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Abstract

Diffusion-based generative models have achieved promising results recently, but
raise an array of open questions in terms of conceptual understanding, theoreti-
cal analysis, algorithm improvement and extensions to discrete, structured, non-
Euclidean domains. This work tries to re-exam the overall framework, in order to
gain better theoretical understandings and develop algorithmic extensions for data
from arbitrary domains. By viewing diffusion models as latent variable models with
unobserved diffusion trajectories and applying maximum likelihood estimation
(MLE) with latent trajectories imputed from an auxiliary distribution, we show
that both the model construction and the imputation of latent trajectories amount
to constructing diffusion bridge processes that achieve deterministic values and
constraints at end point, for which we provide a systematic study and a suit of tools.
Leveraging our framework, we present a simple and unified approach to learning
on data from different discrete and constrained domains. Experiments show that
our methods perform superbly on generating images and semantic segments. The
full paper is found at https://arxiv.org/abs/2208.14699.

1 Introduction

Diffusion-based deep generative models, notably score matching with Langevin dynamics (SMLD)
[21, 22], denoising diffusion probabilistic models (DDPM) [8], and their variants [e.g., 23, 20,
11, 24, 16], have shown to achieve new state of the art results for image synthesis [5, 18, 9, 13],
audio synthesis [3, 12], point cloud synthesis [14, 15, 27], and many other AI tasks. However, a
range of open challenges arise on understanding, analyzing, and improving diffusion-based models.
On the conceptual and theoretical perspective, existing methods have been derived from multiple
angles, including denoising score matching [26, 21], time reversed diffusion [23], and variational
bounds [8], but these approaches leave many design choices whose relations and effects have been
unclear and difficult to analyze. On the practical side, standard approaches tend to be slow in both
training and inference due to the need of a large number of diffusion steps, and are restricted to
generating continuous data in Rd – special techniques such as dequantization [25, 7] and multinomial
diffusion [10, 1] need to be developed case by case for different types of discrete data and the results
still tend to be unsatisfying despite promising recent advances [10, 1].

In this work, we approach diffusion models with a simple and classical statistical learning framework.
By viewing the diffusion models as a latent variable model consisting of unobserved trajectories
whose end points output observed data, the learning is decomposed into two parts: 1) constructing
imputation mechanisms to generate latent trajectories that would have generated a given data point
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x, and 2) specifying and training the diffusion generative model to generate data on the domain
Ω of interest by maximizing likelihood using the imputed trajectories. Both components involve
constructing diffusion bridge processes, called x-bridge and Ω-bridge, whose end points guarantee
to hit a deterministic value x or domain Ω at the terminal time, respectively. The design of learning
algorithms reduces to constructing two bridges. Our framework allows us to decouple the various
building blocks of the diffusion learning, algorithmic extensions to structured domains, and speedup
in the regime of small sampling steps. Ω-bridge also provides a simple and universal approach to
learning on data from an arbitrary domain Ω that can be embedded in Rd and on which the expectation
of truncated standard Gaussian distribution can be evaluated. This includes product spaces of any
type, bounded/unbounded, continuous/discrete, categorical/ordinal data, and their mix. The efficiency
of the method is testified on a suit of examples, including generating images and segmentation maps.

2 Let us Build Bridges

2.1 Learning Latent Diffusion Models
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Time 𝑡

training

Let {x(i)}ni=1 be an i.i.d. sample from an unknown distribution Π∗

on a domain Ω ⊆ Rd. We want to fit the data with a diffusion
model Pθ(dZ), which specifies the distribution of a latent trajectory
Z = {Zt : t ∈ [0, T ]} that outputs an observation (x = ZT ) at the
terminal time T . The evolution of Z is governed by an Ito process:

dZt = sθt (Zt)dt+ σt(Zt)dWt, ∀t ∈ [0, T ], Z0 ∼ Pθ
0, (1)

where Wt is a Wiener process; σ : [0, T ] × Rd → Rd×d is a fixed,
positive definite diffusion coefficient; the drift term sθ ∈ [0, T ] ×
Rd → Rd depends on a trainable parameter θ and is often specified using a deep neural network.
The initial distribution Pθ

0 is often a fixed elementary distribution (Gaussian or deterministic). Here,
Pθ is the path measure on continuous trajectories Z following (1). We denote by Pθ

t the marginal
distribution of Zt at time t. We want to estimate θ such that the terminal distribution ZT ∼ Pθ

T
matches the data X ∼ Π∗.

