
Under review as a conference paper at ICLR 2023

THE GRAPH LEARNING ATTENTION MECHANISM:
LEARNABLE SPARSIFICATION WITHOUT HEURISTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) are local aggregators that derive their expres-
sive power from their sensitivity to network structure. However, this sensitivity
comes at a cost: noisy edges degrade performance. In response, many GNNs in-
clude edge-weighting mechanisms that scale the contribution of each edge in the
aggregation step. However, to account for neighborhoods of varying size, node-
embedding mechanisms must normalize these edge-weights across each neighbor-
hood. As such, the impact of noisy edges cannot be eliminated without removing
those edges altogether. Motivated by this issue, we introduce the Graph Learn-
ing Attention Mechanism (GLAM): a drop-in, differentiable structure learning
layer for GNNs that separates the distinct tasks of structure learning and node
embedding. In contrast to existing graph learning approaches, GLAM does not
require the addition of exogenous structural regularizers or edge-selection heuris-
tics to learn optimal graph structures. In experiments on citation and co-purchase
datasets, we demonstrate that our approach can match state of the art semi-
supervised node classification accuracies while inducing an order of magnitude
greater sparsity than existing graph learning methods.

1 INTRODUCTION

Local interactions govern the properties of nearly all complex systems, from protein folding and
cellular proliferation to group dynamics and financial markets (Stocker et al., 1996; Doyle et al.,
1997; Mathur, 2006; Özgür, 2011; Jiang et al., 2014). When modeling such systems, representing
interactions explicitly in the form of a graph can improve model performance dramatically, both at
the local and global level. Graph Neural Networks (GNNs) are designed to operate on such graph-
structured data and have quickly become state of the art in a host of structured domains (Wu et al.,
2019). However, GNN models rely heavily on the provided graph structures representing meaningful
relations, for example, the bonds between atoms in a molecule (Fang et al., 2022). Additionally, to
generate useful node embeddings, GNNs employ permutation invariant neighborhood aggregation
functions which implicitly assume that neighborhoods satisfy certain homogeneity properties (Zhu
et al., 2020). If noisy edges are introduced, or if the neighborhood assumptions are not met, GNN
performance suffers.

To address both issues simultaneously, many GNNs include mechanisms for learning edge weights
which scale the influence of the features on neighboring nodes in the aggregation step. The Graph
Attention Network (GAT) (Veličković et al., 2017), for example, adapts the typical attention mech-
anism (Vaswani et al., 2017) to the graph setting, learning attention coefficients between adjacent
nodes in the graph as opposed to tokens in a sequence. As we will show in Section 3, the demands of
edge weighting (or structure learning) inherently conflict with those of node embedding, and edge
weighting mechanisms that are joined together with node embedding mechanisms are not capable
of eliminating the negative impact of noisy edges on their own.

In this paper, we introduce a method for separating the distinct tasks of structure learning and node
embedding in GNNs. Our method takes the form of a structure learning layer that can be placed in
front of existing GNN layers to learn task-informed graph structures that optimize performance on
the downstream task. Our primary contributions are as follows:

1



Under review as a conference paper at ICLR 2023

1. We first introduce a principled framework for considering the inherent conflicts between
structure learning and node embedding.

2. Motivated by this framework, we introduce the Graph Learning Attention Mechanism
(GLAM) a layer that, when used alongside GNNs, separates the distinct tasks of structure
learning and node embedding.

In addition to enabling GAT models to meet or exceed state of the art performance in semi-
supervised node classification tasks, the GLAM layer induces an order of magnitude greater sparsity
than other structure learning methods (Luo et al., 2020; Ye & Ji, 2021; Chen et al., 2020; Franceschi
et al., 2019; Shang et al., 2021; Miao et al., 2022). Also, in contrast to the existing structure learning
methods, GLAM does not employ any edge selection heuristics, exogenous structural regularizers
or otherwise modify the existing loss function to accommodate the structure learning task. This
makes it simpler to apply in existing GNN pipelines as there is no need to modify carefully crafted
and domain-specific objective functions. Our approach is also scalable and generalizable to the
inductive setting as it does not rely on optimizing a fixed adjacency matrix.

