
Newton Method Revisited: Global Convergence Rates up to $\mathcal{O}(k^{-3})$ for Step-size Schedules and Linesearch Procedures

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 This paper investigates the global convergence of stepsized Newton methods for
2 convex functions with Hölder continuous Hessians or third derivatives. We propose
3 several simple stepsize schedules with fast global convergence guarantees, up
4 to $\mathcal{O}(k^{-3})$. For cases with multiple plausible smoothness parameterizations
5 or an unknown smoothness constant, we introduce a stepsize linesearch and a
6 backtracking procedure with provable convergence as if the optimal smoothness
7 parameters were known in advance. Additionally, we present strong convergence
8 guarantees for the practically popular Newton method with exact linesearch.

9 1 Introduction

10 Second-order methods are fundamental to scientific computing. With its rich history that can be traced
11 back to works Newton (1687), Raphson (1697), (Simpson, 1740), they have remained widely used up to
12 the present day (Ypma, 1995; Conn et al., 2000). The main advantage of second-order methods
13 is their independence from the conditioning of the underlying problem, enabling an extremely fast
14 local quadratic convergence rate, where precision doubles with each iteration. Additionally, they
15 are inherently invariant to rescaling and coordinate transformations, which greatly simplifies their
16 implementation. In contrast, the convergence of first-order methods is highly dependent on the
17 problem’s conditioning, resulting in a slower linear convergence rate and a greater sensitivity to
18 parameter choice. Despite their natural geometry and extremely fast local convergence, second-order
19 methods often lack global convergence guarantees. Even the classical Newton method,

$$x^{k+1} = x^k - [\nabla^2 f(x^k)]^{-1} \nabla f(x^k), \quad (1)$$

20 can diverge when initialized far from the solution (Jarre & Toint, 2016; Mascarenhas, 2007). Global
21 convergence guarantees are typically achieved through various combinations of stepsize schedules
22 (Nesterov & Nemirovski, 1994), line-search procedures (Kantorovich, 1948; Nocedal & Wright,
23 1999), trust-region methods (Conn et al., 2000), and Levenberg-Marquardt regularization (Levenberg,
24 1944; Marquardt, 1963).

25 The simplest globalization strategy is to employ stepsize schedules α_k ,

$$x^{k+1} = x^k - \alpha_k [\nabla^2 f(x^k)]^{-1} \nabla f(x^k), \quad (2)$$

26 often based on implicit descent conditions, requiring an additional subroutine per iteration, such as
27 exact linesearch (Cauchy, 1847; Shea & Schmidt, 2024a), Armijo linesearch (Armijo, 1966), Wolfe
28 condition (Wolfe, 1969), Goldstein condition (Nocedal & Wright, 1999). However, those methods
29 often lack global convergence guarantees achieved by simple stepsize schedules. Notably, Nesterov &
30 Nemirovski (1994) introduced a damped stepsize schedules with global rate $\mathcal{O}(k^{-\frac{1}{2}})$. Hanzely et al.

31 (2022) improved this result by discovering duality between Lavenberg-Marquardt regularization and
32 Newton stepsizes and proposing a stepsize with global rate $\mathcal{O}(k^{-2})$ matching regularized Newton
33 methods (Nesterov & Polyak, 2006; Mishchenko, 2023; Doikov & Nesterov, 2024).

34 Despite recent advances, existing guarantees still fall short of the optimal rate $\Omega(k^{-\frac{7}{2}})$ for functions
35 with Hölder-continuous Hessians (Gasnikov et al., 2019; Agarwal & Hazan, 2018; Arjevani et al.,
36 2019), leaving open the question of whether more efficient step-size schedules remain to be
37 discovered.

38 In the context of first-order methods, several nontrivial step-size schedules are known to improve
39 the convergence of Gradient Descent. Young (1953) introduced a Chebyshev polynomial-based
40 schedule that attains the optimal rate for quadratic objectives. Polyak (1987) proposed a schedule
41 that is optimal for nonsmooth convex functions, and Altschuler & Parrilo (2023); Grimmer et al.
42 (2024) developed schedules achieving semi-accelerated rates for general convex, Lipschitz-smooth
43 objectives. These results naturally prompt the question of whether improved stepsize schedules for
44 Newton’s method can be found.

45 We answer this positively. We show that a stepsized Newton method can be analyzed under an
46 alternative assumption – Hölder continuity of the third derivatives – yielding convergence guarantees
47 reminiscent of third-order tensor methods, up to $\mathcal{O}(k^{-3})$ ¹. Analyzing Newton’s method through
48 assumptions on third derivatives is, to the best of our knowledge, a novel and somewhat unexpected
49 perspective, given that Newton’s method is typically viewed as the canonical second-order method.

50 1.1 Benefits of simple methods

51 While it is possible to achieve optimal rates using acceleration techniques with a more complex
52 structure (Gasnikov et al., 2019), simple methods are often preferred in practice for several reasons.

53 Firstly, they are simple and easy to understand. They are also inherently robust, typically
54 involving fewer hyperparameters, which minimizes the need for complex and costly hyperparameter
55 tuning. In contrast, accelerated methods often require multiple sequences of iterates and additional
56 hyperparameters, significantly increasing the complexity of tuning.

57 Moreover, basic methods can be seamlessly integrated with various techniques to enhance practical
58 performance, such as parameter searches, data sampling strategies, momentum estimation, and
59 gradient clipping. Combining these techniques with accelerated methods, however, introduces
60 significant challenges. In the context of first-order methods, acceleration with parameter searches
61 provides limited improvement over Gradient Descent with stepsize linesearch (Shea & Schmidt,
62 2024b; Fox & Schmidt, 2024).

63 For second-order methods, the stepsized Newton method is popular due to its affine invariance (i.e.,
64 invariance to changes in basis and scaling), making it an efficient and convenient optimization tool.

65 1.2 Notation

66 For convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, we consider the optimization objective

$$\min_{x \in \mathbb{R}^d} f(x), \quad (3)$$

67 where f is twice differentiable with nondegenerate Hessians that is potentially ill-conditioned. We
68 denote any minimizer of the function as $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^d} f(x)$ and the optimal value $f_* \stackrel{\text{def}}{=} f(x^*)$.
69 We define norms based on a symmetric positive definite matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$. For all $x, g \in \mathbb{R}^d$,

$$\|x\|_{\mathbf{H}} \stackrel{\text{def}}{=} \langle \mathbf{H}x, x \rangle^{1/2}, \quad \|g\|_{\mathbf{H}}^* \stackrel{\text{def}}{=} \langle g, \mathbf{H}^{-1}g \rangle^{1/2}.$$

70 As a special case $\mathbf{H} = \mathbf{I}$, we get l_2 norm $\|x\|_{\mathbf{I}} = \langle x, x \rangle^{1/2}$. We will be utilizing *local Hessian norm*
71 $\mathbf{H} = \nabla^2 f(x)$, with a shorthand notation $\|h\|_x \stackrel{\text{def}}{=} \|h\|_{\nabla^2 f(x)}$, $\|g\|_x^* \stackrel{\text{def}}{=} \|g\|_{\nabla^2 f(x)}^*$ for $h, g \in \mathbb{R}^d$.

¹Under Hölder continuity of third derivatives, the attainable lower bound is $\Omega(k^{-5})$ (Gasnikov et al., 2019).

72 For the Hessians and third derivatives we will be measuring them in an operator norm. Given the
 73 iterate x , operator norm of matrix \mathbf{H} and three dimensional tensor \mathbf{T} are defined as

$$\|\mathbf{H}\|_{op} \stackrel{\text{def}}{=} \sup_{y \in \mathbb{R}^d} \frac{\|\mathbf{H}y\|_x^*}{\|y\|_x}, \quad \|\mathbf{T}\|_{op} \stackrel{\text{def}}{=} \sup_{y, z, w \in \mathbb{R}^d} \frac{|\mathbf{T}[y, z, w]|}{\|y\|_x \|z\|_x \|w\|_x}.$$

74 In this work, we use these operator norms exclusively with $x = x^k$ and $y = z = w = x^{k+1} - x^k$.

75 1.3 Stepsizes as a form of regularization

76 Hanzely et al. (2022) demonstrated that a stepsize schedule for the Newton method is equivalent
 77 to cubical regularization of the Newton method (Nesterov & Polyak, 2006) if the regularization
 78 is measured in the local Hessian norms. As the regularized Newton methods leverage the Taylor
 79 polynomial, we denote the second-order Taylor approximation of $f(y)$ by information at point x as

$$\Phi_x(y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \|y - x\|_x^2.$$

80 In particular, Hanzely et al. (2022) showed that

$$x^{k+1} = T(x^k), \quad T(x) \stackrel{\text{def}}{=} \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ \Phi_x(y) + \frac{\sigma}{3} \|y - x\|_x^3 \right\}$$

81 is equivalent to a Newton method with stepsize **AICN**²

$$x^{k+1} = x^k - \alpha_k [\nabla^2 f(x^k)]^{-1} \nabla f(x^k), \quad \text{for } \alpha_k = \frac{2}{1 + \sqrt{1 + 2\sigma \|\nabla f(x^k)\|_{x^k}^*}}. \quad (4)$$

82 Note that stepsize schedule (4) preserves much larger stepsize when initialized far from the solution,
 83 $\|\nabla f(x^0)\|_{x^0}^* \gg 1$, compared to the stepsize of Damped Newton method (Nesterov & Nemirovski,
 84 1994), which sets stepsize for L_{sc} -self-concordant functions as $\alpha_k = \frac{1}{1 + L_{sc} \|\nabla f(x^k)\|_{x^k}^*}$. Aiming to
 85 extend these results beyond $L_{2,1}$ -Hölder continuous functions (Definition 1), in Section 2 we present
 86 algorithm **RN** that under general $L_{p,\nu}$ -Hölder continuity (Def 1) and $q = p + \nu \in [2, 4]$ supports
 87 stepsize $\alpha_k = \frac{1}{1 + (9L_{p,\nu})^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}}$, matching **AICN**'s asymptotic dependence on gradient
 88 norm and smoothness constant (for $L_{2,1}$ -Hölder continuous functions, $q = 3$) and constant stepsizes
 89 of Karimireddy et al. (2018b); Gower et al. (2019a) (for $L_{2,0}$ -Hölder continuous functions, $q = 2$).
 90 **Remark.** *Step-sized Newton methods often enjoy much simpler analysis compared to Newton methods
 91 regularized in l_2 norms, as they can seamlessly transition between gradients and model differences,*

$$\|x^{k+1} - x^k\|_{x^k} \stackrel{(4)}{=} \alpha_k \|\nabla f(x^k)\|_{x^k}^*. \quad (5)$$

92 1.4 Higher order of regularization

93 Extending cubic regularization (Nesterov & Polyak, 2006), tensor methods achieve better convergence
 94 guarantees by regularizing p -th order Taylor approximations by $(p+1)$ -th order regularization (see
 95 survey in Kamzolov et al. (2023)). In particular, for third-order tensor methods, Nesterov (2021)
 96 showed that regularization can avoid computation of third-order derivatives, and Doikov et al. (2024)
 97 simplified this regularization using technique of Mishchenko (2023) to

$$x^{k+1} = T(x^k), \quad \text{where } T(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ \Phi_x(y) + \frac{\sigma}{2} \|y - x\|_2^2 \|\nabla f(x)\|_2^\beta \right\}, \quad (6)$$

98 for $\beta, \sigma \geq 0$. Combining insights about higher-order regularization with the regularization-stepsize
 99 duality of Hanzely et al. (2022), we show that the higher-order regularization in local norms

$$x^{k+1} = T_{\sigma, \beta}(x^k), \quad \text{where } T_{\sigma, \beta}(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ \Phi_x(y) + \frac{\sigma}{2 + \beta} \|y - x\|_x^{2+\beta} \right\}, \quad (7)$$

²Hanzely et al. (2022) expressed the stepsize as $\alpha_k = \frac{-1 + \sqrt{1 + 2\sigma \|\nabla f(x^k)\|_{x^k}^*}}{\sigma \|\nabla f(x^k)\|_{x^k}^*}$, we simplified this form.

Table 1: Global convergence guarantees of stepsized Newton methods under various notions of Hölder continuity (Definition 1). For simplicity, we report dependence only on the number of iterations k .

Stepsize schedule	Stepsize for $g_x \stackrel{\text{def}}{=} \ \nabla f(x)\ _x^*$	Smoothness assumption	Global rate	Reference
Damped Newton B	$\frac{1}{1+L_{sc}g_x}$ ⁽⁰⁾	L_{sc} ⁽⁰⁾	$\mathcal{O}(k^{-\frac{1}{2}})$ ⁽¹⁾	(Nesterov & Nemirovski, 1994) ⁽¹⁾
AICN	$\frac{2}{1+\sqrt{1+2L_{2,1}g_x}}$ ⁽²⁾	$L_{2,1}$	$\mathcal{O}(k^{-2})$	(Hanzely et al., 2022)
RN (Algorithm 1)	$\frac{1}{1+(9L_{p,\nu})^{\frac{1}{q-1}}g_x^{\frac{q-2}{q-1}}}$ ⁽³⁾	$L_{p,\nu}$ ⁽³⁾	$\mathcal{O}(k^{-(p+\nu-1)})$ ⁽³⁾	This work (Theorem 4)
GRLS (16)	Linesearched	$L_{p,\nu}$ ⁽³⁾ (unknown)	$\min_{p,\nu} \mathcal{O}(k^{-(p+\nu-1)})$ ⁽³⁾	This work (Corollary 1)
UN (Algorithm 2)	Backtracked	$L_{p,\nu}$ ⁽³⁾ (unknown)	$\min_{p,\nu} \mathcal{O}(k^{-(p+\nu-1)})$ ⁽³⁾	This work (Theorem 5)
Greedy Newton (18)	Linesearched	$L_{p,\nu}$ ⁽³⁾ (unknown)	$\min_{p,\nu} \mathcal{O}(k^{-(p+\nu-1)})$ ⁽³⁾	Folklore Rate: Corollary 2 (new)

⁽⁰⁾ Constant L_{sc} represents self-concordance constant and is implied by $L_{2,1}$ -Hölder continuity.

⁽¹⁾ Authors show global decrease $f(x^{k+1}) \leq f(x^k) - c$ for some $c > 0$. Rate $\mathcal{O}(k^{-\frac{1}{2}})$ is reported in Hanzely et al. (2022), but we were unable to find or prove or the rate for Damped Newton B of the form $\mathcal{O}(k^{-\alpha})$.

⁽²⁾ Authors expressed the stepsize as $\frac{1+\sqrt{1+2L_{2,1}g_x}}{L_{2,1}g_x}$, we present a simplified equivalent form.

⁽³⁾ Parameters p, ν are fixed and satisfy $p \in \{2, 3\}$, $\nu \in [0, 1]$ and $p + \nu - 1 \in [1, 3]$.

100 is equivalent to a Newton method with stepsize $\alpha_k \in (0, 1]$, and α_k is the *unique* positive root of the
101 polynomial $P[\alpha] \stackrel{\text{def}}{=} 1 - \alpha - \alpha^{1+\beta} \sigma \|\nabla f(x^k)\|_{x^k}^{*\beta}$. Even though the polynomial P lacks an explicit
102 formula for its roots, we derive algorithm RN with a simple and exactly computed stepsize.
103 This method can leverage similarity of the third-derivatives similarly to Nesterov (2021, Lemma 3).
104 **Lemma 1.** *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be third-order $L_{3,\nu}$ -Hölder continuous (Definition 1). Then*

$$\|\nabla^3 f(x^k)[x^{k+1} - x^k]^2\|_{x^k}^* \leq 2 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|x^{k+1} - x^k\|_{x^k}^2 \quad \forall x^k, x^{k+1} \in \mathbb{R}^d.$$

105 Notably, formulation (7) is very general, and it also encapsulates all polynomial upper bounds of
106 polynomials $P[\|x - y\|_x]$ with smaller exponents. We refer the reader for more details to Appendix F.
107

108 1.5 Contributions

109 We summarize our contributions below, with detailed comparison to the most relevant literature
110 discussed in Section 1.6.

111 • **Newton method under third-order tensor similarity:**
112 We analyze the stepsized Newton method for functions with Hölder continuous third-derivatives
113 (Definition 1), connecting the classical second-order Newton method to third-order tensor methods.
114 • **Simple stepsizes for fast global convergence:**
115 We propose multiple stepsize schedules for the Newton method (RN, Algorithm 1), leveraging
116 **various** Hölder continuity assumptions (Definition 1). Although the stepsize is chosen to be a root
117 of a non-quadratic polynomial, it is surprisingly **simple and directly computable**.
118 Depending on the considered variant of the Hölder continuity assumption, they achieve a global
119 convergence rate up to $\mathcal{O}(k^{-3})$ (Thm 2). These are the first Newton method stepsizes improving
120 upon the rate $\mathcal{O}(k^{-2})$ of Hanzely et al. (2022). Additionally, we establish the following rates:
121 – a **local superlinear** convergence rate (Theorem 3),
122 – a **global linear** convergence (Theorems 8, 9) under additional assumption of finite *s*-relative
123 size (Definition 2) (Doikov et al., 2024),

124 – and a **global superlinear** convergence (Theorem 7) under the additional assumption of uniform
125 star-convexity (Definition 3) of degree $s \geq 2$.

126 • **Stepsize linesearches for unknown parameters:**

127 In practice, smoothness constants are often unknown, requiring approximation or fine-tuning. To
128 address this, we introduce a theoretical **linesearch** procedure **GRLS** (16) and a practical **stepsize**
129 **backtracking** method **UN** (Algorithm 2), both of which provably converge as if the **optimal**
130 parameterization was known in advance (Corollary 1, Theorem 5).

131 • **Guarantees for popular Newton linesearch:**

132 As a byproduct of our analysis, we obtain convergence guarantees for the popular Newton method
133 with greedy linesearch (18) (Col 2, Thm 7). This is, to our best knowledge, the first such result.

134 • **Experimental comparison:**

135 In Section 5, we compare the proposed algorithms (**RN**, **UN**, and **GRLS**) with existing methods and
136 demonstrate that they outperform their counterparts in most of the considered scenarios. Also, we
137 show that the linesearch procedure **GRLS** resemble stepsizes of popular Greedy Newton linesearch.

138 **1.6 Detailed comparison to the most relevant literature**

139 Our theoretical framework builds on several insights from Hanzely et al. (2022) and Doikov et al.
140 (2024). We now outline the key differences between these approaches and ours.

141 Compared to our approach, the **AICN** method of Hanzely et al. (2022) is restricted to cubic
142 regularization and achieves only an $\mathcal{O}(k^{-2})$ convergence rate. In contrast, our schedules
143 accommodate a broader range of smoothness notions, including Hölder continuity of the third
144 derivative, enabling Algorithm 1 to achieve rates up to $\mathcal{O}(k^{-3})$. Moreover, while **AICN** requires
145 prior knowledge of the smoothness constant, our backtracking linesearch Algorithm 2 provably
146 converges as if the optimal parametrization were known in advance.

147 Furthermore, while cubic regularization in Hanzely et al. (2022) lead to the stepsize defined as the
148 root of a quadratic polynomial, higher-order regularizations require a stepsize given by a root of
149 a higher-order polynomial. Surprisingly, we show that even with higher-order regularization there
150 exists a unique positive root in the interval $(0, 1]$, and we propose algorithms (Algorithm 1 and
151 Algorithm 2) that can operate without any additional linesearch.