If Ω is a strict subset of Rd, e.g., bounded or discrete, then we need to specify the model Pθ in (1)
such that ZT is guaranteed to arrive at Ω when t = T (while the non-terminal states may not belong
to Ω).

☞ A process Z in Rd with law P is called a bridge to a set B ⊂ Rd, or B-bridge, if P(ZT ∈ B) = 1.

Following DDPM [8], we consider estimating θ with Z drawn from Qx := Q(Z|ZT = x) of a
pre-specified simple baseline process Q. Here for each x ∈ Ω, the conditioned process Qx :=
Q(Z|ZT = x) is the distribution of the trajectories from Q that are pinned at x at time t. Therefore,
Qx is an x-bridge by definition. Let QΠ∗

(·) =
∫
Qx(·)Π∗(dx) be the distribution of trajectories Z

generated in the following backward way: first drawing a data point x ∼ Π∗, and then Z ∼ Qx

conditioned on the end point x. This construction ensures that the terminal distribution of QΠ∗
equals

Π∗, that is, QΠ∗
T = Π∗. Then, the model Pθ can be estimated by fitting data drawn from QΠ∗

using
maximum likelihood estimator: minθ

{
L(θ) := KL(QΠ∗ || Pθ)

}
.

Loss Function Let us assume that Qx yields a general non-Markov diffusion process of form

dZt = ηx(Z[0,t], t)dt+ σ(Zt, t)dWt, Z0 ∼ µx, (2)

where the drift ηx and initial distribution µx depend on the end point x and the diffusion coefficient
σ is the same as that of Pθ. Here ηx can depend on the whole trajectory up to time t and hence Qx

can be non-Markov. Qx is Markov if ηx(Z[0,t], t) = ηx(Zt, t). Using Girsanov theorem [e.g., 17],
with Pθ in (1) and Qx in (2), the KL divergence can be reframed into a form of the score matching
loss from [23, 24]:

L(θ) = Ex∼Π∗
Z∼Qx

− log pθ0(Z0)︸ ︷︷ ︸
MLE of initial dist.

+
1

2

∫ T

0

∥∥σ−1(Zt, t)(s
θ(Zt, t)− ηx(Z[0,t], t))

∥∥2︸ ︷︷ ︸
score matching

dt

+ const, (3)
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As Pθ is Markov by the model assumption, it can not perfectly fit QΠ∗
which is non-Markov in general.

We resolve this by observing that it is not necessary to match the whole path measure (Pθ ≈ QΠ∗
)

to match the terminal (Pθ
T ≈ QΠ∗

T = Π∗). It is enough for Pθ to be the best Markov approximation
(a.k.a. Markovization) of QΠ∗

, which matches all (hence terminal) fixed-time marginals with QΠ∗
.

Next we show how to derive ηx(Z[0,t], t) for QΠ∗
and thus construct diffusion bridges of interest.

2.2 Bridge Construction

We discuss how to build bridges, both Qx as x-bridges and Pθ as Ω-bridges for constrained domains.

Constructing x-Bridges by h-transform Assume Q follows dZt = b(Zt, t)dt + σ(Zt, t)dWt.
Then by using Doob’s method of h-transforms [17], the conditioned process Qx(·) := Q(· | ZT = x),
if it exists, can be shown to be the law of

dZx
t =

(
b(Zx

t , t) + σ2(Zx
t , t)∇z log qT |t(x | Zx

t )
)
dt+ σ(Zx

t , t)dWt, Z0 ∼ Q0|T (· | x), (4)

where qT |t(x|z) is the density function of the transition probability QT |t(dx|z) = Q(ZT ∈ dx|Zt =

z), assuming it exists. The additional drift term σ2∇ log qT |t(x|z) plays the role of steering Zt

towards the target ZT = x. The initial distribution can be calculated by Bayes rule: Q0|T (dz|x) ∝
Q0(dz)qT |0(x|z). We should note that the drift term in (4) is independent of the initialization Q0,
which allows us to decouple in the choices of initialization and drift in bridges.
Example 2.1. If Q is the law of dZt = ςtdWt, we have QT |t(·|z) = N (z, βT − βt), where
βt =

∫ t

0
ς2sds. Hence Qx = Q(·|ZT = x) is the law of

dZx
t = ηxbb,ς(Z

x
t , t)dt+ ςtdWt, with Zx

0 ∼ Qx
0 = Q0|T (·|x), (5)

where Qx
0(dz) ∝ Q0(dz)ϕ(x | z, βT − βt), and ϕ(·|µ, σ2) is the density function of N (µ, σ2).