2 PRELIMINARIES

As our method takes inspiration from the original GAT, we begin by reviewing the mechanism
by which the GAT layer generates edge weights, as well as how those edge weights are used to
aggregate neighborhood information. Understanding this mechanism is important to understanding
our conceptual framework (Section 3) as well as the GLAM layer (Section 4).

Graph attention networks learn weighted attention scores eij for all edges between nodes i and
j, j ∈ Ni where Ni is the one-hop neighborhood of node i. These attention scores represent the
importance of the features on node j to node i and are computed in the following manner:

eij = LeakyReLU
(
a⃗T [WGAT h⃗i ∥ WGAT h⃗j ]

)
(1)

where h⃗i ∈ RF are node feature vectors, ∥ is vector concatenation, WGAT ∈ RF ′×F is a shared
linear transformation for transforming input features into higher level representations, and a⃗ ∈ R2F ′

are the learnable attention weights that take the form of a single-layer feedforward neural network.

To ensure the attention scores are comparable across neighborhoods of varying size, they are nor-
malized into attention coefficients αij using a softmax activation:

αij = softmaxj(eij) =
exp(eij)∑

j∈Ni
exp(eij)

(2)

For stability and expressivity, the mechanism is extended to employ multi-head attention, and the
outputs of the K heads in the final layer are aggregated by averaging:

h⃗′
i = softmax

(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k
GAT h⃗j

)
(3)

In the next section, we explain why the normalization procedure in Eq. 2, while crucial for node
embedding, is an impediment for structure learning.

3 CONFLICTING DEMANDS: NODE EMBEDDING VS. STRUCTURE LEARNING

At first glance, it may seem we could address the structure learning problem by simply threshold-
ing the existing GAT attention coefficients αij . However, due to the need for neighborhood-wise
normalization and permutation invariant aggregation, this would not be ideal. As a motivating ex-
ample, consider the following: if we add three random edges per node to the standard Cora dataset
McCallum et al. (2000), then train a GAT to perform semi-supervised node classification, we get

2



Under review as a conference paper at ICLR 2023

a classification accuracy of 65.9%. If we manually set the edge weights for each of those newly
added random edges to zero (note: the GAT is not able to learn this weighting on its own) the same
GAT is able to achieve 79% accuracy. However, if we simply remove all the newly added random
edges so the GAT does not consider them at all, the GAT can achieve 82.1% accuracy. In GNNs
with permutation-invariant aggregation mechanisms, dropping noisy edges is more effective than
learning to zero their edge weights.

To understand this result, it’s important to understand why the GAT attention coefficients are calcu-
lated as the softmax of the attention scores. This softmax step serves two important purposes:

1. It normalizes the attention scores into attention coefficients that sum to one, which ensures
the sum of the neighboring representations (as defined in Eq. 3) is also normalized. This is a
crucial function of any node embedding mechanism because it normalizes the distributional
characteristics of h⃗′

i not just across different neighborhoods but across neighborhoods of
varying size. Without this, the downstream layers that ingest h⃗′

i would need to account for
widely variable magnitudes in the values of h⃗′

i, and performance would suffer.

2. The softmax serves as an implicit, low-resolution structure learning device. To locate the
maximum input element in a differentiable manner, softmax uses exponentials to exagger-
ate the difference between the maximum element and all of the rest. In graph attention
networks, this means exaggerating the difference between the attention coefficient of the
single most important neighbor vs. all the rest. This imbues the attention coefficients,
and thus each nodes’ neighborhood, with a soft-sparsity that improves the learned node
embeddings by minimizing the influence of all but the single most useful neighbor.

