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Abstract

This paper investigates the global convergence of stepsized Newton methods for
convex functions with Holder continuous Hessians or third derivatives. We propose
several simple stepsize schedules with fast global convergence guarantees, up
to O (kz_?’). For cases with multiple plausible smoothness parameterizations
or an unknown smoothness constant, we introduce a stepsize linesearch and a
backtracking procedure with provable convergence as if the optimal smoothness
parameters were known in advance. Additionally, we present strong convergence
guarantees for the practically popular Newton method with exact linesearch.

1 Introduction

Second-order methods are fundamental to scientific computing. With its rich history that can be traced
back to works Newton| (1687), Raphson| (1697), (Simpson,|1740), they have remained widely used up
to the present day (Ypmal [1995}|Conn et al., 2000). The main advantage of second-order methods
is their independence from the conditioning of the underlying problem, enabling an extremely fast
local quadratic convergence rate, where precision doubles with each iteration. Additionally, they
are inherently invariant to rescaling and coordinate transformations, which greatly simplifies their
implementation. In contrast, the convergence of first-order methods is highly dependent on the
problem’s conditioning, resulting in a slower linear convergence rate and a greater sensitivity to
parameter choice. Despite their natural geometry and extremely fast local convergence, second-order
methods often lack global convergence guarantees. Even the classical Newton method,

PP = 2b - [V2F ()] T V), (1)

can diverge when initialized far from the solution (Jarre & Toint, 2016; | Mascarenhas, |2007). Global
convergence guarantees are typically achieved through various combinations of stepsize schedules
(Nesterov & Nemirovski, |1994), line-search procedures (Kantorovich, [1948; |[Nocedal & Wright,
1999), trust-region methods (Conn et al.,[2000), and Levenberg-Marquardt regularization (Levenberg|
1944; Marquardt, |1963).

The simplest globalization strategy is to employ stepsize schedules «y,
: -1
"= ok — oy [VEf(M)] T V(@), )

often based on implicit descent conditions, requiring an additional subroutine per iteration, such as
exact linesearch (Cauchy, |1847;|Shea & Schmidt, |[2024a), Armijo linesearch (Armijo, |1966)), Wolfe
condition (Wolfe} 1969), Goldstein condition (Nocedal & Wright,|1999). However, those methods
often lack global convergence guarantees achieved by simple stepsize schedules. Notably, Nesterov &

Nemirovski| (1994) introduced a damped stepsize schedules with global rate O (k’%) .[Hanzely et al.
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(2022) improved this result by discovering duality between Lavenberg-Marquardt regularization and
Newton stepsizes and proposing a stepsize with global rate O (k’Q) matching regularized Newton
methods (Nesterov & Polyak, |[2006; [Mishchenkol [2023}; |Doikov & Nesterov, [2024).

Despite recent advances, existing guarantees still fall short of the optimal rate €2 (k_ %) for functions

with Holder-continuous Hessians (Gasnikov et al.,[2019; |Agarwal & Hazan| 2018} |Arjevani et al.,
2019), leaving open the question of whether more efficient step-size schedules remain to be
discovered.

In the context of first-order methods, several nontrivial step-size schedules are known to improve
the convergence of Gradient Descent. |Young| (1953) introduced a Chebyshev polynomial-based
schedule that attains the optimal rate for quadratic objectives. [Polyak| (1987) proposed a schedule
that is optimal for nonsmooth convex functions, and |Altschuler & Parrilo| (2023)); |Grimmer et al.
(2024)) developed schedules achieving semi-accelerated rates for general convex, Lipschitz-smooth
objectives. These results naturally prompt the question of whether improved stepsize schedules for
Newton’s method can be found.

We answer this positively. We show that a stepsized Newton method can be analyzed under an
alternative assumption — Holder continuity of the third derivatives — yielding convergence guarantees
reminiscent of third-order tensor methods, up to (’)(k_3)[ﬂ Analyzing Newton’s method through
assumptions on third derivatives is, to the best of our knowledge, a novel and somewhat unexpected
perspective, given that Newton’s method is typically viewed as the canonical second-order method.

1.1 Benefits of simple methods

While it is possible to achieve optimal rates using acceleration techniques with a more complex
structure (Gasnikov et al.| | 2019), simple methods are often preferred in practice for several reasons.

Firstly, they are simple and easy to understand. They are also inherently robust, typically
involving fewer hyperparameters, which minimizes the need for complex and costly hyperparameter
tuning. In contrast, accelerated methods often require multiple sequences of iterates and additional
hyperparameters, significantly increasing the complexity of tuning.

Moreover, basic methods can be seamlessly integrated with various techniques to enhance practical
performance, such as parameter searches, data sampling strategies, momentum estimation, and
gradient clipping. Combining these techniques with accelerated methods, however, introduces
significant challenges. In the context of first-order methods, acceleration with parameter searches
provides limited improvement over Gradient Descent with stepsize linesearch (Shea & Schmidt,
2024b}; |[Fox & Schmidt, 2024).

For second-order methods, the stepsized Newton method is popular due to its affine invariance (i.e.,
invariance to changes in basis and scaling), making it an efficient and convenient optimization tool.

1.2 Notation
For convex function f : R* — R, we consider the optimization objective

i () 3)

where f is twice differentiable with nondegenerate Hessians that is potentially ill-conditioned. We

L . . . def
denote any minimizer of the function as z* € argmin,ga f () and the optimal value f, = f(z*).
We define norms based on a symmetric positive definite matrix H € R%*?, For all z, g € R,

def 1/2 o def 10172
e < (Fz )2 gl < (o, M)
As a special case H = I, we get 5 norm ||z|]; = (z, x>1/2. We will be utilizing local Hessian norm
H = V2 (), with a shorthand notation |||, & 1B/l g2 £ (ys 9l = 191192 5 (ay for i, g € R

"Under Holder continuity of third derivatives, the attainable lower bound is 2 (k_s) (Gasnikov et al.,|2019).



72
73

74

75

76
77
78
79

80

81

82
83
84
85
86
87

88
89

90
91

92

93
94
95
96
97

98
99

For the Hessians and third derivatives we will be measuring them in an operator norm. Given the
iterate x, operator norm of matrix H and three dimensional tensor T are defined as

H ”Hy” def T[y, 2, w]|
Hl,,, 1T, = sup T
@ [lyll, yzwerd [[Yll4112ll g llwll,
In this work, we use these operator norms exclusively with z = z¥ and y = 2z = w = 2*+! — 2*,

1.3 Stepsizes as a form of regularization

Hanzely et al.| (2022) demonstrated that a stepsize schedule for the Newton method is equivalent
to cubical regularization of the Newton method (Nesterov & Polyak} 2000) if the regularization
is measured in the local Hessian norms. As the regularized Newton methods leverage the Taylor
polynomial, we denote the second-order Taylor approximation of f(y) by information at point x as

@uy) (@) + (VI @)y~ a)+ gy — a2

def . g
=T, T() S axgmin {@,(y) + Ty - 22}

yeR4

is equivalent to a Newton method with stepsize AICI\E]

aF = ok — 0 V2 F ()] TV f(2R), for o, = 2 . )]

141+ 20V f(ab)

Note that stepsize schedule (@) preserves much larger stepsize when initialized far from the solution,
||V f(z%) ||;0 > 1, compared to the stepsize of Damped Newton method (Nesterov & Nemirovskil

1994), which sets stepsize for L.-self-concordant functions as o, = Aiming to

1
I+ LoV F(@F)I,
extend these results beyond Ly ;-Holder continuous functions (Definition E[) in Section E] we present
algorithm RN that under general L, ,-Holder continuity (Def|l) and ¢ = p + v € [2,4] supports
stepsize oy, = =z matching AICN’s asymptotic dependence on gradient
1+(9Lp,v) 1 HVf(r’“)II
norm and smoothness constant (for L271-H01der continuous functions, ¢ = 3) and constant stepsizes
of [Karimireddy et al.|(2018b); Gower et al.|(2019a)) (for L, o-Hdlder continuous functions, g = 2).

Remark. Stepsized Newton methods often enjoy much simpler analysis compared to Newton methods
regularized in lo norms, as they can seamlessly transition between gradients and model differences,

o+ o) @ [0 ?

1.4 Higher order of regularization

Extending cubic regularization (Nesterov & Polyakl 2006)), tensor methods achieve better convergence
guarantees by regularizing p-th order Taylor approximations by (p + 1)-th order regularization (see
survey in Kamzolov et al.|(2023)). In particular, for third-order tensor methods, Nesterov| (2021)
showed that regularization can avoid computation of third-order derivatives, and|Doikov et al.| (2024)
simplified this regularization using technique of Mishchenko|(2023) to

. g
P =T(h),  where T(x) = argmin { @, (y) + 7y — 2SIV @IS}, ©)
yeRd 2

for 5,0 > 0. Combining insights about higher-order regularization with the regularization-stepsize
duality of Hanzely et al.|(2022)), we show that the higher-order regularization in local norms

SRl T, (.Z‘k> , where T, (IIJ) = argmin {(I) ( ) + 27”19 - ||2+/3} @)
yER? +h

71+./1+20'||Vf(mk)”;k

o[vi@R)[]7

ZHanzely et al.[(2022) expressed the stepsize as ay, = , we simplified this form.
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Table 1: Global convergence guarantees of stepsized Newton methods under various notions of Holder
continuity (Definition . For simplicity, we report dependence only on the number of iterations k.