152 In comparison to Doikov et al. (2024), which utilizes standard l_2 norms for regularization, our
153 approach employs the local Hessian norms suggested by Hanzely et al. (2022). With local norms,
154 the minimizers of the various regularization models (7) lie on the same line, providing a natural
155 geometric connection between different regularizations. Local norms also yield a simpler algorithm
156 that is invariant under linear transformations (e.g., data scaling or change of basis), a highly practical
157 property that reduces hyperparameter tuning.

158 From a technical point of view, although our proofs draw on techniques from Doikov et al. (2024),
159 they cannot be directly adapted to the setting of local norms. The main difficulty is that the stepsize
160 α_k appears raised to the power $1 + \beta$, which propagates nontrivially throughout the analysis and
161 complicates adaptation. Our key insight is a reparametrization (line 141) in which a single implicit
162 parameter θ encapsulates both β and σ . This reparametrization allows us to recover a proof structure
163 similar to that of Doikov et al. (2024) while avoiding direct manipulations of $\alpha_k^{1+\beta}$.

164 We also emphasize that our results provide a theoretical explanation for the success of popular stepsize
165 linesearch rules along the Newton direction. These insights have implications well beyond our newly
166 proposed methods. By contrast, the results of Doikov et al. (2024) do not offer a new theoretical
167 explanation for any already established method.

168 **2 Novel stepsize schedule**

169 Now we are ready to present our new stepsize schedule based on the higher-order regularization.

170 **Theorem 1.** *For any $\sigma, \beta \geq 0$, the following adjustments of the Newton method are equivalent:*

$$\text{Regularization: } x^{k+1} = x^k + \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} T_{\sigma, \beta}(x^k), \quad (8)$$

$$\text{Damping: } x^{k+1} = x^k - \alpha_k [\nabla^2 f(x^k)]^{-1} \nabla f(x^k), \quad (9)$$

where $T_{\sigma, \beta}(x) = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \Phi_x(y) + \frac{\sigma}{2+\beta} \|y - x\|_x^{2+\beta} \right\}$ and $\alpha_k \in (0, 1]$ is the only positive root of polynomial $P[\alpha] \stackrel{\text{def}}{=} 1 - \alpha - \alpha^{1+\beta} \sigma \|\nabla f(x^k)\|_{x^k}^{*\beta}$. We call this algorithm Root Newton (RN), Algorithm 1.

171

172 To simplify calculations, we reparametrize the RN as $\theta \stackrel{\text{def}}{=} \alpha^\beta \sigma \|\nabla f(x)\|_{x^k}^{*\beta}$, where $\theta \geq 0$ is an
173 implicitly defined regularization constant. Using θ , the polynomial P simplifies to $P_\theta[\alpha] = 1 - \alpha - \alpha \theta$
174 and for any fixed θ , the stepsize defined as $\alpha = \frac{1}{1+\theta}$ is the positive root of P_θ . For a given iterate
175 x_k (and fixed β and σ), θ and α are in one-to-one correspondence via P_θ (specifying either θ or α
176 uniquely determines the other), so every admissible θ corresponds to a valid α .

177 **2.1 Hölder continuity assumption**

178 Our analysis rely on assumption that the function has Hölder continuous Hessian or third derivative.

Definition 1. For $f : \mathbb{R}^d \rightarrow \mathbb{R}$, and $p \in \mathbb{N}$, we say that p -times differentiable convex function is Hölder continuous of p -th order, if for some $\nu \in [0, 1]$ there exists a constant $L_{p,\nu} < \infty$, so that

$$\|\nabla^p f(x) - \nabla^p f(y)\|_{op} \leq L_{p,\nu} \|x - y\|_x^\nu, \quad \forall x, y \in \mathbb{R}^d. \quad (10)$$

We say that the f has Hölder continuous Hessian if $L_{2,\nu} < \infty$ (for some $\nu \in [0, 1]$) and Hölder continuous third derivative if $L_{3,\nu} < \infty$ (for some $\nu \in [0, 1]$).

179 We would like to emphasize that Definition 1 is extremely general; the most general assumption for
180 analysis of Newton methods. In particular, choice $L_{2,0}$ covers standard Lipschitz smoothness, $L_{3,0}$
181 covers constant bound on the third derivative, and $L_{2,1}$ is equivalent the semi-strong self-concordance
182 (Hanzely et al., 2022). Further discussion of smoothness constants can be found in Appendix E. We
183 will use the properties of the Hölder continuity summarized in the proposition below.

184 **Proposition 1.** $L_{2,\nu}$ -Hölder continuous functions satisfy

$$\|\nabla f(y) - \nabla f(x) - \nabla^2 f(x)[y - x]\|_x^* \leq \frac{L_{2,\nu}}{1+\nu} \|y - x\|_x^{1+\nu}.$$

185 $L_{3,\nu}$ -Hölder continuous functions satisfy

$$\left\| \nabla f(y) - \nabla f(x) - \nabla^2 f(x)[y - x] - \frac{1}{2} \nabla^3 f(x)[y - x]^2 \right\|_x^* \leq \frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \|y - x\|_x^{2+\nu}.$$

186 Hölder continuity assumption with a sufficiently large regularization θ_k implies (for $c_1 \in \{1, 2\}$)

$$\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \geq \frac{1}{2c_1(1-\alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2},$$

187 which will in turn imply the one-step decrease as

$$\begin{aligned} f(x^k) - f(x^{k+1}) &\geq -\langle \nabla f(x^{k+1}), x^{k+1} - x^k \rangle = \langle \nabla f(x^{k+1}), \alpha_k [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \\ &\geq \frac{\alpha_k}{2c_1(1-\alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2} = \frac{1}{2c_1\theta_k} \|\nabla f(x^{k+1})\|_{x^k}^{*2}. \end{aligned} \quad (11)$$

188 Due to the level of technical detail, we defer lemmas for cases $p \in \{2, 3\}$ to Appendix A.2. We
189 directly present their unification via reparametrization $q \stackrel{\text{def}}{=} p + \nu \in [2, 4]$, $M_q \stackrel{\text{def}}{=} L_{p,\nu}$.

190 **Theorem 2.** Let $\|\nabla f(x)\|_x^* > 0$. Hölder continuity (Definition 1) with $p \in \{2, 3\}$, $\nu \in [0, 1]$

and $q = p + \nu$ for points $x^k, x^{k+1} = x^k - \alpha_{\mathbf{k}} [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$, where $\alpha_{\mathbf{k}}$ is the positive root of $P_{\theta_{\mathbf{k}}}$. For $\theta_{\mathbf{k}}$ such that

$$\theta_{\mathbf{k}} \geq (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}} \quad (12)$$

holds

$$\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \geq \frac{1}{2\alpha_{\mathbf{k}}\theta_{\mathbf{k}}} \|\nabla f(x^{k+1})\|_{x^k}^{*2}. \quad (13)$$

In particular, in view of (11), we have that the choice $\theta_{\mathbf{k}} = (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}$ guarantees decrease

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2} \left(\frac{1}{9M_q} \right)^{\frac{1}{q-1}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}}. \quad (14)$$

191

Theorem 2 quantifies the amount of regularization θ needed for guaranteed decrease, leading to RN.

Algorithm 1 RN: Root Newton stepsize schedule

1: **Requires:** Initial point $x^0 \in \mathbb{R}^d$, Hölder continuity exponent $q \in [2, 4]$ and constant $M_q < \infty$.
2: **for** $k = 0, 1, 2 \dots$ **do**
3: $n^k = [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$ ▷ Newton direction
4: $g_k = \langle \nabla f(x^k), n^k \rangle^{\frac{1}{2}}$ ▷ $g_k = \|\nabla f(x^k)\|_{x^k}^*$
5: $\theta_{\mathbf{k}} = (9M_q)^{\frac{1}{q-1}} g_k^{\frac{q-2}{q-1}}$ ▷ Sufficient regularization
6: $\alpha_{\mathbf{k}} = \frac{1}{1+\theta_{\mathbf{k}}}$ ▷ $\alpha_{\mathbf{k}}$ is the root of $P_{\theta_{\mathbf{k}}}[\alpha]$
7: $x^{k+1} = x^k - \alpha_{\mathbf{k}} n^k$ ▷ Step, $x^k = T_{\sigma_{\mathbf{k}}, \beta}(x^k)$
8: **end for**

192

193 **2.2 Convergence guarantees of RN**

194 We will utilize the standard assumption that the diameter of the initial level set is finite.
195 Denote the initial level set $\mathcal{Q}(x^0) \stackrel{\text{def}}{=} \{x \in \mathbb{R}^d : f(x) \leq f(x^0)\}$ and its diameter as $D \stackrel{\text{def}}{=} \sup_{x,y \in \mathcal{Q}(x^0)} \|x - y\|_x$. Additionally, we need the Hessian not to change much between iterations.

197 **Assumption 1.** For the sequence $\{x^k\}_{k=1}^{\infty}$, there exists a constant $\gamma > 0$ bounding Hessian of the
198 consecutive points in gradient direction, $\gamma \leq \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^{k+1})\|_{x^{k+1}}^{*2}}$.

199 This assumption is not novel, its variant has been used in Hanzely et al. (2022) for establishing local
200 convergence as well as for analysis of quasi-Newton methods. Required γ exists in many cases. For
201 L -smooth μ -strongly convex functions, $\gamma = \frac{\mu}{L}$. For functions with \hat{c} -stable Hessian (Karimireddy
202 et al., 2018a), $\gamma = \hat{c}$. For L_{sc} -self-concordant functions, it holds when iterates are close to each other
203 (Nesterov & Nemirovski, 1994) or in the neighborhood of the solution (see proposition below).

204 **Proposition 2** (Hanzely et al. (2022), Lemma 4). For convex L_{sc} -self-concordant function f and
205 iterate x^k such that $\|\nabla f(x^k)\|_{x^k}^* \leq \frac{(2c_4+1)^2-1}{2L_{sc}}$ it holds $\nabla^2 f(x^{k+1})^{-1} \preceq (1 - c_4)^{-2} \nabla^2 f(x^k)^{-1}$.

206 With assumptions clarified, we can jump straight to the convergence guarantees. First, we present
207 superlinear local rate, which is expected for the stepsized Newton method.

208 **Theorem 3.** Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be convex, Hölder continuous for $p \in \{2, 3\}, \nu \in$

$[0, 1], q = p + \nu$ with γ -bounded Hessian change (1). Algorithm 1 has a superlinear local rate,

$$209 \quad \|\nabla f(x^{k+1})\|_{x^{k+1}}^* \leq \frac{2}{\gamma} (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*(2-\frac{1}{q-1})}.$$

210 For the $L_{2,1}$ -Hölder continuous functions, the presented rate is suboptimal compared to quadratic rate
211 of AICN schedule (4). However, the rate of Theorem 3 holds for any q , and its exponent increases
212 with q (up to $5/3$ for $q = 4$).

213 For global convergence guarantees, we first quantify in general the decrease implied by Theorem 2.
214 This will provide plug-in guarantees for the RN and other algorithms.

215 **Lemma 2.** *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be convex with γ -bounded Hessian change (1) and the bound
216 level sets with diameter D . If an algorithm \mathcal{A} generates the iterates $\{x^k\}_{k=1}^K$ with one-step decrease
217 for $q \geq 2$ and $c_5 \geq 0$ as*

$$f(x^k) - f(x^{k+1}) \geq c_5 \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}}, \quad (15)$$

218 then \mathcal{A} has the global convergence rate $f(x^K) - f_* \leq D \left(\frac{2(q-1)D}{\gamma c_5 K} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D e^{-K/4}$.

Theorem 4. *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be convex, Hölder continuous for $p \in \{2, 3\}, \nu \in [0, 1], q = p + \nu$ with γ -bounded Hessian change (1) and the bound level sets with diameter $D < \infty$. Algorithm 1 (RN) with known parameters q, M_q converges with rate $\mathcal{O} \left(\frac{M_q D^q}{k^{q-1}} \right)$ as*

$$f(x^k) - f_* \leq 9M_q D \left(\frac{4D(q-1)}{\gamma k} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D e^{-k/4}.$$

219 Algorithm RN also achieves global linear and superlinear convergence rates under different
220 assumptions. Due to the space constraints, we deferred these results to Appendix B.

221 Note that the loss function can satisfy Hölder continuity (Definition 1) with multiple different $L_{p,\nu}$,
222 and therefore different pairs (q, M_q) can be used. The best parametrization might not be known.

223 3 Unknown parametrization

224 To address unknown parameterization, we propose finding iterate maximizing the bound (15) directly,

$$225 \quad x^{k+1} = \underset{y \in \{x - \alpha n_{x^k} \mid \alpha \in [0, 1]\}}{\operatorname{argmin}} \frac{f(y) - f(x^k)}{\|\nabla f(y)\|_{x^k}^{*2}}, \quad (16)$$

226 where $n_x \stackrel{\text{def}}{=} [\nabla^2 f(x)]^{-1} \nabla f(x)$ is a shorthand for Newton's direction at point x . We call this
227 algorithm Gradient-Regulated Line Search (GRLS, Algorithm 4). Interestingly, this linesearch
228 simultaneously minimizes loss and gradient norms. Its rate follows directly from Lemma 2.

228 **Corollary 1.** *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, be convex, Hölder continuous with some $M_q < \infty$, with
229 γ -bounded Hessian change (1), and the bound level sets with diameter $D < \infty$. Linesearch GRLS
230 converges as $f(x^k) - f_* \leq \min_{q \in [2, 4]} 9M_q D \left(\frac{4D(q-1)}{\gamma k} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D e^{-k/4}$.*

231 Observe that for small stepsizes $\alpha_k \in [0, \bar{\alpha}]$, for some $\bar{\alpha} \ll 1$, model differences are small $x^{k+1} \approx x^k$
232 and $\nabla f(x^k) \approx \nabla f(x^{k+1})$. Therefore, expression (16) minimized by GRLS can be approximated as

$$\frac{f(y) - f(x^k)}{\|\nabla f(y)\|_{x^k}^{*2}} \approx \frac{f(y) - f(x^k)}{\|\nabla f(x^k)\|_{x^k}^{*2}}, \quad (17)$$

233 and the right-hand-side is minimized by the popular Newton method with greedy linesearch,

$$234 \quad x^{k+1} = \underset{y \in \{x^k - \alpha n_{x^k} \mid \alpha \in [0, 1]\}}{\operatorname{argmin}} f(y), \quad (18)$$

Algorithm 2 UN: Universal stepsize backtracking procedure for the Newton method

```

1: Input: Initial point  $x^0 \in \mathbb{R}^d$ , constants  $\sigma_0 > 0, \rho > 1, \rho \geq \gamma^{-\frac{2}{3}}, \beta \in [\frac{2}{3}, 1]$ 
   ▷ Note  $\beta \geq \frac{q-2}{q-1}, \rho \geq \gamma^{-\frac{q-2}{q-1}}$  for  $q \in [2, 4]$ 
2: for  $k = 0, 1, 2 \dots$  do
3:    $n^k = [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$  ▷ Newton direction
4:    $g_k = \langle \nabla f(x^k), n^k \rangle^{\frac{1}{2}}$  ▷  $g_k = \|\nabla f(x^k)\|_{x^k}^*$ 
5:   for  $j_k = 0, 1, 2 \dots$  do
6:      $\theta_{k,j_k} = \rho^{j_k} \sigma_k g_k^{\beta}$  ▷ Increase regularization
7:      $\alpha_{k,j_k} = \frac{1}{1+\theta_{k,j_k}}$  ▷ Update stepsize
8:      $x_{j_k}^k = x^k - \alpha_{k,j_k} n^k$  ▷ Step,  $x_{j_k}^k = T_{\rho^{j_k} \sigma_k} (x^k)$ 
9:     if  $\langle \nabla f(x_{j_k}^k), n^k \rangle \geq \frac{1}{2\alpha_{k,j_k}\theta_{k,j_k}} \|\nabla f(x_{j_k}^k)\|_{x^k}^{*2}$  then
10:       $x^{k+1} = x_{j_k}^k$ 
11:       $\sigma_{k+1} = \rho^{j_k-1} \sigma_k$ 
12:      break
13:    end if
14:  end for
15: end for

```

234 which we will call *Greedy Newton* (GN). Our experimental evaluations will demonstrate that
235 linesearches GN and GRLS use similar stepsizes (Figures 2c, 3c) justifying (17). Therefore while
236 GRLS enjoys strong convergence guarantees, method GN is preferable in practice due to its easier
237 criterion. Nevertheless, this connection allows us to obtain the convergence rate for the Greedy
238 Newton in the corollary below. We refer the reader for more detailed explanation to Appendix C.

239 **Corollary 2.** *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, be convex, M_q -Hölder continuous for some $M_q < \infty$, with
240 γ -bounded Hessian change (1), and the bound level sets with diameter $D < \infty$. If the Greedy Newton
241 linesearch (18) satisfies the inequality $\|\nabla f(x^{k+1})\|_{x^k}^* \leq \bar{c} \|\nabla f(x^k)\|_{x^k}^*$ with some constant $\bar{c} \geq 0$
242 for all iterates x^k , then it has convergence guarantee $\min_{q \in [2,4]} \mathcal{O} \left(\frac{M_q D^q \bar{c}^{2(q-1)}}{k^{q-1}} \right)$*

$$f(x^k) - f_* \leq \min_{q \in [2,4]} 9M_q D \left(\frac{4D\bar{c}^2(q-1)}{\gamma k} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D e^{-k/4}.$$

243 **Remark.** Corollary 2 introduces assumption that the gradients norm measured in the local norms
244 does not increase by more than a constant factor in between the iterates, $\|\nabla f(x^{k+1})\|_{x^k}^* \leq$
245 $\bar{c} \|\nabla f(x^k)\|_{x^k}^*$. For any sequence $\{x_k\}_{k=1}^\infty$ monotonically decreasing loss f , this holds for example
246 for quadratic functions with constant \bar{c} .

247 In this section, we established fast convergence guarantees for the novel but impractical linesearch
248 method GRLS (16) and for the popular GN scheme (18), both of which do not require prior
249 knowledge of the smoothness parameters (q, M_q) . However, their implicit nature may not be suitable
250 for all practical scenarios. To address this limitation, in the next section we introduce a practical
251 stepsize backtracking procedure with matching convergence guarantees of UN.

252 4 Universal stepsize backtracking

253 Our backtracking procedure is based on the observation that the knowledge of the parametrization
254 (q, M_q) in RN is required only for setting θ_k . We start with an estimate of θ_k smaller than the true
255 value and increase it until it achieves the theoretically predicted decrease. We claim that the resulting
256 algorithm UN is well-defined with a bounded number of backtracking steps.

257 To formalize this claim, we quantify the smallest plausible true θ_k that will be estimated first. For
258 $q \in [2, 4]$ and $\beta \geq \frac{2}{3}$ denote $\mathcal{H}(x) \stackrel{\text{def}}{=} \inf_{q \in [2,4]} (9M_q)^{\frac{1}{q-1}} \|\nabla f(x)\|_x^{*(\frac{q-2}{q-1}-\beta)}$.