For these reasons, if our aim is to generate useful node embeddings for node-wise prediction, we
should not do away with the softmax activation to normalize attention coefficients in each neigh-
borhood. However, as our aim is to jointly learn useful node embeddings and the graph structure,
this embedding mechanism alone is not sufficient. A distinct structure learning mechanism would
require the following:

• To learn the graph structure, we need to assess the value of each neighbor independently.
This is because, in graph learning, local neighborhoods are subject to noisy evolution as
the network samples edges. If the value of each neighbor is conditional on the present
neighborhood, it will be difficult to disentangle the relative value of one neighbor from
another as the neighborhood evolves.

This is why the existing edge-weighting + node embedding paradigm is insufficient if our goal is
to simultaneously learn node embedding and graph structure: the neighborhood-wise normalization
(softmax over edge-weights) expresses each neighbors’ importance relative to all the other nodes
in the neighborhood, which is in direct conflict with the edge-wise independence requirements of
structure learning.

To preserve the embedding advantages of GNNs while accommodating the conflicting demands of
structure learning, we introduce the Graph learning Attention Mechanism (GLAM).

4 THE GRAPH LEARNING ATTENTION MECHANISM (GLAM)

Like the GAT layer, the GLAM layer ingests the node features h ∈ RN×F and the edge set E , where
N is the number of nodes and F is the number of features per node. For each node i, we transform
the node features hi into higher order representations xi using a shared linear transformation W ∈
RFS×F :

xi = W(h⃗i), xi ∈ RFS (4)

For each edge between nodes i and j in the provided edge set E , we then construct a represen-
tation for that edge by concatenating the node representations xi and xj . From here, our GLAM
layer differs from the GAT layer. Using another shared linear layer S ∈ R1×FS , we map these

3



Under review as a conference paper at ICLR 2023

Figure 1: A: An illustration of the Graph Learning Attention Mechanism operating on a single pair
of connected nodes with features hi, hj ∈ RF , using the shared weight matrix W ∈ RFS×F and
multi-headed attention with K = 3 heads. B: A high level overview of how the GLAM layer is used
to learn optimal graph structures at each layer. The input is the original graph with node features
h ∈ RN×F and edge setE . To make as few assumptions about the optimal graph structure as
possible, we feed the original edge setE into each GLAM layer to reassess the utility of each edge
at each layer. We note that this is optional, and chaining edge sets across layers is also possible.

edge representations onto structure learning scores η ∈ R|E|×1, where the score ηij for each edge
becomes:

ηij = σ
(
S
[
xi∥xj

]
+ u
)

(5)

where ∥ is vector concatenation, u ∈ R1 is i.i.d. noise drawn from a U(−0.5, 0.5) distribution cen-
tered about zero, and σ is a sigmoid activation allowing each ηij to be interpreted as the probability
of retaining the edge between nodes i and j. We note here that the noise term is not strictly required,
but we found that it helped to smooth out the training.

Finally, we extend the GLAM layer to include K attention heads, and the final structure learning
score ηij for each edge becomes:

ηij = σ
( 1

K

K∑
k=1

Sk
[
xi∥xj

]
+ u
)

(6)

Next, we sample a discrete mask M ∈ {0, 1}|E| from the distribution parameterized by the structure
learning scores η. When applied to the given graph E , we get a sparsified graph M(E) → E ′ ⊆ E .
To sample the discrete values in M from the continuous probabilities in η differentiably, we use
the Gumbel-Softmax reparameterization trick introduced by Jang et al. (2016) and retain the edge
between nodes i and j if ηij > 0.5.

This new graph E ′ is then used in place of E in the downstream GNN representation learner. If that
downstream GNN were a GAT, using the equations from Section 2, the attention coefficients would
become:

4



Under review as a conference paper at ICLR 2023

αij = softmaxj(eij) =
exp(eij)∑

j∈N ′
i

exp(eij)

and

h⃗′
i = softmax

(
1

K

K∑
k=1

∑
j∈N ′

i

αk
ijW

k
GAT h⃗j

) (7)

where the neighborhoods N ′
i are defined by the non-masked edges in E ′ where η > 0.5.