Stepsize for  Smoothness

Stepsize schedule 0 def IV @) assumption Global rate Reference
Damped Newton B T L. o (k’%)“’ (Nesterov & Nemirovski, [1994)"
AICN H\/ﬁ @ Lo O (k*Q) (Hanzely et al.i2022)7
(algorithm[]) = R (ko) (Theoremi)
GRLS (1) Linesearched (unﬁg;’\; ?1) min, , O (k_(p*'”_l))“" (gcl)lri;lfz:(r);
(AlgoLrJi,t\lhm Backtracked (unl%gg;;r)l) miny,, O ("37(””71))‘3) (%llgirvzr(;r
Greed&})ewton Linesearched (unﬁggw(g 1;) min, , O (k—(p-h/_l))(%) Rate: Cs:;}i;(;;e (new)

© Constant Ly, represents self-concordance constant and is implied by L, ;-Holder continuity.

) Authors show global decrease f(z*') < f(z*) — ¢ for some ¢ > 0. Rate O(k~ 2 ) is reported in [Hanzely
et al.| (2022)), but we were unable to find or prove or the rate for Damped Newton B of the form O (k™).
—1+4/1+L2 192
L2192
© Parameters p, v are fixed and satisfy p € {2,3},v € [0,1]andp +v — 1 € [1, 3].

@ Authors expressed the stepsize as , we present a simplified equivalent form.

is equivalent to a Newton method with stepsize o, € (0, 1], and «v;, is the unigue positive root of the

polynomial P[] &1 — o — a1 +# o||V f(z*) Hz[: Even though the polynomial P lacks an explicit
formula for its roots, we derive algorithm RN with a simple and exactly computed stepsize.

This method can leverage similarity of the third-derivatives similarly to Nesterov| (2021, Lemma 3).
Lemma 1. Let function f : R? — R be third-order L3 ,-Holder continuous (Definition . Then

1
3 k[ kL k12| Law N\ 0 kw1 k)2 ko k+1 d
||Vf(:r )z —x]HkSZ — Ha: —JIHk V", x" € R
Notably, formulation (7)) is very general, and it also encapsulates all polynomial upper bounds of
polynomials P[||z — y|| ] with smaller exponents. We refer the reader for more details to Appendix |F

1.5 Contributions

We summarize our contributions below, with detailed comparison to the most relevant literature
discussed in Section[1.6]

* Newton method under third-order tensor similarity:
We analyze the stepsized Newton method for functions with Holder continuous third-derivatives
(Definition E]) connecting the classical second-order Newton method to third-order tensor methods.

» Simple stepsizes for fast global convergence:
We propose multiple stepsize schedules for the Newton method (RN, Algorithm 1)), leveraging
various Holder continuity assumptions (Definition[I). Although the stepsize is chosen to be a root
of a non-quadratic polynomial, it is surprisingly simple and directly computable.
Depending on the considered variant of the Holder continuity assumption, they achieve a global
convergence rate up to O (k"3 ) (Thm |§J) These are the first Newton method stepsizes improving
upon the rate O (k:’Q) of Hanzely et al.|(2022). Additionally, we establish the following rates:
— alocal superlinear convergence rate (Theorem 3),
— a global linear convergence (Theorems 8] [9) under additional assumption of finite s-relative

size (Deﬁnition (Doikov et al., [2024),
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— and a global superlinear convergence (Theorem [7) under the additional assumption of uniform
star-convexity (Definition [3) of degree s > 2.

* Stepsize linesearches for unknown parameters:
In practice, smoothness constants are often unknown, requiring approximation or fine-tuning. To
address this, we introduce a theoretical linesearch procedure GRLS and a practical stepsize
backtracking method UN (Algorithm 22, both of which provably converge as if the optimal
parameterization was known in advance (Corollary [T Theorem [5).

* Guarantees for popular Newton linesearch:
As a byproduct of our analysis, we obtain convergence guarantees for the popular Newton method
with greedy linesearch (I8) (Col[2] Thm[7). This is, to our best knowledge, the first such result.

* Experimental comparison:
In Section[5} we compare the proposed algorithms (RN, UN, and GRLS) with existing methods and
demonstrate that they outperform their counterparts in most of the considered scenarios. Also, we
show that the linesearch procedure GRLS resemble stepsizes of popular Greedy Newton linesearch.

1.6 Detailed comparison to the most relevant literature

Our theoretical framework builds on several insights from [Hanzely et al.| (2022) and |Doikov et al.
(2024). We now outline the key differences between these approaches and ours.

Compared to our approach, the AICN method of Hanzely et al. (2022) is restricted to cubic
regularization and achieves only an O (kfz) convergence rate. In contrast, our schedules
accommodate a broader range of smoothness notions, including Holder continuity of the third
derivative, enabling Algorithm to achieve rates up to O (k3). Moreover, while AICN requires
prior knowledge of the smoothness constant, our backtracking linesearch Algorithm [2| provably
converges as if the optimal parametrization were known in advance.

Furthermore, while cubic regularization inHanzely et al.|(2022) lead to the stepsize defined as the
root of a quadratic polynomial, higher-order regularizations require a stepsize given by a root of
a higher-order polynomial. Surprisingly, we show that even with higher-order regularization there
exists a unique positive root in the interval (0, 1], and we propose algorithms (Algorithm |1| and
Algorithm [2) that can operate without any additional linesearch.

In comparison to [Doikov et al.| (2024), which utilizes standard s norms for regularization, our
approach employs the local Hessian norms suggested by Hanzely et al.|(2022). With local norms,
the minimizers of the various regularization models lie on the same line, providing a natural
geometric connection between different regularizations. Local norms also yield a simpler algorithm
that is invariant under linear transformations (e.g., data scaling or change of basis), a highly practical
property that reduces hyperparameter tuning.

From a technical point of view, although our proofs draw on techniques from |Doikov et al.|(2024)),
they cannot be directly adapted to the setting of local norms. The main difficulty is that the stepsize
«, appears raised to the power 1 + 3, which propagates nontrivially throughout the analysis and
complicates adaptation. Our key insight is a reparametrization (line 141) in which a single implicit
parameter 6 encapsulates both 5 and o. This reparametrization allows us to recover a proof structure
similar to that of |Doikov et al.[(2024)) while avoiding direct manipulations of a,lfﬂ .

We also emphasize that our results provide a theoretical explanation for the success of popular stepsize
linesearch rules along the Newton direction. These insights have implications well beyond our newly
proposed methods. By contrast, the results of |Doikov et al.| (2024) do not offer a new theoretical
explanation for any already established method.

2 Novel stepsize schedule

Now we are ready to present our new stepsize schedule based on the higher-order regularization.

Theorem 1. For any o, 3 > 0, the following adjustments of the Newton method are equivalent:
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Regularization: a*t = 2% + argmin T, 5 (:Tk) ) ®
y€R4
Damping: gFtt = zF — o [V2f($k)]71vf(xk)a ©

where Ty 5 (x) = argmin,cga {(Dx(y) + 3%5lly — x||i+ﬂ} and o, € (0,1] is the only

Zf We call this algorithm

positive root of polynomial Pla] Yy _ a0 al“‘ﬁaHVf(xk)
Root Newton (RN), Algorithm

To simplify calculations, we reparametrize the RN as 6 &f aPo||Vf (x)H;ﬁ , where 6 > 0 is an

implicitly defined regularization constant. Using 6, the polynomial P simplifies to Py[a] = 1—a—af
and for any fixed 6, the stepsize defined as o« = ﬁ is the positive root of P». For a given iterate
x, (and fixed § and o), 6 and « are in one-to-one correspondence via Py (specifying either 6 or «

uniquely determines the other), so every admissible 6 corresponds to a valid a.

2.1 Holder continuity assumption

Our analysis rely on assumption that the function has Holder continuous Hessian or third derivative.

Definition 1. For f : R? — R, and p € N, we say that p-times differentiable convex function is
Holder continuous of p-th order, if for some v € [0, 1] there exists a constant L,, ,, < 00, so that

IV (@) = V2 FW)llop < Lpwllz —yly, Yo,y €RY (10)

We say that the f has Holder continuous Hessian if Ly, < oo (for some v € [0, 1]) and Hélder
continuous third derivative if L3 ,, < oo (for some v € [0, 1]).

We would like to emphasize that Definition[I]is extremely general; the most general assumption for
analysis of Newton methods. In particular, choice Lj ¢ covers standard Lipschitz smoothness, L3 o
covers constant bound on the third derivative, and L ; is equivalent the semi-strong self-concordance
(Hanzely et al.,[2022)). Further discussion of smoothness constants can be found in Appendix [E] We
will use the properties of the Holder continuity summarized in the proposition below.

Proposition 1. L, ,-Hélder continuous functions satisfy

IVf(y) — V(@) - V2f(@)ly - 2]||] < 222|ly — | 1.

L3 ,,-Holder continuous functions satisfy

* L3u 2+v
<—F"F—Jly—=x .
i (1+V)(2+V)Hy [

[95w) = V5@ - V2@ ly — 2] = 59 @)ly - P

Holder continuity assumption with a sufficiently large regularization 6, implies (for ¢; € {1,2})

1
> -
T 2¢1(1 —ay)

*2

(V). (921 @N)] TV ER) VsG],

which will in turn imply the one-step decrease as
F(ab) = F@HY) = = (V@) 80— k) = (T, ar [V2FEN)] T 9 AE")
(6% k41 *2 1
> -
- 201(1—(rk)|‘vf(x )

= ||V
Due to the level of technical detail, we defer lemmas for cases p € {2,3} to Appendix We

e (11)

¥ 2¢10;,
def

. C N def
directly present their unification via reparametrization ¢ = p + v € [2,4], M, = L, ..