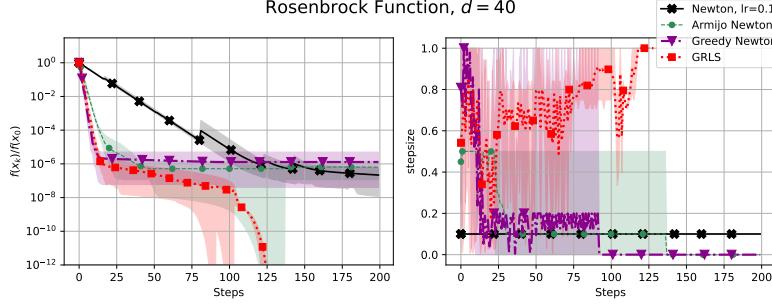


Figure 1: Performance of Newton method stepsizes on the notoriously challenging nonconvex **Rosenbrock function** (21). We plot mean \pm standard deviation of 5 random initializations. We crop stepsize standard deviation at 0.

259 **Lemma 3.** *If $M_q < \infty$ for some $q \in [2, 4]$, and the initial estimate σ_0 small enough, $\sigma_0 \leq \mathcal{H}(x^0)$,*
 260 *then all iterations $\{x^k\}_{k=0}^n$ of UN, such that $\|\nabla f(x^k)\|_{x^k}^* > 0$, satisfy $\sigma_{k+1} = \frac{\theta_{k,j_k-1}}{\|\nabla f(x^k)\|_{x^k}^{*\beta}} \leq$*
 261 *$\mathcal{H}(x^k)$. Moreover, the total number of backtracking steps during the first k iterations, N_k , is*
 262 *bounded as $N_k \leq 2k + \log_\rho(\mathcal{H}(x^{k-1})/\sigma_0)$.*

Theorem 5. *Let function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, be convex, Hölder continuous for $p \in \{2, 3\}$, $\nu \in [0, 1]$, $q = p + \nu$ with bounded Hessian change (Assumption 1) and the bound level sets diameter $D < \infty$. Algorithm 2 (UN) converges with the rate $\min_{q \in [2,4]} \mathcal{O}\left(\frac{M_q D^q}{k^{q-1}}\right)$,*

$$f(x^k) - f_* \leq \min_{q \in [2,4]} 9M_q D \left(\frac{4D(q-1)}{\rho^2 k} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D e^{-k/4}.$$

263 5 Results of numerical experiments

264 The majority of figures and the detailed technical description were deferred to Appendix A.1.

265 In Figures 2a, 3a, we compare higher-order methods *without* any linesearch procedures, namely RN,
 266 AICN (Hanzely et al., 2022) and Gradient Regularization of Newton Method (GRN) (Doikov et al.,
 267 2024, Alg. 1). As additional baselines, we use the damped Newton method with a fixed fine-tuned
 268 stepsize and classical first-order Gradient Method (GM) (Nesterov, 2018). RN and AICN show
 269 similar performance while GRN has a slight disadvantage. Unsurprisingly, the first-order method
 270 GM has quicker iterations but slower per-iteration convergence.

271 In Figures 2b, 3b, we compare higher-order regularization methods *with* smoothness constant
 272 estimation procedures, UN and Super-universal Newton method (Doikov et al., 2024, Alg. 2).
 273 As an additional baseline, we use the damped Newton method with a fixed but fine-tuned stepsize.
 274 We show that UN displays faster convergence than the Super-universal Newton method. Moreover,
 275 we show that the exponent of the regularization term β that appears in both UN and super-universal
 276 Newton method (6) does not have a significant impact on overall performance.

277 Figures 2c, 3c, 1 compare implicit linesearch procedures for Newton stepsizes, namely GRLS,
 278 Armijo stepsize, and Greedy Newton stepsize (GN) (Cauchy, 1847; Shea & Schmidt, 2024a). Our
 279 theory presents convergence guarantees for GRLS and GN with stepsizes limited to the interval $[0, 1]$.
 280 We go beyond this limitation and perform parameter linesearches over $\alpha \in \mathbb{R}_+$ instead.

281 Figures 2c, 3c demonstrate that on logistic regression and polytope feasibility problems, linesearch
 282 procedures GRLS and GN use almost indistinguishable stepsizes and converge faster than Armijo
 283 linesearch and fixed stepsize Newton. On the Rosenbrock function (Figure 1), GRLS significantly
 284 outperforms all other linesearches procedures.

285 **References**

286 Agarwal, N. and Hazan, E. Lower bounds for higher-order convex optimization. In *Conference On*
287 *Learning Theory*, pp. 774–792. PMLR, 2018.

288 Altschuler, J. and Parrilo, P. Acceleration by stepsize hedging I: Multi-step descent and the Silver
289 stepsize schedule, 2023.

290 Arjevani, Y., Shamir, O., and Shiff, R. Oracle complexity of second-order methods for smooth convex
291 optimization. *Mathematical Programming*, 178(1):327–360, 2019.

292 Armijo, L. Minimization of functions having Lipschitz continuous first partial derivatives. *Pacific*
293 *Journal of mathematics*, 16(1):1–3, 1966.

294 Cauchy, A. Méthode générale pour la résolution des systemes d'équations simultanées. *Comp. Rend.*
295 *Sci. Paris*, 25(1847):536–538, 1847.

296 Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support vector machines. *ACM Transactions on*
297 *Intelligent Systems and Technology (TIST)*, 2(3):1–27, 2011.

298 Conn, A., Gould, N., and Toint, P. *Trust Region Methods*. SIAM, 2000.

299 Doikov, N. and Nesterov, Y. Gradient regularization of Newton method with Bregman distances.
300 *Mathematical programming*, 204(1):1–25, 2024.

301 Doikov, N., Mishchenko, K., and Nesterov, Y. Super-universal regularized Newton method. *SIAM*
302 *Journal on Optimization*, 34(1):27–56, 2024.

303 Fox, C. and Schmidt, M. Glocal smoothness: Line search can really help! In *OPT 2024: Optimization*
304 *for Machine Learning*, 2024.

305 Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., and Uribe, C.
306 Optimal tensor methods in smooth convex and uniformly convex optimization. In *Conference on*
307 *Learning Theory*, pp. 1374–1391. PMLR, 2019.

308 Gower, R., Kovalev, D., Lieder, F., and Richtárik, P. RSN: Randomized subspace Newton. In Wallach,
309 H., Larochelle, H., Beygelzimer, A., d'Alché Buc, F., Fox, E., and Garnett, R. (eds.), *Advances in*
310 *Neural Information Processing Systems 32*, pp. 616–625. Curran Associates, Inc., 2019a.

311 Gower, R., Kovalev, D., Lieder, F., and Richtárik, P. RSN: randomized subspace Newton. *Advances*
312 *in Neural Information Processing Systems*, 32, 2019b.

313 Grimmer, B., Shu, K., and Wang, A. Accelerated objective gap and gradient norm convergence for
314 gradient descent via long steps. *arXiv preprint arXiv:2403.14045*, 2024.

315 Hanzely, S. Sketch-and-project meets Newton method: Global $\mathcal{O}(1/k^2)$ convergence with low-rank
316 updates. *arXiv preprint arXiv:2305.13082*, 2023.

317 Hanzely, S., Kamzolov, D., Pasechnyuk, D., Gasnikov, A., Richtárik, P., and Takáč, M. A damped
318 Newton method achieves global $\mathcal{O}(k^{-2})$ and local quadratic convergence rate. *Advances in Neural*
319 *Information Processing Systems*, 35:25320–25334, 2022.

320 Jarre, F. and Toint, P. Simple examples for the failure of Newton's method with line search for strictly
321 convex minimization. *Mathematical Programming*, 158(1):23–34, 2016.

322 Kamzolov, D., Gasnikov, A., Dvurechensky, P., Agafonov, A., and Takáč, M. Exploiting higher order
323 derivatives in convex optimization methods. In *Encyclopedia of Optimization*, pp. 1–13. Springer,
324 2023.

325 Kamzolov, D., Pasechnyuk, D., Agafonov, A., Gasnikov, A., and Takáč, M. OPTAMI: Global
326 superlinear convergence of high-order methods. *arXiv preprint arXiv:2410.04083*, 2024.

327 Kantorovich, L. Functional analysis and applied mathematics. *Uspekhi Matematicheskikh Nauk*, 3
328 (6):89–185, 1948.

329 Karimireddy, S., Stich, S., and Jaggi, M. Global linear convergence of Newton's method without
 330 strong-convexity or Lipschitz gradients. *arXiv:1806.0041*, 2018a.

331 Karimireddy, S., Stich, S., and Jaggi, M. Global linear convergence of Newton's method without
 332 strong-convexity or Lipschitz gradients. *arXiv preprint arXiv:1806.00413*, 2018b.

333 Levenberg, K. A method for the solution of certain non-linear problems in least squares. *Quarterly
 334 of applied mathematics*, 2(2):164–168, 1944.

335 Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. *Journal of the
 336 society for Industrial and Applied Mathematics*, 11(2):431–441, 1963.

337 Mascarenhas, W. On the divergence of line search methods. *Computational & Applied Mathematics*,
 338 26(1):129–169, 2007.

339 Mishchenko, K. Regularized Newton method with global convergence. *SIAM Journal on Optimization*,
 340 33(3):1440–1462, 2023.

341 Nesterov, Y. *Lectures on Convex Optimization*. Springer Publishing Company, Incorporated, 2nd
 342 edition, 2018. ISBN 3319915770.

343 Nesterov, Y. Implementable tensor methods in unconstrained convex optimization. *Mathematical
 344 Programming*, 186:157–183, 2021.

345 Nesterov, Y. and Nemirovski, A. *Interior-Point Polynomial Algorithms in Convex Programming*.
 346 SIAM, 1994.

347 Nesterov, Y. and Polyak, B. Cubic regularization of Newton method and its global performance.
 348 *Mathematical Programming*, 108(1):177–205, 2006.

349 Newton, I. *Philosophiae Naturalis Principia Mathematica*. Jussu Societatis Regiae ac Typis Josephi
 350 Streater, 1687.

351 Nocedal, J. and Wright, S. *Numerical Optimization*. Springer, 1999.

352 Polyak, B. *Introduction to Optimization*., volume 1. Inc., Publications Division, New York, 1987.

353 Raphson, J. *Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas Resolvendas
 354 Methodus Generalis & Expedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac Demonstrata*.
 355 Th. Braddyll, 1697.

356 Shea, B. and Schmidt, M. Greedy Newton: Newton's method with exact line search. *arXiv preprint
 357 arXiv:2401.06809*, 2024a.

358 Shea, B. and Schmidt, M. Why line search when you can plane search? SO-friendly neural networks
 359 allow per-iteration optimization of learning and momentum rates for every layer. *arXiv preprint
 360 arXiv:2406.17954*, 2024b.

361 Simpson, T. *Essays on Several Curious and Useful Subjects, in Speculative and Mix'd Mathematicks.
 362 Illustrated by a Variety of Examples*. Printed by H. Woodfall, jun. for J. Nourse, at the Lamb
 363 without Temple-Bar, 1740.

364 Wolfe, P. Convergence conditions for ascent methods. *SIAM review*, 11(2):226–235, 1969.

365 Young, D. On Richardson's method for solving linear systems with positive definite matrices. *Journal
 366 of Mathematics and Physics*, 32(1-4):243–255, 1953.

367 Ypma, T. Historical development of the Newton–Raphson method. *SIAM Review*, 37(4):531–551,
 368 1995.

369 **A Detailed descriptions**

370 **A.1 Detailed descriptions of experiments**

371 **Logistic regression loss**

372 In Figure 2, we compare the performance of the proposed algorithms on binary classification
 373 on datasets from LIBSVM repository (Chang & Lin, 2011). For datapoints $\{(a_i, b_i)\}_{i=1}^n$, where
 374 $a_i \in \mathbb{R}^d$, $b_i \in \{-1, +1\}$, and regularizer $\mu = 10^{-3}$, we aim to minimize

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-b_i \langle a_i, x \rangle} \right) + \frac{\mu}{2} \|x\|_2^2 \right\}. \quad (19)$$

375 We initialize all methods at $x_0 = 10 \cdot [1, 1, \dots, 1]^T \in \mathbb{R}^d$.

376 **Polytope feasibility loss**

377 In Figure 3, we compare proposed algorithms on *polytope feasibility* problem, aiming to find a point
 378 from a polytope $\mathcal{P} = \left\{ x \in \mathbb{R}^d : \langle a_i, x \rangle \leq b_i, 1 \leq i \leq n \right\}$, reformulated as

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) = \sum_{i=0}^n (\langle a_i, x \rangle - b_i)_+^p \right\}, \quad (20)$$

379 where $(t)_+ \stackrel{\text{def}}{=} \max\{t, 0\}$ and $p \geq 2$. We generate data points (a_i, b_i) and the solution x^* synthetically
 380 as $a_i, x^* \sim \mathcal{N}(0, 1)$ and set $b_i = \langle a_i, x^* \rangle$.

381 We initialize all methods at $x_0 = [1, 1, \dots, 1]^T \in \mathbb{R}^d$.

382 **Rosenbrock loss**

383 Linesearch procedures solve the abovementioned problems in just a few steps. For a more challenging
 384 task, Figure 1 presents the notorious d -dimensional *Rosenbrock* function,

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) = \sum_{i=0}^{d-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2] \right\}. \quad (21)$$

385 Notably, the Rosenbrock function (21) is nonconvex, which breaks assumptions in our convergence
 386 theorems.

387 The function (21) has the global solution at $x^* = [1, \dots, 1]^T$, and therefore we choose the initial
 388 point from a normal distribution, $x^0 \sim \mathcal{N}(0, I_d) \cdot 20$.

389 **Technical details**

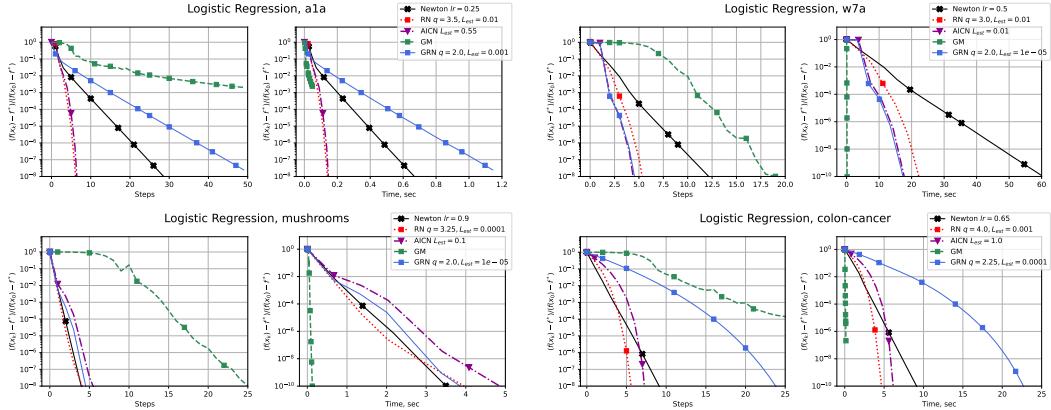
390 All hyperparameters were fine-tuned to achieve the best possible performance for both objectives and
 391 every dataset. All experiments were conducted on a workstation with specifications: AMD EPYC
 392 7742 64-Core Processor with 32Gb of RAM. Source code is available at <https://anonymous.4open.science/r/root-newton-B6A9>.

394 **A.1.1 Extended comparison on Rosenbrock function**

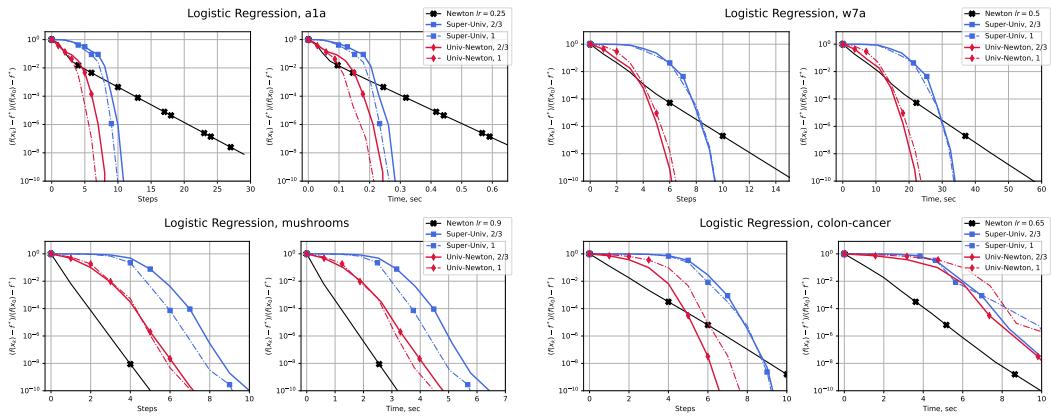
395 In Figure 4 we present an extended comparison of linesearch procedures on Rosenbrock function
 396 (21) (similar to Figure 1), with 10 random initializations and the limit of 1000 steps. We observe that
 397 none of the considered algorithms consistently converge to the exact solution for all of the random
 398 seeds, and that GRLS performs better than the other linesearch methods.

399 **A.2 Hölder continuity to one step decrease**

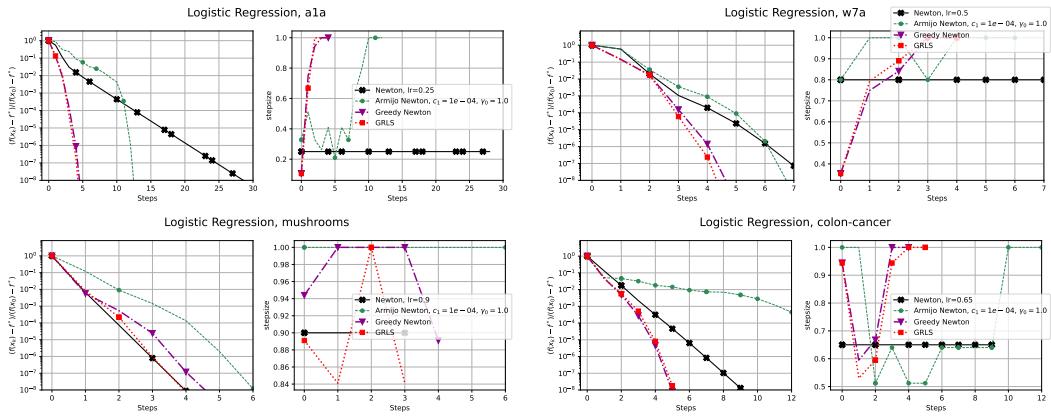
400 **Lemma 4.** *Let $\|\nabla f(x^k)\|_{x^k}^* > 0$, and $x^k \in \mathbb{R}^d$, $x^{k+1} = x^k - \alpha_k [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$, as in RN.*



(a) Performance of RN compared to other higher-order methods *without* any linesearch procedure.

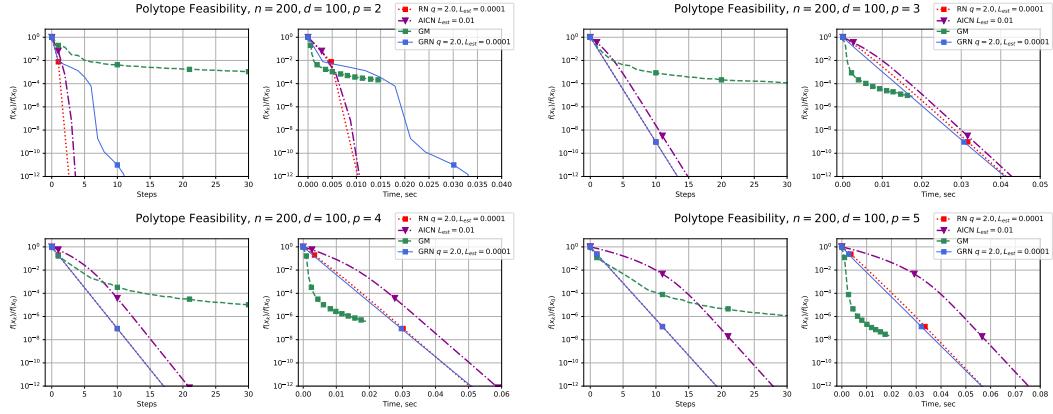


(b) Performance of UN compared to other higher-order regularization methods *with* smoothness estimation procedures.