As each GNN model incorporates graph structure in its own way, we have ensured that GLAM pro-
duces a maximally general, differentiable mask on the given edges. This mask may be readily used
to separate the structure learning tasks from node embedding regardless of the particular embedding
mechanism.

For example, in our implementation, we incorporate the learned graph M into the GAT by trivially
swapping the softmax over the attention coefficients with a sparse softmax that respects the masked
edges (as shown in Eq. 7). Extending beyond the GAT, we could incorporate the learned graph into
the widely used Graph Convolutional Network (GCN) (Kipf & Welling, 2016), for example, by sim-
ply multiplying the adjacency matrix A by the mask M before the application of the renormalization
trick. To apply M in arbitrary GNNs, we need only to insert it before the neighborhood aggregation
step.

5 RELATED WORK

The structure learning literature includes many effective methods for inducing task-informed, spar-
sified subgraphs. However, each of them relies on either edge-selection heuristics (such as top-k
selection) or exogenous structural regularizers (such as penalties on retained edges) to stabilize the
structure learning process. In contrast, our approach requires none of these, making it more read-
ily deployable in existing GNN pipelines and obviating the need to interfere with carefully crafted
objective functions or training methodologies.

Approaches such as Neural Relational Inference (Kipf et al., 2018) and Graphs for Time Series
(Shang et al., 2021) introduce methods for learning probabilistic graph models optimized for various
time-series forecasting tasks. However, while both induce sparse subgraphs, they rely on exogenous
regularization (penalties on retained edges) and suffer from scalability issues as both learn fixed
adjacency matrices.

More closely related to our approach are the Graph Stochastic Attention, GSAT (Miao et al., 2022)
and Stochastic Graph Attention, SGAT (Ye & Ji, 2021) models, which also adapt the graph attention
layer to learn sparse subgraphs. SGAT attaches a binary gate to each edge in the given graph,
then learns a single adjacency matrix that is shared across all layers. While effective, this adjacency
matrix makes it difficult to scale and they employ an L0 norm in the loss function to penalize retained
edges.

GSAT (Miao et al., 2022), based on the graph information bottleneck principle (Wu et al., 2020)
is designed to be an interpretable graph learner and uses a similar sparse attention mechanism to
assess the utility of each edge. However, in spite of not using sparsity constraints such as L0 norms,
they do add additional structural regularization terms into the loss function. Additionally, learnable
weights in GSAT are shared between the GNN used to generate the binary mask and the GNN used
for downstream node embedding. As we reviewed in Section 3, the demands of structure learning
conflict with those of node embedding, so sharing weights/architectures between these networks
may reduce performance in some tasks.

As GSAT was not evaluated on our datasets, and SGAT more closely resembles GLAM in design
and functionality (inducing an edge sparsified graph) we confine our direct comparison to SGAT to
ensure fairness and clarity.

5



Under review as a conference paper at ICLR 2023

Type Nodes Edges Features Classes H(G)

Cora Citation Network 2,708 13,264 1,433 7 0.83
PubMed Citation Network 19,717 108,365 500 3 0.79
Citeseer Citation Network 3,307 12,431 3,703 6 0.71

Amazon Photo Co-Purchase 7,487 245,812 745 8 0.84
Amazon Computers Co-Purchase 13,385 505,474 767 10 0.79

Table 1: Homophilic graph datasets used in our experiments.