Theorem 2. Let |V f(z)|| > 0. Hélder continuity (Deﬁnition withp € {2,3},v € [0,1]
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and q = p + v for points ¥, z*+1 = ok — oy [V f(2F)] - V f(z*), where o, is the positive
root of Py, . For 0y, such that

O > (M) | V(2| 2 (12)

holds

*2

L

(VHEY, [V2F@H)] T VEER)

va(wk-&-l)

13
2()41«:9]@ ( )

g=2
In particular, in view of (I1), we have that the choice 0, = (9Mq)q%1 ||Vf(:z:k3)HZ,‘f1
guarantees decrease

(14)

1 *2
o)~ faty 2 2 (2 )T IV
o v

Theorem 2] quantifies the amount of regularization 6 needed for guaranteed decrease, leading to RN.

Algorithm 1 RN: Root Newton stepsize schedule

1: Requires: Initial point 2° € R¢, Holder continuity exponent ¢ € [2, 4] and constant M, < oo.
2: fork=0,1,2... do

3 nkf=[V2f(ah)] V(R > Newton direction
1 *
4 g =(Vf(*),n")? > gi = V(")
g=2

5: 0 = (qu)ﬁ gt > Sufficient regularization
6: Ok = 5o > v, is the root of Py, [o!]
7. 2Pl =2k —apnt > Step, 2* = T,,, 5 (z¥)
8: end for

2.2 Convergence garantees of RN

We will utilize the standard assumption that the diameter of the initial level set is finite.

Denote the initial level set Q(z°) & {zeR?: f(z) < f(2°)} and its diameter as D &f

SUp, yeo(z0) 17 — yll,- Additionally, we need the Hessian not to change much between iterations.

Assumption 1. For the sequence {xk}io:l there exists a constant v > 0 bounding Hessian of the
[V rH]|7%

IV D)5 5y

consecutive points in gradient direction, y <

This assumption is not novel, its variant has been used in|Hanzely et al.|(2022) for establishing local
convergence as well as for analysis of quasi-Newton methods. Required y exists in many cases. For
L-smooth p-strongly convex functions, v = %. For functions with ¢-stable Hessian (Karimireddy
et al., 2018al), v = ¢. For Ly.-self-concordant functions, it holds when iterates are close to each other

(Nesterov & Nemirovski, [1994) or in the neighborhood of the solution (see proposition below).

Proposition 2 (Hanzely et al.|(2022), Lemma 4). For convex Lg.-self-concordant function f and
* ] 2_ _
iterate x* such that ||V f (z*)||”, < %# it holds V2 f (z*+1) ™1 < (1 — ¢y) 2 V2 f(2F) L.

zk —

With assumptions clarified, we can jump straight to the convergence guarantees. First, we present
superlinear local rate, which is expected for the stepsized Newton method.

Theorem 3. Let function f : RY — R be convex, Holder continuous for p € {2,3},v €
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[0,1], ¢ = p + v with y-bounded Hessian change (T). Algorithmhas a superlinear local rate,

|*(2—ﬁ)
zk .

V£ ()

* 2 _1
ot S 2 (9My) T ||V f(z*)

For the L ;-Holder continuous functions, the presented rate is suboptimal compared to quadratic rate
of AICN schedule {@). However, the rate of Theorem [3|holds for any ¢, and its exponent increases
with ¢ (up to 5/3 for g = 4).

For global convergence guarantees, we first quantify in general the decrease implied by Theorem [2]
This will provide plug-in guarantees for the RN and other algorithms.

Lemma 2. Let function f : R? — R be convex with y-bounded Hessian change (1)) and the bound

level sets with diameter D. If an algorithm A generates the iterates {xk } w_1 With one-step decrease
forq>2andcs > 0as

2

V (k! *

R

fla®) = f@h) = e (15)
IVF@R)
—1 «
then A has the global convergence rate f(x*) — f. < D (%)q + HVf(mO) xoDe_K/‘l.

Theorem 4. Let function f : R® — R be convex, Holder continuous for p € {2,3},v €
[0,1], ¢ = p + v with y-bounded Hessian change (1)) and the bound level sets with diameter

D < oo. Algorithm|I|(RN) with known parameters q, My converges with rate O (12137,[):) as

4D(qg—1

q—1
)~ £ <90 (LUZD) 4 950 Db,

Algorithm RN also achieves global linear and superlinear convergence rates under different
assumptions. Due to the space constraints, we deferred these results to Appendix [B]

Note that the loss function can satisfy Holder continuity (Deﬁnition with multiple different L, ,,,
and therefore different pairs (g, M) can be used. The best parametrization might not be known.

3 Unknown parametrization

To address unknown parameterization, we propose finding iterate maximizing the bound (T3) directly,
k
— X
il = argmin 7f(y) f(*z ) ,

(16)
ye{z—omzk |o¢€[0,1]} ||Vf(y) ngk

where n, & [V2f(x)]"'V f(x) is a shorthand for Newton’s direction at point x. We call this

algorithm Gradient-Regulated Line Search (GRLS, Algorithm [4). Interestingly, this linesearch
simultaneously minimizes loss and gradient norms. Its rate follows directly from Lemma[2]

Corollary 1. Let function f : R* — R, be convex, Holder continuous with some M, < oo, with
~-bounded Hessian change (1), and the bound level sets with diameter D < oo. Linesearch GRLS

g—1 %
converges as f(z*) — f. < mingep 4 9M,D (%) + HVf(xO) |$ODe_k/4.

k+1 k

Observe that for small stepsizes a, € [0, @], for some @ < 1, model differences are small "' ~ z
and V f(z*) =~ V f(2**1). Therefore, expression (T6) minimized by GRLS can be approximated as

fly) = &%) fly) — f(a") (17
*2 *2 )
IVFWae IVFER)
and the right-hand-side is minimized by the popular Newton method with greedy linesearch,
= argmin f(y), (1)

yE{wk—an$k |(x€[0,1]}



234
235
236
237

239
240
241

242

243
244

245
246

247
248
249
250
251

252

254
255
256

257

258

Algorithm 2 UN: Universal stepsize backtracking procedure for the Newton method

1: Input: Initial point z° € R?, constants og > 0,p > 1,p >~v~3,8 € [2,1]

> Note 5 > g:—f,pzfy_g%? for g € [2,4]

2: fork=0,1,2... do
3 nk = [VQf(xk)] -1 Vf(zh) > Newton direction
1 *
4 ge=(V/f(ah),n")? > g = ||V F )],
5: for j, =0,1,2... do
6 Ok jp = p7* qk g,f > Increase regularizati.on
7 Ak g, = TF0r;, > Update stepsize
8 x?k =z — (},;‘,;.jl\,nk ) > Step, x;ck = Lpikoy,Br (xk)
. k k 1 E|*

. k+1 _ .k
10: T = xjk
11: Oky1 = p]k_lak
12: break
13: end if
14: end for
15: end for

which we will call Greedy Newton (GN). Our experimental evaluations will demonstrate that
linesearches GN and GRLS use similar stepsizes (Figures 2d] 3c) justifying (I7). Therefore while
GRLS enjoys strong convergence guarantees, method GN is preferable in practice due to its easier
criterion. Nevertheless, this connection allows us to obtain the convergence rate for the Greedy
Newton in the corollary below. We refer the reader for more detailed explanation to Appendix

Corollary 2. Let function f : RY — R, be convex, M,-Holder continuous for some M, < oo, with
~-bounded Hessian change (1)), and the bound level sets with diameter D < cc. If the Greedy Newton
linesearch (18) satisfies the inequality HVf(:L'kH) sz < 6||Vf(ack) ||j;,c with some constant ¢ > 0

MquEQ(q—l) )

for all iterates x*, then it has convergence guarantee mingea,4 O =T

4D (g — 1)\ """ \
k . .0 —k/4
z") — fo £ min OM,D | ——— Vi(x De .
f( ) f* = €[2.4] q < ")/k' + H f( )HJLO

Remark. Corollary[2|introduces assumption that the gradients norm measured in the local norms
does not increase by more than a constant factor in between the iterates, |* <

VL
EHVf(:L’k) ||:k For any sequence {x},}7° | monotonically decreasing loss f, this holds for example
for quadratic functions with constant ¢.

In this section, we established fast convergence guarantees for the novel but impractical linesearch
method GRLS (T6) and for the popular GN scheme (I8), both of which do not require prior
knowledge of the smoothness parameters (g, M, ). However, their implicit nature may not be suitable
for all practical scenarios. To address this limitation, in the next section we introduce a practical
stepsize backtracking procedure with matching convergence guarantees of UN.

4 Universal stepsize backtracking

Our backtracking procedure is based on the observation that the knowledge of the parametrization
(¢, M) in RN is required only for setting 0),. We start with an estimate of 6, smaller than the true
value and increase it until it achieves the theoretically predicted decrease. We claim that the resulting
algorithm UN is well-defined with a bounded number of backtracking steps.

