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SatFlow: Generative Model based Framework for Producing High Resolution
Gap Free Remote Sensing Imagery.
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Abstract
Frequent, high-resolution remote sensing imagery
is crucial for agricultural and environmental mon-
itoring. Satellites from the Landsat collection
offer detailed imagery at 30m resolution but
with lower temporal frequency, whereas missions
like MODIS and VIIRS provide daily coverage
at coarser resolutions. Clouds and cloud shad-
ows contaminate about 55% of the optical re-
mote sensing observations, posing additional chal-
lenges. To address these challenges, we present
SatFlow, a generative model based framework
that fuses low-resolution MODIS imagery and
Landsat observations to produce frequent, high-
resolution, gap-free surface reflectance imagery.
Our model, trained via Conditional Flow Match-
ing, demonstrates better performance in generat-
ing imagery with preserved structural and spectral
integrity. Cloud imputation is treated as an im-
age inpainting task, where the model reconstructs
cloud-contaminated pixels and fills gaps caused
by scan lines during inference by leveraging the
learned generative processes. Experimental re-
sults demonstrate the capability of our approach
in reliably imputing cloud-covered regions. This
capability is crucial for downstream applications
such as crop phenolonogy tracking, environmen-
tal change detection etc.,

1. Introduction
High spatial and temporal resolution remote sensing im-
agery enables a wide range of agricultural and environmen-
tal monitoring applications, including phenology mapping,
yield forecasting, and meteorological disaster prediction
(Bolton et al., 2020; Gillespie et al., 2007; Huber et al.,
2024). Optical remote sensing imagery provides rich spec-
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tral information with strong interpretability. The Landsat
program, operational since 1972, provides decades of Earth
observation data at 30 m spatial resolution, enabling detailed
land surface monitoring over an extended period. How-
ever, infrequent revisit intervals (10-16 days) and data gaps
caused by cloud cover during imaging and the Scan Line
Corrector failure in Landsat 7 pose significant challenges to
consistent monitoring (Zhu et al., 2012). Cloud contamina-
tion is of particular concern, affecting up to 55% of optical
remote sensing observations over land globally (King et al.,
2013), leading to substantial loss of clear-sky scenes and
limiting subsequent image analysis. These issues are espe-
cially acute in agricultural regions, where landscapes are
highly dynamic during growing season and high temporal
frequency is critical for capturing rapid changes in vege-
tation growth and phenological transitions. On the other
hand, the Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments aboard NASA’s Terra (launched in
1999) and Aqua (launched in 2002) satellites provide near-
daily global coverage at resolutions ranging from 250m
to 1km (Xiong et al., 2009). While this temporal fidelity
is ideal for tracking short-term changes, the coarse reso-
lution is insufficient for capturing field-level agricultural
details or fine-grained ecosystem processes. Nevertheless,
the MODIS record, spanning over two decades, forms an in-
valuable resource for environmental applications, including
forest cover change monitoring, urban expansion mapping,
and wildfire impact assessment (Liu et al., 2024; Schneider
et al., 2010). Integrating MODIS’s rich temporal informa-
tion with Landsat’s fine spatial detail offers an opportunity
to generate a spatiotemporally enhanced long-term dataset
that can inform a broad range of land surface and environ-
mental monitoring and modelling applications.

Several approaches have been investigated to achieve
such spatiotemporal integration. Established fusion meth-
ods—such as the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM) (Gao et al., 2006), the SpatioTem-
poral Adaptive fusion of High-resolution satellite sensor
Imagery (STAIR) (Zhu et al., 2010), and the Highly Inte-
grated STARFM (HISTARFM) (Zhu et al., 2016)—blend
temporally frequent but coarse imagery with sparse but fine-
resolution observations. While these methods have demon-
strated improvements, they often encounter challenges in
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Figure 1. The framework integrates MODIS and Landsat obser-
vations through conditional flow matching to downscale MODIS
imagery (500m) to Landsat resolution (30m).

heterogeneous landscapes and during periods of rapid land-
cover change. STARFM and its variants are limited by the
need to manually select one or more suitable pairs of coarse
and high-resolution images for each fusion task, which
poses challenges for automation at scale.

