd : f(x) ≤ f(x0)

}
and its diameter as D

def
=195

supx,y∈Q(x0) ∥x− y∥x. Additionally, we need the Hessian not to change much between iterations.196

Assumption 1. For the sequence {xk}∞k=1, there exists a constant γ > 0 bounding Hessian of the197

consecutive points in gradient direction, γ ≤ ∥∇f(xk+1)∥∗2
xk

∥∇f(xk+1)∥∗2
xk+1

.198

This assumption is not novel, its variant has been used in Hanzely et al. (2022) for establishing local199

convergence as well as for analysis of quasi-Newton methods. Required γ exists in many cases. For200

L-smooth µ-strongly convex functions, γ = µ
L . For functions with ĉ-stable Hessian (Karimireddy201

et al., 2018a), γ = ĉ. For Lsc-self-concordant functions, it holds when iterates are close to each other202

(Nesterov & Nemirovski, 1994) or in the neighborhood of the solution (see proposition below).203

Proposition 2 (Hanzely et al. (2022), Lemma 4). For convex Lsc-self-concordant function f and204

iterate xk such that
∥∥∇f(xk)

∥∥∗
xk ≤

(2c4+1)2−1
2Lsc

it holds∇2f(xk+1)−1 ⪯ (1− c4)
−2∇2f(xk)−1.205

With assumptions clarified, we can jump straight to the convergence guarantees. First, we present206

superlinear local rate, which is expected for the stepsized Newton method.207

Theorem 3. Let function f : Rd → R be convex, Hölder continuous for p ∈ {2, 3}, ν ∈208
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[0, 1], q = p+ ν with γ-bounded Hessian change (1). Algorithm 1 has a superlinear local rate,∥∥∇f(xk+1)
∥∥∗
xk+1 ≤

2

γ
(9Mq)

1
q−1
∥∥∇f(xk)

∥∥∗(2− 1
q−1 )

xk .
209

For the L2,1-Hölder continuous functions, the presented rate is suboptimal compared to quadratic rate210

of AICN schedule (4). However, the rate of Theorem 3 holds for any q, and its exponent increases211

with q (up to 5/3 for q = 4).212

For global convergence guarantees, we first quantify in general the decrease implied by Theorem 2.213

This will provide plug-in guarantees for the RN and other algorithms.214

Lemma 2. Let function f : Rd → R be convex with γ-bounded Hessian change (1) and the bound215

level sets with diameter D. If an algorithm A generates the iterates
{
xk
}K
k=1

with one-step decrease216

for q ≥ 2 and c5 ≥ 0 as217

f(xk)− f(xk+1) ≥ c5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

, (15)

then A has the global convergence rate f(xK)− f∗ ≤ D
(

2(q−1)D
γc5K

)q−1

+
∥∥∇f(x0)

∥∥∗
x0De−K/4.218

Theorem 4. Let function f : Rd → R be convex, Hölder continuous for p ∈ {2, 3}, ν ∈
[0, 1], q = p + ν with γ-bounded Hessian change (1) and the bound level sets with diameter

D <∞. Algorithm 1 (RN) with known parameters q,Mq converges with rate O
(

MqD
q

kq−1

)
as

f(xk)− f∗ ≤ 9MqD

(
4D(q − 1)

γk

)q−1

+
∥∥∇f(x0)

∥∥∗
x0De−k/4.

Algorithm RN also achieves global linear and superlinear convergence rates under different219

assumptions. Due to the space constraints, we deferred these results to Appendix B.220

Note that the loss function can satisfy Hölder continuity (Definition 1) with multiple different Lp,ν ,221

and therefore different pairs (q, Mq) can be used. The best parametrization might not be known.222

3 Unknown parametrization223

To address unknown parameterization, we propose finding iterate maximizing the bound (15) directly,224

xk+1 = argmin
y∈{x−αn

xk |α∈[0,1]}

f(y)− f(xk)

∥∇f(y)∥∗2xk

, (16)

where nx
def
= [∇2f(x)]−1∇f(x) is a shorthand for Newton’s direction at point x. We call this225

algorithm Gradient-Regulated Line Search (GRLS, Algorithm 4). Interestingly, this linesearch226

simultaneously minimizes loss and gradient norms. Its rate follows directly from Lemma 2.227

Corollary 1. Let function f : Rd → R, be convex, Hölder continuous with some Mq < ∞, with228

γ-bounded Hessian change (1), and the bound level sets with diameter D <∞. Linesearch GRLS229

converges as f(xk)− f∗ ≤ minq∈[2,4] 9MqD
(

4D(q−1)
γk

)q−1

+
∥∥∇f(x0)

∥∥∗
x0De−k/4.230

Observe that for small stepsizes αk ∈ [0, α], for some α≪ 1, model differences are small xk+1 ≈ xk231

and∇f(xk) ≈ ∇f(xk+1). Therefore, expression (16) minimized by GRLS can be approximated as232

f(y)− f(xk)

∥∇f(y)∥∗2xk

≈f(y)− f(xk)

∥∇f(xk)∥∗2xk

, (17)

and the right-hand-side is minimized by the popular Newton method with greedy linesearch,233

xk+1 = argmin
y∈{xk−αn

xk |α∈[0,1]}
f(y), (18)
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Algorithm 2 UN: Universal stepsize backtracking procedure for the Newton method

1: Input: Initial point x0 ∈ Rd, constants σ0 > 0, ρ > 1, ρ ≥ γ− 2
3 , β ∈

[
2
3 , 1
]

▷ Note β ≥ q−2
q−1 , ρ ≥ γ− q−2

q−1 for q ∈ [2, 4]

2: for k = 0, 1, 2 . . . do
3: nk =

[
∇2f(xk)

]−1∇f(xk) ▷ Newton direction

4: gk =
〈
∇f(xk), nk

〉 1
2 ▷ gk =

∥∥∇f(xk)
∥∥∗
xk

5: for jk = 0, 1, 2 . . . do
6: θk,jk = ρjkσkg

β
k ▷ Increase regularization

7: αk,jk = 1
1+θk,jk

▷ Update stepsize

8: xk
jk

= xk − αk,jkn
k ▷ Step, xk

jk
= Tρjkσk,βk

(
xk
)

9: if
〈
∇f(xk

jk
), nk

〉
≥ 1

2αk,jk
θk,jk

∥∥∇f(xk
jk
)
∥∥∗2
xk then

10: xk+1 = xk
jk

11: σk+1 = ρjk−1σk

12: break
13: end if
14: end for
15: end for

which we will call Greedy Newton (GN). Our experimental evaluations will demonstrate that234

linesearches GN and GRLS use similar stepsizes (Figures 2c, 3c) justifying (17). Therefore while235

GRLS enjoys strong convergence guarantees, method GN is preferable in practice due to its easier236

criterion. Nevertheless, this connection allows us to obtain the convergence rate for the Greedy237

Newton in the corollary below. We refer the reader for more detailed explanation to Appendix C.238

Corollary 2. Let function f : Rd → R, be convex, Mq-Hölder continuous for some Mq <∞, with239

γ-bounded Hessian change (1), and the bound level sets with diameter D <∞. If the Greedy Newton240

linesearch (18) satisfies the inequality
∥∥∇f(xk+1)

∥∥∗
xk ≤ c

∥∥∇f(xk)
∥∥∗
xk with some constant c ≥ 0241

for all iterates xk, then it has convergence guarantee minq∈[2,4]O
(

MqD
qc2(q−1)

kq−1

)
242

f(xk)− f∗ ≤ min
q∈[2,4]

9MqD

(
4Dc2(q − 1)

γk

)q−1

+
∥∥∇f(x0)

∥∥∗
x0De−k/4.

Remark. Corollary 2 introduces assumption that the gradients norm measured in the local norms243

does not increase by more than a constant factor in between the iterates,
∥∥∇f(xk+1)

∥∥∗
xk ≤244

c
∥∥∇f(xk)

∥∥∗
xk . For any sequence {xk}∞k=1 monotonically decreasing loss f , this holds for example245

for quadratic functions with constant c.246

In this section, we established fast convergence guarantees for the novel but impractical linesearch247

method GRLS (16) and for the popular GN scheme (18), both of which do not require prior248

knowledge of the smoothness parameters (q,Mq). However, their implicit nature may not be suitable249

for all practical scenarios. To address this limitation, in the next section we introduce a practical250

stepsize backtracking procedure with matching convergence guarantees of UN.251

4 Universal stepsize backtracking252

Our backtracking procedure is based on the observation that the knowledge of the parametrization253

(q,Mq) in RN is required only for setting θk. We start with an estimate of θk smaller than the true254

value and increase it until it achieves the theoretically predicted decrease. We claim that the resulting255

algorithm UN is well-defined with a bounded number of backtracking steps.256

To formalize this claim, we quantify the smallest plausible true θk that will be estimated first. For257

q ∈ [2, 4] and β ≥ 2
3 denoteH (x)

def
= infq∈[2,4] (9Mq)

1
q−1 ∥∇f(x)∥∗(

q−2
q−1−β)

x .258
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Figure 1: Performance of Newton method stepsize lineserch procedures on the notoriously challenging
nonconvex Rosenbrock function (21). We plot mean± standard deviation of 5 random initializations.
We crop stepsize standard deviation at 0.