To formalize this claim, we quantify the smallest plausible true 6y, that will be estimated first. For
q—2
g€ [2,4) and 8 > 2 denote H (z) & inf e .4 (9M,) 7T ||V f()] 2571 9).
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Figure 1: Performance of Newton method stepsize lineserch procedures on the notoriously challenging
nonconvex Rosenbrock function (2T). We plot mean =+ standard deviation of 5 random initializations.
We crop stepsize standard deviation at 0.

Lemma 3. If M, < oo for some q € [2, 4], and the initial estimate o small enough, oo < H (xo) ,

then all iterations {xk}z:o of UN, such that ||Vf(ack)HZk > 0, satisfy o1 = HVG;(;W <

H (xk) . Moreover, the total number of backtracking steps during the first k iterations, Nk, is
bounded as Ny < 2k +log, (7—[ (ack_l)/oo) .

Theorem 5. Let function f : RY — R, be convex, Holder continuous for p € {2,3},v €
[0,1], ¢ = p+ v with bounded Hessian change (Assumption and the bound level sets diameter

D < oo Algorithm(UN) converges with the rate mingez 4] O (A,fg—ﬂq) ,

4D(g —1)
p*k

g—1
f(z*) — f, < min 9MqD( ) + ||V £(z%)

*ODe_k/4.
qe[274] r

5 Results of numerical experiments

The majority of figures and the detailed technical description were deferred to Appendix [A.T]

In Figures we compare higher-order methods without any linesearch procedures, namely RN,
AICN (Hanzely et al.,[2022) and Gradient Regularization of Newton Method (GRN) (Doikov et al.,
2024, Alg. 1). As additional baselines, we use the damped Newton method with a fixed fine-tuned
stepsize and classical first-order Gradient Method (GM) (Nesterov, 2018). RN and AICN show
similar performance while GRN has a slight disadvantage. Unsurprisingly, the first-order method
GM has quicker iterations but slower per-iteration convergence.

In Figures [2b] Bbl we compare higher-order regularization methods with smoothness constant
estimation procedures, UN and Super-universal Newton method (Doikov et al., 2024, Alg. 2).
As an additional baseline, we use the damped Newton method with a fixed but fine-tuned stepsize.
We show that UN displays faster convergence than the Super-universal Newton method. Moreover,
we show that the exponent of the regularization term S that appears in both UN and super-universal
Newton method (6) does not have a significant impact on overall performance.

Figures compare implicit linesearch procedures for Newton stepsizes, namely GRLS,
Armijo stepsize, and Greedy Newton stepsize (GN) (Cauchy), |1847;|Shea & Schmidt, [2024a)). Our
theory presents convergence guarantees for GRLS and GN with stepsizes limited to the interval [0, 1].
We go beyond this limitation and perform parameter linesearches over o € R instead.

Figures demonstrate that on logistic regression and polytope feasibility problems, linesearch
procedures GRLS and GN use almost indistinguishable stespsizes and converge faster than Armijo
linesearch and fixed stepsize Newton. On the Rosenbrock function (Figure[I)), GRLS significantly
outperforms all other linesearches procedures.
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A Detailed descriptions

A.1 Detailed descriptions of experiments
Logistic regression loss

In Figure 2] we compare the performance of the proposed algorithms on binary classification
on datasets from LIBSVM repository (Chang & Lin, [2011). For datapoints {(a;,b;)},, where
a; € R b; € {—1,+1}, and regularizer 1 = 10~3, we aim to minimize

reR4

min {f(x) - %zn:log (1 n e—bf<‘“v$>) + guxug}. (19)
1=1

We initialize all methods at o = 10 - [1,1,...,1]7 € R%.

Polytope feasibility loss

In Figure 3] we compare proposed algorithms on polytope feasibility problem, aiming to find a point
from a polytope P = {33 eR?: (a;,2) <b;, 1<i < n}, reformulated as

min {f@) = i(@,@ ~b)% (20)
=0

where (¢) 4 &f max{t,0} and p > 2. We generate data points (a;, b;) and the solution 2* synthetically
as a;, z* ~ N(0, 1) and set b; = (a;, z*).

We initialize all methods at x¢ = [1,1,...,1]T € R%
Rosenbrock loss

Linesearch procedures solve the abovementioned problems in just a few steps. For a more challenging
task, Figure presents the notorious d-dimensional Rosenbrock function,

S
—_

EEHRQ {f(yc) = [100(zis1 —27) + (1 — xl)z]} @1

I
=)

%

Notably, the Rosenbrock function (21]) is nonconvex, which breaks assumptions in our convergence
theorems.

The function (2T)) has the global solution at x* = [1,...,1]%, and therefore we choose the initial
point from a normal distribution, 2% ~ N(0, I) - 20.

Technical details

All hyperparameters were fine-tuned to achieve the best possible performance for both objectives and
every dataset. All experiments were conducted on a workstation with specifications: AMD EPYC
7742 64-Core Processor with 32Gb of RAM. Source code is available at ht tps://anonymous .
4open.science/r/root—newton-B6A9.

A.1.1 Extended comparison on Rosenbrock function

In Figure 4] we present an extended comparison of linesearch procedures on Rosenbrock function
(21) (similar to Figure[I), with 10 random initializations and the limit of 1000 steps. We observe that
none of the considered algorithms consistently converge to the exact solution for all of the random
seeds, and that GRLS performs better than the other linesearch methods.

A.2 Holder continuity to one step decrease

Lemma 4. Let ||Vf(xk)||; >0, and 2% € R 2M 1 =% — o) [V2f(2P)] - Vf(z*), as in RN.

13
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Figure 2: Binary classification logistic regression problem on LIBSVM datasets.
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Figure 3: Polytope feasibility problem (20) on a synthetic datasets.
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Algorithm 3 Line search backtracking procedures for the Newton direction

1: Inputs: Initial learning rate v > 0, constants ¢1, co € (0, 1), shrinkage factor p € (0, 1), current
iterate = € R?, termination condition C' defined as

C(xy,x) +
fay) < f@) — ey | V@) Armijo
Fas) < @) — | V@2 & (0, Vf () < VA2 Wolfe
flag) < f@) — e |VI@)L7 & [(n, Vf(@4))| < el VF(2)];”  Strong Wolfe

2: Compute Newton’s direction n, + — [V2f(z)] - Vf(x)
3: Initialize v < o

4: while C(x + yny, x) is not satisfied do

5 V= pY

6: end while

7:

Return next point  + yn;

Algorithm 4 GRLS: Gradient Regularized Line Search

1: Requires: Initial point z° € R<.
2: fork=0,1,2... do
3: nk = [V2f(z")] - Vf(a*) > Newton direction
4: Compute next iterate
_ k
P E

T *2
ye{z—ank|a€gl0,1]} ||Vf(y) ka

5: end for

e Holder continuity of Hessian (Def. with p = 2) implies that for 0y larger than 0, >

Lo 00|V ()| holds

I
2(1 — (),k)

*2

(VI [V2 )] v iEh) = [V

e Holder continuity of the third derivative (Definition|l|\with p = 3) implies that for regularization 0},

larger than
) } 22)

(ar[[wr ()

L3,V )plru \/§L3,y
" (

O > (}kva(xk)HZk maX{G (1+1/ m

holds

*2

V(@ |-

(VI [V2FEh)] T ViER) =

1
4(1 — ”lv) H

In Lemma 4] requirements on 6}, are inconveniently dependent on ;. We can use the following
observation to derive a bound dependent only on the norm of the gradient.
« \ O
zk )

S

Lemma 5. For c3,0 > 0, choice 0, > c3° HVf(xk')Hw;” ensures 0, > c3 (akHVf(xk)

B Global (super)linear convergence rate

Stepsized Newton method is known to be able to achieve a global linear rate if the Hessian is bounded
and stepsize is constant (Karimireddy et al., [2018b}; |Gower et al.l 2019b), or when the function
is Lo 1-Holder continuous with stepsize following schedule AICN (Hanzely et al.| 2022, proof in
(Hanzely} 2023)).
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In line with those results, we present global linear rates for algorithms RN, UN, GRLS on L,, , -Holder
continuous functions with finite (p + v)-relative size characteristic (Doikov et al.; 2024). The proof
is in Appendix

Definition 2 ((Doikov et al.,[2024)). For strictly convex function f : R? — R we call s-relative

size characteristic
1
def Vy 2
0.2 s Sl (50)
) JC,yEQ(wO){ “\ B¢ (z,y) ’

de de
where 3¢(x,y) =4 (Vf(x) = Vf(y),z—y)>0and V; :Jcsupx7yeg(10) Br(x,y).

Theorem 6. Let function f be L,, ,,-Holder continuous, with finite relative size D, < oo for
q = p + v (Definition2) and ~-bounded Hessian change (Assumption[l)). Algorithms RN, UN
and GRLS find points in the e-neighborhood, f(z*) — f(x*) < ¢, in

aN\ =1 0y |[*
kgo(w(M;j%) ln{;mW)

iterations, implying a global linear convergence rate.

Remark. In view of (), analogous convergence guarantee (with a worse constant) can be proven

for GN.

Replacing relative size assumption with uniform star-convexity of degree s (¢ > s > 2), we can
guarantee a global superlinear rate for RN and GN similarly to[Kamzolov et al.| (2024).