6 EXPERIMENTS

To demonstrate the efficacy of the GLAM layer, we report performance in semi-supervised node
classification tasks on real-world graph datasets. As it is well known that GNNs performance is
degraded by heterophilic graphs (in which adjacent nodes tend to have different labels) we look
only at those graphs where the edges bring material value for GNNs, i.e. homophilous graphs.
Formally, the edge homophily ratio of a graph is a value the range [0, 1] that denotes the fraction of
edges in the graph that join nodes with the same labels:

H(G, {yi; i ∈ V}) = 1

|E|
∑

(i,j)∈E

1(yi = yj) (8)

Where G is an input graph with nodes v ∈ V having labels y. While homophily isn’t an unrealistic
assumption, with most graphs being constructed this way (McPherson et al., 2001), a method for
graph-adaptation based on the assumptions of the downstream GNN is still desirable as many GNN
models implicitly assume a high degree of homophily and perform poorly when this assumption
is violated (Zhu et al., 2020). In graphs with low homophily, such as the WebKB1 datasets, GNN
performance is often optimized by removing nearly every edge. For this reason, to get a better
understanding of the GLAM layer’s efficacy, we confine our study to the homophilic graphs detailed
in Table 1.

Cora, PubMed and Citeseer (McCallum et al. (2000), Sen et al. (2008), Giles et al. (1998)) are
citation datasets with relatively low average degree. Nodes correspond to documents (academic
papers) and edges represent citations between these documents. Node features are the bag of words
representation of the document and the task is to classify each document by its topic. Amazon Photo
and Amazon Computers (Shchur et al. (2018)) are co-purchase datasets with a much higher average
degree, where each node corresponds to a product and two nodes are linked if those products are
frequently bought together. The node features are also a bag of words representations but of the
reviews of each product. Similarly, the task is to classify each product into its product category.

For a fair comparison with SGAT, we use the same canonical splits in each dataset: 20 nodes per
class for training, 500 nodes for validation and 1,000 for testing.

6.1 TRAINING METHODOLOGY

In all our experiments, we train a two layer GAT, using the GLAM layer to learn optimal structures
for each GAT layer. Crucially, to demonstrate how the GLAM layer may be ‘dropped in’ to an
existing GNN model with little to no modification to the training scheme, we use the known opti-
mal hyperparameters and training methodology for the GAT layers (as reported in Veličković et al.
(2017)) without modification. This covers all components of the model including loss functions, reg-
ularization, optimizers and layer sizes. The only hyperparameters we modify are those associated
with the inserted GLAM layers and, as mentioned in Section 4, the learned mask is enforced using a
sparse softmax activation in the GAT layers that respects the mask M . As the Co-Purchase datasets
were not tested in the original GAT paper, we began optimization with the same hyperparameters as

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

6

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/


Under review as a conference paper at ICLR 2023

Dataset Cora PubMed Citeseer Photo Computers

MLP 49.5% 68.1% 46.9% 70.5% 53.1%
GAT 82.4% 78.2% 70.9% 89.1% 81.5%

SGAT 83.0% 78.3% 71.5% 89.9% 81.8%
GLAM 82.4% 78.6% 70.5% 90.3% 83.0%

% Edges Removed (layer 1 / layer 2)

SGAT 2.0 /− 2.2 /− 1.2 /− 42.3 /− 63.6 /−
GLAM 22.3 / 2.2 30.0 / 0.3 46.3 / 1.4 63.1 / 13.2 55.0 / 8.7

Table 2: Top: Semi-supervised node classification accuracies are listed in percent. Bottom: Per-
centage of edges removed at the first / second layer. For SGAT, a single graph is learned at the first
layer and reused it for all following layers. In our experiments, the GLAM layer is used to learn an
optimal graph at each layer.

Cora, and found that increasing the hidden dimension from 8 to 32 led to optimal performance. In
all cases, we use cross entropy as our loss function and the Adam optimizer Kingma & Ba (2014)
to perform gradient descent. In all experiments we report the average classification performance
and induced sparsity over 10 independent trials (Table 2). All hyperparameters are available in the
GitHub.