Advances in machine learning and deep generative mod-
els, including Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) and diffusion-based approaches
(Ho et al., 2020) have shown promise in image synthesis
and super-resolution tasks (Wang et al., 2019; Lim et al.,
2017; Rombach et al., 2022). While GANs can yield highly
realistic imagery, they may suffer from training instability
and spectral inconsistencies (Dhariwal & Nichol, 2021).
Few works have applied generative models to remote sens-
ing domain (Xiao et al., 2024; Khanna et al., 2024) and
these typically require a large number of inference steps,
as noted by Zou et.al.(2024). While Zou et.al. proposed
an efficient diffusion approach for cloud imputation, it is
limited to static landscapes and it can not be adapted to
dynamic agricultural environments. Our novel framework
integrates MODIS observations for contextual information
while gap-filling high-resolution imagery. Beyond GANs
and diffusion, our work utilizes Conditional flow matching
(Lipman et al., 2023; Tong et al., 2024), a growing class of
generative models that allow for exact likelihood estimation
and often exhibit more stable training. The key contribu-
tions of our work are: (1) We present a novel approach for
downscaling coarser-resolution MODIS imagery using a
generative model to synthesize Landsat-like imagery. (2)
We propose a gap-filling strategy that leverages the learned
generative process to fill missing pixels in Landsat observa-
tions caused by cloud cover and scan lines. (3) We integrate

the model into a pipeline to generate high-resolution, gap-
free Landsat-like imagery at regular intervals.

2. Methodology
2.1. Flow Matching Formulation

The primary objective is to generate gap-free surface re-
flectance images given the conditioning factors, which in-
clude corresponding low-resolution MODIS imagery and
a gap-free composite of previously acquired Landsat im-
ages. Our framework builds on conditional flow matching
(Lipman et al., 2023; Tong et al., 2024), which generalizes
continuous normalizing flows (Grathwohl et al., 2019; Chen
et al., 2018) by directly regressing the vector fields for trans-
forming between noise and data distributions. The goal of
flow matching, similar to diffusion models (Ho et al., 2020;
Rombach et al., 2022), is to generate samples that lie in the
data distribution through an iterative process. We refer to
the starting random gaussian noise distribution as x(0) and
the gap-free Landsat data distribution as x(1), where the
generative modeling task is to transform the initial noisy
input x0 to the target distribution x1, through a learned pro-
cess that is guided by the conditioning factors c (illustrated
in Figure 2) .

2.2. Training

To learn a model that can transform x(0) to x(1), we model
a time-varying vector field u(t) : [0, 1]× R, defined by the
following ordinary differential equation: u(t) = dx(t)/dt.
and a probability path p(t) : [0, 1] × R. Intuitively, this
vector field defines the direction and magnitude by which to
move a sample in x0 so that it arrives at its corresponding
location in x1 by following the probability path p over time.
We aim to approximate the true vector field u using a neural
network uθ(xt, t, c), parameterized by weights θ. The flow
matching objective is to minimize the difference between
the predicted vector field uθ(xt, t, c) and the true vector
field ut, as expressed in Equation (1):

min
θ

Et,xt∼p(xt|x0,t)

[
∥uθ(xt, t, c)− ut∥2

]
. (1)

However, this objective is intractable as there is no closed
form representation for the true vector field u(t). Instead,
similar to approaches that leverage simple linearized paths
for training (Liu et al., 2023; Pooladian et al., 2023), we
model the vector field ut and the probability path p : [0, 1]×
R between x0 and x1 with standard deviation σ as shown
in Equations (2) and (3).

u(t) = x1 − x0 (2)

xt ∼ N ((1− t) · x0 + t · x1, σ
2) (3)
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Equation (3) defines the probability path as a Gaussian dis-
tribution centered at a linear interpolation between x0 and
x1 at time t. Equation (2) defines the target vector field
simply as the difference vector pointing from the starting
point x0 to the end point x1. The training procedure to
approximate this vector field is outlined in Algorithm 1.