Definition 3. For s > 2 and j1, > 0 we call function f : R? — R y,-uniformly star-convex of
degree s in local norms with respect to a minimizer z* if Vor € R4, Vn € [0, 1] holds

F e+ (L= m)a®) < nf(e) + (L= — Tl e

S
T

If this inequality holds for 11 = 0, we call function f star-convex in local norms (w.r.t. minimizer
x*).
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Theorem 7. Let the function f : R* — R be L, ,-Hélder continuous (Definition |I) and

Ls-uniformly star-convex of degree s in local norms (Deﬁnition and q g p+v > s> 2then
RN and GN have global decrease in functional value suboptimality,

k—1
F@®) = fo < () = £) T =),
t=0
where 1Ty, € [0,1] is the only positive root of Ei(n) e L = gz =

q—s
zk °

77‘1—1 ((p{\f‘i)! + %) ka —z*

If ¢ = s, then 0y, is constant throughout all iterations and the rate is globally linear.

If ¢ > s, then 0y is monotonically increasing as ka —z*
therefore, the resutling rate is globally superlinear.

. decreases, 1 — i, — 0, and

Proof of Theorem[]] We have that updates of RN with ¢ = p + v = 2 +  and any o > M, can be
written as

g
FE@F) < @pn () + 5Hz’““ — "2, (23)
. g q
= min 3 P« (y) + —lly — zl[1x ¢ » (24)
yEeRd q

using standard integration arguments from A/ ,-Holder continuity

. M e O q
< min + —L |y — + —|ly — ¥, 25
< nin {00+ gl = ol + = ¥ o)
M, (2 q
= min + I+ — —aF|0, b 26
%w{ﬂw (@+1N q)m HM} (20
setting y < = + ng(x* — x*) for arbitrary n, € [0, 1],
M o
< k * _ ok q q el ko ax|? 27
<7 @ bt o)l (s 2) et - o, @
assuming ps-strong star-convexity for ¢ > s > 2,
< (1 =) f(a*)
k(L — M)t | ®||S q M, g k x4
.- — - - - . 28
gy = B oy (M O ok,
denoting functional suboptimality &ef f(zF) — f.,
Sk1 < (1 — k)0
| — 2! CI S L M, 42 lef— o 50) . @)
o s \+)! g o

Denote expression E(n) & (1 — n)ke —pa-t (% + %) |z — 2*||27° for n € [0,1]. Observe
that E’'(n) < 0 and therefore E is monotonically decreasing on R*; with E(0) > 0 < F(1) we
can conclude that it has a unique root 7j on [0, 1]. With choice 7 < 7} in the last inequality we can

conclude global convergence rate
Ok+1 < (1 — 7k )0 (30)

Note that the root of the expression E is inversely proportional to the distance from the solution
|l — z*| - and therefore as the method converges, z¥ — 2*, then the size of its root increases
fir — 1. Therefore, the global convergence rate (30) is superlinear.

Unrolling the recurrence (30) yields the inequality from the Theorem [7]
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Note that the decrease is based solely on the decrease in functional values, which allows us to prove the
identical guarantee for Greedy Newton linesearch GN. In particular, GN implies f(z&y) < f(zfy)
and we can analogically conclude

FaEih) = fo < (Flabn) = fo) (L =) 31)
O

C Fast convergence guarantees for Greedy Newton linesearch

If the inequality ||V f(y)||5x < ¢||Vf(z") H::k holds for constant ¢ > 0, we have that for stepsizes in
arange [a, @] holds
— k _ k
g LW Z (w* 2) <@  wmm WS (ﬂ:‘z )7
a€la,a]l (VP aclaa VI

=T — QNyk =T — QN k
x x

(32)

proving that Greedy Newton minimizes the target metric of GRLS up to a constant xc2. If we
denote ¢ constant with which GRLS satisfies Lemma[2] then Greedy Newton satisfies Lemmal2]
with constant ¢5¢2 and guarantee convergence similar to Corollary |1

Now we are going to discuss how constant ¢ can be found in different scenarios.
Remark (General M -Holder continuous functions). To find ¢ we note that Theorem 2| shows that

. def 1_ 1 =2 . L
stepsize 0y, =t Lo > (M) a1 ||V f(aF *,‘j ' for M,-Holder continuous function implies
P g q T q P

1 - *
sy IV < (V1) V2] H6h) < IVF@)1E 9 £
which after rearranging yields ||V f (y)||7x < 2(1 — nk)HVf(xk)HZk Therefore if
@< 1 z (33)

+(OM) T |V (k)| T

or equivalently

a—2 -1 1 £ 4=2 -t
a< (1+(9Mq)q1 ||Vf(xk)|}:,31) < <1+ up (9M,) 7 ||Vf(x0)|\mé’l> NE
q€|2,

In such case, ¢ can be set ast = 2(1 — q).

Note that (34) is satisfied by smaller stepsizes, which damped Newton methods use globally until they
converge to the neighborhood of the solution.

Remark (Holder continuity of Hessians). For Lo ,-Holder, Lemma 8 yields

* LQ’V v
VA < (1=l + {220 v r0t) ) V76 39
ensuring that without any limitation on @
e Ly, *v
% sup L —al+ 2% 1+”|ny (36)
acla,al
L v *U
= max [l—al4+ 1+”||Vf(x’“)| - (37)
ac{a,a,l} z
For a < 0,a < 1, we can set
Lo
c= < 1 v . 38
: max{ M) } max{ L9 00)]: } (38)
Remark (Lo, O—Hélder contlnulty). For Lo o-Holder functions with Ly o > 1, constant ¢ simplifies to
def L2 0
c= +|1-
aL2>0—1 +1>a ifa <1,
L L L 39)
a3+l -1>a(5+1)-1>=3%, ifa>1
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D Connection between stepsizes and regularization

We show connections of particular stepsizes to regularized Newton methods. For fixed o > 0,3 > 0
define regularized model as

def . 1 o
T 0) & avguin { 10) + (VF2) g = a) + gy =l 4 5l =2l ] o
yeR4 + 5
We can define optimization algorithm RN as
dH T (aF) (41)

By first-order optimality condition, solution of model A * o T, 5 (z) — x satisfy

(14 oln" 1) [V2f (@) b* = =V f(2), (42)
n == (1 olel) (V@) Vi), @)
Now iterates of RN are in the direction of Newton method (for any o and 3) and we can write
W= —a [V2f(@)] " Vi), (44)
[V2f(z)] h* = —aVf(2), (45)
1h* ]l = all V£ (@)l (46)
Substituting [V2 f (x)} h* back to the first-order optimality conditions we get
0=Vf(z) (1 —a-— a1+5a||Vf(x)||;;5) : 47)
Thus, « defined as a root of the polynomial
Plo] £1 - a—a"o|[Vf()|l}’ (48)

satisfies first-order optimality condition. Note that P[0] > 0 and P[1] < 0, hence P has root on
interval (0, 1]. This will be the stepsize of our algorithm. Also note that P is monotone on R,

P'la] = —1— (1 + B)a’o|Vf(2)|[;" <0, (49)
and consequently, the positive root of P is unique.

E Relations between smoothness constants

First note that the parametrization L,, ,, is log-convex in v and hence for 0 < v; <v < vy < 1,1t
hold

Vg —v v—vq

Ly < [Lpu 1277 [Lpwp)27r, and Ly, < Lo Ly o

Consider any «y € [0, 1]. From Hoélders continuity, triangle inequality and definition of L, ,,

L
3 2 2 3,v 1+v
1927 @)ly =l < [V2£) = V2@, + 22y — 21l (50)
L3,u 1+v
< Loglle —yll + 124 |y — o &)
For y <— « + 7h, where ||h||, = 1,7 > 0, we can continue
L L
3 2,y v v
IV @, < == Tt (52)
1
2+v v _ 1 L T+v—ry
< 1+v [LZ’Y] Bk 7[LE’>-,V] e // by T {Lz;] 63
3
< 5ViIzolsn, //by v« 0,v 1 (54
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and we can summarize
_ 3 o3 3 3
Ly = sup [V (@) = V2 F W)l,,, < sup (Iv2s@ll,, + IV £@)ll,,) (55)
_ 94 3 202,
B 2blip ||V f(x)Hop = {3 LaoLsa

Lemma 6. If Ly, exists, for points x* x¢+1 = 2% — o, [VQf(xk)} ! V f(x*) holds decrease

(56)

* L v v E3% *
IVl < (0 22T ) T

and hence, if v > 0 and 0}, > HVf([L‘k) H:i for e > 0, and if the bound exists (meaning that

the Hessian does not change much), we have guaranteed superlinear local rate.

Remark. Hanzely et al.|(2022) shows that L 1-Holder continuity implies self-concordance, and
(Nesterov, 2018, Theorem 4.1.3) proves that self-concordance implies positive definiteness of Hessian
V2 f the domain of function f contains no straight line.

F Generality of higher-order regularization

In this section we explain how (7) encapsulates polynomial upper bounds P[||z — y/|,] with smaller
exponents. Writing regularization as a polynomial,

f(y) < @u(y) + Plllz —yll, ], (57)
this can be bounded as

fy) < @u(y) + A1 + Asllz — yl?, (58)

where constants A1, As > 0 and degree p are expressed in the lemma below. Notably, the next iterate
x7T set as the minimizer of the right-hand side of is not affected by Ay, but the A; worsens
guarantees on functional value decrease, f(z1) < f(z) + A;.