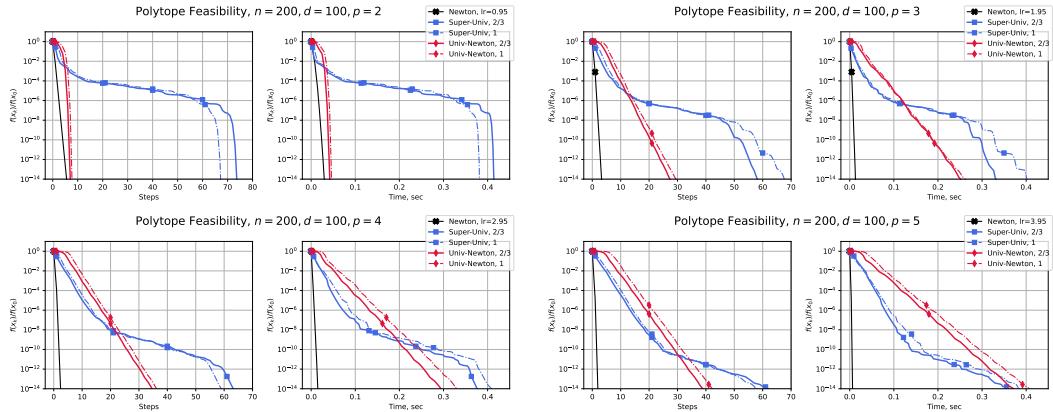


(c) Performance of Linesearch GRLS (16) compared to other linesearch procedures.

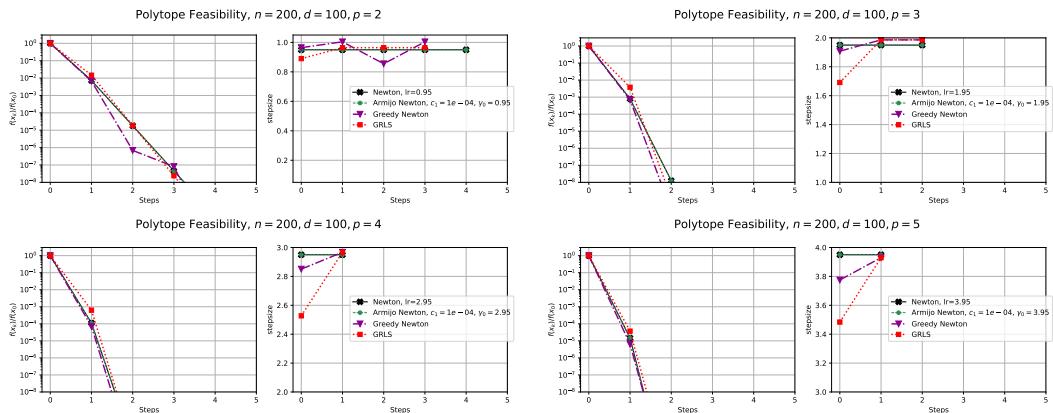
Figure 2: Binary classification **logistic regression** problem on LIBSVM datasets.



(a) Performance of RN compared to other higher-order methods *without* any linesearch procedure.



(b) Performance of UN compared to other higher-order regularization methods *with* smoothness estimation procedures.



(c) Performance of Linesearch GRLS (16) compared to other linesearch procedures.

Figure 3: **Polytope feasibility** problem (20) on a synthetic datasets.

Algorithm 3 Line search backtracking procedures for the Newton direction

1: **Inputs:** Initial learning rate $\gamma_0 > 0$, constants $c_1, c_2 \in (0, 1)$, shrinkage factor $\rho \in (0, 1)$, current iterate $x \in \mathbb{R}^d$, termination condition C defined as

$$C(x_+, x) \leftarrow \begin{cases} f(x_+) \leq f(x) - c_1 \gamma \|\nabla f(x)\|_x^{*2} & \text{Armijo} \\ f(x_+) \leq f(x) - c_1 \gamma \|\nabla f(x)\|_x^{*2} \quad \& \langle n, \nabla f(x_+) \rangle \leq c_2 \|\nabla f(x)\|_x^{*2} & \text{Wolfe} \\ f(x_+) \leq f(x) - c_1 \gamma \|\nabla f(x)\|_x^{*2} \quad \& |\langle n, \nabla f(x_+) \rangle| \leq c_2 \|\nabla f(x)\|_x^{*2} & \text{Strong Wolfe} \end{cases}$$

2: Compute Newton's direction $n_x \leftarrow -[\nabla^2 f(x)]^{-1} \nabla f(x)$

3: Initialize $\gamma \leftarrow \gamma_0$

4: **while** $C(x + \gamma n_x, x)$ is not satisfied **do**

5: $\gamma \leftarrow \rho \gamma$

6: **end while**

7: Return next point $x + \gamma n_x$

Algorithm 4 GRLS: Gradient Regularized Line Search

1: **Requires:** Initial point $x^0 \in \mathbb{R}^d$.

2: **for** $k = 0, 1, 2 \dots$ **do**

3: $n^k = [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$ ▷ Newton direction

4: Compute next iterate

$$x^{k+1} = \operatorname{argmin}_{y \in \{x - \alpha n^k \mid \alpha \in [0, 1]\}} \frac{f(y) - f(x^k)}{\|\nabla f(y)\|_{x^k}^{*2}}$$

5: **end for**

401 • Hölder continuity of **Hessian** (Def. 1 with $p = 2$) implies that for θ_k larger than $\theta_k \geq$
402 $\frac{L_{2,\nu}}{1+\nu} \alpha_k^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu}$ holds

$$\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \geq \frac{1}{2(1 - \alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2}.$$

403 • Hölder continuity of the **third derivative** (Definition 1 with $p = 3$) implies that for regularization θ_k
404 larger than

$$\theta_k \geq \alpha_k \|\nabla f(x^k)\|_{x^k}^* \max \left\{ 6 \left(\frac{L_{3,\nu}}{1 + \nu} \right)^{\frac{1}{1+\nu}}, \frac{\sqrt{3} L_{3,\nu}}{(1 + \nu)(2 + \nu)} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^\nu \right\}, \quad (22)$$

405 holds

$$\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \geq \frac{1}{4(1 - \alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2}.$$

406 In Lemma 4, requirements on θ_k are inconveniently dependent on α_k . We can use the following
407 observation to derive a bound dependent only on the norm of the gradient.

408 **Lemma 5.** For $c_3, \delta > 0$, choice $\theta_k \geq c_3^{\frac{1}{1+\delta}} \|\nabla f(x^k)\|_{x^k}^{*\frac{\delta}{1+\delta}}$ ensures $\theta_k \geq c_3 \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^\delta$.

409 B Global (super)linear convergence rate

410 Stepsized Newton method is known to be able to achieve a global linear rate if the Hessian is bounded
411 and stepsize is constant (Karimireddy et al., 2018b; Gower et al., 2019b), or when the function
412 is $L_{2,1}$ -Hölder continuous with stepsize following schedule AICN (Hanzely et al., 2022, proof in
413 (Hanzely, 2023)).

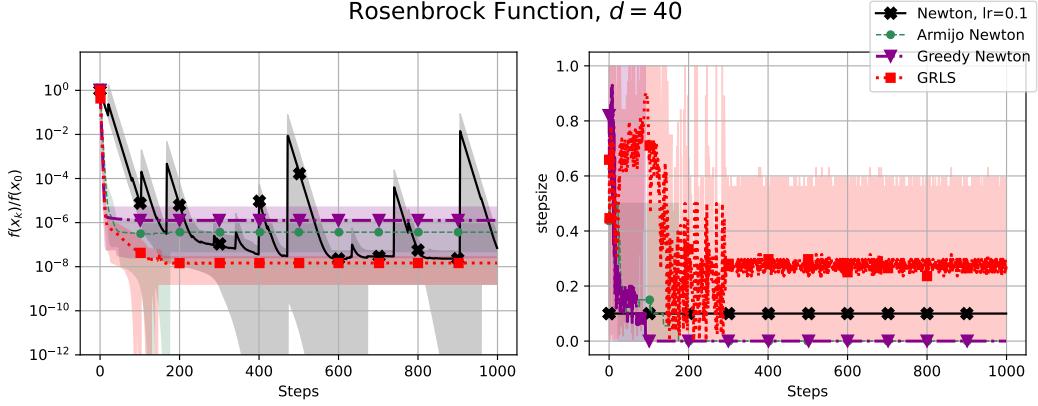


Figure 4: Performance of Newton method stepsizes linesearch procedures on nonconvex **Rosenbrock function** (21). We plot mean \pm standard deviation of 10 random initializations. We crop stepsize standard deviation at 0.

414 In line with those results, we present global linear rates for algorithms RN, UN, GRLS on $L_{p,\nu}$ -Hölder
 415 continuous functions with finite $(p + \nu)$ -relative size characteristic (Doikov et al., 2024). The proof
 416 is in Appendix G.

Definition 2 (Doikov et al., 2024)). *For strictly convex function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ we call s -relative size characteristic*

$$D_s \stackrel{\text{def}}{=} \sup_{x,y \in \mathcal{Q}(x^0)} \left\{ \|x - y\|_x \left(\frac{V_f}{\beta_f(x, y)} \right)^{\frac{1}{s}} \right\},$$

where $\beta_f(x, y) \stackrel{\text{def}}{=} \langle \nabla f(x) - \nabla f(y), x - y \rangle > 0$ and $V_f \stackrel{\text{def}}{=} \sup_{x,y \in \mathcal{Q}(x^0)} \beta_f(x, y)$.

Theorem 6. *Let function f be $L_{p,\nu}$ -Hölder continuous, with finite relative size $D_q < \infty$ for $q = p + \nu$ (Definition 2) and γ -bounded Hessian change (Assumption 1). Algorithms RN, UN and GRLS find points in the ε -neighborhood, $f(x^k) - f(x^*) \leq \varepsilon$, in*

$$k \leq \mathcal{O} \left(\gamma \left(\frac{M_q D_q^q}{V_f} \right)^{\frac{1}{q-1}} \ln \frac{f_0}{\varepsilon} + \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{\varepsilon} \right)$$

iterations, implying a global linear convergence rate.

417 **Remark.** In view of (17), analogous convergence guarantee (with a worse constant) can be proven
 418 for GN.

419 Replacing relative size assumption with uniform star-convexity of degree s ($q > s \geq 2$), we can
 420 guarantee a global superlinear rate for RN and GN similarly to Kamzolov et al. (2024).

Definition 3. *For $s \geq 2$ and $\mu_s \geq 0$ we call function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ μ_s -uniformly star-convex of degree s in local norms with respect to a minimizer x^* if $\forall x \in \mathbb{R}^d, \forall \eta \in [0, 1]$ holds*

$$f(\eta x + (1 - \eta)x^*) \leq \eta f(x) + (1 - \eta)f_* - \frac{\eta(1 - \eta)\mu_s}{s} \|x - x^*\|_x^s.$$

If this inequality holds for $\mu_s = 0$, we call function f star-convex in local norms (w.r.t. minimizer x^*).

Theorem 7. Let the function $f : \mathbb{R}^d \rightarrow R$ be $L_{p,\nu}$ -Hölder continuous (Definition 1) and μ_s -uniformly star-convex of degree s in local norms (Definition 3) and $q \stackrel{\text{def}}{=} p + \nu \geq s \geq 2$ then RN and GN have global decrease in functional value suboptimality,

$$f(x^k) - f_* \leq (f(x^0) - f_*) \prod_{t=0}^{k-1} (1 - \hat{\eta}_t),$$

where $\hat{\eta}_k \in [0, 1]$ is the only positive root of $E_k(\eta) \stackrel{\text{def}}{=} (1 - \eta)^{\frac{\mu_s}{s}} - \eta^{q-1} \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|x^k - x^*\|_{x^k}^{q-s}$.

If $q = s$, then $\hat{\eta}_k$ is constant throughout all iterations and the rate is **globally linear**.

If $q > s$, then $\hat{\eta}_k$ is monotonically increasing as $\|x^k - x^*\|_{x^k}$ decreases, $1 - \hat{\eta}_k \rightarrow 0$, and therefore, the resulting rate is **globally superlinear**.

421 Proof of Theorem 7. We have that updates of RN with $q = p + \nu = 2 + \beta$ and any $\sigma \geq M_q$ can be
422 written as

$$f(x^{k+1}) \leq \Phi_{x^k}(x^{k+1}) + \frac{\sigma}{q} \|x^{k+1} - x^k\|_{x^k}^q \quad (23)$$

$$= \min_{y \in \mathbb{R}^d} \left\{ \Phi_{x^k}(y) + \frac{\sigma}{q} \|y - x^k\|_{x^k}^q \right\}, \quad (24)$$

423 using standard integration arguments from M_q -Hölder continuity

$$\leq \min_{y \in \mathbb{R}^d} \left\{ f(y) + \frac{M_q}{(p+1)!} \|y - x^k\|_{x^k}^q + \frac{\sigma}{q} \|y - x^k\|_{x^k}^q \right\} \quad (25)$$

$$= \min_{y \in \mathbb{R}^d} \left\{ f(y) + \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|y - x^k\|_{x^k}^q \right\}, \quad (26)$$

424 setting $y \leftarrow x + \eta_k(x^* - x^k)$ for arbitrary $\eta_k \in [0, 1]$,

$$\leq f(x^k + \eta_k(x^* - x^k)) + \eta_k^q \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|x^k - x^*\|_{x^k}^q, \quad (27)$$

425 assuming μ_s -strong star-convexity for $q \geq s \geq 2$,

$$\begin{aligned} &\leq (1 - \eta_k) f(x^k) \\ &+ \eta_k f_* - \frac{\eta_k(1 - \eta_k)\mu_s}{s} \|x^k - x^*\|_{x^k}^s + \eta_k^q \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|x^k - x^*\|_{x^k}^q, \end{aligned} \quad (28)$$

426 denoting functional suboptimality $\delta_k \stackrel{\text{def}}{=} f(x^k) - f_*$,

$$\begin{aligned} \delta_{k+1} &\leq (1 - \eta_k) \delta_k \\ &- \eta_k \|x^k - x^*\|_{x^k}^s \left((1 - \eta_k) \frac{\mu_s}{s} - \eta_k^{q-1} \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|x^k - x^*\|_{x^k}^{q-s} \right). \end{aligned} \quad (29)$$

427 Denote expression $E(\eta) \stackrel{\text{def}}{=} (1 - \eta)^{\frac{\mu_s}{s}} - \eta^{q-1} \left(\frac{M_q}{(p+1)!} + \frac{\sigma}{q} \right) \|x - x^*\|_{x^k}^{q-s}$ for $\eta \in [0, 1]$. Observe
428 that $E'(\eta) < 0$ and therefore E is monotonically decreasing on \mathbb{R}^+ ; with $E(0) \geq 0 \leq E(1)$ we
429 can conclude that it has a unique root $\hat{\eta}$ on $[0, 1]$. With choice $\eta \leftarrow \hat{\eta}$ in the last inequality we can
430 conclude global convergence rate

$$\delta_{k+1} \leq (1 - \hat{\eta}_k) \delta_k. \quad (30)$$

431 Note that the root of the expression E is inversely proportional to the distance from the solution
432 $\|x - x^*\|_{x^k}$, and therefore as the method converges, $x^k \rightarrow x^*$, then the size of its root increases
433 $\hat{\eta}_k \rightarrow 1$. Therefore, the global convergence rate (30) is superlinear.

434 Unrolling the recurrence (30) yields the inequality from the Theorem 7.

435

436 Note that the decrease is based solely on the decrease in functional values, which allows us to prove the
437 identical guarantee for Greedy Newton linesearch **GN**. In particular, **GN** implies $f(x_{\text{GN}}^+) \leq f(x_{\text{RN}}^+)$,
438 and we can analogically conclude

$$f(x_{\text{GN}}^{k+1}) - f_* \leq (f(x_{\text{GN}}^k) - f_*) (1 - \hat{\eta}_k). \quad (31)$$

439 \square

440 C Fast convergence guarantees for Greedy Newton linesearch

441 If the inequality $\|\nabla f(y)\|_{x^k}^* \leq \bar{c} \|\nabla f(x^k)\|_{x^k}^*$ holds for constant $\bar{c} \geq 0$, we have that for stepsizes in
442 a range $[\underline{\alpha}, \bar{\alpha}]$ holds

$$\min_{\substack{\alpha \in [\underline{\alpha}, \bar{\alpha}] \\ y = x - \alpha n_{x^k}}} \frac{f(y) - f(x^k)}{\|\nabla f(x^k)\|_{x^k}^{*2}} \leq \bar{c}^2. \quad (32)$$

$$\min_{\substack{\alpha \in [\underline{\alpha}, \bar{\alpha}] \\ y = x - \alpha n_{x^k}}} \frac{f(y) - f(x^k)}{\|\nabla f(y)\|_{x^k}^{*2}},$$

443 proving that Greedy Newton minimizes the target metric of **GRLS** up to a constant $\times \bar{c}^2$. If we
444 denote \hat{c}_5 constant with which **GRLS** satisfies Lemma 2, then Greedy Newton satisfies Lemma 2
445 with constant $\hat{c}_5 \bar{c}^2$ and guarantee convergence similar to Corollary 1.

446 Now we are going to discuss how constant \bar{c} can be found in different scenarios.

447 **Remark** (General M_q -Hölder continuous functions). *To find \bar{c} we note that Theorem 2 shows that
448 stepsize $\theta_k \stackrel{\text{def}}{=} \frac{1-\alpha_k}{\alpha_k} \geq (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}$ for M_q -Hölder continuous function implies*

$$\frac{1}{2(1-\alpha_k)} \|\nabla f(y)\|_{x^k}^{*2} \leq \langle \nabla f(y), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \leq \|\nabla f(y)\|_{x^k}^* \|\nabla f(x^k)\|_{x^k}^*,$$

449 which after rearranging yields $\|\nabla f(y)\|_{x^k}^* \leq 2(1-\alpha_k) \|\nabla f(x^k)\|_{x^k}^*$. Therefore if

$$\alpha \leq \frac{1}{1 + (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}} \quad (33)$$

450 or equivalently

$$\bar{\alpha} \leq \left(1 + (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}} \right)^{-1} \leq \left(1 + \sup_{q \in [2, 4]} (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^0)\|_{x^0}^{*\frac{q-2}{q-1}} \right)^{-1}. \quad (34)$$

451 In such case, \bar{c} can be set as $\bar{c} = 2(1-\underline{\alpha})$.

452

453 Note that (34) is satisfied by smaller stepsizes, which damped Newton methods use globally until they
454 converge to the neighborhood of the solution.