Algorithm 1 Conditional Flow Matching Training
Require: initial parameters θ, learning rate α

1: repeat
2: Sample a batch of final states x1, corresponding con-

ditions c, initial states x0 ∼ N (0, I) and t ∼ [0, 1].
3: Compute the true vector fields: ut = x1 − x0

4: Sample xt ∼ N
(
(1− t) · x0 + t · x1, σ

2
)

5: Compute the loss:
LCFM (θ) = 1

2∥uθ(xt, t, c)− ut∥2
6: Update parameters: θ ← θ − α∇θLCFM (θ)
7: until converged

In algorithm 1, x1 represents ground-truth Landsat imagery,
while the conditioning factors c consist of two components:
(1) MODIS observations acquired on the same date as x1,
providing coarse-resolution spectral information, and (2) a
gap-free composite constructed from previously captured
Landsat images of the same scene, providing high-resolution
spatial context. Ideally, the model has to learn to synthesize
Landsat-like high-resolution imagery by jointly leveraging
the spatial structure from the composite and the spectral
characteristics from MODIS data. To achieve this, we em-
ploy two key strategies during the training process: (1)
MODIS inputs are randomly masked with a probability of 50
%, and (2) the gap-free composite is randomly selected from
multiple available composites of the same scene (illustrated
in Figure ??). This augmentation approach encourages the
model to disentangle and effectively utilize both informa-
tion sources - learning to preserve spatial details from the
composite while imparting the spectral information from
MODIS observations when available. During inference, if
MODIS observations are unavailable, the model generates
plausible, unconditional spectral signatures, while still con-
forming to the spatial characteristics of the scene dictated
by the Landsat composite.

2.3. Inference

To generate a sample from the target distribution x1, given
conditioning factors c, we integrate the learned vector field
uθ(xt, t, c) over time. Specifically, starting from an initial
sample x0 ∼ N (0, I), we follow the trajectory defined by
Equation (4):

x1 = x0 +

∫ 1

0

uθ(xt, t, c)dt (4)

In practice, we approximate this integral using a discrete-
time numerical scheme (Chen et al., 2018; Lipman et al.,
2023). Forward Euler approach is employed for simplicity
and computational efficiency as shown in Algorithm 2.

Algorithm 2 Conditional Flow Matching Inference
Require: conditions c, time step dt, initial x0 ∼ N (0, I),

1: for t = 0 to 1 step dt do
2: xt+dt = xt + uθ(xt, t, c) · dt
3: end for

output x1

In Algorithm 2, starting from a random noise distribu-
tion, the model iteratively updates xt using the vector field
uθ(xt, t, c) to produce the final high-resolution Landsat-like
imagery x1. Clouds and scanlines imputation approach in
our framework is inspired by the image inpainting method-
ology investigated by Lugmayr et al. (2022) in the context
of diffusion models. Given clouds or scan line contaminated
images and their corresponding quality assessment mask m
(where mi = 1 indicates cloudy/missing pixels and mi = 0
indicates clear pixels), we introduce a composite update
strategy that relies on the learned vector field uθ(xt, t, c)
to reconstruct the unknown pixels and for the known pix-
els, uses a direct interpolation with the observed values as
shown in Algorithm 3.

Algorithm 3 Cloud Imputation and Scan Lines Filling
Require: cloudy images x∗

1, cloud mask m, conditions c,
time step dt, initial states x0 ∼ N (0, I),

1: Compute: u = x∗
1 − x0

2: for t = 0 to 1 step dt do
3: xt+dt = xt + (uθ(xt, t, c) ·m+ u · (1−m)) · dt
4: end for

output x1

This composite strategy ensures physical consistency by
respecting the known data where available while leveraging
the learned generative processes to fill in missing regions.
Algorithms 2 and 3 demonstrate the versatility of the model
in both generating high-resolution imagery and performing
gap filling of the acquired imagery.

2.4. Model Architecture

The model architecture employs a U-Net (Ronneberger et al.,
2015) design augmented with ResNet-style blocks (He et al.,
2016) and self-attention layers (Vaswani et al., 2017; Bello
et al., 2019), as illustrated in Figure 2. Conditioning in-
formation comprising MODIS observations and a gap-free
Landsat composite - is concatenated along the channel di-
mension with the current state xt. The current time step t
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and ancillary metadata which includes day of year (DOY),
sensor type (TM/OLI) and MODIS availability flag are en-
coded via learned embeddings and injected into the network
at multiple resolutions. The network processes the inputs
through a series of downsampling and upsampling stages
linked by skip connections. Residual connections help sta-
bilize training, and self-attention mechanisms capture both
local and global dependencies. The network outputs the
vector field uθ(xt, t, c) with six channels, corresponding to
the multi-spectral dimensions of the Landsat data.