Lemma 7. A polynomial P with dp coefficients ai, > 0 and exponents 0 < by < --- < by,

dp
Pla) =Y ara,
k=0
satisfies following bound with any p > maxge(1,....dp} Ok
Plz] < Ay + Aa?,
where Ay = % Zzio ak(p — bi), A2 = % Zzio akby.

A surprising remark: Similarly, we can replace even the quadratic term from Taylor polynomial,

Ly — = i by an upper bound in the form A; + As||z —y||’. This further simplifies the
regularization and results in the Newton method with the unbounded stepsize
T=z- [V2f(2)] " Vf(z)
x x x x).
(0 + [ VF )]

As the gradient diminishes, the stepsize diverges to infinity. Yet, simultaneously, the functional value
is guaranteed to not deteriorate by more than a constant factor.

Proof of the remark. We can bound the majorization as
o

e xlli*ﬁ} (59)

T () = anganin { (o) + (V) = o) + 5l — ol +
y€ERd

. B B o+l 2+ﬁ}
< argmin { £(2) + (V7o) =) + 5+ Tl =l )

1 G
- ((J + 1)||Vf(xk)|*5> [V f(a:)} ! Vf(x), 61)
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where stepsize was obtained as the positive root of polynomial

Pla] &1 — a0+ )|V

L

O

Surprisingly, stepsize is unbounded, and when ||V f(z)|: — 0, then v — co. This puzzling result
has a simple explanation — such stepsize converges only to a neighborhood of the solution.

In practice, we could not observe stepsize larger than 5 on any considered dataset. When close to
the solution and the stepsize becomes larger than one, algorithm (61)) stops converging closer to the
solution, and functional values oscillate.

G Analysis under s-relative size assumption

In this section, we present global convergence guarantees under a novel characteristic called s-relative
size recently proposed by [Doikov et al.|(2024).
Strict convexity implies 87 (z, y) > 0, we also have lim,_,o, Dy = D, also %ﬁy) <1, and

(Vi(@) = Viy).a—y) 2V <xl_)y> (©2)

Characteristic D is log-convex function in s, and if D,,, D, < 0o, then for 2 < 57 < s < s9 holds

s9—s s—s1

Ds < [D51}52751 [D32}52751 ) (63)
and Dy is continuous on this segment.

2 1—-2 %
wand Dy < D sz.

Remark. For self-concordant functions, it holds By(z,y) > ||y —
1

Remark. For functions such that Bf(z,y) > ps|lz — y||. it holds Dy < (%) ° . In particular; for

self-concordant functions holds By(z,y) > ||y — i and therefore Dy < \/V7.
Assumption 2. For some s > 2, value of Dy is finite, Dy < 0.
Lemma 8. Forany 2 < s < q, we have

D, \! D.\°
() <(3) (e

Proof of Lemma@ Analogical to|Doikov et al.[(2024)). O

Now for any z,y € Q(z°),

1
£6) = F2)+ (V@hy—a)+ [ (VS rly=—a) = Vh@ry-a)dr 69

D
and minimizing both sides w.r.t. y independently, we get

> f(@) + (V@) y— )+ Vy (M) : (66)

— * Sil —
=1 (DAVIDLL) ™, ) .
S Vf Vf
Let us denote some constants that will appear in proofs.
L def g(s—1) {2 ] . q—s
yE R e |2 9], and 1-9=-—— (68)
(¢—1)s ~[3 (g—1)s
2 4 (1—% a(s—1) 4 ﬁ
def 1 s v st _ 1 s (a-Ds Vfb 69)
Yo =9 \s=1) \on,DE “2\s—1 9M,D?
def 1.9
C, = 2v(q—1)(9M,) 7T D71 (70)
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= yip\ T
521 Note that wg 8 1‘1) = (ﬁ) ' st .

s22 Lemma9. Forq € [2,4] and s € [2,00), we have

1 1 ||Vf($k+1)||

LThk+1

- — > 2,8
G-Dfit G0 = IVl

523 Proof. Analogically to|Doikov et al.[(2024), denote f% def I (:ck) — fs.

fk—fk+1@;< . )LIIHVf H o\

9M, IV f (%) |22
@1 (L y Imenl (v (5 Vs
~ 2\9M, IVfR))i | Ds s—1) °*
_1< s )7 vi \ T IvsEt v
2\s—1) \9M,D{ IVFm)|m "

*2

||Vf(xk+1)||xk 4
:Wq,sﬁfk'

IV £ (%)%

(71)

(72)

(73)

(74)

(75)

s2¢  If s > ¢, then 4 € [1, 2] and the function y(x ) & 271 is concave. With monotonicity of { fi};¢s

525  we have

y— §— *2
1 _ 1 _ 5 - ];Y+11 fk — fet1 > w ||Vf(x;€+1)||wk (76)
N 5= N =1~ 2 = Z We,s ¥z
G-DFS G-DRE G-DASRRT T IV £ o)lly,
s26 If2 < s < ¢, then 4 < 1 and the function y(x ) &l =1 is concave. We have
1-4 1-% *2
1 1 - — fr Vf(xg ,
i L = k fk-‘,—l > fr $k+1 > W IV £( k+1)ﬂ2g,k . amn
(=D (=D 175 i IV f(@e)ll,,
527 [
528 Theorem 8. Let function f be L,, ,-Holder continuous with finite s-relative size and ~y-bounded
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530
531

@

532

533

534

535

Hessian change, M, Ds < oo for some q € [2,4] and s > q and sequence of iterates 2°, . . . ,z*

by generated by one of the algorithms RN, UN, GRLS. If all iterates had function suboptimality

Ir d—ﬁff(a:k) — feworse than e > 0, fi > e fort € {0,. ..k}, then the algorithm did at most
1 1 V0|, D
k< il s = +21HM (78)
wg,s(¥ — 1) v o Tk
1 NG R A g
< 9,8 )(8— ) 9M,Di [E—M_fo—smn
s—q s Vi
f
V)|, D
+21an(€)Hw° (79)

—a_ .—a

(6]

steps. If s = q, treating RHS as limit together with lim,_,o 2 =In (%) guarantees the

linear convergence rate

*

q 0
9MD ) ln];OJrQIHHVf(x )”‘rOD.

Vy € (80)

k<27<
q

Remark. We can analogically guarantee the global linear convergence of Greedy Newton linesearch
GN (18), but with a slightly different constant.

Proof. Telescoping Lemma [0}

1 1 va t+1)
o1 = W, (81)
GoDi T Gongt o Z IV f(x
v t+1> )
: (82)
o <Uo IV/(x
kw s fk %
> —b ( . ) 83
v Va5 ®9
kwq,s W IVF @) D
> s o WAL g0 84
z2 = exr>< T 7 84
kwq,s 2 V)P
> Was (2 IVTHE Jllgo™ 85
Ty ( T fr (85)
0 *
_ kwq,s _ 2wg,s In HVf(:r )onD7 (86)
v Y fr
hence
v 1 1 V£ ()]0 D
kgww( Y [ =1~ 51 +21n7fk (87)
5 1 1 V£ ()| D
SNCES) [ 51 - 5T +21In E . (88)
O

Theorem 9. Let funciton f be L,, ,,-Holder continuous with finite s-relative size and ~y-bounded
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536

537

538

539

540

541

542

543

Hessian change, M,, Dy < oo for some q € [2,4] and 2 < s < q and sequence of iterates
20, ..., 2% by generated by one of the algorithms RN, UN, GRLS. If all iterates were far from

solution, f; > ¢ > 0and g; = IV f(@h)|se >8> 0fort € {0,...k}, then the algorithm did
at most

-1
s s

1 /M. DSDI—s\ T 1 s=1 ps =
q—s 8((] B ) 1— f S s €
Vy q— s q s—1 Vi Ds

+2In %0 (39)
steps. If s = q, treating RHS as a limit guarantees linear convergence rate
1o -1
q— 1 9Mqu @=1 q 4 VfDq go
E<2y— | —— 1 21n =. 90
=7y ( v S VRS Dl | TS E)

Proof. Note 1 —4 = ﬁ > 0. Let’s split the analysis of the method into two stages, k = m + n.
With Cy = 2y(q — 1)(9Mq)q+1Dq%1, we bound the first stage,

2
1 1 1 (LPal) m \ " 2 m
Co—— 2 (4 — — — > m <g> = mexp <ln g> (C2)
=1 7—1 -1 0 0
fm fm fo g e
Sm42m I —myom I _om % (92)
90 0 1)
For the second stage, telescoping inequalities fort =m, ...,k —1
1 s s ||Vf($t+1)||;f
—— = [f - ) e ©3)
wq,s(1 —7%) ||vf(73t)||xt
we get
k—1 *2 2 2
. . Vf(x . n S§\n
. B VR PR i A iact L <9’“> > <> ©04)
wq,s<1 - ’Y) t=m ||Vf($t)||wt Im gm
>n—2ln %"’. (95)
Expressing n, m from the inequalities above and adding them together yields
1 . .
k< Cp—r t+ ————[fi7 =] +2m L. (96)
faT wg,s(1—4) 1)

Note that 1 — 4 = ﬁ. Minimizer of RHS in f,, is achieved at

s(g—1)