455 **Remark** (Hölder continuity of Hessians). For $L_{2,\nu}$ -Hölder, Lemma 8 yields

$$\|\nabla f(y)\|_{x^k}^* \leq \left(|1-\alpha| + \frac{L_{2,\nu}}{1+\nu} \alpha^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu} \right) \|\nabla f(x^k)\|_{x^k}^*, \quad (35)$$

456 ensuring that without any limitation on $\bar{\alpha}$

$$\bar{c}_x \stackrel{\text{def}}{=} \sup_{\alpha \in [\underline{\alpha}, \bar{\alpha}]} |1-\alpha| + \frac{L_{2,\nu}}{1+\nu} \alpha^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu} \quad (36)$$

$$= \max_{\alpha \in \{\underline{\alpha}, \bar{\alpha}, 1\}} |1-\alpha| + \frac{L_{2,\nu}}{1+\nu} \alpha^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu}. \quad (37)$$

457 For $\underline{\alpha} \leftarrow 0, \bar{\alpha} \leftarrow 1$, we can set

$$\bar{c} = \max \left\{ 1, \frac{L_{2,\nu}}{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu} \right\} \leq \max \left\{ 1, \frac{L_{2,\nu}}{1+\nu} \|\nabla f(x^0)\|_{x^0}^{*\nu} \right\}. \quad (38)$$

458 **Remark** ($L_{2,0}$ -Hölder continuity). For $L_{2,0}$ -Hölder functions with $L_{2,0} \geq 1$, constant \bar{c} simplifies to
459 $\bar{c} \stackrel{\text{def}}{=} \bar{\alpha} \frac{L_{2,0}}{2} + |1-\bar{\alpha}|$, because

$$\begin{cases} \bar{\alpha} \left(\frac{L_{2,0}}{2} - 1 \right) + 1 \geq \alpha \left(\frac{L_{2,0}}{2} - 1 \right) + 1 \geq \frac{1}{2}, & \text{if } \alpha \leq 1, \\ \bar{\alpha} \left(\frac{L_{2,0}}{2} + 1 \right) - 1 \geq \alpha \left(\frac{L_{2,0}}{2} + 1 \right) - 1 \geq \frac{L_{2,0}}{2}, & \text{if } \alpha \geq 1. \end{cases} \quad (39)$$

460 **D Connection between stepsizes and regularization**

461 We show connections of particular stepsizes to regularized Newton methods. For fixed $\sigma > 0$, $\beta \geq 0$
462 define regularized model as

$$T_{\sigma, \beta}(x) \stackrel{\text{def}}{=} \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \|y - x\|_x^2 + \frac{\sigma}{2 + \beta} \|y - x\|_x^{2+\beta} \right\}. \quad (40)$$

463 We can define optimization algorithm RN as

$$x^{k+1} \stackrel{\text{def}}{=} T_{\sigma, \beta}(x^k) \quad (41)$$

464 By first-order optimality condition, solution of model $h^* \stackrel{\text{def}}{=} T_{\sigma, \beta}(x) - x$ satisfy

$$\left(1 + \sigma \|h^*\|_x^\beta\right) [\nabla^2 f(x)] h^* = -\nabla f(x), \quad (42)$$

$$h^* = -\underbrace{\left(1 + \sigma \|h^*\|_x^\beta\right)^{-1}}_{\stackrel{\text{def}}{=} \alpha > 0} [\nabla^2 f(x)]^{-1} \nabla f(x). \quad (43)$$

465 Now iterates of RN are in the direction of Newton method (for any σ and β) and we can write

$$h^* = -\alpha [\nabla^2 f(x)]^{-1} \nabla f(x), \quad (44)$$

$$[\nabla^2 f(x)] h^* = -\alpha \nabla f(x), \quad (45)$$

$$\|h^*\|_x = \alpha \|\nabla f(x)\|_x^* \quad (46)$$

466 Substituting $[\nabla^2 f(x)] h^*$ back to the first-order optimality conditions we get

$$0 = \nabla f(x) \left(1 - \alpha - \alpha^{1+\beta} \sigma \|\nabla f(x)\|_x^{*\beta}\right). \quad (47)$$

467 Thus, α defined as a root of the polynomial

$$P[\alpha] \stackrel{\text{def}}{=} 1 - \alpha - \alpha^{1+\beta} \sigma \|\nabla f(x)\|_x^{*\beta} \quad (48)$$

468 satisfies first-order optimality condition. Note that $P[0] > 0$ and $P[1] \leq 0$, hence P has root on
469 interval $(0, 1]$. This will be the stepsize of our algorithm. Also note that P is monotone on \mathbb{R}_+ ,

$$P'[\alpha] = -1 - (1 + \beta) \alpha^\beta \sigma \|\nabla f(x)\|_x^{*\beta} < 0, \quad (49)$$

470 and consequently, the positive root of P is unique.

471 **E Relations between smoothness constants**

472 First note that the parametrization $L_{p,\nu}$ is log-convex in ν and hence for $0 \leq \nu_1 \leq \nu \leq \nu_2 \leq 1$, it
473 hold

$$L_{p,\nu} \leq [L_{p,\nu_1}]^{\frac{\nu_2-\nu}{\nu_2-\nu_1}} [L_{p,\nu_2}]^{\frac{\nu-\nu_1}{\nu_2-\nu_1}}, \quad \text{and} \quad L_{p,\nu} \leq L_{p,0}^{1-\nu} L_{p,1}^\nu.$$

474 Consider any $\gamma \in [0, 1]$. From Hölders continuity, triangle inequality and definition of $L_{p,\nu}$,

$$\|\nabla^3 f(x)[y - x]\|_{op} \leq \|\nabla^2 f(x) - \nabla^2 f(y)\|_{op} + \frac{L_{3,\nu}}{1 + \nu} \|y - x\|_x^{1+\nu} \quad (50)$$

$$\leq L_{2,\gamma} \|x - y\|_x^\gamma + \frac{L_{3,\nu}}{1 + \nu} \|y - x\|_x^{1+\nu} \quad (51)$$

475 For $y \leftarrow x + \tau h$, where $\|h\|_x = 1$, $\tau > 0$, we can continue

$$\|\nabla^3 f(x)\|_{op} \leq \frac{L_{2,\gamma}}{\tau^{1-\gamma}} + \frac{L_{3,\nu}}{1 + \nu} \tau^\nu, \quad (52)$$

$$\leq \frac{2 + \nu}{1 + \nu} [L_{2,\gamma}]^{\frac{\nu}{1+\nu-\gamma}} \tau^{1-\gamma} [L_{3,\nu}]^{\frac{1}{1+\nu-\gamma}}, \quad // \text{ by } \tau \leftarrow \left[\frac{L_{2,\gamma}}{L_{3,\nu}} \right]^{\frac{1}{1+\nu-\gamma}} \quad (53)$$

$$\leq \frac{3}{2} \sqrt{L_{2,0} L_{3,1}}, \quad // \text{ by } \gamma \leftarrow 0, \nu \leftarrow 1 \quad (54)$$

476 and we can summarize

$$L_{3,0} = \sup_{x \neq y} \|\nabla^3 f(x) - \nabla^3 f(y)\|_{op} \leq \sup_{x \neq y} \left(\|\nabla^3 f(x)\|_{op} + \|\nabla^3 f(y)\|_{op} \right) \quad (55)$$

$$= 2 \sup_x \|\nabla^3 f(x)\|_{op} \leq \left\{ \frac{2L_{2,1}}{3\sqrt{L_{2,0}L_{3,1}}} \right\}. \quad (56)$$

477 **Lemma 6.** If $L_{2,\nu}$ exists, for points $x^k, x^{k+1} = x^k - \alpha_{\mathbf{k}} [\nabla^2 f(x^k)]^{-1} \nabla f(x^k)$ holds decrease

$$\|\nabla f(x^{k+1})\|_{x^k}^* \leq \left(\theta_{\mathbf{k}} + \frac{L_{2,\nu}}{1+\nu} \alpha_{\mathbf{k}}^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu} \right) \alpha_{\mathbf{k}} \|\nabla f(x^k)\|_{x^k}^*,$$

478 and hence, if $\nu > 0$ and $\theta_{\mathbf{k}} \geq \|\nabla f(x^k)\|_{x^k}^{*\varepsilon}$ for $\varepsilon > 0$, and if the bound (127) exists (meaning that
479 the Hessian does not change much), we have guaranteed superlinear local rate.

480 **Remark.** Hanzely et al. (2022) shows that $L_{2,1}$ -Hölder continuity implies self-concordance, and
481 (Nesterov, 2018, Theorem 4.1.3) proves that self-concordance implies positive definiteness of Hessian
482 $\nabla^2 f$ the domain of function f contains no straight line.

483 F Generality of higher-order regularization

484 In this section we explain how (7) encapsulates polynomial upper bounds $P[\|x - y\|_x]$ with smaller
485 exponents. Writing regularization as a polynomial,

$$f(y) \leq \Phi_x(y) + P[\|x - y\|_x], \quad (57)$$

486 this can be bounded as

$$f(y) \leq \Phi_x(y) + A_1 + A_2 \|x - y\|_x^p, \quad (58)$$

487 where constants $A_1, A_2 > 0$ and degree p are expressed in the lemma below. Notably, the next iterate
488 x^+ set as the minimizer of the right-hand side of (58) is not affected by A_1 , but the A_1 worsens
489 guarantees on functional value decrease, $f(x^+) \leq f(x) + A_1$.

490 **Lemma 7.** A polynomial P with d_P coefficients $a_k \geq 0$ and exponents $0 \leq b_1 \leq \dots \leq b_{d_P}$,

$$P[x] \stackrel{\text{def}}{=} \sum_{k=0}^{d_P} a_k x^{b_k},$$

491 satisfies following bound with any $p \geq \max_{k \in \{1, \dots, d_P\}} b_k$,

$$P[x] \leq A_1 + A_2 x^p,$$

492 where $A_1 = \frac{1}{p} \sum_{k=0}^{d_P} a_k (p - b_k)$, $A_2 = \frac{1}{p} \sum_{k=0}^{d_P} a_k b_k$.

493 **A surprising remark:** Similarly, we can replace even the quadratic term from Taylor polynomial,
494 $\frac{1}{2} \|y - x\|_x^2$, by an upper bound in the form $A_1 + A_2 \|x - y\|_x^p$. This further simplifies the
495 regularization and results in the Newton method with the **unbounded stepsize**

$$x^+ = x - \left(\frac{1}{(\sigma + 1) \|\nabla f(x^k)\|_{x^k}^{*\beta}} \right)^{\frac{1}{1+\beta}} [\nabla^2 f(x)]^{-1} \nabla f(x).$$

496 As the gradient diminishes, the stepsize diverges to infinity. Yet, simultaneously, the functional value
497 is guaranteed to not deteriorate by more than a constant factor.

498 *Proof of the remark.* We can bound the majorization as

$$T_{\sigma, \beta}(x) = \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \|y - x\|_x^2 + \frac{\sigma}{2 + \beta} \|y - x\|_x^{2+\beta} \right\} \quad (59)$$

$$\leq \operatorname{argmin}_{y \in \mathbb{R}^d} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{\beta}{2(\beta + 2)} + \frac{\sigma + 1}{2 + \beta} \|y - x\|_x^{2+\beta} \right\} \quad (60)$$

$$= x - \left(\frac{1}{(\sigma + 1) \|\nabla f(x^k)\|_{x^k}^{*\beta}} \right)^{\frac{1}{1+\beta}} [\nabla^2 f(x)]^{-1} \nabla f(x), \quad (61)$$

499 where stepsize was obtained as the positive root of polynomial

$$P[\alpha] \stackrel{\text{def}}{=} 1 - \alpha^{1+\beta} (\sigma + 1) \|\nabla f(x^k)\|_{x^k}^{*\beta}.$$

500

□

501 Surprisingly, stepsize is unbounded, and when $\|\nabla f(x)\|_x^* \rightarrow 0$, then $\alpha \rightarrow \infty$. This puzzling result
502 has a simple explanation – such stepsize converges only to a neighborhood of the solution.

503 In practice, we could not observe stepsize larger than 5 on any considered dataset. When close to
504 the solution and the stepsize becomes larger than one, algorithm (61) stops converging closer to the
505 solution, and functional values oscillate.

506 G Analysis under s -relative size assumption

507 In this section, we present global convergence guarantees under a novel characteristic called s -relative
508 size recently proposed by Doikov et al. (2024).

509 Strict convexity implies $\beta_f(x, y) > 0$, we also have $\lim_{s \rightarrow \infty} D_s = D$, also $\frac{\beta_f(x, y)}{V_f} \leq 1$, and

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq V_f \left(\frac{\|x - y\|_x}{D_s} \right)^s \quad (62)$$

510 Characteristic D_s is log-convex function in s , and if $D_{s_1}, D_{s_2} < \infty$, then for $2 \leq s_1 \leq s \leq s_2$ holds

$$D_s \leq [D_{s_1}]^{\frac{s_2-s}{s_2-s_1}} [D_{s_2}]^{\frac{s-s_1}{s_2-s_1}}, \quad (63)$$

511 and D_s is continuous on this segment.

512 **Remark.** For self-concordant functions, it holds $\beta_f(x, y) \geq \|y - x\|_x^2$, and $D_s \leq D^{1-\frac{2}{s}} V_f^{\frac{1}{s}}$.

513 **Remark.** For functions such that $\beta_f(x, y) \geq \mu_s \|x - y\|_x^s$ it holds $D_s \leq \left(\frac{V_f}{\mu_s}\right)^{\frac{1}{s}}$. In particular, for
514 self-concordant functions holds $\beta_f(x, y) \geq \|y - x\|_x^2$, and therefore $D_2 \leq \sqrt{V_f}$.

515 **Assumption 2.** For some $s \geq 2$, value of D_s is finite, $D_s < \infty$.

516 **Lemma 8.** For any $2 \leq s \leq q$, we have

$$\left(\frac{D_q}{D} \right)^q \leq \left(\frac{D_s}{D} \right)^s \quad (64)$$

517 *Proof of Lemma 8.* Analogical to Doikov et al. (2024). □

518 Now for any $x, y \in \mathcal{Q}(x^0)$,

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \frac{1}{\tau} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), \tau(y - x) \rangle d\tau \quad (65)$$

$$\geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{s} V_f \left(\frac{\|x - y\|_x}{D_s} \right)^s, \quad (66)$$

519 and minimizing both sides w.r.t. y independently, we get

$$\frac{s-1}{s} \left(\frac{D_s \|\nabla f(x)\|_x^*}{V_f} \right)^{\frac{s}{s-1}} \geq \frac{f(x) - f_*}{V_f} \quad (67)$$

520 Let us denote some constants that will appear in proofs.

$$\hat{\gamma} \stackrel{\text{def}}{=} \frac{q(s-1)}{(q-1)s} \in \left[\frac{2}{3}, 2 \right], \quad \text{and} \quad 1 - \hat{\gamma} = \frac{q-s}{(q-1)s} \quad (68)$$

$$\omega_{q,s} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{s}{s-1} \right)^{\hat{\gamma}} \left(\frac{V_f^{\frac{q}{s}}}{9M_q D_s^q} \right)^{\frac{1}{q-1}} = \frac{1}{2} \left(\frac{s}{s-1} \right)^{\frac{q(s-1)}{(q-1)s}} \left(\frac{V_f^{\frac{q}{s}}}{9M_q D_s^q} \right)^{\frac{1}{q-1}} \quad (69)$$

$$C_q \stackrel{\text{def}}{=} 2\gamma(q-1)(9M_q)^{\frac{1}{q-1}} D^{\frac{q}{q-1}} \quad (70)$$

521 Note that $\frac{\omega_{q,s} C_q}{\gamma(q-1)} = \left(\left(\frac{s}{s-1} \right)^{\frac{s-1}{s}} \frac{V_f^{\frac{1}{s}} D}{D_s} \right)^{\frac{q}{q-1}}$.

522 **Lemma 9.** For $q \in [2, 4]$ and $s \in [2, \infty)$, we have

$$\frac{1}{(\hat{\gamma} - 1)f_{k+1}^{\hat{\gamma}-1}} - \frac{1}{(\hat{\gamma} - 1)f_k^{\hat{\gamma}-1}} \geq \omega_{q,s} \frac{\|\nabla f(x_{k+1})\|_{x_{k+1}}^{*2}}{\|\nabla f(x_k)\|_{x_k}^{*2}}. \quad (71)$$

523 *Proof.* Analogically to Doikov et al. (2024), denote $f_k \stackrel{\text{def}}{=} f(x^k) - f_*$.

$$f_k - f_{k+1} \stackrel{(14)}{\geq} \frac{1}{2} \left(\frac{1}{9M_q} \right)^{\frac{1}{q-1}} \frac{\|\nabla f(x^k)\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q}{q-1}} \quad (72)$$

$$\stackrel{(67)}{\geq} \frac{1}{2} \left(\frac{1}{9M_q} \right)^{\frac{1}{q-1}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} \left(\frac{V_f^{\frac{1}{s}}}{D_s} \right)^{\frac{q}{q-1}} \left(\frac{s}{s-1} \right)^{\hat{\gamma}} f_k^{\hat{\gamma}} \quad (73)$$

$$= \frac{1}{2} \left(\frac{s}{s-1} \right)^{\hat{\gamma}} \left(\frac{V_f^{\frac{q}{s}}}{9M_q D_s^q} \right)^{\frac{1}{q-1}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} f_k^{\hat{\gamma}} \quad (74)$$

$$= \omega_{q,s} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} f_k^{\hat{\gamma}}. \quad (75)$$

524 If $s \geq q$, then $\hat{\gamma} \in [1, 2]$ and the function $y(x) \stackrel{\text{def}}{=} x^{\hat{\gamma}-1}$ is concave. With monotonicity of $\{f_k\}_{k \geq 0}$, we have

$$\frac{1}{(\hat{\gamma} - 1)f_{k+1}^{\hat{\gamma}-1}} - \frac{1}{(\hat{\gamma} - 1)f_k^{\hat{\gamma}-1}} = \frac{f_k^{\hat{\gamma}-1} - f_{k+1}^{\hat{\gamma}-1}}{(\hat{\gamma} - 1)f_{k+1}^{\hat{\gamma}-1} f_k^{\hat{\gamma}-1}} \geq \frac{f_k - f_{k+1}}{f_{k+1}^{\hat{\gamma}-1} f_k} \geq \omega_{q,s} \frac{\|\nabla f(x_{k+1})\|_{x_k}^{*2}}{\|\nabla f(x_k)\|_{x_k}^{*2}}. \quad (76)$$

526 If $2 \leq s < q$, then $\hat{\gamma} < 1$ and the function $y(x) \stackrel{\text{def}}{=} x^{\hat{\gamma}-1}$ is concave. We have

$$\frac{1}{(\hat{\gamma} - 1)f_{k+1}^{\hat{\gamma}-1}} - \frac{1}{(\hat{\gamma} - 1)f_k^{\hat{\gamma}-1}} = \frac{f_k^{1-\hat{\gamma}} - f_{k+1}^{1-\hat{\gamma}}}{1 - \hat{\gamma}} \geq \frac{f_k - f_{k+1}}{f_k^{\hat{\gamma}}} \geq \omega_{q,s} \frac{\|\nabla f(x_{k+1})\|_{x_k}^{*2}}{\|\nabla f(x_k)\|_{x_k}^{*2}}. \quad (77)$$

527 \square

528 **Theorem 8.** Let function f be $L_{p,\nu}$ -Hölder continuous with finite s -relative size and γ -bounded

Hessian change, $M_q, D_s < \infty$ for some $q \in [2, 4]$ and $s \geq q$ and sequence of iterates x^0, \dots, x^k by generated by one of the algorithms RN, UN, GRLS. If all iterates had function suboptimality $f_k \stackrel{\text{def}}{=} f(x^k) - f_*$ worse than $\varepsilon > 0$, $f_t \geq \varepsilon$ for $t \in \{0, \dots, k\}$, then the algorithm did at most

$$k \leq \frac{\gamma}{\omega_{q,s}(\hat{\gamma}-1)} \left[\frac{1}{f_k^{\hat{\gamma}-1}} - \frac{1}{f_0^{\hat{\gamma}-1}} \right] + 2 \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_k} \quad (78)$$

$$\begin{aligned} &\leq 2\gamma \frac{s(q-1)}{s-q} \left(\frac{s-1}{s} \right)^{\frac{q(s-1)}{(q-1)s}} \left(\frac{9M_q D_s^q}{V_f^{\frac{q}{s}}} \right)^{\frac{1}{q-1}} \left[\varepsilon^{-\frac{s-q}{s(q-1)}} - f_0^{-\frac{s-q}{s(q-1)}} \right] \\ &\quad + 2 \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{\varepsilon} \end{aligned} \quad (79)$$

steps. If $s = q$, treating RHS as limit together with $\lim_{a \rightarrow 0} \frac{b^{-a} - c^{-a}}{a} = \ln \left(\frac{c}{b} \right)$ guarantees the linear convergence rate

$$k \leq 2\gamma \frac{q-1}{q} \left(\frac{9M_q D_q^q}{V_f} \right)^{\frac{1}{q-1}} \ln \frac{f_0}{\varepsilon} + 2 \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{\varepsilon}. \quad (80)$$

529

530 **Remark.** We can analogically guarantee the global linear convergence of Greedy Newton linesearch
531 GN (18), but with a slightly different constant.