2.5. Overall Framework

We integrate the trained generative model into a pipeline
to produce gap-free high resolution imagery at regular in-
tervals. The framework processes two complementary data
streams: daily MODIS imagery and Landsat observations
(Landsat 5-9) with varying revisit times. The pipeline
comprises of three key components: (1) Pre-processing
of MODIS imagery: A temporal interpolation module that
fills cloud-contaminated pixels in the MODIS time series us-
ing clear observations from adjacent days; (2) A gap-filling
module that fills the clouds and scan-lines in the acquired
Landsat scenes utilizing the trained model (Algorithm 3)
(3) Finally, Landsat-like imagery are synthesized by the
model at regular intervals by fusing the processed MODIS
observations and gap-filled Landsat scenes. Since MODIS
sensors (Aqua and Terra) acquire global imagery on a near-
daily basis (as opposed to Landsat’s 2–6 observations per
month), temporal interpolation allows short gaps to be re-
constructed with minimal discrepancy. Gap-filling module
leverages spatial context from the Landsat composite and
spectral information from temporally rich MODIS obser-
vations. The hierarchical design of the framework enables
robust spatio-temporal fusion. A similar approach can be
adapted to integrate other remote sensing data sources (e.g.,
VIIRS, Sentinel-2, SAR) for broader applicability.

3. Experiments
3.1. Dataset

The dataset for training the model was derived from Landsat
and MODIS satellite imagery, spanning the period from
years 2000 to 2024 across the Contiguous United States
(CONUS). The years 2012 and 2015 were chosen to be ex-
cluded from the training set for validation, as these years
represent contrasting dry and wet conditions respectively.
The study utilized Level 2 processed surface reflectance data
from Landsat 5, 7, 8, and 9 missions (Crawford et al., 2023)
and the MODIS Bidirectional Reflectance Distribution Func-
tion (BRDF)-corrected MCD43A4 product (Schaaf et al.,
2002; Lucht et al., 2000). The MCD43A4 product inte-
grates data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensors aboard the Aqua (launched in

2002) and Terra (launched in 1999) satellites, which observe
Earth’s surface at different times during the day (Link et al.,
2017), providing daily global coverage at 500m resolution.
Using stratified sampling, 20,000 locations were sampled
across the contiguous United States based on the Cropland
Data Layer (CDL) of year 2020 provided by USDA-NASS,
covering diverse land cover and crop types. For each sam-
pled location, imagery was obtained from four different
dates where the cloud cover was less than 10% amounting
to 80,000 data points for training. The dataset included:
(1) Landsat surface reflectance imagery of size 256× 256
pixels at 30m resolution, containing the six spectral bands
(Red, Blue, Green, near-infrared (NIR), and two shortwave
infrared bands (SWIR1 and SWIR2)); (2) corresponding
MODIS imagery, resampled and aligned to match Landsat’s
spatial resolution; and (3) gap-free composites generated
by stacking temporally preceding Landsat scenes. These
composites were created by applying quality assessment
masks to eliminate clouds, scan lines, and cloud shadows,
followed by mosaicking the remaining clear pixels to ensure
continuous spatial coverage. The data processing and col-
lection workflow was implemented on Google Earth Engine.
Prior to training, the reflectance values are normalized to lie
within [−1, 1] range using the scaling coefficients computed
over the training set.

3.2. Setup

The model was trained to minimize the Mean Squared Error
(MSE) loss between the predicted and target vector fields,
following the procedure outlined in section 2.2. We adopted
the AdamW optimizer (Loshchilov & Hutter, 2019) with a
base learning rate of 1e-4. A cosine learning rate schedule
(Loshchilov & Hutter, 2017) with 6, 000 warmup steps was
employed to improve convergence and mitigate potential
instabilities during the early stages of training. Each training
spans 120 epochs and was conducted on two NVIDIA RTX
A6000 GPUs, each processing a batch of 16 images. We fur-
ther applied gradient accumulation over 4 steps, effectively
increasing the batch size without exceeding GPU memory
limits. All training runs employed a standard deviation of
σ = 0.001 in Algorithm 1 to define the probability path.
Influence of alternative choices for standard deviation (σ)
were not investigated in our work.