=1
« def [ Cqwg,s T s\ WyD?
fm = (’y(ql)) a (81) D3~ o7

Substituting definitions of f,,w, s, Cy, ¥ into the terms we get

1

5— 1
1 s—1\71 (9M,DsDI=s\ 71
Cq*1=2'y(q—1)< . ) <q> ;

fmq—l Vf
v «(1—4 slg—1) 1 &=
7Afm(1 v):,yuifn“ )
wg,s(1 =7) q—5 Wgs
s(q— 1) (s - 1) = (QMQDqu_S) T
s Ay Teer ,
q—s s Vy
a(s—1) T
— — (g—1)s q—s
Y _ El—'y 2’78((1 1) (S 1) 9Mq;Ds e5(a-1)
sl =) a5 \ s v
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s44 and plugging them back in, we conclude

1
B Co—r t —— |
T wes(1=9)

s—1 1
—1\ T [9M,D5D4~5\ i1 A
a0 ()T (PRT) T ot ey
q,s

f07 =) +2m

qg—s s Vi 1-4%) 4]
a=1 e\ L
_ 27g <s— 1) a=1 <9MqD§Dq >q T s(qg— 1)><
s s Vi qg—s

q—s

s—1 s(g—1)
s 5 Vi D? s 90
1-2 s(g—D 21n =.
- q ((5 1) D3 ) : T

545 0

ss6 H  Proofs

s47 H.1 Proof of Lemmal7l

sa8  Proof of Lemmal[7} Using weighed AG inequality, for 0 < b < p, we have

—b) + bxP
20 < w (98)
p
549 We use this inequality for each term of the polynomial. O

sso H.2  Proof of Proposition|T]

s51  Proof of Proposition[I] We can derive all of the inequalities straightforwardly
1
VI) = V@) = V@) =l = [ (et =) = V@) fy— alar
1
IVF(y) = V()= V2 f(2) [y —=]f|, < /0 IV (@ +(y — ) = V2 f(@)]|,, lly = =] dr

1
< Lo lly — |- / dr
0

o LQ,D
14w

1+
ly — =l

552

V21(y) — V2 f(x) - V3 F(x) [y — o] = / (V3 f(a+7(y —2)) - VP F(2)) [y — aldr
1
IV2/(y) - V2 £ (@) = V(@) [y — 3|, < / V31 @+ rly — @) — V@), Iy — il dr

1
< Ly, lly — ol / dr
0

_ LB,D
14w

1+
ly — [l

26



VIy) ~ Vi) - 2 f@) ly —a] — V@) ol
// V3 flx+oly—x)—V3f(x ))[y—x]QdadT

HVﬂm—Vﬂw—v%<>[—ﬂ—v%<n—mP

x

< [ [ 19t s oty —a) = 9@l -l doar

1 T
< Lg,ully—xni*”/ / ovdodr
0

L3,l/ H 2+IJ

=~ aroern vk

555, H.3 Proof of Lemmalll

s56  Proof of Lemmal(l] For any x, h,y € E and taking y = = + 7u for 7 > 0, [|u|, =

1+
ly — ;™ (1813

x

Ls
osum@snmi+@ﬁﬂmmﬁy—x%+l+

L3 V’T

0. B + (VP F@) AP ) + &
I < (5 + 522 ) i

557 Setting

1

14+v) 1
T =
L3,l/ ’

558 We get
1

. " Ls, \ T
v s <2 (122 ) iz

1 2k we get

ss0  Setting z* = x, h = z*

1

* Ls, 1+v L3, 1+'
V2 £ ()t — 2, <2 <1iy> 251 — 2*||2, =2 <1 iy) e AT Ca]

560
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s6¢ H.4 Proof of Lemmal6
sz Proof. Proof of Lemmalg]
[V F @) = [V F @)=V () [ —2¥] — V()]
= | V£ = Vf@F) = V2 (@) [257 = 2F] + (1= ap) V(¥ HM

<[|VFEEY) = Vi @h) = V2 f) [P =M+ (U= o) [V M)

_%szﬂ . ||91;"+ 1—ay) ||Vf H (if Lo, exists)
L v v * v *

= P2l O s 4 (1= ) [T

1
L v v *U *
= (1 ag + T + at va(xk)H.Lk) ||Vf($k)||wk

L v v *U *
bt L) 956

563  Hence
[wrre, < [PREOE VAR e < e vra
200 ||V f (=" IIIk if 0 > Fr5of[|V )]
+
564 O

565 H.5 Proof of Lemmald]

s66 We provide separate proofs for cases p = 2 and p = 3.

567 Proof of Lemmad) case p = 2. We can rewrite the Holder continuity for points ¥, zF+1 s.t. 2F+1 =

s8¢ — (VQf(.Z’k))_l Vf(a*)
(L2 (toseli) ™)

L 2
- (Fetet =)

> |Vf(@h) = V(b)) — V2 f(a") [2MF - 2¥]
= ||VF@@" ) = VF@@F) + @, V(b)) Zi
= V) — (1= o) VI

= [V + @ = o) [V 55| 0

*2
$k

—2(1—ay) <Vf(a:’“+1), [V2f(ah)] Vf(:ck)> .

s69 We are going to set o so that

1 L v * 1+v 2
w2 21 —ap) (1iy (axlwr @) ) : (99)
s70 and hence, we can conclude the proof by rearranging,

<Vf(l'k+1), [V%f(xk)]il Vf(xk)>

1 — 1 Lo, R 2
> m”vf |+ V) - ST =) (liy (ak||vf(xk)|’wk> >

1
el AELCAl
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571 Now we are going to choose o to satisfy (99). Because «, is a root of a polynomial P, we have
1— o — (,y,l‘rJrﬁ)\k =0,

5

N

2 so the equation (99) is equivalent to

1— o —(1 5/\k 1L+U 1'H'HVf

L21/
1+

||xk7

> L2 )|

573 ]

574 Proof of Lemmad) case p = 3. We can rewrite the Holder continuity for points ¥, z*+1 s.t. 2F+1 =

575 xF — ay, (V2f(xk))7l Vf(a*)

N
N

L37V ’ o [1% 24v
A+0)2+0) (“k”vf(f” )”wk) (100)
L3 k+1 k||2tv
= —F— - N 101
> [Vrah) - V) - R - g - o
xk
— Vst - a - anvret) - fesaten o (103
xzk
576  Squaring, then using Chauchy-Schwartz inequality twice and then, lastly, Lemmal[I|
e (o) ™)
1+ ) (1 + ) \ IVl
*2
> ”Vf(xkﬂ) — (1= ap)Vf(zh) - %V?"]‘(ack)[x’“rl —zM?
xk
*2
_ ”vf k-‘rl) zk (1 _ Oll ||Vf 7HV3 )[xk-‘rl _ mk]Q "

—2(1 — o) < 2 7[ k] Vf(x’)>
+(1 - ) ([V2h)] %Vf( O, [V2 ()] 72 OO ) — o)
B <[v2f($k)]*% Vf(a, [V2f(xk)r§ V3 f () 5 — xk]2>
1|}Vf k+1)||$ + (1= )?||V (2" ||Zi_i“v3f(xk)[xk+l — 2

“2(1 — ) <Vf(:ck+1), [V2f (™) Vf(xk)>
(1= )| VE@) [ V£ @)t — a2

*2

xk

[\

||:v’C
2

1

* L v 1+v
> LT 2 4 (1 - |Vt ;y;_( L) V£,

1
—2(1 — o) <Vf(gck"’1)7 [V2f($k)]_1 Vf(xk)>

1

-9 ( Law ) a2 (1 — oy, HVf

[\

*3

1+v
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577 Rearranging yields

(VH, [Vt Vf(x’“)>

2
1 —« «x2 1 ([ L3, \T
= a7 FE S5 (22) T L e
Ls, 1 Ls, 2 2(2+4v)
(1+ ) ok [V (" 2(1—(yk)<(1+y)(2+y)> (“‘va ) '
s7¢  Finally, we are going to set 8, so that
2
1— *2 1/ L3, \'
"|\Vf<w’“>|mk>2(1j’y> — Lo st (104)
EerEh = (12) T atlvieh (10s)
“A\1l4+v
ak 1 Ls, 2 e ) 2@
Gl ZZ(l—ark.)<(1+V)(2+V)) (V1) (106)
579 and then we can conclude
1
(VIR V27N V) 2 g S I
580 Note that the choice of stepsize implies
l—oak:azi"'ﬁ)\k
sst  and (T04), (T03), (T06) are satisfied as
1—oap = (yk+ﬁ)\k
1
V(1) a2 vr@n it = VB (B2) T e[ ViEh)L
_1 _1
6 ()™ 2 |VrEhn 0> 6(5) T anl| VA
” v *(14v v v *(14v
wtti et IV EOIT it > i el VA L
ss2 . We can ensure (T04), (T03)), (TO6) by
1
[N Lg,y 1+v \/§L37V v IANITEZ
ek ZakHVf(.'If )ka max{6<1+y) 7(1+V)(2+V)O/ﬂHVf(x ) zk .
583 O

ssa  H.6 Towards the proof of Theorem

s85  We unify cases p = 2, 3 with the Lemma[3]

|V f () H:;ﬁ satisfies Oy,

_1
sss  Corollary 3. Lemma th ~v = v implies that choice 0}, = (LQ’”) n

14+v
587  requirement of LemmaW|for p = 2 and therefore it implies decrease as|Doikov et al. ( 2024),
L+ 0\ 77 [V
f@*) = f@*h) > — 7 HVf ] (L ) —k. (107)
2w IV f (@)
sss  LemmalS|with v € {1,1+ v} implies that the choice
0 >
1 1
w1 G6ltv A+F0) V3L: 2+
k 3 3,v 3,v 2(2+y)
_— —_— 108
e e R (e ) I A S
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sso  satisfies 22)), and therefore Lemma|for p = 3 implies decrease