532 *Proof.* Telescoping Lemma 9,

$$\frac{1}{(\hat{\gamma}-1)f_k^{\hat{\gamma}-1}} - \frac{1}{(\hat{\gamma}-1)f_0^{\hat{\gamma}-1}} \geq \omega_{q,s} \sum_{t=0}^{k-1} \frac{\|\nabla f(x^{t+1})\|_{x^t}^{*2}}{\|\nabla f(x^t)\|_{x^t}^{*2}} \quad (81)$$

$$\geq k\omega_{q,s} \left(\prod_{t=0}^{k-1} \frac{\|\nabla f(x^{t+1})\|_{x^t}^{*2}}{\|\nabla f(x^t)\|_{x^t}^{*2}} \right)^{\frac{1}{k}} \quad (82)$$

$$\geq \frac{k\omega_{q,s}}{\gamma} \left(\frac{f_k}{\|\nabla f(x^0)\|_{x^0}^* D} \right)^{\frac{k}{2}} \quad (83)$$

$$\geq \frac{k\omega_{q,s}}{\gamma} \exp \left(-\frac{2}{k} \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_k} \right) \quad (84)$$

$$\geq \frac{k\omega_{q,s}}{\gamma} \left(1 - \frac{2}{k} \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_k} \right) \quad (85)$$

$$= \frac{k\omega_{q,s}}{\gamma} - \frac{2\omega_{q,s}}{\gamma} \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_k}, \quad (86)$$

533 hence

$$k \leq \frac{\gamma}{\omega_{q,s}(\hat{\gamma}-1)} \left[\frac{1}{f_k^{\hat{\gamma}-1}} - \frac{1}{f_0^{\hat{\gamma}-1}} \right] + 2 \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_k} \quad (87)$$

$$\leq \frac{\gamma}{\omega_{q,s}(\hat{\gamma}-1)} \left[\frac{1}{f_k^{\hat{\gamma}-1}} - \frac{1}{f_0^{\hat{\gamma}-1}} \right] + 2 \ln \frac{\|\nabla f(x^0)\|_{x^0}^* D}{\varepsilon}. \quad (88)$$

534

□

535 **Theorem 9.** Let funciton f be $L_{p,\nu}$ -Hölder continuous with finite s -relative size and γ -bounded

Hessian change, $M_q, D_s < \infty$ for some $q \in [2, 4]$ and $2 \leq s \leq q$ and sequence of iterates x^0, \dots, x^k by generated by one of the algorithms **RN**, **UN**, **GRLS**. If all iterates were far from solution, $f_t \geq \varepsilon > 0$ and $g_t \stackrel{\text{def}}{=} \|\nabla f(x^t)\|_{x^t}^* \geq \delta > 0$ for $t \in \{0, \dots, k\}$, then the algorithm did at most

$$k \leq 2\gamma \frac{q}{s} \left(\frac{s-1}{s} \right)^{\frac{s-1}{q-1}} \left(\frac{9M_q D_s^s D^{q-s}}{V_f} \right)^{\frac{1}{q-1}} \frac{s(q-1)}{q-s} \left[1 - \frac{s}{q} \left(\left(\frac{s}{s-1} \right)^{s-1} \frac{D_s^s}{V_f D^s} \varepsilon \right)^{\frac{q-s}{s(q-1)}} \right] + 2 \ln \frac{g_0}{\delta} \quad (89)$$

steps. If $s = q$, treating RHS as a limit guarantees linear convergence rate

$$k \leq 2\gamma \frac{q-1}{q} \left(\frac{9M_q D_q^q}{V_f} \right)^{\frac{1}{q-1}} \ln \left(\left(\frac{q}{q-1} \right)^{q-1} \frac{V_f D^q}{D_q^q \varepsilon} \right) + 2 \ln \frac{g_0}{\delta}. \quad (90)$$

536

537 *Proof.* Note $1 - \hat{\gamma} = \frac{q-s}{s(q-1)} > 0$. Let's split the analysis of the method into two stages, $k = m + n$.
538 With $C_q = 2\gamma(q-1)(9M_q)^{\frac{1}{q-1}} D^{\frac{q}{q-1}}$, we bound the first stage,

$$C_q \frac{1}{f_m^{\frac{1}{q-1}}} \geq C_q \left[\frac{1}{f_m^{\frac{1}{q-1}}} - \frac{1}{f_0^{\frac{1}{q-1}}} \right] \stackrel{(121)}{\geq} m \left(\frac{g_m}{g_0} \right)^{\frac{2}{m}} = m \exp \left(\frac{2}{m} \ln \frac{g_m}{g_0} \right) \quad (91)$$

$$\geq m + 2 \ln \frac{g_m}{g_0} = m + 2 \ln \frac{g_m}{\delta} - 2 \ln \frac{g_0}{\delta}. \quad (92)$$

539 For the second stage, telescoping inequalities for $t = m, \dots, k-1$

$$\frac{1}{\omega_{q,s}(1-\hat{\gamma})} [f_{t+1}^{1-\hat{\gamma}} - f_t^{1-\hat{\gamma}}] \geq \frac{\|\nabla f(x_{t+1})\|_{x_{t+1}}^{*2}}{\|\nabla f(x_t)\|_{x_t}^{*2}}, \quad (93)$$

540 we get

$$\frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} [f_m^{1-\hat{\gamma}} - \varepsilon^{1-\hat{\gamma}}] \geq \gamma \sum_{t=m}^{k-1} \frac{\|\nabla f(x_{t+1})\|_{x_{t+1}}^{*2}}{\|\nabla f(x_t)\|_{x_t}^{*2}} \geq n \left(\frac{g_k}{g_m} \right)^{\frac{2}{n}} \geq n \left(\frac{\delta}{g_m} \right)^{\frac{2}{n}} \quad (94)$$

$$\geq n - 2 \ln \frac{g_m}{\delta}. \quad (95)$$

541 Expressing n, m from the inequalities above and adding them together yields

$$k \leq C_q \frac{1}{f_m^{\frac{1}{q-1}}} + \frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} [f_m^{1-\hat{\gamma}} - \varepsilon^{1-\hat{\gamma}}] + 2 \ln \frac{g_0}{\delta}. \quad (96)$$

542 Note that $1 - \hat{\gamma} = \frac{q-s}{s(q-1)}$. Minimizer of RHS in f_m is achieved at

$$f_m^* \stackrel{\text{def}}{=} \left(\frac{C_q \omega_{q,s}}{\gamma(q-1)} \right)^{\frac{s(q-1)}{q}} = \left(\frac{s}{s-1} \right)^{\frac{s}{q-1}} \frac{V_f D^s}{D_s^s}. \quad (97)$$

543 Substituting definitions of $f_m^*, \omega_{q,s}, C_q, \hat{\gamma}$ into the terms we get

$$\begin{aligned} C_q \frac{1}{f_m^* \frac{1}{q-1}} &= 2\gamma(q-1) \left(\frac{s-1}{s} \right)^{\frac{s-1}{q-1}} \left(\frac{9M_q D_s^s D^{q-s}}{V_f} \right)^{\frac{1}{q-1}}, \\ \frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} f_m^{*(1-\hat{\gamma})} &= \gamma \frac{s(q-1)}{q-s} \frac{1}{\omega_{q,s}} f_m^{*\frac{q-s}{s(q-1)}} \\ &= 2\gamma \frac{s(q-1)}{q-s} \left(\frac{s-1}{s} \right)^{\frac{s-1}{q-1}} \left(\frac{9M_q D_s^s D^{q-s}}{V_f} \right)^{\frac{1}{q-1}}, \\ \frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} \varepsilon^{1-\hat{\gamma}} &= 2\gamma \frac{s(q-1)}{q-s} \left(\frac{s-1}{s} \right)^{\frac{q(s-1)}{(q-1)s}} \left(\frac{9M_q D_s^q}{V_f^s} \right)^{\frac{1}{q-1}} \varepsilon^{\frac{q-s}{s(q-1)}}, \end{aligned}$$

544 and plugging them back in, we conclude

$$\begin{aligned}
k &\leq C_q \frac{1}{f_m^{*\frac{1}{q-1}}} + \frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} \left[f_m^{*(1-\hat{\gamma})} - \varepsilon^{1-\hat{\gamma}} \right] + 2 \ln \frac{g_0}{\delta} \\
&= 2\gamma(q-1) \frac{q}{q-s} \left(\frac{s-1}{s} \right)^{\frac{s-1}{q-1}} \left(\frac{9M_q D_s^s D^{q-s}}{V_f} \right)^{\frac{1}{q-1}} - \frac{\gamma}{\omega_{q,s}(1-\hat{\gamma})} \varepsilon^{1-\hat{\gamma}} + 2 \ln \frac{g_0}{\delta} \\
&= 2\gamma \frac{q}{s} \left(\frac{s-1}{s} \right)^{\frac{s-1}{q-1}} \left(\frac{9M_q D_s^s D^{q-s}}{V_f} \right)^{\frac{1}{q-1}} \frac{s(q-1)}{q-s} \times \\
&\quad \times \left[1 - \frac{s}{q} \left(\left(\frac{s}{s-1} \right)^{s-1} \frac{V_f D^s}{D_s^s} \right)^{\frac{q-s}{s(q-1)}} \varepsilon^{\frac{q-s}{s(q-1)}} \right] + 2 \ln \frac{g_0}{\delta}.
\end{aligned}$$

545

□

546 H Proofs

547 H.1 Proof of Lemma 7

548 *Proof of Lemma 7.* Using weighed AG inequality, for $0 \leq b \leq p$, we have

$$x^b \leq \frac{(p-b) + bx^p}{p}. \quad (98)$$

549 We use this inequality for each term of the polynomial.

□

550 H.2 Proof of Proposition 1

551 *Proof of Proposition 1.* We can derive all of the inequalities straightforwardly

$$\begin{aligned}
\nabla f(y) - \nabla f(x) - \nabla^2 f(x) [y-x] &= \int_0^1 (\nabla^2 f(x + \tau(y-x)) - \nabla^2 f(x)) [y-x] d\tau \\
\| \nabla f(y) - \nabla f(x) - \nabla^2 f(x) [y-x] \|_x^* &\leq \int_0^1 \| \nabla^2 f(x + \tau(y-x)) - \nabla^2 f(x) \|_{op} \| y-x \|_x d\tau \\
&\leq L_{2,\nu} \| y-x \|_x^{1+\nu} \int_0^1 \tau^\nu d\tau \\
&= \frac{L_{2,\nu}}{1+\nu} \| y-x \|_x^{1+\nu},
\end{aligned}$$

552

$$\begin{aligned}
\nabla^2 f(y) - \nabla^2 f(x) - \nabla^3 f(x) [y-x] &= \int_0^1 (\nabla^3 f(x + \tau(y-x)) - \nabla^3 f(x)) [y-x] d\tau \\
\| \nabla^2 f(y) - \nabla^2 f(x) - \nabla^3 f(x) [y-x] \|_{op} &\leq \int_0^1 \| \nabla^3 f(x + \tau(y-x)) - \nabla^3 f(x) \|_{op} \| y-x \|_x d\tau \\
&\leq L_{3,\nu} \| y-x \|_x^{1+\nu} \int_0^1 \tau^\nu d\tau \\
&= \frac{L_{3,\nu}}{1+\nu} \| y-x \|_x^{1+\nu},
\end{aligned}$$

$$\begin{aligned}
& \nabla f(y) - \nabla f(x) - \nabla^2 f(x)[y - x] - \frac{1}{2} \nabla^3 f(x)[y - x]^2 \\
&= \int_0^1 \int_0^\tau (\nabla^3 f(x + \sigma(y - x)) - \nabla^3 f(x)) [y - x]^2 d\sigma d\tau \\
\left\| \nabla f(y) - \nabla f(x) - \nabla^2 f(x)[y - x] - \frac{1}{2} \nabla^3 f(x)[y - x]^2 \right\|_x^* \\
&\leq \int_0^1 \int_0^\tau \|\nabla^3 f(x + \sigma(y - x)) - \nabla^3 f(x)\|_x^* \|y - x\|_x^2 d\sigma d\tau \\
&\leq L_{3,\nu} \|y - x\|_x^{2+\nu} \int_0^1 \int_0^\tau \sigma^\nu d\sigma d\tau \\
&= \frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \|y - x\|_x^{2+\nu}.
\end{aligned}$$

□

555 H.3 Proof of Lemma 1

556 *Proof of Lemma 1.* For any $x, h, y \in \mathbb{E}$ and taking $y = x + \tau u$ for $\tau > 0$, $\|u\|_x = 1$

$$\begin{aligned}
0 &\leq \|h\|_y^2 \leq \|h\|_x^2 + \langle \nabla^3 f(x)[h]^2, y - x \rangle + \frac{L_{3,\nu}}{1+\nu} \|y - x\|_x^{1+\nu} \|h\|_x^2 \\
0 &\leq \frac{1}{\tau} \|h\|_x^2 + \langle \nabla^3 f(x)[h]^2, u \rangle + \frac{L_{3,\nu} \tau^\nu}{1+\nu} \|h\|_x^2 \\
\|\nabla^3 f(x)[h]^2\|_x^* &\leq \left(\frac{1}{\tau} + \frac{L_{3,\nu} \tau^\nu}{1+\nu} \right) \|h\|_x^2
\end{aligned}$$

557 Setting

$$\tau = \left(\frac{1+\nu}{L_{3,\nu}} \right)^{\frac{1}{1+\nu}},$$

558 we get

$$\|\nabla^3 f(x)[h]^2\|_x^* \leq 2 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|h\|_x^2.$$

559 Setting $x^k = x, h = x^{k+1} - x^k$ we get

$$\|\nabla^3 f(x^k)[x^{k+1} - x^k]^2\|_{x^k}^* \leq 2 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|x^{k+1} - x^k\|_{x^k}^2 = 2 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 \|\nabla f(x^k)\|_{x^k}^{*2}$$

□

561 **H.4 Proof of Lemma 6**

562 *Proof.* Proof of Lemma 6.

$$\begin{aligned}
\|\nabla f(x^{k+1})\|_{x^k}^* &= \|\nabla f(x^{k+1}) - \nabla^2 f(x^k) [x^{k+1} - x^k] - \alpha_k \nabla f(x^k)\|_{x^k}^* \\
&= \|\nabla f(x^{k+1}) - \nabla f(x^k) - \nabla^2 f(x^k) [x^{k+1} - x^k] + (1 - \alpha_k) \nabla f(x^k)\|_{x^k}^* \\
&\leq \|\nabla f(x^{k+1}) - \nabla f(x^k) - \nabla^2 f(x^k) [x^{k+1} - x^k]\|_{x^k}^* + (1 - \alpha_k) \|\nabla f(x^k)\|_{x^k}^* \\
&\leq \frac{L_{2,\nu}}{1+\nu} \|x^{k+1} - x^k\|_{x^k}^{1+\nu} + (1 - \alpha_k) \|\nabla f(x^k)\|_{x^k}^* \quad (\text{if } L_{2,\nu} \text{ exists}) \\
&= \frac{L_{2,\nu}}{1+\nu} \alpha_k^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*(1+\nu)} + (1 - \alpha_k) \|\nabla f(x^k)\|_{x^k}^* \\
&= \left(1 - \alpha_k + \frac{L_{2,\nu}}{1+\nu} \alpha_k^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu}\right) \|\nabla f(x^k)\|_{x^k}^* \\
&= \left(\theta_k + \frac{L_{2,\nu}}{1+\nu} \alpha_k^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu}\right) \alpha_k \|\nabla f(x^k)\|_{x^k}^*.
\end{aligned}$$

563 Hence

$$\|\nabla f(x^{k+1})\|_{x^k}^* \leq \begin{cases} 2 \frac{L_{2,\nu}}{1+\nu} \alpha_k^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*(1+\nu)} & \text{if } \theta_k \leq \frac{L_{2,\nu}}{1+\nu} \alpha_k^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu} \\ 2 \theta_k \alpha_k \|\nabla f(x^k)\|_{x^k}^* & \text{if } \theta_k \geq \frac{L_{2,\nu}}{1+\nu} \alpha_k^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu} \end{cases}$$

564 \square

565 **H.5 Proof of Lemma 4**

566 We provide separate proofs for cases $p = 2$ and $p = 3$.

567 *Proof of Lemma 4, case $p = 2$.* We can rewrite the Hölder continuity for points x^k, x^{k+1} s.t. $x^{k+1} = x^k - \alpha_k (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$

$$\begin{aligned}
&\left(\frac{L_{2,\nu}}{1+\nu} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^*\right)^{1+\nu}\right)^2 \\
&= \left(\frac{L_{2,\nu}}{1+\nu} \|x^{k+1} - x^k\|_{x^k}^{1+\nu}\right)^2 \\
&\geq \|\nabla f(x^{k+1}) - \nabla f(x^k) - \nabla^2 f(x^k) [x^{k+1} - x^k]\|_{x^k}^{*2} \\
&= \|\nabla f(x^{k+1}) - \nabla f(x^k) + \alpha_k \nabla f(x^k)\|_{x^k}^{*2} \\
&= \|\nabla f(x^{k+1}) - (1 - \alpha_k) \nabla f(x^k)\|_{x^k}^{*2} \\
&= \|\nabla f(x^{k+1})\|_{x^k}^{*2} + (1 - \alpha_k)^2 \|\nabla f(x^k)\|_{x^k}^{*2} - 2(1 - \alpha_k) \langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle.
\end{aligned}$$

569 We are going to set σ so that

$$\frac{1 - \alpha_k}{2} \|\nabla f(x^k)\|_{x^k}^{*2} \geq \frac{1}{2(1 - \alpha_k)} \left(\frac{L_{2,\nu}}{1+\nu} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^*\right)^{1+\nu}\right)^2, \quad (99)$$