Additionally, to make as few assumptions about the optimal graph as possible, we use the GLAM
layer to independently assess the utility of each edge at each layer, as shown in Figure 1B, and report
the induced sparsity at each layer. This is in contrast to existing methods which learn a single graph
at the first layer that is then reused for all the downstream layers. As we will discuss more in Section
6.2, learning the optimal graph at each layer not only improves performance and induces greater
sparsity but allows us to better observe the relationship between the data, the GNN aggregator, and
the downstream task more clearly.

We note here that the use of exogenous regularizers and edge-selection heuristics, as employed by
other structure learning methods, is to help the structure learner better adapt to the demands of the
downstream GNN. With the GLAM layer, we enable this same sort of adaptation by simply making
these layers more sensitive than the downstream GNN layers. To do so, we relax the regularization
(weight decay) and amplify the learning signal (increase the learning rate) for just the GLAM layers.
Doing so for only the GLAM layers allows them to adapt to the GNN representation learner without
the need for additional terms in the loss function. These layer-wise changes are slight and optimal
values vary by dataset. All layer-specific learning rates and regularization coefficients are outlined
in the hyperparameter configuration files at [GitHub redacted for review].

Finally, as self-loops have disproportionate utility in any node-wise prediction task, the GLAM
layers only attends over those edges that adjoin separate nodes, retaining all self-loops by default.

6.2 PREDICTION PERFORMANCE AND INDUCED SPARSITY

On semi-supervised node classification datasets, the GLAM layer enables the GAT to reach simi-
lar accuracies while inducing an order of magnitude greater sparsity than existing methods. This
increased sparsification is notable as we do not explicitly enforce sparsity constraints or penalize
retained edges. As the GLAM method is fundamentally about inducing task-informed subgraphs,
and classification accuracies are all similar to SGAT, we confine our analysis to the sparsification
aspect of the results. Complete results can be found in Table 2.

On each of the citation datasets, the GLAM layer is competitive with SGAT on prediction perfor-
mance while inducing over an order of magnitude greater sparsity. This degree of sparsity has not
yet been induced in these datasets while preserving SOTA classification performance. As such, we
view these results as indicating, in addition to the efficacy of the GLAM layer, that there may be
more redundant edges in these datasets than previously thought. Part of the advantage of the GLAM

7



Under review as a conference paper at ICLR 2023

layer is that we can train it using using only the signal from the downstream task. As such, the in-
duced graph is a reflection purely of the relationship between the data, the GNN aggregation scheme,
and the downstream task. Following from this, we note that the first GLAM layer trained on these
datasets removes closer to 1−H(G) percent of the edges. There is not an exact correspondence, but
the proximity between these two quantities is likely a reflection of the GLAM layers learning that the
downstream GAT performs best on neighborhoods with higher homophily. The second GLAM layer
removes on the order of 1% of the edges, which is similar to SGAT. We hypothesize that more edges
are retained in the second and final layer due to the node representations already containing infor-
mation from their 1-hop neighborhood, and there being additional value in aggregating information
from the 2-hop neighborhood.

On the co-purchase datasets which have much larger average degrees, the GLAM layers remove
substantially more edges in the first layer but fewer in the second. We emphasize here that as there
are no structural regularizers, GLAM is not encouraged to learn the sparsest graph possible, but
rather the graph which optimizes downstream task performance. As we can see with the Comput-
ers dataset, retaining a few more edges in the first layer and a few less in the second resulted in
substantially higher classification accuracies.

While our method does not always achieve state of the art classification performance, we do achieve
similar performance with far greater sparsification and without changes to the canonical loss func-
tion. As the GLAM layer is differentiable and can be readily integrated with arbitrary downstream
GNNs, we believe it could be widely useful and is worthy of further study.

7 CONCLUSIONS

We presented a principled framework for considering the graph structure learning problem in the
context of graph neural networks, as well as the Graph Learning Attention Mechanism (GLAM) a
novel structure learning layer motivated by this framework. In contrast to existing structure learn-
ing approaches, GLAM does not require exogenous structural regularizers nor does it utilize edge-
selection heuristics. In experiments on citation and co-purchase datasets the GLAM layer allows an
unmodified GAT to match state of the art performance while inducing an order of magnitude greater
sparsity than other graph learning approaches.