@) = 1) = 55 S IV || (109)
\V4 k+1
> - ! INEAG )z’“. (110)
v, )\ 2T L\ T * 3oy EY||*2
max{(6 w22 L (Y T IV )mkm} IV £ (%))

590 On the other hand, choice of 0}, = Vi(z )Hz,f” in Lemma(p = 3 case) implies

591  decrease as|Doikov et al.|(2024),

6" L3, T
14+v

1 *2
L( L4 \77 [[VF@ET) H
P = ) e > g () = an
’ IV f(@*)] 2
s02 H.6.1 Proof of Theorem[2]
593 We can combine previous corollaries.
. L =i B=2+v .
se4  Proof of Theorem[Z] For p = 2, choice 6, = (p_‘i’j_”> ||Vf || i =1y implies
1 *2
. 1 —itv v k‘+1
f(a®) = fa*th) > (pL +V) —H J)] . (112)
Y IV £ (%) 7 =
J——
595 For p = 3, choice 0, = 6 (W) i ||vf H “Tto implies
1 *2
1 (3p—1+v)\77 |V,
fa?) = f*) 2 o <( - )> iG] L (113)
Y HVf(x’“)lle_ v
ﬁ p—2+v
se6  And for any p € {2,3} we have that 0, = 6 (ﬁ) VS (2 )H T implies
1 *2
1 (3(p—1+v)\7+ Vf(xk"‘l)
f@) = f@) = 55 (<L) H (114)
mv IV F @), P
597 O
sos H.7 Proof of Lemmal[3
1
599 Proof of Lemmal3] Consider any ¢, > 0. Inequality 6, > ¢, implies
9 502 > 02(12,
600 which is ensured by
1
O > . ——C
601 or equivalently
L
O > cy™.
sz Now, choice ¢y = c;>,HVf(xk)HZi guarantees that 6, > cl”HVf H ,}ﬁ ensures 0 >
. \O
603 C3 (akHVf(a:k)HLk) . O
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604+ H.8 Proof of Corollary[3|

1
605 Proof of Corollary[3} For the first part of (22)), we use v, v € [0, 1] to bound >t >y

0 T+
606 and

1 1
1 Lg,y v k LS,V v ky||*
‘91@-?6 <1+V) ||Vf(17 )sz > 6 (1+y> CYA:HVJC(JC )||Ik

607 Now, the first part of (22)) is ensured by 6}, so that

1 Ls,
ez o (L) wrah,

608 or equivalently

67" L3, o
O > <1+V) ||Vf H v

609 We ensure the second part of (22)) directly using Lemma [5|and together with first part we have

6 L3V 2+,, \/§L3,I/ 2_% 2 v

1

o LS,V > 1ty \/g o
- <1+u) 9@ max 635, <2+v>

(6L, Lliv
(BT g

610 O

611 H.9 Proof of Lemmal[2]

612 ProofofLemma For 0 < 8 < 1, function y(x) = :c57 x > 01is concave, which implies

B
—vP > al_ﬂ(a—b), Ya >b>0, (115)
613 which we will be using for = qf = (0,1]. We rewrite functional value decrease with fj -
sta f(z¥) — f.as

_ \V4 k+1

;l - ia B fk+1 @ (fx = fr+1) @ |V f(z )H | - 116)
fen Iy fk fisn fkfm IIVf(:E’“)II = fkfkﬂ
v k+l 1 B \V4 $k+1

IVf@ >||w< )f‘” DY+ ||Vf<xk>||:%

k

615 where in the last step we used the convexity of f in the form f; < DHV f(z*) H:k We can continue
616 by summing it fork =0,...,n — 1, B
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617

618

619

620

621

622

623
624

625

626

627

628

629

1 1 _ e SH|VrEEY|

=5 2 Div on (118)
ff) T DY V()i
= \Z G ”*2>
= (119)
S (kﬂo IV £ ()]
 Besn (CRIVFEEL T L IVEE G\
s (H Vi@ ||mk (nwwu ) (20

yBesn fn

- | D
~ Do (IIVf(xO)IIZoD)

vien (2 ([VIG)][WD
= —exp| ——In| ———F——FF—
D7 T Fa

| )) (122)

‘ 0D
> V;fj;‘ (1 - %m (W)) (123)

[V4@N]50D
2 19760
LHim(wﬂfmp>>;mmﬂﬁﬂWﬂﬂm;Dmp@®.

ox 1=
2. 1f 21n (H:TOD) < %, then

(121)

We can bound f,, based on the size o

1
1 1 1 vyBesn 2D ANT DY (2(q — 1))q—1
5> 25 Zapis O fn =T (124
fn In fo 2D vBesn Y4 tes9 M n
Hence .
D7 (2(q —1))" or 11 k
In < Zteatpet T IVAE@)Dexp ( ~7 ) (125)
O

H.10 Proof of Theorem 3

Proof of Theorem[3] Cauchy-Schwartz inequality together with condition (I3)) in Theorem [2]imply
inequality

Vs

NGl

zk?

Yz (T, (V] T V) 2 o
(126)

which together with bounded Hessian change assumption yields

IV 7 ICau]X

* Yy *
VDl 2 g VD]
(127)

This for ), from (I2)) guarantees local superlinear rate for ¢ > 2. O

wk_Q(Y 10k wk_2(l 10k

H.11 Proof of Theorem ]
Proof of Theorem[d] Theorem [2]implies that Algorithm [I]satisfies requirements of Lemma 2] with
1

=1
correspondent ¢ and ¢5 = % (Qﬁ) " . The convergence rate follows. O
q
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630 H.12 Proof of Lemma[3

@

631 Proof of Lemma[3] We will prove the statement by induction. The base for o holds. For k-th
632 iteration, consider 2 cases based on the number of iterations of the inner loop.

633 1. Algorithm 2] continues after j, > 0 inner iterations. Note that if 0} j, 1 satisfied (T2),
634 Theorem 2] guarantees the continuation condition to be satisfied for j; — 1. Consequently,
635 O . —1 does not satisfy (I2) for any ¢ € [2, 4], and hence
9k Jr—1 . _1_ k *q;z—ﬂ L
Opt1 = ———= < inf (IM,)=1 ||V f(2")| ="  =H(2"). (128)
T renE < adiy OMa I [ (%)
636 2. Algorithm continues after j = 0 iterates, then from we have
1
Tpir = 2 < —H (@) < —H (2F) < H (2F). (129)
p p pya-1
637 For the total number of oracle calls N,
K—1 K—1 o .
B Sy E+1 K
Ng =) (1+5) =K+ ) log, S = 2 +log, - (130)
k=0 k=0
()
< 2K +log, . (131)
g0
638 O
639 H.13 Proof of Theorem 3
640 Proof of Theorem[3] Algorithmsets k1 = :pfk so that
k k k *2
Vflxs ), > < — ||V f(z] , 132
< f(xjk—l) n Q(Yls‘.j;¢,|9k,jk,1 f(xjk,_1) zk ( )
1 *2
kN K k
<Vf(xjk)7n > 2 2(Yls'.jk9k:,jk HVf(xjk) ot (133)

641 From Theorem [2| we can see that while 6, ;, , = 0y, ;, /p does not satisfy (I3) for any ¢ € [2, 4] and
e42 0y ;. satisfies (I2) for some g, therefore

X

=2
Oy > (OM,)7T VA5 3ge (2,4 (134)
wa=2
Orse < p(OM) T VIG5 Vg e (2,4 (135)
. 1 *q%z
O <p inf OM)T VIO, (136)

43 hence estimate 6y, j, is at most constant p times worse than any plausible parametrization of (g, M),
644 and therefore, even the best plausible parametrization. In particular, for

4D(qg— 1)

def .
q¢" = argmin 9M,D (
acl2a] Pk

q—1 . i
> + ||V f ()0 D exp <4> : (137)

645 we have that from Theorem

1 *2
1/ 1 \& 1 [|[Vf(ahbt?)
Fat) - S 2 o (9M*) | Dl (138)
! IVF@*)] e
ss6  The rest of the proof is analogous to the proof of Theorem [} O
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our paper claim new optimization framework with supplementary theory and
experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We detail limitations of proposed methods in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Necessary theoretical results include further elaborations and proofs in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the numerical results are reproducible and necessary procedures with
instructions are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: We provide links to public datasets used for experiments and an anonymous
link to code necessary to reproduce the results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: Detailed description of experimental setup is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All reported numerical results use multiple seeds and error bars are included
in all plots.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

 The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: Technical details of experimental setup is provided in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research in this paper complies with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Proposed methods do not have foreseeable societal impact.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite authors of public data and models that were used for
experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39


paperswithcode.com/datasets

909
910

912
913

914

915

916

917
918
919
920
921
922
923
924

925

926
927
928

929

930

931

932

933

934
935
936
937
938
939

940
941

942
943
944
945

946

947

948

949

950
951
952
953
954
955
956
957
958

959

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not propose new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1L.LM) for what should or should not be described.
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