570 and hence, we can conclude the proof by rearranging,

$$\begin{aligned}
&\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \rangle \\
&\geq \frac{1}{2(1 - \alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2} + \frac{1 - \alpha_k}{2} \|\nabla f(x^k)\|_{x^k}^{*2} - \frac{1}{2(1 - \alpha_k)} \left(\frac{L_{2,\nu}}{1+\nu} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^*\right)^{1+\nu}\right)^2 \\
&\geq \frac{1}{2(1 - \alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2}.
\end{aligned}$$

571 Now we are going to choose σ to satisfy (99). Because α_k is a root of a polynomial P , we have

$$1 - \alpha_k - \alpha_k^{1+\beta} \lambda_k = 0,$$

572 so the equation (99) is equivalent to

$$\begin{aligned} 1 - \alpha_k &= \alpha_k^{1+\beta} \lambda_k \geq \frac{L_{2,\nu}}{1+\nu} \alpha_k^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu}, \\ \theta_k &\geq \frac{L_{2,\nu}}{1+\nu} \alpha_k^\nu \|\nabla f(x^k)\|_{x^k}^{*\nu}. \end{aligned}$$

573 \square

574 *Proof of Lemma 4, case $p = 3$.* We can rewrite the Hölder continuity for points x^k, x^{k+1} s.t. $x^{k+1} =$
575 $x^k - \alpha_k (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$

$$\frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^{2+\nu} \quad (100)$$

$$= \frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \|x^{k+1} - x^k\|_{x^k}^{2+\nu} \quad (101)$$

$$\geq \left\| \nabla f(x^{k+1}) - \nabla f(x^k) - \nabla^2 f(x^k)[x^{k+1} - x^k] - \frac{1}{2} \nabla^3 f(x^k)[x^{k+1} - x^k]^2 \right\|_{x^k}^* \quad (102)$$

$$= \left\| \nabla f(x^{k+1}) - (1 - \alpha_k) \nabla f(x^k) - \frac{1}{2} \nabla^3 f(x^k)[x^{k+1} - x^k]^2 \right\|_{x^k}^*. \quad (103)$$

576 Squaring, then using Chauchy-Schwartz inequality twice and then, lastly, Lemma 1

$$\begin{aligned} &\left(\frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^{2+\nu} \right)^2 \\ &\geq \left\| \nabla f(x^{k+1}) - (1 - \alpha_k) \nabla f(x^k) - \frac{1}{2} \nabla^3 f(x^k)[x^{k+1} - x^k]^2 \right\|_{x^k}^{*2} \\ &= \|\nabla f(x^{k+1})\|_{x^k}^{*2} + (1 - \alpha_k)^2 \|\nabla f(x^k)\|_{x^k}^{*2} + \frac{1}{4} \|\nabla^3 f(x^k)[x^{k+1} - x^k]^2\|_{x^k}^{*2} \\ &\quad - 2(1 - \alpha_k) \left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \\ &\quad + (1 - \alpha_k) \left\langle [\nabla^2 f(x^k)]^{-\frac{1}{2}} \nabla f(x^k), [\nabla^2 f(x^k)]^{-\frac{1}{2}} \nabla^3 f(x^k)[x^{k+1} - x^k]^2 \right\rangle \\ &\quad - \left\langle [\nabla^2 f(x^k)]^{-\frac{1}{2}} \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-\frac{1}{2}} \nabla^3 f(x^k)[x^{k+1} - x^k]^2 \right\rangle \\ &\geq \frac{1}{2} \|\nabla f(x^{k+1})\|_{x^k}^{*2} + (1 - \alpha_k)^2 \|\nabla f(x^k)\|_{x^k}^{*2} - \frac{1}{4} \|\nabla^3 f(x^k)[x^{k+1} - x^k]^2\|_{x^k}^{*2} \\ &\quad - 2(1 - \alpha_k) \left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \\ &\quad - (1 - \alpha_k) \|\nabla f(x^k)\|_{x^k}^* \|\nabla^3 f(x^k)[x^{k+1} - x^k]^2\|_{x^k} \\ &\geq \frac{1}{2} \|\nabla f(x^{k+1})\|_{x^k}^{*2} + (1 - \alpha_k)^2 \|\nabla f(x^k)\|_{x^k}^{*2} - \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{2}{1+\nu}} \alpha_k^4 \|\nabla f(x^k)\|_{x^k}^4 \\ &\quad - 2(1 - \alpha_k) \left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \\ &\quad - 2 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 (1 - \alpha_k) \|\nabla f(x^k)\|_{x^k}^{*3}. \end{aligned}$$

577 Rearranging yields

$$\begin{aligned} & \left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \\ & \geq \frac{1}{4(1-\alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2} + \frac{1-\alpha_k}{2} \|\nabla f(x^k)\|_{x^k}^{*2} - \frac{1}{2} \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{2}{1+\nu}} \frac{\alpha_k^4}{1-\alpha_k} \|\nabla f(x^k)\|_{x^k}^{*4} \\ & \quad - \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 \|\nabla f(x^k)\|_{x^k}^{*3} - \frac{1}{2(1-\alpha_k)} \left(\frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \right)^2 \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^{2(2+\nu)}. \end{aligned}$$

578 Finally, we are going to set θ_k so that

$$\frac{1-\alpha_k}{6} \|\nabla f(x^k)\|_{x^k}^{*2} \geq \frac{1}{2} \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{2}{1+\nu}} \frac{\alpha_k^4}{1-\alpha_k} \|\nabla f(x^k)\|_{x^k}^{*4} \quad (104)$$

$$\frac{1-\alpha_k}{6} \|\nabla f(x^k)\|_{x^k}^{*2} \geq \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 \|\nabla f(x^k)\|_{x^k}^{*3} \quad (105)$$

$$\frac{1-\alpha_k}{6} \|\nabla f(x^k)\|_{x^k}^{*2} \geq \frac{1}{2(1-\alpha_k)} \left(\frac{L_{3,\nu}}{(1+\nu)(2+\nu)} \right)^2 \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^{2(2+\nu)} \quad (106)$$

579 and then we can conclude

$$\left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \geq \frac{1}{4(1-\alpha_k)} \|\nabla f(x^{k+1})\|_{x^k}^{*2}.$$

580 Note that the choice of stepsize implies

$$1 - \alpha_k = \alpha_k^{1+\beta} \lambda_k$$

581 and (104), (105), (106) are satisfied as

$$1 - \alpha_k = \alpha_k^{1+\beta} \lambda_k \geq \begin{cases} \sqrt{3} \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 \|\nabla f(x^k)\|_{x^k}^* & \text{if } \theta_k \geq \sqrt{3} \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k \|\nabla f(x^k)\|_{x^k}^* \\ 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k^2 \|\nabla f(x^k)\|_{x^k}^* & \text{if } \theta_k \geq 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k \|\nabla f(x^k)\|_{x^k}^* \\ \frac{\sqrt{3}L_{3,\nu}}{(1+\nu)(2+\nu)} \alpha_k^{2+\nu} \|\nabla f(x^k)\|_{x^k}^{*(1+\nu)} & \text{if } \theta_k \geq \frac{\sqrt{3}L_{3,\nu}}{(1+\nu)(2+\nu)} \alpha_k^{1+\nu} \|\nabla f(x^k)\|_{x^k}^{*(1+\nu)}. \end{cases}$$

582 We can ensure (104), (105), (106) by

$$\theta_k \geq \alpha_k \|\nabla f(x^k)\|_{x^k}^* \max \left\{ 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}}, \frac{\sqrt{3}L_{3,\nu}}{(1+\nu)(2+\nu)} \alpha_k^{\nu} \|\nabla f(x^k)\|_{x^k}^{*\nu} \right\}.$$

583 \square

584 H.6 Towards the proof of Theorem 2

585 We unify cases $p = 2, 3$ with the Lemma 5.

586 **Corollary 3.** *Lemma 5 with $\gamma = \nu$ implies that choice $\theta_k = \left(\frac{L_{2,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{\nu}{1+\nu}}$ satisfies θ_k requirement of Lemma 4 for $p = 2$ and therefore it implies decrease as Doikov et al. (2024),*

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{\theta_k} \|\nabla f(x^{k+1})\|_{x^k}^{*2} \geq \left(\frac{1+\nu}{L_{2,\nu}} \right)^{\frac{1}{1+\nu}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{\nu}{1+\nu}}}. \quad (107)$$

588 *Lemma 5 with $\gamma \in \{1, 1+\nu\}$ implies that the choice*

$$\begin{aligned} \theta_k & \geq \|\nabla f(x^k)\|_{x^k}^{*\frac{1}{2}} \max \left\{ \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2(1+\nu)}}, \left(\frac{\sqrt{3}L_{3,\nu}}{(1+\nu)(2+\nu)} \right)^{\frac{1}{2(2+\nu)}} \|\nabla f(x^k)\|_{x^k}^{*\frac{\nu}{2(2+\nu)}} \right\}, \quad (108) \end{aligned}$$

589 satisfies (22), and therefore Lemma 4 for $p = 3$ implies decrease

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2\theta_k} \|\nabla f(x^{k+1})\|_{x^k}^{*2} \quad (109)$$

$$\geq \frac{1}{\max \left\{ \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2(1+\nu)}}, \left(\frac{\sqrt{3} L_{3,\nu}}{(1+\nu)(2+\nu)} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{\nu}{2(2+\nu)}} \right\}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{1}{2}}}. \quad (110)$$

590 On the other hand, choice of $\theta_k = \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}}$ in Lemma 4 ($p = 3$ case) implies
591 decrease as Doikov et al. (2024),

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2\theta_k} \|\nabla f(x^{k+1})\|_{x^k}^{*2} \geq \frac{1}{2} \left(\frac{1+\nu}{6^{1+\nu} L_{3,\nu}} \right)^{\frac{1}{2+\nu}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}}}. \quad (111)$$

592 H.6.1 Proof of Theorem 2

593 We can combine previous corollaries.

594 Proof of Theorem 2. For $p = 2$, choice $\theta_k = \left(\frac{L_{p,\nu}}{p-1+\nu} \right)^{\frac{1}{p-1+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}$ implies

$$f(x^k) - f(x^{k+1}) \geq \left(\frac{p-1+\nu}{L_{p,\nu}} \right)^{\frac{1}{p-1+\nu}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}}. \quad (112)$$

595 For $p = 3$, choice $\theta_k = 6 \left(\frac{L_{p,\nu}}{3(p-1+\nu)} \right)^{\frac{1}{p-1+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}$ implies

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{12} \left(\frac{3(p-1+\nu)}{L_{p,\nu}} \right)^{\frac{1}{p-1+\nu}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}}. \quad (113)$$

596 And for any $p \in \{2, 3\}$ we have that $\theta_k = 6 \left(\frac{L_{p,\nu}}{3(p-1+\nu)} \right)^{\frac{1}{p-1+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}$ implies

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{12} \left(\frac{3(p-1+\nu)}{L_{p,\nu}} \right)^{\frac{1}{p-1+\nu}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{p-2+\nu}{p-1+\nu}}}. \quad (114)$$

597 \square

598 H.7 Proof of Lemma 5

599 Proof of Lemma 5. Consider any $c_2, \delta > 0$. Inequality $\theta_k \geq c_2^{\frac{1}{1+\delta}}$ implies

$$\frac{1}{\theta_k^\delta} c_2 \geq c_2 \alpha_k^\delta,$$

600 which is ensured by

$$\theta_k \geq \frac{1}{\theta_k^\delta} c_2,$$

601 or equivalently

$$\theta_k \geq c_2^{\frac{1}{1+\delta}}.$$

602 Now, choice $c_2 = c_3 \|\nabla f(x^k)\|_{x^k}^{*\delta}$ guarantees that $\theta_k \geq c_3^{\frac{1}{1+\delta}} \|\nabla f(x^k)\|_{x^k}^{*\frac{\delta}{1+\delta}}$ ensures $\theta_k \geq$
603 $c_3 \left(\alpha_k \|\nabla f(x^k)\|_{x^k}^* \right)^\delta$. \square

604 **H.8 Proof of Corollary 3**

605 *Proof of Corollary 3.* For the first part of (22), we use $\alpha_k, \nu \in [0, 1]$ to bound $\frac{1}{\theta_k^{\frac{1}{1+\nu}}} \geq \alpha_k^{\frac{1}{1+\nu}} \geq \alpha_k$
606 and

$$\frac{1}{\theta_k^{\frac{1}{1+\nu}}} 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|\nabla f(x^k)\|_{x^k}^* \geq 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \alpha_k \|\nabla f(x^k)\|_{x^k}^*.$$

607 Now, the first part of (22) is ensured by θ_k so that

$$\theta_k \geq \frac{1}{\theta_k^{\frac{1}{1+\nu}}} 6 \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{1+\nu}} \|\nabla f(x^k)\|_{x^k}^*,$$

608 or equivalently

$$\theta_k \geq \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}}.$$

609 We ensure the second part of (22) directly using Lemma 5 and together with first part we have

$$\begin{aligned} \theta_k &\geq \max \left\{ \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}}, \left(\frac{\sqrt{3} L_{3,\nu}}{(1+\nu)(2+\nu)} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}} \right\} \\ &= \left(\frac{L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}} \max \left\{ 6^{\frac{1+\nu}{2+\nu}}, \left(\frac{\sqrt{3}}{2+\nu} \right)^{\frac{1}{2+\nu}} \right\} \\ &= \left(\frac{6^{1+\nu} L_{3,\nu}}{1+\nu} \right)^{\frac{1}{2+\nu}} \|\nabla f(x^k)\|_{x^k}^{*\frac{1+\nu}{2+\nu}}. \end{aligned}$$

610 \square

611 **H.9 Proof of Lemma 2**

612 *Proof of Lemma 2.* For $0 \leq \beta \leq 1$, function $y(x) = x^\beta, x \geq 0$ is concave, which implies

$$a^\beta - b^\beta \geq \frac{\beta}{a^{1-\beta}} (a - b), \quad \forall a > b \geq 0, \quad (115)$$

613 which we will be using for $\beta \stackrel{\text{def}}{=} \frac{1}{q-1} = (0, 1]$. We rewrite functional value decrease with $f_k \stackrel{\text{def}}{=} f(x^k) - f_*$ as

$$\frac{1}{f_{k+1}^\beta} - \frac{1}{f_k^\beta} = \frac{f_k^\beta - f_{k+1}^\beta}{f_k^\beta f_{k+1}^\beta} \stackrel{(115)}{\geq} \frac{\beta(f_k - f_{k+1})}{f_k f_{k+1}^\beta} \stackrel{(14)}{\geq} \beta c_5 \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}} \frac{1}{f_k f_{k+1}^{\frac{1}{q-1}}} \quad (116)$$

$$\geq \beta c_5 \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*(2-\frac{q}{q-1})}} \frac{1}{f_k^{\frac{q}{q-1}}} \geq \frac{\beta c_5}{D^{1+\beta}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}}, \quad (117)$$

615 where in the last step we used the convexity of f in the form $f_k \leq D \|\nabla f(x^k)\|_{x^k}^*$. We can continue
616 by summing it for $k = 0, \dots, n-1$,

$$\frac{1}{f_n^\beta} - \frac{1}{f_0^\beta} \geq \frac{\beta c_5}{D^{1+\beta}} \sum_{k=0}^{n-1} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} \quad (118)$$

$$\stackrel{AG}{\geq} \frac{\beta c_5 n}{D^{1+\beta}} \left(\prod_{k=0}^{n-1} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} \right)^{\frac{1}{n}} \quad (119)$$

$$= \frac{\beta c_5 n}{D^{1+\beta}} \left(\prod_{k=1}^{n-1} \frac{\|\nabla f(x^k)\|_{x^{k-1}}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*2}} \right)^{\frac{1}{n}} \left(\frac{\|\nabla f(x^n)\|_{x^{n-1}}^*}{\|\nabla f(x^0)\|_{x^0}^*} \right)^{\frac{2}{n}} \quad (120)$$

$$\geq \frac{\gamma \beta c_5 n}{D^{1+\beta}} \left(\frac{f_n}{\|\nabla f(x^0)\|_{x^0}^* D} \right)^{\frac{2}{n}} \quad (121)$$

$$= \frac{\gamma \beta c_5 n}{D^{1+\beta}} \exp \left(-\frac{2}{n} \ln \left(\frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_n} \right) \right) \quad (122)$$

$$\geq \frac{\gamma \beta c_5 n}{D^{1+\beta}} \left(1 - \frac{2}{n} \ln \left(\frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_n} \right) \right) \quad (123)$$

617 We can bound f_n based on the size of $\frac{2}{n} \frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_n}$.

618 1. If $\frac{2}{n} \ln \left(\frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_n} \right) \geq \frac{1}{2}$, then $f_n \leq \|\nabla f(x^0)\|_{x^0}^* D \exp \left(-\frac{k}{4} \right)$.

619 2. If $\frac{2}{n} \ln \left(\frac{\|\nabla f(x^0)\|_{x^0}^* D}{f_n} \right) < \frac{1}{2}$, then

$$\frac{1}{f_n^\beta} > \frac{1}{f_n^\beta} - \frac{1}{f_0^\beta} \geq \frac{\gamma \beta c_5 n}{2D^{1+\beta}} \Leftrightarrow f_n < \left(\frac{2D^{1+\beta}}{\gamma \beta c_5 n} \right)^{\frac{1}{\beta}} = \frac{D^q (2(q-1))^{q-1}}{\gamma^{q-1} c_5^{q-1} n^{q-1}} \quad (124)$$

620 Hence

$$f_n \leq \frac{D^q (2(q-1))^{q-1}}{\gamma^{q-1} c_5^{q-1} n^{q-1}} + \|\nabla f(x^0)\|_{x^0}^* D \exp \left(-\frac{k}{4} \right). \quad (125)$$

621 \square

622 H.10 Proof of Theorem 3

623 *Proof of Theorem 3.* Cauchy-Schwartz inequality together with condition (13) in Theorem 2 imply
624 inequality

$$\|\nabla f(x^{k+1})\|_{x^k}^* \|\nabla f(x^k)\|_{x^k}^* \geq \left\langle \nabla f(x^{k+1}), [\nabla^2 f(x^k)]^{-1} \nabla f(x^k) \right\rangle \geq \frac{1}{2\alpha_k \theta_k} \|\nabla f(x^{k+1})\|_{x^k}^{*2}, \quad (126)$$

625 which together with bounded Hessian change assumption yields

$$\|\nabla f(x^k)\|_{x^k}^* \geq \frac{1}{2\alpha_k \theta_k} \|\nabla f(x^{k+1})\|_{x^k}^* \geq \frac{\gamma}{2\alpha_k \theta_k} \|\nabla f(x^{k+1})\|_{x^{k+1}}^* \geq \frac{\gamma}{2\theta_k} \|\nabla f(x^{k+1})\|_{x^{k+1}}^*. \quad (127)$$

626 This for θ_k from (12) guarantees local superlinear rate for $q > 2$. \square

627 H.11 Proof of Theorem 4

628 *Proof of Theorem 4.* Theorem 2 implies that Algorithm 1 satisfies requirements of Lemma 2 with
629 correspondent q and $c_5 = \frac{1}{2} \left(\frac{1}{9M_q} \right)^{\frac{1}{q-1}}$. The convergence rate follows. \square

630 **H.12 Proof of Lemma 3**

631 *Proof of Lemma 3.* We will prove the statement by induction. The base for σ_0 holds. For k -th
632 iteration, consider 2 cases based on the number of iterations of the inner loop.