Lemma 3. If Mq <∞ for some q ∈ [2, 4], and the initial estimate σ0 small enough, σ0 ≤ H
(
x0
)
,259

then all iterations
{
xk
}n
k=0

of UN, such that
∥∥∇f(xk)

∥∥∗
xk > 0, satisfy σk+1 =

θk,jk−1

∥∇f(xk)∥∗β
xk

≤260

H
(
xk
)
. Moreover, the total number of backtracking steps during the first k iterations, NK , is261

bounded as Nk ≤ 2k + logρ
(
H
(
xk−1

)
/σ0

)
.262

Theorem 5. Let function f : Rd → R, be convex, Hölder continuous for p ∈ {2, 3}, ν ∈
[0, 1], q = p+ν with bounded Hessian change (Assumption 1) and the bound level sets diameter

D <∞. Algorithm 2 (UN) converges with the rate minq∈[2,4]O
(

MqD
q

kq−1

)
,

f(xk)− f∗ ≤ min
q∈[2,4]

9MqD

(
4D(q − 1)

ρ2k

)q−1

+
∥∥∇f(x0)

∥∥∗
x0De−k/4.

5 Results of numerical experiments263

The majority of figures and the detailed technical description were deferred to Appendix A.1.264

In Figures 2a, 3a, we compare higher-order methods without any linesearch procedures, namely RN,265

AICN (Hanzely et al., 2022) and Gradient Regularization of Newton Method (GRN) (Doikov et al.,266

2024, Alg. 1). As additional baselines, we use the damped Newton method with a fixed fine-tuned267

stepsize and classical first-order Gradient Method (GM) (Nesterov, 2018). RN and AICN show268

similar performance while GRN has a slight disadvantage. Unsurprisingly, the first-order method269

GM has quicker iterations but slower per-iteration convergence.270

In Figures 2b, 3b, we compare higher-order regularization methods with smoothness constant271

estimation procedures, UN and Super-universal Newton method (Doikov et al., 2024, Alg. 2).272

As an additional baseline, we use the damped Newton method with a fixed but fine-tuned stepsize.273

We show that UN displays faster convergence than the Super-universal Newton method. Moreover,274

we show that the exponent of the regularization term β that appears in both UN and super-universal275

Newton method (6) does not have a significant impact on overall performance.276

Figures 2c, 3c, 1 compare implicit linesearch procedures for Newton stepsizes, namely GRLS,277

Armijo stepsize, and Greedy Newton stepsize (GN) (Cauchy, 1847; Shea & Schmidt, 2024a). Our278

theory presents convergence guarantees for GRLS and GN with stepsizes limited to the interval [0, 1].279

We go beyond this limitation and perform parameter linesearches over α ∈ R+ instead.280

Figures 2c, 3c demonstrate that on logistic regression and polytope feasibility problems, linesearch281

procedures GRLS and GN use almost indistinguishable stespsizes and converge faster than Armijo282

linesearch and fixed stepsize Newton. On the Rosenbrock function (Figure 1), GRLS significantly283

outperforms all other linesearches procedures.284
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A Detailed descriptions369

A.1 Detailed descriptions of experiments370

Logistic regression loss371

In Figure 2, we compare the performance of the proposed algorithms on binary classification372

on datasets from LIBSVM repository (Chang & Lin, 2011). For datapoints {(ai, bi)}ni=1, where373

ai ∈ Rd, bi ∈ {−1,+1}, and regularizer µ = 10−3, we aim to minimize374

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

log
(
1 + e−bi⟨ai,x⟩

)
+

µ

2
∥x∥22

}
. (19)

We initialize all methods at x0 = 10 · [1, 1, . . . , 1]T ∈ Rd.375

Polytope feasibility loss376

In Figure 3, we compare proposed algorithms on polytope feasibility problem, aiming to find a point377

from a polytope P =
{
x ∈ Rd : ⟨ai, x⟩ ≤ bi, 1 ≤ i ≤ n

}
, reformulated as378

min
x∈Rd

{
f(x) =

n∑
i=0

(⟨ai, x⟩ − bi)
p
+

}
, (20)

where (t)+
def
= max{t, 0} and p ≥ 2. We generate data points (ai, bi) and the solution x∗ synthetically379

as ai, x∗ ∼ N (0, 1) and set bi = ⟨ai, x∗⟩.380

We initialize all methods at x0 = [1, 1, . . . , 1]T ∈ Rd.381

Rosenbrock loss382

Linesearch procedures solve the abovementioned problems in just a few steps. For a more challenging383

task, Figure 1 presents the notorious d-dimensional Rosenbrock function,384

min
x∈Rd

{
f(x) =

d−1∑
i=0

[100(xi+1 − x2
i )

2 + (1− xi)
2]
}
. (21)

Notably, the Rosenbrock function (21) is nonconvex, which breaks assumptions in our convergence385

theorems.386

The function (21) has the global solution at x∗ = [1, . . . , 1]T , and therefore we choose the initial387

point from a normal distribution, x0 ∼ N (0, Id) · 20.388

Technical details389

All hyperparameters were fine-tuned to achieve the best possible performance for both objectives and390

every dataset. All experiments were conducted on a workstation with specifications: AMD EPYC391

7742 64-Core Processor with 32Gb of RAM. Source code is available at https://anonymous.392

4open.science/r/root-newton-B6A9.393

A.1.1 Extended comparison on Rosenbrock function394

In Figure 4 we present an extended comparison of linesearch procedures on Rosenbrock function395

(21) (similar to Figure 1), with 10 random initializations and the limit of 1000 steps. We observe that396

none of the considered algorithms consistently converge to the exact solution for all of the random397

seeds, and that GRLS performs better than the other linesearch methods.398

A.2 Hölder continuity to one step decrease399

Lemma 4. Let
∥∥∇f(xk)

∥∥∗
xk > 0, and xk ∈ Rd, xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk), as in RN.400
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(b) Performance of UN compared to other higher-order regularization methods with smoothness estimation
procedures.
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(c) Performance of Linesearch GRLS (16) compared to other linesearch procedures.

Figure 2: Binary classification logistic regression problem on LIBSVM datasets.
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(c) Performance of Linesearch GRLS (16) compared to other linesearch procedures.

Figure 3: Polytope feasibility problem (20) on a synthetic datasets.
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Algorithm 3 Line search backtracking procedures for the Newton direction

1: Inputs: Initial learning rate γ0 > 0, constants c1, c2 ∈ (0, 1), shrinkage factor ρ ∈ (0, 1), current
iterate x ∈ Rd, termination condition C defined as

C(x+, x)←
f(x+) ≤ f(x)− c1γ∥∇f(x)∥∗2x Armijo
f(x+) ≤ f(x)− c1γ∥∇f(x)∥∗2x & ⟨n,∇f(x+)⟩ ≤ c2∥∇f(x)∥∗2x Wolfe
f(x+) ≤ f(x)− c1γ∥∇f(x)∥∗2x & |⟨n,∇f(x+)⟩| ≤ c2∥∇f(x)∥∗2x Strong Wolfe

2: Compute Newton’s direction nx ← −
[
∇2f(x)

]−1∇f(x)
3: Initialize γ ← γ0
4: while C(x+ γnx, x) is not satisfied do
5: γ ← ργ
6: end while
7: Return next point x+ γnx

Algorithm 4 GRLS: Gradient Regularized Line Search

1: Requires: Initial point x0 ∈ Rd.
2: for k = 0, 1, 2 . . . do
3: nk =

[
∇2f(xk)

]−1∇f(xk) ▷ Newton direction
4: Compute next iterate

xk+1 = argmin
y∈{x−αnk|α∈[0,1]}

f(y)− f(xk)

∥∇f(y)∥∗2xk

5: end for

• Hölder continuity of Hessian (Def. 1 with p = 2) implies that for θk larger than θk ≥401
L2,ν