We validated our method on a dataset comprising 2,500
held-out scenes from 2012 and 2015. First, we evaluated
downscaling quality (from 500m MODIS to 30m Landsat
resolution), comparing the model’s predicted Landsat-like
outputs with the actual high-resolution Landsat images. we
also trained the same model architecture with conditional
diffusion methodology as outlined by Zou et al. (2024) to
compare the performance with conditional flow matching. A
sigmoid noise schedule rescaled to a zero terminal signal-to-
noise ratio (SNR) is implemented for the diffusion model, as
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Figure 2. The Conditioning input are concatenated along the channel dimension with the current state xt. The current time step t and
metadata are encoded via learned embedding and integrated into the network at multiple resolutions. The network predicts the vector field
uθ(xt, t, c) and MSE loss is computed between the predicted and target vector fields.

it demonstrated superior performance. To assess gap-filling
performance by synthetically masking clean Landsat im-
agery with varying cloud coverage levels (10%–75%) using
randomly generated cloud masks (Czerkawski et al., 2023).
These artificial gaps are filled by the model as outlined in
Algorithm 3, enabling direct comparisons against the known
ground truth reflectance values. To our knowledge, no pub-
licly available benchmarks are suitable for evaluating our
data-fusion and cloud imputation approaches.

3.3. Evaluation Metrics

To assess the quality of the generated surface reflectance
images, we employ the following metrics:

1. Spectral Information Divergence (SID): Spectral In-
formation Divergence (Chang, 2000) is an information-
theoretic metric introduced to measure discrepancies be-
tween two spectral signatures. In our evaluation, we com-
pute SID across all six spectral bands (Red, Green, Blue,
NIR, SWIR1, SWIR2) between the generated and original
Landsat imagery. Lower SID values indicate that the recon-
structed spectrum closely matches the reference. The SID
between two spectral signatures p and q is given by:

SID(p, q) =

N∑
i=1

pi log

(
pi
qi

)
+

N∑
i=1

qi log

(
qi
pi

)
(5)

where pi and qi represent the normalized reflectance values
for band i in the generated and reference images respec-
tively.

2. Structural Similarity Index Measure (SSIM): Struc-
tural Similarity Index Measure (Wang et al., 2004) is com-

puted over local 11× 11 pixel windows. For each window
pair x and y:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6)

where µx, µy are the mean intensities of windows x and
y respectively, σ2

x, σ2
y are their variances, and σxy is the

covariance between the windows. The final SSIM score is
obtained by averaging across all windows and RGB bands,
higher values indicating greater structural similarity.

3. Peak Signal-to-Noise Ratio (PSNR): Peak Signal-to-
Noise Ratio is useful for evaluating the pixel-wise accuracy,
with a typical range of 20 to 40 dB for acceptable image
reconstruction. PSNR is computed as:

PSNR = 10 · log10
(

1

MSE

)
(7)

where MSE is the mean squared error between the gener-
ated and reference normalized reflectance values, calculated
across all six spectral bands.

3.4. Quantitative Comparisons

Table 1 summarizes the effect of the number of inference
steps on the model performance. Notably, even with 3 in-
ference steps the model achieves a decent baseline (SSIM =
0.738; SID = 0.039), illustrating the efficiency of linearized
paths in Conditional Flow Matching. Performance steadily
improves as the number of steps increases, with diminish-
ing returns beyond 50 steps (SSIM: 0.912 at 50 steps vs.
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0.908 at 100 steps). We thus select 50 steps to balance
computational cost and accuracy.

Table 1. Performance Metrics vs. Number of Inference Steps

STEPS 1 3 5 10 50 100

SID 0.285 0.039 0.0216 0.0194 0.018 0.012
SSIM 0.651 0.738 0.862 0.895 0.912 0.908
PSNR 23.3 28.5 29.7 29.9 31.8 30.5

We evaluate our CFM approach against a conditional dif-
fusion method (Zou et al., 2024) and a traditional remote
sensing fusion baseline (STARFM). For comparision, we
chose number of inference steps as 50 for both CFM and
diffusion models. Table 2 shows that CFM outperforms
alternatives in terms of SID, SSIM, and PSNR. These gains
translate directly to higher-quality reconstructions in both
downscaling (500m MODIS to 30m Landsat) and cloud
gap-filling scenarios.