633 1. Algorithm 2 continues after $j_k > 0$ inner iterations. Note that if θ_{k,j_k-1} satisfied (12),
634 Theorem 2 guarantees the continuation condition to be satisfied for $j_k - 1$. Consequently,
635 θ_{k,j_k-1} does not satisfy (12) for any $q \in [2, 4]$, and hence

$$\sigma_{k+1} = \frac{\theta_{k,j_k-1}}{\|\nabla f(x^k)\|_{x^k}^{*\beta}} < \inf_{q \in [2, 4]} (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}-\beta} = \mathcal{H}(x^k). \quad (128)$$

636 2. Algorithm continues after $j = 0$ iterates, then from (127) we have

$$\sigma_{k+1} = \frac{\sigma_k}{\rho} \leq \frac{1}{\rho} \mathcal{H}(x^{k-1}) \leq \frac{1}{\rho \gamma^{\frac{q-2}{q-1}}} \mathcal{H}(x^k) \leq \mathcal{H}(x^k). \quad (129)$$

637 For the total number of oracle calls N_K ,

$$N_K = \sum_{k=0}^{K-1} (1 + j_k) = K + \sum_{k=0}^{K-1} \log_\rho \frac{c\sigma_{k+1}}{\sigma_k} = 2K + \log_\rho \frac{\sigma_K}{\sigma_0} \quad (130)$$

$$\leq 2K + \log_\rho \frac{\mathcal{H}(\|x^{k-1}\|_{x^{k-1}}^*)}{\sigma_0}. \quad (131)$$

638 \square

639 **H.13 Proof of Theorem 5**

640 *Proof of Theorem 5.* Algorithm 2 sets $x^{k+1} = x_{j_k}^k$ so that

$$\langle \nabla f(x_{j_{k-1}}^k), n^k \rangle < \frac{1}{2\alpha_{k,j_{k-1}} \theta_{k,j_{k-1}}} \|\nabla f(x_{j_{k-1}}^k)\|_{x^k}^{*2}, \quad (132)$$

$$\langle \nabla f(x_{j_k}^k), n^k \rangle \geq \frac{1}{2\alpha_{k,j_k} \theta_{k,j_k}} \|\nabla f(x_{j_k}^k)\|_{x^k}^{*2}. \quad (133)$$

641 From Theorem 2 we can see that while $\theta_{k,j_{k-1}} = \theta_{k,j_k}/\rho$ does not satisfy (13) for any $q \in [2, 4]$ and
642 θ_{k,j_k} satisfies (12) for some q , therefore

$$\theta_{k,j_k} \geq (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}} \quad \exists q \in [2, 4] \quad (134)$$

$$\theta_{k,j_k} < \rho (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}} \quad \forall q \in [2, 4] \quad (135)$$

$$\theta_{k,j_k} < \rho \inf_{q \in [2, 4]} (9M_q)^{\frac{1}{q-1}} \|\nabla f(x^k)\|_{x^k}^{*\frac{q-2}{q-1}}, \quad (136)$$

643 hence estimate θ_{k,j_k} is at most constant ρ times worse than any plausible parametrization of (q, M_q) ,
644 and therefore, even the best plausible parametrization. In particular, for

$$q^* \stackrel{\text{def}}{=} \operatorname{argmin}_{q \in [2, 4]} 9M_q D \left(\frac{4D(q-1)}{\rho^2 k} \right)^{q-1} + \|\nabla f(x^0)\|_{x^0}^* D \exp \left(-\frac{k}{4} \right), \quad (137)$$

645 we have that from Theorem 2

$$f(x^k) - f(x^{k+1}) \geq \frac{1}{2\rho} \left(\frac{1}{9M_{q^*}} \right)^{\frac{1}{q^*-1}} \frac{\|\nabla f(x^{k+1})\|_{x^k}^{*2}}{\|\nabla f(x^k)\|_{x^k}^{*\frac{q^*-2}{q^*-1}}}. \quad (138)$$

646 The rest of the proof is analogous to the proof of Theorem 4. \square

647 **NeurIPS Paper Checklist**

648 **1. Claims**

649 Question: Do the main claims made in the abstract and introduction accurately reflect the
650 paper's contributions and scope?

651 Answer: [\[Yes\]](#)

652 Justification: Our paper claim new optimization framework with supplementary theory and
653 experiments.

654 Guidelines:

- 655 • The answer NA means that the abstract and introduction do not include the claims
656 made in the paper.
- 657 • The abstract and/or introduction should clearly state the claims made, including the
658 contributions made in the paper and important assumptions and limitations. A No or
659 NA answer to this question will not be perceived well by the reviewers.
- 660 • The claims made should match theoretical and experimental results, and reflect how
661 much the results can be expected to generalize to other settings.
- 662 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
663 are not attained by the paper.

664 **2. Limitations**

665 Question: Does the paper discuss the limitations of the work performed by the authors?

666 Answer: [\[Yes\]](#)

667 Justification: We detail limitations of proposed methods in the Appendix.

668 Guidelines:

- 669 • The answer NA means that the paper has no limitation while the answer No means that
670 the paper has limitations, but those are not discussed in the paper.
- 671 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 672 • The paper should point out any strong assumptions and how robust the results are to
673 violations of these assumptions (e.g., independence assumptions, noiseless settings,
674 model well-specification, asymptotic approximations only holding locally). The authors
675 should reflect on how these assumptions might be violated in practice and what the
676 implications would be.
- 677 • The authors should reflect on the scope of the claims made, e.g., if the approach was
678 only tested on a few datasets or with a few runs. In general, empirical results often
679 depend on implicit assumptions, which should be articulated.
- 680 • The authors should reflect on the factors that influence the performance of the approach.
681 For example, a facial recognition algorithm may perform poorly when image resolution
682 is low or images are taken in low lighting. Or a speech-to-text system might not be
683 used reliably to provide closed captions for online lectures because it fails to handle
684 technical jargon.
- 685 • The authors should discuss the computational efficiency of the proposed algorithms
686 and how they scale with dataset size.
- 687 • If applicable, the authors should discuss possible limitations of their approach to
688 address problems of privacy and fairness.
- 689 • While the authors might fear that complete honesty about limitations might be used
690 by reviewers as grounds for rejection, a worse outcome might be that reviewers
691 discover limitations that aren't acknowledged in the paper. The authors should use
692 their best judgment and recognize that individual actions in favor of transparency play
693 an important role in developing norms that preserve the integrity of the community.
694 Reviewers will be specifically instructed to not penalize honesty concerning limitations.

695 **3. Theory assumptions and proofs**

696 Question: For each theoretical result, does the paper provide the full set of assumptions and
697 a complete (and correct) proof?

698 Answer: [\[Yes\]](#)

699 Justification: Necessary theoretical results include further elaborations and proofs in the
700 Appendix.

701 Guidelines:

702 • The answer NA means that the paper does not include theoretical results.
703 • All the theorems, formulas, and proofs in the paper should be numbered and
704 cross-referenced.
705 • All assumptions should be clearly stated or referenced in the statement of any theorems.
706 • The proofs can either appear in the main paper or the supplemental material, but if
707 they appear in the supplemental material, the authors are encouraged to provide a short
708 proof sketch to provide intuition.
709 • Inversely, any informal proof provided in the core of the paper should be complemented
710 by formal proofs provided in appendix or supplemental material.
711 • Theorems and Lemmas that the proof relies upon should be properly referenced.

712 4. Experimental result reproducibility

713 Question: Does the paper fully disclose all the information needed to reproduce the
714 main experimental results of the paper to the extent that it affects the main claims and/or
715 conclusions of the paper (regardless of whether the code and data are provided or not)?

716 Answer: [\[Yes\]](#)

717 Justification: All the numerical results are reproducible and necessary procedures with
718 instructions are provided.

719 Guidelines:

720 • The answer NA means that the paper does not include experiments.
721 • If the paper includes experiments, a No answer to this question will not be perceived
722 well by the reviewers: Making the paper reproducible is important, regardless of
723 whether the code and data are provided or not.
724 • If the contribution is a dataset and/or model, the authors should describe the steps taken
725 to make their results reproducible or verifiable.
726 • Depending on the contribution, reproducibility can be accomplished in various ways.
727 For example, if the contribution is a novel architecture, describing the architecture fully
728 might suffice, or if the contribution is a specific model and empirical evaluation, it may
729 be necessary to either make it possible for others to replicate the model with the same
730 dataset, or provide access to the model. In general, releasing code and data is often
731 one good way to accomplish this, but reproducibility can also be provided via detailed
732 instructions for how to replicate the results, access to a hosted model (e.g., in the case
733 of a large language model), releasing of a model checkpoint, or other means that are
734 appropriate to the research performed.
735 • While NeurIPS does not require releasing code, the conference does require all
736 submissions to provide some reasonable avenue for reproducibility, which may depend
737 on the nature of the contribution. For example
738 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
739 to reproduce that algorithm.
740 (b) If the contribution is primarily a new model architecture, the paper should describe
741 the architecture clearly and fully.
742 (c) If the contribution is a new model (e.g., a large language model), then there should
743 either be a way to access this model for reproducing the results or a way to reproduce
744 the model (e.g., with an open-source dataset or instructions for how to construct
745 the dataset).
746 (d) We recognize that reproducibility may be tricky in some cases, in which case
747 authors are welcome to describe the particular way they provide for reproducibility.
748 In the case of closed-source models, it may be that access to the model is limited in
749 some way (e.g., to registered users), but it should be possible for other researchers
750 to have some path to reproducing or verifying the results.

751 5. Open access to data and code

752 Question: Does the paper provide open access to the data and code, with sufficient
753 instructions to faithfully reproduce the main experimental results, as described in
754 supplemental material?

755 Answer: [Yes]

756 Justification: We provide links to public datasets used for experiments and an anonymous
757 link to code necessary to reproduce the results.

758 Guidelines:

- 759 • The answer NA means that paper does not include experiments requiring code.
- 760 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 761 • While we encourage the release of code and data, we understand that this might not be
762 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
763 including code, unless this is central to the contribution (e.g., for a new open-source
764 benchmark).
- 765 • The instructions should contain the exact command and environment needed to run to
766 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 767 • The authors should provide instructions on data access and preparation, including how
768 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 769 • The authors should provide scripts to reproduce all experimental results for the new
770 proposed method and baselines. If only a subset of experiments are reproducible, they
771 should state which ones are omitted from the script and why.
- 772 • At submission time, to preserve anonymity, the authors should release anonymized
773 versions (if applicable).
- 774 • Providing as much information as possible in supplemental material (appended to the
775 paper) is recommended, but including URLs to data and code is permitted.

776 6. Experimental setting/details

777 Question: Does the paper specify all the training and test details (e.g., data splits,
778 hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
779 the results?

780 Answer: [Yes]

781 Justification: Detailed description of experimental setup is provided.

782 Guidelines:

- 783 • The answer NA means that the paper does not include experiments.
- 784 • The experimental setting should be presented in the core of the paper to a level of detail
785 that is necessary to appreciate the results and make sense of them.
- 786 • The full details can be provided either with the code, in appendix, or as supplemental
787 material.

788 7. Experiment statistical significance

789 Question: Does the paper report error bars suitably and correctly defined or other appropriate
790 information about the statistical significance of the experiments?

791 Answer: [Yes]

792 Justification: All reported numerical results use multiple seeds and error bars are included
793 in all plots.

794 Guidelines:

- 795 • The answer NA means that the paper does not include experiments.
- 796 • The authors should answer “Yes” if the results are accompanied by error bars,
797 confidence intervals, or statistical significance tests, at least for the experiments that
798 support the main claims of the paper.
- 799 • The factors of variability that the error bars are capturing should be clearly stated (for
800 example, train/test split, initialization, random drawing of some parameter, or overall
801 run with given experimental conditions).

804 • The method for calculating the error bars should be explained (closed form formula,
 805 call to a library function, bootstrap, etc.)
 806 • The assumptions made should be given (e.g., Normally distributed errors).
 807 • It should be clear whether the error bar is the standard deviation or the standard error
 808 of the mean.
 809 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 810 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 811 of Normality of errors is not verified.
 812 • For asymmetric distributions, the authors should be careful not to show in tables or
 813 figures symmetric error bars that would yield results that are out of range (e.g. negative
 814 error rates).
 815 • If error bars are reported in tables or plots, The authors should explain in the text how
 816 they were calculated and reference the corresponding figures or tables in the text.

817 **8. Experiments compute resources**

818 Question: For each experiment, does the paper provide sufficient information on the
 819 computer resources (type of compute workers, memory, time of execution) needed to
 820 reproduce the experiments?

821 Answer: **[Yes]**

822 Justification: Technical details of experimental setup is provided in Appendix.

823 Guidelines:

824 • The answer NA means that the paper does not include experiments.
 825 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 826 or cloud provider, including relevant memory and storage.
 827 • The paper should provide the amount of compute required for each of the individual
 828 experimental runs as well as estimate the total compute.
 829 • The paper should disclose whether the full research project required more compute
 830 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 831 didn't make it into the paper).

832 **9. Code of ethics**

833 Question: Does the research conducted in the paper conform, in every respect, with the
 834 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

835 Answer: **[Yes]**

836 Justification: Research in this paper complies with the NeurIPS Code of Ethics.

837 Guidelines:

838 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 839 • If the authors answer No, they should explain the special circumstances that require a
 840 deviation from the Code of Ethics.
 841 • The authors should make sure to preserve anonymity (e.g., if there is a special
 842 consideration due to laws or regulations in their jurisdiction).

843 **10. Broader impacts**

844 Question: Does the paper discuss both potential positive societal impacts and negative
 845 societal impacts of the work performed?

846 Answer: **[NA]**

847 Justification: Proposed methods do not have foreseeable societal impact.

848 Guidelines:

849 • The answer NA means that there is no societal impact of the work performed.
 850 • If the authors answer NA or No, they should explain why their work has no societal
 851 impact or why the paper does not address societal impact.
 852 • Examples of negative societal impacts include potential malicious or unintended uses
 853 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
 854 (e.g., deployment of technologies that could make decisions that unfairly impact specific
 855 groups), privacy considerations, and security considerations.

856 • The conference expects that many papers will be foundational research and not tied
 857 to particular applications, let alone deployments. However, if there is a direct path to
 858 any negative applications, the authors should point it out. For example, it is legitimate
 859 to point out that an improvement in the quality of generative models could be used to
 860 generate deepfakes for disinformation. On the other hand, it is not needed to point out
 861 that a generic algorithm for optimizing neural networks could enable people to train
 862 models that generate Deepfakes faster.
 863 • The authors should consider possible harms that could arise when the technology is
 864 being used as intended and functioning correctly, harms that could arise when the
 865 technology is being used as intended but gives incorrect results, and harms following
 866 from (intentional or unintentional) misuse of the technology.
 867 • If there are negative societal impacts, the authors could also discuss possible mitigation
 868 strategies (e.g., gated release of models, providing defenses in addition to attacks,
 869 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
 870 feedback over time, improving the efficiency and accessibility of ML).

871 **11. Safeguards**

872 Question: Does the paper describe safeguards that have been put in place for responsible
 873 release of data or models that have a high risk for misuse (e.g., pretrained language models,
 874 image generators, or scraped datasets)?

875 Answer: [NA]

876 Justification: Not Applicable.

877 Guidelines:

- 878 • The answer NA means that the paper poses no such risks.
- 879 • Released models that have a high risk for misuse or dual-use should be released with
 880 necessary safeguards to allow for controlled use of the model, for example by requiring
 881 that users adhere to usage guidelines or restrictions to access the model or implementing
 882 safety filters.
- 883 • Datasets that have been scraped from the Internet could pose safety risks. The authors
 884 should describe how they avoided releasing unsafe images.
- 885 • We recognize that providing effective safeguards is challenging, and many papers do
 886 not require this, but we encourage authors to take this into account and make a best
 887 faith effort.

888 **12. Licenses for existing assets**

889 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
 890 the paper, properly credited and are the license and terms of use explicitly mentioned and
 891 properly respected?

892 Answer: [Yes]

893 Justification: We properly cite authors of public data and models that were used for
 894 experiments.

895 Guidelines:

- 896 • The answer NA means that the paper does not use existing assets.
- 897 • The authors should cite the original paper that produced the code package or dataset.
- 898 • The authors should state which version of the asset is used and, if possible, include a
 899 URL.
- 900 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 901 • For scraped data from a particular source (e.g., website), the copyright and terms of
 902 service of that source should be provided.
- 903 • If assets are released, the license, copyright information, and terms of use in the package
 904 should be provided. For popular datasets, paperswithcode.com/datasets has
 905 curated licenses for some datasets. Their licensing guide can help determine the license
 906 of a dataset.
- 907 • For existing datasets that are re-packaged, both the original license and the license of
 908 the derived asset (if it has changed) should be provided.

909 • If this information is not available online, the authors are encouraged to reach out to
910 the asset's creators.

911 **13. New assets**

912 Question: Are new assets introduced in the paper well documented and is the documentation
913 provided alongside the assets?

914 Answer: [NA]

915 Justification: This work does not propose new assets.

916 Guidelines:

917 • The answer NA means that the paper does not release new assets.
918 • Researchers should communicate the details of the dataset/code/model as part of their
919 submissions via structured templates. This includes details about training, license,
920 limitations, etc.
921 • The paper should discuss whether and how consent was obtained from people whose
922 asset is used.
923 • At submission time, remember to anonymize your assets (if applicable). You can either
924 create an anonymized URL or include an anonymized zip file.

925 **14. Crowdsourcing and research with human subjects**

926 Question: For crowdsourcing experiments and research with human subjects, does the paper
927 include the full text of instructions given to participants and screenshots, if applicable, as
928 well as details about compensation (if any)?

929 Answer: [NA]

930 Justification: Not Applicable.

931 Guidelines:

932 • The answer NA means that the paper does not involve crowdsourcing nor research with
933 human subjects.
934 • Including this information in the supplemental material is fine, but if the main
935 contribution of the paper involves human subjects, then as much detail as possible
936 should be included in the main paper.
937 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
938 or other labor should be paid at least the minimum wage in the country of the data
939 collector.

940 **15. Institutional review board (IRB) approvals or equivalent for research with human
941 subjects**

942 Question: Does the paper describe potential risks incurred by study participants, whether
943 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
944 approvals (or an equivalent approval/review based on the requirements of your country or
945 institution) were obtained?

946 Answer: [NA]

947 Justification: Not Applicable.

948 Guidelines:

949 • The answer NA means that the paper does not involve crowdsourcing nor research with
950 human subjects.
951 • Depending on the country in which research is conducted, IRB approval (or equivalent)
952 may be required for any human subjects research. If you obtained IRB approval, you
953 should clearly state this in the paper.
954 • We recognize that the procedures for this may vary significantly between institutions
955 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
956 guidelines for their institution.
957 • For initial submissions, do not include any information that would break anonymity (if
958 applicable), such as the institution conducting the review.

959 **16. Declaration of LLM usage**

960 Question: Does the paper describe the usage of LLMs if it is an important, original, or
961 non-standard component of the core methods in this research? Note that if the LLM is used
962 only for writing, editing, or formatting purposes and does not impact the core methodology,
963 scientific rigorosity, or originality of the research, declaration is not required.

964 Answer: [NA]

965 Justification: Not Applicable.

966 Guidelines:

967 • The answer NA means that the core method development in this research does not
968 involve LLMs as any important, original, or non-standard components.

969 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

970