1+ν α
ν
k

∥∥∇f(xk)
∥∥∗ν
xk holds402 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

• Hölder continuity of the third derivative (Definition 1 with p = 3) implies that for regularization θk403

larger than404

θk ≥ αk

∥∥∇f(xk)
∥∥∗
xk max

{
6

(
L3,ν

1 + ν

) 1
1+ν

,

√
3L3,ν

(1 + ν)(2 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)ν}
, (22)

holds405 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

In Lemma 4, requirements on θk are inconveniently dependent on αk. We can use the following406

observation to derive a bound dependent only on the norm of the gradient.407

Lemma 5. For c3, δ > 0, choice θk ≥ c
1

1+δ

3

∥∥∇f(xk)
∥∥∗ δ

1+δ

xk ensures θk ≥ c3

(
αk

∥∥∇f(xk)
∥∥∗
xk

)δ
.408

B Global (super)linear convergence rate409

Stepsized Newton method is known to be able to achieve a global linear rate if the Hessian is bounded410

and stepsize is constant (Karimireddy et al., 2018b; Gower et al., 2019b), or when the function411

is L2,1-Hölder continuous with stepsize following schedule AICN (Hanzely et al., 2022, proof in412

(Hanzely, 2023)).413
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Figure 4: Performance of Newton method stepsize lineserch procedures on nonconvex Rosenbrock
function (21). We plot mean ± standard deviation of 10 random initializations. We crop stepsize
standard deviation at 0.

In line with those results, we present global linear rates for algorithms RN, UN, GRLS on Lp,ν-Hölder414

continuous functions with finite (p+ ν)-relative size characteristic (Doikov et al., 2024). The proof415

is in Appendix G.416

Definition 2 ((Doikov et al., 2024)). For strictly convex function f : Rd → R we call s-relative
size characteristic

Ds
def
= sup

x,y∈Q(x0)

{
∥x− y∥x

(
Vf

βf (x, y)

) 1
s

}
,

where βf (x, y)
def
= ⟨∇f(x)−∇f(y), x− y⟩ > 0 and Vf

def
= supx,y∈Q(x0) βf (x, y).

Theorem 6. Let function f be Lp,ν-Hölder continuous, with finite relative size Dq < ∞ for
q = p+ ν (Definition 2) and γ-bounded Hessian change (Assumption 1). Algorithms RN, UN
and GRLS find points in the ε-neighborhood, f(xk)− f(x∗) ≤ ε, in

k ≤ O

(
γ

(
MqD

q
q

Vf

) 1
q−1

ln
f0
ε

+ ln

∥∥∇f(x0)
∥∥∗
x0D

ε

)
iterations, implying a global linear convergence rate.

Remark. In view of (17), analogous convergence guarantee (with a worse constant) can be proven417

for GN.418

Replacing relative size assumption with uniform star-convexity of degree s (q > s ≥ 2), we can419

guarantee a global superlinear rate for RN and GN similarly to Kamzolov et al. (2024).420

Definition 3. For s ≥ 2 and µs ≥ 0 we call function f : Rd → R µs-uniformly star-convex of
degree s in local norms with respect to a minimizer x∗ if ∀x ∈ Rd,∀η ∈ [0, 1] holds

f (ηx+ (1− η)x∗) ≤ ηf(x) + (1− η)f∗ −
η(1− η)µs

s
∥x− x∗∥sx.

If this inequality holds for µs = 0, we call function f star-convex in local norms (w.r.t. minimizer
x∗).
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Theorem 7. Let the function f : Rd → R be Lp,ν-Hölder continuous (Definition 1) and

µs-uniformly star-convex of degree s in local norms (Definition 3) and q
def
= p+ ν ≥ s ≥ 2 then

RN and GN have global decrease in functional value suboptimality,

f(xk)− f∗ ≤
(
f(x0)− f∗

) k−1∏
t=0

(1− η̂t),

where η̂k ∈ [0, 1] is the only positive root of Ek(η)
def
= (1 − η)µs

s −
ηq−1

(
Mq

(p+1)! +
σ
q

)∥∥xk − x∗
∥∥q−s

xk .

If q = s, then η̂k is constant throughout all iterations and the rate is globally linear.

If q > s, then η̂k is monotonically increasing as
∥∥xk − x∗

∥∥
xk decreases, 1 − η̂k → 0, and

therefore, the resutling rate is globally superlinear.

Proof of Theorem 7. We have that updates of RN with q = p+ ν = 2 + β and any σ ≥Mq can be421

written as422

f(xk+1) ≤ Φxk(xk+1) +
σ

q

∥∥xk+1 − xk
∥∥q
xk (23)

= min
y∈Rd

{
Φxk(y) +

σ

q
∥y − x∥qxk

}
, (24)

using standard integration arguments from Mq-Hölder continuity423

≤ min
y∈Rd

{
f(y) +

Mq

(p+ 1)!

∥∥y − xk
∥∥q
xk +

σ

q

∥∥y − xk
∥∥q
xk

}
(25)

= min
y∈Rd

{
f(y) +

(
Mq

(p+ 1)!
+

σ

q

)∥∥y − xk
∥∥q
xk

}
, (26)

setting y ← x+ ηk(x
∗ − xk) for arbitrary ηk ∈ [0, 1],424

≤ f
(
xk + ηk(x

∗ − xk)
)
+ ηqk

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q
xk , (27)

assuming µs-strong star-convexity for q ≥ s ≥ 2,425

≤ (1− ηk)f(x
k)

+ ηkf∗ −
ηk(1− ηk)µs

s

∥∥xk − x∗∥∥s
xk + ηqk

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q
xk , (28)

denoting functional suboptimality δk
def
= f(xk)− f∗,426

δk+1 ≤ (1− ηk)δk

− ηk
∥∥xk − x∗∥∥s

xk

(
(1− ηk)

µs

s
− ηq−1

k

(
Mq

(p+ 1)!
+

σ

q

)∥∥xk − x∗∥∥q−s

xk

)
. (29)

Denote expression E(η)
def
= (1 − η)µs

s − ηq−1
(

Mq

(p+1)! +
σ
q

)
∥x− x∗∥q−s

x for η ∈ [0, 1]. Observe427

that E′(η) < 0 and therefore E is monotonically decreasing on R+; with E(0) ≥ 0 ≤ E(1) we428

can conclude that it has a unique root η̂ on [0, 1]. With choice η ← η̂ in the last inequality we can429

conclude global convergence rate430

δk+1 ≤ (1− η̂k)δk. (30)

Note that the root of the expression E is inversely proportional to the distance from the solution431

∥x− x∗∥x, and therefore as the method converges, xk → x∗, then the size of its root increases432

η̂k → 1. Therefore, the global convergence rate (30) is superlinear.433

Unrolling the recurrence (30) yields the inequality from the Theorem 7.434

435
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Note that the decrease is based solely on the decrease in functional values, which allows us to prove the436

identical guarantee for Greedy Newton linesearch GN. In particular, GN implies f(x+
GN) ≤ f(x+

RN),437

and we can analogically conclude438

f(xk+1
GN )− f∗ ≤

(
f(xk

GN)− f∗
)
(1− η̂k). (31)

439

C Fast convergence guarantees for Greedy Newton linesearch440

If the inequality ∥∇f(y)∥∗xk ≤ c
∥∥∇f(xk)

∥∥∗
xk holds for constant c ≥ 0, we have that for stepsizes in441

a range [α, α] holds442

min
α ∈ [α, α]

y = x− αnxk

f(y)− f(xk)

∥∇f(xk)∥∗2xk

≤c2 · min
α ∈ [α, α]

y = x− αnxk

f(y)− f(xk)

∥∇f(y)∥∗2xk

, (32)

proving that Greedy Newton minimizes the target metric of GRLS up to a constant ×c2. If we443

denote ĉ5 constant with which GRLS satisfies Lemma 2, then Greedy Newton satisfies Lemma 2444

with constant ĉ5c2 and guarantee convergence similar to Corollary 1.445

Now we are going to discuss how constant c can be found in different scenarios.446

Remark (General Mq-Hölder continuous functions). To find c we note that Theorem 2 shows that447

stepsize θk
def
= 1−αk

αk
≥ (9Mq)

1
q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk for Mq-Hölder continuous function implies448

1

2(1− αk)
∥∇f(y)∥∗2xk ,≤

〈
∇f(y),

[
∇2f(xk)

]−1∇f(xk)
〉
≤ ∥∇f(y)∥∗xk

∥∥∇f(xk)
∥∥∗
xk ,

which after rearranging yields ∥∇f(y)∥∗xk ≤ 2(1− αk)
∥∥∇f(xk)