Table 2. Comparison with Baseline Methods on Held-Out Scenes

METHOD SID SSIM PSNR

STARFM 0.0481 0.852 28.6
DIFFUSION 0.0271 0.891 30.0
CFM 0.0186 0.912 31.8

Lastly, we assess cloud imputation accuracy under different
cloud coverage (10%, 25%, 50%, and 75%). Table 3 demon-
strates the efficacy of multi-sensor fusion: adding MODIS
consistently yields lower SID and higher SSIM. This advan-
tage becomes more pronounced as cloud coverage increases.
For instance, at 75% coverage, our method with MODIS
exhibits lower SID and higher SSIM compared to the sce-
nario without MODIS data, emphasizing the importance of
leveraging coarse daily observations in heavily occluded
conditions.

Table 3. Performance vs. Cloud Cover (%) With and Without
MODIS Input

CLOUD COVER (%) WITH MODIS WITHOUT MODIS

SID SSIM SID SSIM

10 0.015 0.960 0.028 0.932
25 0.032 0.921 0.056 0.884
50 0.068 0.875 0.098 0.821
75 0.071 0.812 0.167 0.723

Together, these findings indicate that (1) our approach of-
fers a robust framework for combining data from multiple

sensors, (2) linearized flows enable faster, more efficient
inference,, and (3) incorporating MODIS observations in
gap-filling further enhances resilience to occlusions by pro-
viding additional temporal and spectral context.

Figure 3. Example of artifacts introduced by Quality Assessment
misclassification. The images on the left show the original cloudy
Landsat image, and the images on the right show resulting artifacts
in the gap-filled output.

4. Limitations
While our proposed framework demonstrates strong perfor-
mance in generating gap-free daily Landsat-like imagery,
there remain several important limitations. First, our gap-
filling strategy (Algorithm 3) relies on a mask that distin-
guishes clear pixels from contaminated ones. In our work,
we utilize the quality assessment masks provided by Land-
sat level-2 processed products. In practice, these masks are
prone to misclassification—particularly at cloud edges or
shadows—which can introduce artifacts in the reconstructed
outputs. As shown in Figure 3, misclassifications can lead
to visible artifacts and degraded image quality in the out-
puts. Advanced cloud and shadow detection algorithms
could alleviate these artifacts. Second, preprocessing of
daily MODIS imagery involves temporal interpolation for
missing or cloudy observations. However, linear or spline
interpolation will perform poorly in the presence of cloud
cover over extended time periods and extreme events (e.g.,
wildfires, floods, or snowfall), which may feature abrupt
spectral changes. In such scenarios, the reconstruction will
not reflect the real-world conditions. Incorporating com-
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plementary modalities, such as Sentinel-1 SAR (Synthetic
Aperture Radar) data and multiple remote sensing sources,
may mitigate this shortcoming. However availability of
newer earth observation datasets (e.g., Sentinel missions) is
limited to the years after 2015.

5. Conclusion and Future Work
We presented a Conditional Flow Matching (CFM) model
that fuses daily coarse-resolution MODIS imagery with
Landsat observations to generate gap-free, high-resolution
surface reflectance data. We proposed integration of this
model into a framework (SatFlow) to produce gap-free,
Landsat-like imagery at regular intervals. This capability fa-
cilitates the generation of long-term remote sensing datasets,
enhancing environmental monitoring and modeling appli-
cations. Our experimental results demonstrate that, partic-
ularly under high occlusion rates, the combined utilization
of MODIS coarse data and Landsat composites allows re-
liable gap filling. In forthcoming work, we aim to extend
the framework to include additional remote sensing sources
such as Sentinel-2 optical imagery, VIIRS, and SAR data
(Sentinel-1), aiming to further enhance robustness in cloudy
or otherwise adverse conditions. We also plan to investigate
efficient architectures derived from Vision Transformers
(ViT) and Swin-UNet models, with the goal of achieving
faster and better performing models capable of scaling to
continental or global domains. Finally, we intend to quantify
uncertainty in the generated reflectance maps, thereby pro-
viding reliability estimates for subsequent remote sensing
analyses and decision-making.

Software and Data
The software and dataset will be made available upon com-
pletion of review process.
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