There are several improvements that could be made to the method, especially as it relates to stabiliz-
ing the structure learning layers without augmenting canonical loss functions. Future research could
be directed at adaptive methods of decaying the learning rates in those layers or layer-specific early
stopping.

Finally, as our approach yields graph structures uncorrupted by the influence of exogenous heuris-
tics, we also see the potential for its use in the design and analysis of novel GNN architectures. In
the GLAM layer, edges are retained or discarded based whether the downstream GNN can make
productive use of them. By interpreting the distributions of retained edges at each layer, designers
could, for example, better understand how well some aggregation scheme integrates information
from heterophilic vs. homophilic neighborhoods. In a similar way, GLAM may be used as a princi-
pled method for assessing the value of depth in GNNs, a persistent issue due to the over-smoothing
problem (Oono & Suzuki, 2019). If a GNN layer were to no longer benefit from the incorpora-
tion of structural information, i.e. the number of retained edges yielded by its preceding GLAM
layer was close to zero, then the GNN may be too deep, and adding additional layers may introduce
complexity without increasing performance.

8 REPRODUCIBILITY

All code, data and configuration scripts are available in [GitHub redacted for review]. Our models
were built using the open source PyTorch Geometric library (Fey & Lenssen, 2019) and we provide
setup scripts to configure an Anaconda environment that contains all necessary packages. All hyper-
parameters and the training methodology are clearly documented in the code and the benchmarks
are runnable on CPU or GPU with a single command.

8



Under review as a conference paper at ICLR 2023

REFERENCES

Yu Chen, Lingfei Wu, and Mohammed J Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. June 2020.

R Doyle, K Simons, H Qian, and D Baker. Local interactions and the optimization of protein folding.
Proteins, 29(3):282–291, November 1997.

Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang,
Hua Wu, and Haifeng Wang. Geometry-enhanced molecular representation learning for property
prediction. Nature Machine Intelligence, 4(2):127–134, February 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1972–1982. PMLR, 2019.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. CiteSeer: an automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, DL ’98, pp. 89–98,
New York, NY, USA, May 1998. Association for Computing Machinery.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-Softmax.
November 2016.

X F Jiang, T T Chen, and B Zheng. Structure of local interactions in complex financial dynamics.
Scientific reports, 4:5321, June 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. Proceedings of the 35th International Conference on Machine
Learning, February 2018.

Thomas N Kipf and Max Welling. Semi-Supervised classification with graph convolutional net-
works. September 2016.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. November 2020.

Jaideep Mathur. Local interactions shape plant cells. Current opinion in cell biology, 18(1):40–46,
February 2006.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information retrieval, 3(2):127–163, July
2000.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, August 2001.

Siqi Miao, Miaoyuan Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic
attention mechanism. January 2022.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. ICLR, 2019.

Onur Özgür. Local interactions. In Jess Benhabib, Alberto Bisin, and Matthew O Jackson (eds.),
Handbook of Social Economics, volume 1, pp. 587–644. North-Holland, January 2011.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, September 2008.

9



Under review as a conference paper at ICLR 2023

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. January 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. ArXiv, 2018.

Rob Stocker, Herbert Jelinek, and Bohdan Durnota. Complex Systems: From Local Interactions to
Global Phenomena. IOS Press, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. June 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. October 2017.

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. October 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. January 2019.

Yang Ye and Shihao Ji. Sparse graph attention networks. IEEE transactions on knowledge and data
engineering, pp. 1–1, 2021.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. September 2020.

10


	Introduction
	Preliminaries
	Conflicting demands: node embedding vs. structure learning
	The Graph Learning Attention Mechanism (GLAM)
	Related Work
	Experiments
	Training Methodology
	Prediction Performance and Induced Sparsity

	Conclusions
	Reproducibility