∥∥∗
xk . Therefore if449

α ≤ 1

1 + (9Mq)
1

q−1 ∥∇f(xk)∥∗
q−2
q−1

xk

(33)

or equivalently450

α ≤
(
1 + (9Mq)

1
q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk

)−1

≤

(
1 + sup

q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(x0)

∥∥∗ q−2
q−1

x0

)−1

. (34)

In such case, c can be set as c = 2(1− α).451

452

Note that (34) is satisfied by smaller stepsizes, which damped Newton methods use globally until they453

converge to the neighborhood of the solution.454

Remark (Hölder continuity of Hessians). For L2,ν-Hölder, Lemma 8 yields455

∥∇f(y)∥∗xk ≤
(
|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk

)∥∥∇f(xk)
∥∥∗
xk , (35)

ensuring that without any limitation on α456

cx
def
= sup

α∈[α,α]

|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk (36)

= max
α∈{α,α,1}

|1− α|+ L2,ν

1 + ν
α1+ν

∥∥∇f(xk)
∥∥∗ν
xk . (37)

For α← 0, α← 1, we can set457

c = max

{
1,

L2,ν

1 + ν

∥∥∇f(xk)
∥∥∗ν
xk

}
≤ max

{
1,

L2,ν

1 + ν

∥∥∇f(x0)
∥∥∗ν
x0

}
. (38)

Remark (L2,0-Hölder continuity). For L2,0-Hölder functions with L2,0 ≥ 1, constant c simplifies to458

c
def
= α

L2,0

2 + |1− α|, because459 α
(

L2,0

2 − 1
)
+ 1 ≥ α

(
L2,0

2 − 1
)
+ 1 ≥ 1

2 , if α ≤ 1,

α
(

L2,0

2 + 1
)
− 1 ≥ α

(
L2,0

2 + 1
)
− 1 ≥ L2,0

2 , if α ≥ 1.
(39)
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D Connection between stepsizes and regularization460

We show connections of particular stepsizes to regularized Newton methods. For fixed σ > 0, β ≥ 0461

define regularized model as462

Tσ,β (x)
def
= argmin

y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x +

σ

2 + β
∥y − x∥2+β

x

}
. (40)

We can define optimization algorithm RN as463

xk+1 def
= Tσ,β

(
xk
)

(41)

By first-order optimality condition, solution of model h∗ def
= Tσ,β (x)− x satisfy464 (

1 + σ∥h∗∥βx
) [
∇2f(x)

]
h∗ = −∇f(x), (42)

h∗ = −
(
1 + σ∥h∗∥βx

)−1

︸ ︷︷ ︸
def
=α>0

[
∇2f(x)

]−1∇f(x). (43)

Now iterates of RN are in the direction of Newton method (for any σ and β) and we can write465

h∗ = −α
[
∇2f(x)

]−1∇f(x), (44)[
∇2f(x)

]
h∗ = −α∇f(x), (45)

∥h∗∥x = α∥∇f(x)∥∗x. (46)

Substituting
[
∇2f(x)

]
h∗ back to the first-order optimality conditions we get466

0 = ∇f(x)
(
1− α− α1+βσ∥∇f(x)∥∗βx

)
. (47)

Thus, α defined as a root of the polynomial467

P [α]
def
= 1− α− α1+βσ∥∇f(x)∥∗βx (48)

satisfies first-order optimality condition. Note that P [0] > 0 and P [1] ≤ 0, hence P has root on468

interval (0, 1]. This will be the stepsize of our algorithm. Also note that P is monotone on R+,469

P ′[α] = −1− (1 + β)αβσ∥∇f(x)∥∗βx < 0, (49)
and consequently, the positive root of P is unique.470

E Relations between smoothness constants471

First note that the parametrization Lp,ν is log-convex in ν and hence for 0 ≤ ν1 ≤ ν ≤ ν2 ≤ 1, it472

hold473

Lp,ν ≤ [Lp,ν1 ]
ν2−ν
ν2−ν1 [Lp,ν2 ]

ν−ν1
ν2−ν1 , and Lp,ν ≤ L1−ν

p,0 Lν
p,1.

Consider any γ ∈ [0, 1]. From Hölders continuity, triangle inequality and definition of Lp,ν ,474 ∥∥∇3f(x)[y − x]
∥∥
op
≤
∥∥∇2f(x)−∇2f(y)

∥∥
op

+
L3,ν

1 + ν
∥y − x∥1+ν

x (50)

≤ L2,γ∥x− y∥γx +
L3,ν

1 + ν
∥y − x∥1+ν

x (51)

For y ← x+ τh, where ∥h∥x = 1, τ > 0, we can continue475 ∥∥∇3f(x)
∥∥
op
≤ L2,γ

τ1−γ
+

L3,ν

1 + ν
τν , (52)

≤ 2 + ν

1 + ν
[L2,γ ]

ν
1+ν−γ τ1−γ [L3,ν ]

1
1+ν−γ , // by τ ←

[
L2,γ

L3,ν

] 1
1+ν−γ

(53)

≤ 3

2

√
L2,0L3,1, // by γ ← 0, ν ← 1 (54)
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and we can summarize476

L3,0 = sup
x̸=y

∥∥∇3f(x)−∇3f(y)
∥∥
op
≤ sup

x ̸=y

(∥∥∇3f(x)
∥∥
op

+
∥∥∇3f(y)

∥∥
op

)
(55)

= 2 sup
x

∥∥∇3f(x)
∥∥
op
≤
{
2L2,1

3
√
L2,0L3,1

. (56)

Lemma 6. If L2,ν exists, for points xk, xk+1 = xk − αk

[
∇2f(xk)

]−1∇f(xk) holds decrease477 ∥∥∇f(xk+1)
∥∥∗
xk ≤

(
θk +

L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

)
αk

∥∥∇f(xk)
∥∥∗
xk ,

and hence, if ν > 0 and θk ≥
∥∥∇f(xk)

∥∥∗ε
xk for ε > 0, and if the bound (127) exists (meaning that478

the Hessian does not change much), we have guaranteed superlinear local rate.479

Remark. Hanzely et al. (2022) shows that L2,1-Hölder continuity implies self-concordance, and480

(Nesterov, 2018, Theorem 4.1.3) proves that self-concordance implies positive definiteness of Hessian481

∇2f the domain of function f contains no straight line.482

F Generality of higher-order regularization483

In this section we explain how (7) encapsulates polynomial upper bounds P [∥x− y∥x] with smaller484

exponents. Writing regularization as a polynomial,485

f(y) ≤ Φx(y) + P [∥x− y∥x], (57)
this can be bounded as486

f(y) ≤ Φx(y) +A1 +A2∥x− y∥px, (58)
where constants A1, A2 > 0 and degree p are expressed in the lemma below. Notably, the next iterate487

x+ set as the minimizer of the right-hand side of (58) is not affected by A1, but the A1 worsens488

guarantees on functional value decrease, f(x+) ≤ f(x) +A1.489

Lemma 7. A polynomial P with dP coefficients ak ≥ 0 and exponents 0 ≤ b1 ≤ · · · ≤ bdP
,490

P [x]
def
=

dP∑
k=0

akx
bk ,

satisfies following bound with any p ≥ maxk∈{1,...,dP } bk,491

P [x] ≤ A1 +A2x
p,

where A1 = 1
p

∑dP

k=0 ak(p− bk), A2 = 1
p

∑dP

k=0 akbk.492

A surprising remark: Similarly, we can replace even the quadratic term from Taylor polynomial,493
1
2∥y − x∥2x, by an upper bound in the form A1 + A2∥x− y∥px. This further simplifies the494

regularization and results in the Newton method with the unbounded stepsize495

x+ = x−

(
1

(σ + 1)∥∇f(xk)∥∗βxk

) 1
1+β [

∇2f(x)
]−1∇f(x).

As the gradient diminishes, the stepsize diverges to infinity. Yet, simultaneously, the functional value496

is guaranteed to not deteriorate by more than a constant factor.497

Proof of the remark. We can bound the majorization as498

Tσ,β (x) = argmin
y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ 1

2
∥y − x∥2x +

σ

2 + β
∥y − x∥2+β

x

}
(59)

≤ argmin
y∈Rd

{
f(x) + ⟨∇f(x), y − x⟩+ β

2(β + 2)
+

σ + 1

2 + β
∥y − x∥2+β

x

}
(60)

= x−

(
1

(σ + 1)∥∇f(xk)∥∗βxk

) 1
1+β [

∇2f(x)
]−1∇f(x), (61)
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where stepsize was obtained as the positive root of polynomial499

P [α]
def
= 1− α1+β(σ + 1)

∥∥∇f(xk)
∥∥∗β
xk .

500

Surprisingly, stepsize is unbounded, and when ∥∇f(x)∥∗x → 0, then α→∞. This puzzling result501

has a simple explanation – such stepsize converges only to a neighborhood of the solution.502

In practice, we could not observe stepsize larger than 5 on any considered dataset. When close to503

the solution and the stepsize becomes larger than one, algorithm (61) stops converging closer to the504

solution, and functional values oscillate.505

G Analysis under s-relative size assumption506

In this section, we present global convergence guarantees under a novel characteristic called s-relative507

size recently proposed by Doikov et al. (2024).508

Strict convexity implies βf (x, y) > 0, we also have lims→∞ Ds = D, also βf (x,y)
Vf

≤ 1, and509

⟨∇f(x)−∇f(y), x− y⟩ ≥ Vf

(
∥x− y∥x

Ds

)s

(62)

Characteristic Ds is log-convex function in s, and if Ds1 , Ds2 <∞, then for 2 ≤ s1 ≤ s ≤ s2 holds510

Ds ≤ [Ds1 ]
s2−s
s2−s1 [Ds2 ]

s−s1
s2−s1 , (63)

and Ds is continuous on this segment.511

Remark. For self-concordant functions, it holds βf (x, y) ≥ ∥y − x∥2x, and Ds ≤ D1− 2
sV

1
s

f .512

Remark. For functions such that βf (x, y) ≥ µs∥x− y∥sx it holds Ds ≤
(

Vf

µs

) 1
s

. In particular, for513

self-concordant functions holds βf (x, y) ≥ ∥y − x∥2x, and therefore D2 ≤
√
Vf .514

Assumption 2. For some s ≥ 2, value of Ds is finite, Ds <∞.515

Lemma 8. For any 2 ≤ s ≤ q, we have516 (
Dq

D

)q

≤
(
Ds

D

)s

(64)

Proof of Lemma 8. Analogical to Doikov et al. (2024).517

Now for any x, y ∈ Q(x0),518

f(y) = f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1

τ
⟨∇f(x+ τ(y − x))−∇f(x), τ(y − x)⟩ dτ (65)

≥ f(x) + ⟨∇f(x), y − x⟩+ 1

s
Vf

(
∥x− y∥x

Ds

)s

, (66)

and minimizing both sides w.r.t. y independently, we get519

s− 1

s

(
Ds∥∇f(x)∥∗x

Vf

) s
s−1

≥ f(x)− f∗
Vf

(67)

Let us denote some constants that will appear in proofs.520

γ̂
def
=

q(s− 1)

(q − 1)s
∈
[
2

3
, 2

]
, and 1− γ̂ =

q − s

(q − 1)s
(68)

ωq,s
def
=

1

2

(
s

s− 1

)γ̂
 V

q
s

f

9MqD
q
s

 1
q−1

=
1

2

(
s

s− 1

) q(s−1)
(q−1)s

 V
q
s

f

9MqD
q
s

 1
q−1

(69)

Cq
def
= 2γ(q − 1)(9Mq)

1
q−1D

q
q−1 (70)

22



Note that ωq,sCq

γ(q−1) =

((
s

s−1

) s−1
s V

1
s

f D

Ds

) q
q−1

.521

Lemma 9. For q ∈ [2, 4] and s ∈ [2,∞), we have522

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

≥ ωq,s

∥∇f(xk+1)∥∗2xk+1

∥∇f(xk)∥∗2xk

. (71)

Proof. Analogically to Doikov et al. (2024), denote fk
def
= f(xk)− f∗.523

fk − fk+1

(14)
≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

∥∥∇f(xk)
∥∥∗ q

q−1

xk (72)

(67)
≥ 1

2

(
1

9Mq

) 1
q−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

V
1
s

f

Ds


q

q−1 (
s

s− 1

)γ̂

f γ̂
k (73)

=
1

2

(
s

s− 1

)γ̂
 V

q
s

f

9MqD
q
s

 1
q−1 ∥∥∇f(xk+1)

∥∥∗2
xk

∥∇f(xk)∥∗2xk

f γ̂
k (74)

= ωq,s

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

f γ̂
k . (75)

If s ≥ q, then γ̂ ∈ [1, 2] and the function y(x)
def
= xγ̂−1 is concave. With monotonicity of {fk}k≥0,524

we have525

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

=
f γ̂−1
k − f γ̂−1

k+1

(γ̂ − 1)f γ̂−1
k+1 f

γ̂−1
k

≥ fk − fk+1

f γ̂−1
k+1 fk

≥ ωq,s

∥∇f(xk+1)∥∗2xk

∥∇f(xk)∥∗2xk

. (76)

If 2 ≤ s < q, then γ̂ < 1 and the function y(x)
def
= xγ̂−1 is concave. We have526

1

(γ̂ − 1)f γ̂−1
k+1

− 1

(γ̂ − 1)f γ̂−1
k

=
f1−γ̂
k − f1−γ̂

k+1

1− γ̂
≥ fk − fk+1

f γ̂
k

≥ ωq,s

∥∇f(xk+1)∥∗2xk

∥∇f(xk)∥∗2xk

. (77)

527

Theorem 8. Let function f be Lp,ν-Hölder continuous with finite s-relative size and γ-bounded528
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Hessian change, Mq, Ds <∞ for some q ∈ [2, 4] and s ≥ q and sequence of iterates x0, . . . , xk

by generated by one of the algorithms RN, UN, GRLS. If all iterates had function suboptimality

fk
def
= f(xk)− f∗ worse than ε > 0, ft ≥ ε for t ∈ {0, . . . k}, then the algorithm did at most

k ≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

fk
(78)

≤ 2γ
s(q − 1)

s− q

(
s− 1

s

) q(s−1)
(q−1)s

9MqD
q
s

V
q
s

f

 1
q−1 [

ε−
s−q

s(q−1) − f
− s−q

s(q−1)

0

]

+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
(79)

steps. If s = q, treating RHS as limit together with lima→0
b−a−c−a

a = ln
(
c
b

)
guarantees the

linear convergence rate

k ≤ 2γ
q − 1

q

(
9MqD

q
q

Vf

) 1
q−1

ln
f0
ε

+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
. (80)

529

Remark. We can analogically guarantee the global linear convergence of Greedy Newton linesearch530

GN (18), but with a slightly different constant.531

Proof. Telescoping Lemma 9,532

1

(γ̂ − 1)f γ̂−1
k

− 1

(γ̂ − 1)f γ̂−1
0

≥ ωq,s

k−1∑
t=0

∥∥∇f(xt+1)
∥∥∗2
xt

∥∇f(xt)∥∗2xt

(81)

≥ kωq,s

(
k−1∏
t=0

∥∥∇f(xt+1)
∥∥∗2
xt

∥∇f(xt)∥∗2xt

) 1
k

(82)

≥ kωq,s

γ

(
fk

∥∇f(x0)∥∗x0D

) k
2

(83)

≥ kωq,s

γ
exp

(
−2

k
ln

∥∥∇f(x0)
∥∥∗
x0D

fk

)
(84)

≥ kωq,s

γ

(
1− 2

k
ln

∥∥∇f(x0)
∥∥∗
x0D

fk

)
(85)

=
kωq,s

γ
− 2ωq,s

γ
ln

∥∥∇f(x0)
∥∥∗
x0D

fk
, (86)

hence533

k ≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

fk
(87)

≤ γ

ωq,s(γ̂ − 1)

[
1

f γ̂−1
k

− 1

f γ̂−1
0

]
+ 2 ln

∥∥∇f(x0)
∥∥∗
x0D

ε
. (88)

534

Theorem 9. Let funciton f be Lp,ν-Hölder continuous with finite s-relative size and γ-bounded535
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Hessian change, Mq, Ds < ∞ for some q ∈ [2, 4] and 2 ≤ s ≤ q and sequence of iterates
x0, . . . , xk by generated by one of the algorithms RN, UN, GRLS. If all iterates were far from

solution, ft ≥ ε > 0 and gt
def
= ∥∇f(xt)∥∗xt ≥ δ > 0 for t ∈ {0, . . . k}, then the algorithm did

at most

k ≤ 2γ
q

s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1 s(q − 1)

q − s

1− s

q

((
s

s− 1

)s−1
Ds

s

VfDs
ε

) q−s
s(q−1)


+ 2 ln

g0
δ

(89)

steps. If s = q, treating RHS as a limit guarantees linear convergence rate

k ≤ 2γ
q − 1

q

(
9MqD

q
q

Vf

) 1
q−1

ln

((
q

q − 1

)q−1
VfD

q

Dq
qε

)
+ 2 ln

g0
δ
. (90)

536

Proof. Note 1− γ̂ = q−s
s(q−1) > 0. Let’s split the analysis of the method into two stages, k = m+ n.537

With Cq = 2γ(q − 1)(9Mq)
1

q−1D
q

q−1 , we bound the first stage,538

Cq
1

f
1

q−1
m

≥ Cq

 1

f
1

q−1
m

− 1

f
1

q−1

0

 (121)
≥ m

(
gm
g0

) 2
m

= m exp

(
2

m
ln

gm
g0

)
(91)

≥ m+ 2 ln
gm
g0

= m+ 2 ln
gm
δ
− 2 ln

g0
δ
. (92)

For the second stage, telescoping inequalities for t = m, . . . , k − 1539

1

ωq,s(1− γ̂)

[
f1−γ̂
t+1 − f1−γ̂

t

]
≥
∥∇f(xt+1)∥∗2xt+1

∥∇f(xt)∥∗2xt

, (93)

we get540

γ

ωq,s(1− γ̂)

[
f1−γ̂
m − ε1−γ̂

]
≥ γ

k−1∑
t=m

∥∇f(xt+1)∥∗2xt+1

∥∇f(xt)∥∗2xt

≥ n

(
gk
gm

) 2
n

≥ n

(
δ

gm

) 2
n

(94)

≥ n− 2 ln
gm
δ
. (95)

Expressing n,m from the inequalities above and adding them together yields541

k ≤ Cq
1

f
1

q−1
m

+
γ

ωq,s(1− γ̂)

[
f1−γ̂
m − ε1−γ̂

]
+ 2 ln

g0
δ
. (96)

Note that 1− γ̂ = q−s
s(q−1) . Minimizer of RHS in fm is achieved at542

f∗
m

def
=

(
Cqωq,s

γ(q − 1)

) s(q−1)
q

=

(
s

s− 1

) s
− 1

VfD
s

Ds
s

. (97)

Substituting definitions of f∗
m, ωq,s, Cq, γ̂ into the terms we get543

Cq
1

f
∗ 1

q−1
m

= 2γ(q − 1)

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

,

γ

ωq,s(1− γ̂)
f∗ (1−γ̂)
m = γ

s(q − 1)

q − s

1

ωq,s
f
∗ q−s

s(q−1)
m

= 2γ
s(q − 1)

q − s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

,

γ

ωq,s(1− γ̂)
ε1−γ̂ = 2γ

s(q − 1)

q − s

(
s− 1

s

) q(s−1)
(q−1)s

9MqD
q
s

V
q
s

f

 1
q−1

ε
q−s

s(q−1) ,
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and plugging them back in, we conclude544

k ≤ Cq
1

f
∗ 1

q−1
m

+
γ

ωq,s(1− γ̂)

[
f∗ (1−γ̂)
m − ε1−γ̂

]
+ 2 ln

g0
δ

= 2γ(q − 1)
q

q − s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1

− γ

ωq,s(1− γ̂)
ε1−γ̂ + 2 ln

g0
δ

= 2γ
q

s

(
s− 1

s

) s−1
q−1
(
9MqD

s
sD

q−s

Vf

) 1
q−1 s(q − 1)

q − s
×

×

1− s

q

((
s

s− 1

)s−1
VfD

s

Ds
s

) q−s
s(q−1)

ε
q−s

s(q−1)

+ 2 ln
g0
δ
.

545

H Proofs546

H.1 Proof of Lemma 7547

Proof of Lemma 7. Using weighed AG inequality, for 0 ≤ b ≤ p, we have548

xb ≤ (p− b) + bxp

p
. (98)

We use this inequality for each term of the polynomial.549

H.2 Proof of Proposition 1550

Proof of Proposition 1. We can derive all of the inequalities straightforwardly551

∇f(y)−∇f(x)−∇2f(x) [y − x] =

∫ 1

0

(
∇2f(x+ τ(y − x))−∇2f(x)

)
[y − x]dτ

∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]
∥∥∗
x
≤
∫ 1

0

∥∥∇2f(x+ τ(y − x))−∇2f(x)
∥∥
op
∥y − x∥xdτ

≤ L2,ν∥y − x∥1+ν
x

∫ 1

0

τνdτ

=
L2,ν

1 + ν
∥y − x∥1+ν

x ,

552

∇2f(y)−∇2f(x)−∇3f(x) [y − x] =

∫ 1

0

(
∇3f(x+ τ(y − x))−∇3f(x)

)
[y − x]dτ

∥∥∇2f(y)−∇2f(x)−∇3f(x) [y − x]
∥∥
op
≤
∫ 1

0

∥∥∇3f(x+ τ(y − x))−∇3f(x)
∥∥
op
∥y − x∥xdτ

≤ L3,ν∥y − x∥1+ν
x

∫ 1

0

τνdτ

=
L3,ν

1 + ν
∥y − x∥1+ν

x ,
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553

∇f(y)−∇f(x)−∇2f(x) [y − x]− 1

2
∇3f(x)[y − x]2

=

∫ 1

0

∫ τ

0

(
∇3f(x+ σ(y − x))−∇3f(x)

)
[y − x]2dσdτ∥∥∥∥∇f(y)−∇f(x)−∇2f(x) [y − x]− 1

2
∇3f(x)[y − x]2

∥∥∥∥∗
x

≤
∫ 1

0

∫ τ

0

∥∥∇3f(x+ σ(y − x))−∇3f(x)
∥∥∗
x
∥y − x∥2xdσdτ

≤ L3,ν∥y − x∥2+ν
x

∫ 1

0

∫ τ

0

σνdσdτ

=
L3,ν

(1 + ν)(2 + ν)
∥y − x∥2+ν

x .
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H.3 Proof of Lemma 1555

Proof of Lemma 1. For any x, h, y ∈ E and taking y = x+ τu for τ > 0, ∥u∥x = 1556

0 ≤ ∥h∥2y ≤ ∥h∥
2
x +

〈
∇3f(x)[h]2, y − x

〉
+

L3,ν

1 + ν
∥y − x∥1+ν

x ∥h∥2x

0 ≤ 1

τ
∥h∥2x +

〈
∇3f(x)[h]2, u

〉
+

L3,ντ
ν

1 + ν
∥h∥2x∥∥∇3f(x)[h]2

∥∥∗
x
≤
(
1

τ
+

L3,ντ
ν

1 + ν

)
∥h∥2x

Setting557

τ =

(
1 + ν

L3,ν

) 1
1+ν

,

we get558

∥∥∇3f(x)[h]2
∥∥∗
x
≤ 2

(
L3,ν

1 + ν

) 1
1+ν

∥h∥2x.

Setting xk = x, h = xk+1 − xk we get559

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗
xk ≤ 2

(
L3,ν

1 + ν

) 1
1+ν ∥∥xk+1 − xk

∥∥2
xk = 2

(
L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗2
xk

560
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H.4 Proof of Lemma 6561

Proof. Proof of Lemma 6.562 ∥∥∇f(xk+1)
∥∥∗
xk =

∥∥∇f(xk+1)−∇2f(xk)
[
xk+1 − xk

]
− αk∇f(xk)

∥∥∗
xk

=
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]
+ (1− αk)∇f(xk)

∥∥∗
xk

≤
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]∥∥∗
xk + (1− αk)

∥∥∇f(xk)
∥∥∗
xk

≤ L2,ν

1 + ν

∥∥xk+1 − xk
∥∥1+ν

xk + (1− αk)
∥∥∇f(xk)

∥∥∗
xk (if L2,ν exists)

=
L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk + (1− αk)
∥∥∇f(xk)

∥∥∗
xk

=

(
1− αk +

L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗ν
xk

)∥∥∇f(xk)
∥∥∗
xk

=

(
θk +

L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

)
αk

∥∥∇f(xk)
∥∥∗
xk .

Hence563 ∥∥∇f(xk+1)
∥∥∗
xk ≤

{
2
L2,ν

1+ν α
1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk if θk ≤ L2,ν

1+ν α
ν
k

∥∥∇f(xk)
∥∥∗ν
xk

2θkαk

∥∥∇f(xk)
∥∥∗
xk if θk ≥ L2,ν

1+ν α
ν
k

∥∥∇f(xk)
∥∥∗ν
xk

564

H.5 Proof of Lemma 4565

We provide separate proofs for cases p = 2 and p = 3.566

Proof of Lemma 4, case p = 2. We can rewrite the Hölder continuity for points xk, xk+1 s.t. xk+1 =567

xk − αk

(
∇2f(xk)

)−1∇f(xk)568 (
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

=

(
L2,ν

1 + ν

∥∥xk+1 − xk
∥∥1+ν

xk

)2

≥
∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)

[
xk+1 − xk

]∥∥∗2
xk

=
∥∥∇f(xk+1)−∇f(xk) + αk∇f(xk)

∥∥∗2
xk

=
∥∥∇f(xk+1)− (1− αk)∇f(xk)

∥∥∗2
xk

=
∥∥∇f(xk+1)

∥∥∗2
xk + (1− αk)

2 ∥∥∇f(xk)
∥∥∗2
xk − 2 (1− αk)

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
.

We are going to set σ so that569

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2(1− αk)

(
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

, (99)

and hence, we can conclude the proof by rearranging,570 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk +

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk −

1

2(1− αk)

(
L2,ν

1 + ν

(
αk

∥∥∇f(xk)
∥∥∗
xk

)1+ν
)2

≥ 1

2(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

28



Now we are going to choose σ to satisfy (99). Because αk is a root of a polynomial P , we have571

1− αk − α1+β
k λk = 0,

so the equation (99) is equivalent to572

1− αk = α1+β
k λk ≥

L2,ν

1 + ν
α1+ν
k

∥∥∇f(xk)
∥∥∗ν
xk ,

θk ≥
L2,ν

1 + ν
αν
k

∥∥∇f(xk)
∥∥∗ν
xk .

573

Proof of Lemma 4, case p = 3. We can rewrite the Hölder continuity for points xk, xk+1 s.t. xk+1 =574

xk − αk

(
∇2f(xk)

)−1∇f(xk)575

L3,ν

(1 + ν)(2 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)2+ν

(100)

=
L3,ν

(1 + ν)(2 + ν)

∥∥xk+1 − xk
∥∥2+ν

xk (101)

≥
∥∥∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)[xk+1 − xk]− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗
xk

(102)

=

∥∥∥∥∇f(xk+1)− (1− αk)∇f(xk)− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗
xk

. (103)

Squaring, then using Chauchy-Schwartz inequality twice and then, lastly, Lemma 1576 (
L3,ν

(1 + ν)(1 + ν)

(
αk

∥∥∇f(xk)
∥∥∗
xk

)2+ν
)2

≥
∥∥∥∥∇f(xk+1)− (1− αk)∇f(xk)− 1

2
∇3f(xk)[xk+1 − xk]2

∥∥∥∥∗2
xk

=
∥∥∇f(xk+1)

∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk +

1

4

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗2
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

+(1− αk)
〈[
∇2f(xk)

]− 1
2 ∇f(xk),

[
∇2f(xk)

]− 1
2 ∇3f(xk)[xk+1 − xk]2

〉
−
〈[
∇2f(xk)

]− 1
2 ∇f(xk+1),

[
∇2f(xk)

]− 1
2 ∇3f(xk)[xk+1 − xk]2

〉
≥ 1

2

∥∥∇f(xk+1)
∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk−

1

4

∥∥∇3f(xk)[xk+1 − xk]2
∥∥∗2
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

−(1− αk)
∥∥∇f(xk)

∥∥∗
xk

∥∥∇3f(xk)[xk+1 − xk]2
∥∥
xk

≥ 1

2

∥∥∇f(xk+1)
∥∥∗2
xk + (1− αk)

2
∥∥∇f(xk)

∥∥∗2
xk−

(
L3,ν

1 + ν

) 2
1+ν

α4
k

∥∥∇f(xk)
∥∥4
xk

−2(1− αk)
〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

−2
(

L3,ν

1 + ν

) 1
1+ν

α2
k(1− αk)

∥∥∇f(xk)
∥∥∗3
xk .
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Rearranging yields577 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉

≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk +

1− αk

2

∥∥∇f(xk)
∥∥∗2
xk−

1

2

(
L3,ν

1 + ν

) 2
1+ν α4

k

1− αk

∥∥∇f(xk)
∥∥∗4
xk

−
(

L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗3
xk−

1

2(1− αk)

(
L3,ν

(1 + ν)(2 + ν)

)2 (
αk

∥∥∇f(xk)
∥∥∗
xk

)2(2+ν)

.

Finally, we are going to set θk so that578

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2

(
L3,ν

1 + ν

) 2
1+ν α4

k

1− αk

∥∥∇f(xk)
∥∥∗4
xk (104)

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

(
L3,ν

1 + ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗3
xk (105)

1− αk

6

∥∥∇f(xk)
∥∥∗2
xk ≥

1

2(1− αk)

(
L3,ν

(1 + ν)(2 + ν)

)2 (
αk

∥∥∇f(xk)
∥∥∗
xk

)2(2+ν)

(106)

and then we can conclude579 〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

4(1− αk)

∥∥∇f(xk+1)
∥∥∗2
xk .

Note that the choice of stepsize implies580

1− αk = α1+β
k λk

and (104), (105), (106) are satisfied as581

1− αk = α1+β
k λk ≥

√
3
(

L3,ν

1+ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗
xk if θk ≥

√
3
(

L3,ν

1+ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk

6
(

L3,ν

1+ν

) 1
1+ν

α2
k

∥∥∇f(xk)
∥∥∗
xk if θk ≥ 6

(
L3,ν

1+ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk

√
3L3,ν

(1+ν)(1+ν)α
2+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk if θk ≥
√
3L3,ν

(1+ν)(2+ν)α
1+ν
k

∥∥∇f(xk)
∥∥∗(1+ν)

xk .

We can ensure (104), (105), (106) by582

θk ≥ αk

∥∥∇f(xk)
∥∥∗
xk max

{
6

(
L3,ν

1 + ν

) 1
1+ν

,

√
3L3,ν

(1 + ν)(2 + ν)
αν
k

∥∥∇f(xk)
∥∥∗ν
xk

}
.

583

H.6 Towards the proof of Theorem 2584

We unify cases p = 2, 3 with the Lemma 5.585

Corollary 3. Lemma 5 with γ = ν implies that choice θk =
(

L2,ν

1+ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗ ν
1+ν

xk satisfies θk586

requirement of Lemma 4 for p = 2 and therefore it implies decrease as Doikov et al. (2024),587

f(xk)− f(xk+1) ≥ 1

θk

∥∥∇f(xk+1)
∥∥∗2
xk ≥

(
1 + ν

L2,ν

) 1
1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
ν

1+ν

xk

. (107)

Lemma 5 with γ ∈ {1, 1 + ν} implies that the choice588

θk ≥∥∥∇f(xk)
∥∥∗ 1

2

xk max


(
61+νL3,ν

1 + ν

) 1
2(1+ν)

,

( √
3L3,ν

(1 + ν)(2 + ν)

) 1
2+ν ∥∥∇f(xk)

∥∥∗ ν
2(2+ν)

xk

 , (108)
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satisfies (22), and therefore Lemma 4 for p = 3 implies decrease589

f(xk)− f(xk+1) ≥ 1

2θk

∥∥∇f(xk+1)
∥∥∗2
xk (109)

≥ 1

max

{(
61+νL3,ν

1+ν

) 1
2(1+ν)

,
( √

3L3,ν

(1+ν)(2+ν)

) 1
2+ν ∥∇f(xk)∥

∗ ν
2(2+ν)

xk

} ∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
1
2

xk

. (110)

On the other hand, choice of θk =
(

61+νL3,ν

1+ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk in Lemma 4 (p = 3 case) implies590

decrease as Doikov et al. (2024),591

f(xk)− f(xk+1) ≥ 1

2θk

∥∥∇f(xk+1)
∥∥∗2
xk ≥

1

2

(
1 + ν

61+νL3,ν

) 1
2+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
1+ν
2+ν

xk

. (111)

H.6.1 Proof of Theorem 2592

We can combine previous corollaries.593

Proof of Theorem 2. For p = 2, choice θk =
(

Lp,ν

p−1+ν

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies594

f(xk)− f(xk+1) ≥
(
p− 1 + ν

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (112)

For p = 3, choice θk = 6
(

Lp,ν

3(p−1+ν)

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies595

f(xk)− f(xk+1) ≥ 1

12

(
3(p− 1 + ν)

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (113)

And for any p ∈ {2, 3} we have that θk = 6
(

Lp,ν

3(p−1+ν)

) 1
p−1+ν ∥∥∇f(xk)

∥∥∗ p−2+ν
p−1+ν

xk implies596

f(xk)− f(xk+1) ≥ 1

12

(
3(p− 1 + ν)

Lp,ν

) 1
p−1+ν

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
p−2+ν
p−1+ν

xk

. (114)

597

H.7 Proof of Lemma 5598

Proof of Lemma 5. Consider any c2, δ > 0. Inequality θk ≥ c
1

1+δ

2 implies599

1

θkδ
c2 ≥ c2α

δ
k,

which is ensured by600

θk ≥
1

θkδ
c2,

or equivalently601

θk ≥ c
1

1+δ

2 .

Now, choice c2 = c3
∥∥∇f(xk)

∥∥∗δ
xk guarantees that θk ≥ c

1
1+δ

3

∥∥∇f(xk)
∥∥∗ δ

1+δ

xk ensures θk ≥602

c3

(
αk

∥∥∇f(xk)
∥∥∗
xk

)δ
.603
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H.8 Proof of Corollary 3604

Proof of Corollary 3. For the first part of (22), we use αk, ν ∈ [0, 1] to bound 1

θk
1

1+ν
≥ α

1
1+ν

k ≥ αk605

and606

1

θk
1

1+ν

6

(
L3,ν

1 + ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗
xk ≥ 6

(
L3,ν

1 + ν

) 1
1+ν

αk

∥∥∇f(xk)
∥∥∗
xk .

Now, the first part of (22) is ensured by θk so that607

θk ≥
1

θk
1

1+ν

6

(
L3,ν

1 + ν

) 1
1+ν ∥∥∇f(xk)

∥∥∗
xk ,

or equivalently608

θk ≥
(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk .

We ensure the second part of (22) directly using Lemma 5 and together with first part we have609

θk ≥ max


(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk ,

( √
3L3,ν

(1 + ν)(2 + ν)

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk


=

(
L3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk max

6
1+ν
2+ν ,

( √
3

2 + ν

) 1
2+ν


=

(
61+νL3,ν

1 + ν

) 1
2+ν ∥∥∇f(xk)

∥∥∗ 1+ν
2+ν

xk .

610

H.9 Proof of Lemma 2611

Proof of Lemma 2. For 0 ≤ β ≤ 1, function y(x) = xβ , x ≥ 0 is concave, which implies612

aβ − bβ ≥ β

a1−β
(a− b), ∀a > b ≥ 0, (115)

which we will be using for β def
= 1

q−1 = (0, 1] . We rewrite functional value decrease with fk
def
=613

f(xk)− f∗ as614

1

fβ
k+1

− 1

fβ
k

=
fβ
k − fβ

k+1

fβ
k f

β
k+1

(115)
≥ β(fk − fk+1)

fkf
β
k+1

(14)
≥ βc5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗
q−2
q−1

xk

1

fkf
1

q−1

k+1

(116)

≥ βc5

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗(2−
q

q−1 )
xk

1

f
q

q−1

k

≥ βc5
D1+β

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

, (117)

where in the last step we used the convexity of f in the form fk ≤ D
∥∥∇f(xk)

∥∥∗
xk . We can continue615

by summing it for k = 0, . . . , n− 1,616
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1

fβ
n

− 1

fβ
0

≥ βc5
D1+β

n−1∑
k=0

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

(118)

AG
≥ βc5n

D1+β

(
n−1∏
k=0

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥∗2xk

) 1
n

(119)

=
βc5n

D1+β

(
n−1∏
k=1

∥∥∇f(xk)
∥∥∗2
xk−1

∥∇f(xk)∥∗2xk

) 1
n (∥∇f(xn)∥∗xn−1

∥∇f(x0)∥∗x0

) 2
n

(120)

≥ γβc5n

D1+β

(
fn

∥∇f(x0)∥∗x0D

) 2
n

(121)

=
γβc5n

D1+β
exp

(
− 2

n
ln

(∥∥∇f(x0)
∥∥∗
x0D

fn

))
(122)

≥ γβc5n

D1+β

(
1− 2

n
ln

(∥∥∇f(x0)
∥∥∗
x0D

fn

))
(123)

We can bound fn based on the size of 2
n

∥∇f(x0)∥∗
x0D

fn
.617

1. If 2
n ln

(
∥∇f(x0)∥∗

x0D

fn

)
≥ 1

2 , then fn ≤
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
.618

2. If 2
n ln

(
∥∇f(x0)∥∗

x0D

fn

)
< 1

2 , then619

1

fβ
n

>
1

fβ
n

− 1

fβ
0

≥ γβc5n

2D1+β
⇔ fn <

(
2D1+β

γβc5n

) 1
β

=
Dq (2(q − 1))

q−1

γq−1c5q−1nq−1
(124)

Hence620

fn ≤
Dq (2(q − 1))

q−1

γq−1c5q−1nq−1
+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
. (125)

621

H.10 Proof of Theorem 3622

Proof of Theorem 3. Cauchy-Schwartz inequality together with condition (13) in Theorem 2 imply623

inequality624 ∥∥∇f(xk+1)
∥∥∗
xk

∥∥∇f(xk)
∥∥∗
xk ≥

〈
∇f(xk+1),

[
∇2f(xk)

]−1∇f(xk)
〉
≥ 1

2αkθk

∥∥∇f(xk+1)
∥∥∗2
xk ,

(126)

which together with bounded Hessian change assumption yields625 ∥∥∇f(xk)
∥∥∗
xk ≥

1

2αkθk

∥∥∇f(xk+1)
∥∥∗
xk ≥

γ

2αkθk

∥∥∇f(xk+1)
∥∥∗
xk+1 ≥ γ

2θk

∥∥∇f(xk+1)
∥∥∗
xk+1 .

(127)

This for θk from (12) guarantees local superlinear rate for q > 2.626

H.11 Proof of Theorem 4627

Proof of Theorem 4. Theorem 2 implies that Algorithm 1 satisfies requirements of Lemma 2 with628

correspondent q and c5 = 1
2

(
1

9Mq

) 1
q−1

. The convergence rate follows.629
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H.12 Proof of Lemma 3630

Proof of Lemma 3. We will prove the statement by induction. The base for σ0 holds. For k-th631

iteration, consider 2 cases based on the number of iterations of the inner loop.632

1. Algorithm 2 continues after jk > 0 inner iterations. Note that if θk,jk−1 satisfied (12),633

Theorem 2 guarantees the continuation condition to be satisfied for jk − 1. Consequently,634

θk,jk−1 does not satisfy (12) for any q ∈ [2, 4], and hence635

σk+1 =
θk,jk−1

∥∇f(xk)∥∗βxk

< inf
q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1−β

xk = H
(
xk
)
. (128)

2. Algorithm continues after j = 0 iterates, then from (127) we have636

σk+1 =
σk

ρ
≤ 1

ρ
H
(
xk−1

)
≤ 1

ργ
q−2
q−1

H
(
xk
)
≤ H

(
xk
)
. (129)

For the total number of oracle calls NK ,637

NK =

K−1∑
k=0

(1 + jk) = K +

K−1∑
k=0

logρ
cσk+1

σk
= 2K + logρ

σK

σ0
(130)

≤ 2K + logρ

H
(∥∥xk−1

∥∥∗
xk−1

)
σ0

. (131)

638

H.13 Proof of Theorem 5639

Proof of Theorem 5. Algorithm 2 sets xk+1 = xk
jk

so that640 〈
∇f(xk

jk−1
), nk

〉
<

1

2αk,jk−1
θk,jk−1

∥∥∥∇f(xk
jk−1

)
∥∥∥∗2
xk
, (132)

〈
∇f(xk

jk
), nk

〉
≥ 1

2αk,jkθk,jk

∥∥∇f(xk
jk
)
∥∥∗2
xk . (133)

From Theorem 2 we can see that while θk,jk−1
= θk,jk/ρ does not satisfy (13) for any q ∈ [2, 4] and641

θk,jk satisfies (12) for some q, therefore642

θk,jk ≥ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk ∃q ∈ [2, 4] (134)

θk,jk < ρ (9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk ∀q ∈ [2, 4] (135)

θk,jk < ρ inf
q∈[2,4]

(9Mq)
1

q−1
∥∥∇f(xk)

∥∥∗ q−2
q−1

xk , (136)

hence estimate θk,jk is at most constant ρ times worse than any plausible parametrization of (q,Mq),643

and therefore, even the best plausible parametrization. In particular, for644

q∗
def
= argmin

q∈[2,4]

9MqD

(
4D(q − 1)

ρ2k

)q−1

+
∥∥∇f(x0)

∥∥∗
x0D exp

(
−k

4

)
, (137)

we have that from Theorem 2645

f(xk)− f(xk+1) ≥ 1

2ρ

(
1

9Mq∗

) 1
q∗−1

∥∥∇f(xk+1)
∥∥∗2
xk

∥∇f(xk)∥
∗ q∗−2

q∗−1

xk

. (138)

The rest of the proof is analogous to the proof of Theorem 4.646
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