ηxbb,ς(Z
x
t , t) = ς2t

x−Zx
t

βT−βt
is a Brownian bridge (BB) process. A simple case is when ςt = 1 and

ηxbb,1(z, t) =
x−z
T−t .

Q0 is the initialization that can be arbitrarily set by the user. Two extreme choices of Q0 stand out: 1)
The SMLD initialization can be viewed as the case when we initialize Q with an improper “uniform”
prior Q0 = 1, corresponding Qx

0 = N (0, v) with v → +∞. 2) Let z0 be any point that can reach
ZT = x under Q in that x ∈ supp(QT |0(·|z)). If we take Q0 = δz0 , the delta measure centered
at z0, the bridge Qx has the same deterministic initialization Qx

0 = δz0 . Hence any deterministic
initialization equipped with the drift in (4) yields a conditional bridge.

⇧⇤
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Figure 1: Ω-Bridges for dis-
crete Ω = {1, 2, 3, 4}.

Constructing Ω-Bridges for Constrained Domains If Ω is a con-
strained domain, we need to specify the model Pθ such that it is an Ω-
bridge for any θ. We provide a simple method that works for any domain
on which integration of standard Gaussian density function can be calcu-
lated. An importance class is product spaces of form Ω = I1×I2×· · · Id,
where Ii can be discrete sets or intervals in R. Our method consists of
two steps: 1) we first get a baseline Ω-bridge by deriving the conditioned
process Q(· | ZT ∈ Ω) from Q which by definition is an Ω-bridge; 2) we
then show that add extra drifts on top of it keeps the Ω-bridge property
unchanged.

In the first step, for any Q following dZt = b(Zt, t)dt+σ(Zt, t)dWt, the h-transform method shows
that the conditioned process QΩ := Q(· | ZT ∈ Ω) follows dZt = ηΩ(Zt, t)dt+ σ(Zt, t)dWt with

ηΩ(z, t) = b(z, t) + σ2(z, t)Ex∼QT |t,z,Ω [∇z log qT |t(x | z)], Z0 ∼ Q0|T (· | XT ∈ Ω). (6)

Its drift term is similar to that of the x-bridge in (4), except that x is now randomly drawn from
an Ω-truncated transition probability: QT |t,z,Ω(dx | z) := Q(ZT = dx | Zt = z, ZT ∈ Ω). As an
example, assuming Q follows dZt = ςtdWt, we can show that QΩ yields the following Ω-bridge:

dZt = ηΩbb,ς(Zt, t)dt+ ςtdWt, ηΩbb,ς(z, t) = ς2t Ex∼NΩ(z,βT−βt)

[
x− Zt

βT − βt

]
, (7)
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where NΩ(z, βT − βt) = Law(Z | Z ∈ Ω) when Z ∼ N (µ, σ), which is an Ω-truncated Gaussian
distribution. A general case is when Ω = I1 × · · · Id, for which the expectation reduces to one
dimensional Gaussian integrals; see Appendix for details.

In the second step, given an Ω-bridge QΩ, we construct a parametric model Pθ by adding a learnable
neural network fθ in the drift:

Pθ : dZt = (σ(Zt, t)f
θ(Zt, t) + ηΩ(Zt, t))dt+ σ(Zt, t)dWt, Z0 ∼ Pθ

0. (8)

By parameterizing sθ(Zt, t) = σ(Zt, t)f
θ(Zt, t) + ηΩ(Zt, t), we obtain a Ω-bridge that guarantees

to reach Ω with the help of the driving force ηΩ(Zt, t).

3 Experiments

Generating Semantic Segmentation Maps on CityScapes We consider unconditionally generating
categorical semantic segmentation maps. We represent each pixels as a one-hot categorical vector.
Hence the data domain is Ω = {e1, . . . , ec}h×w, where c is the number of classes and ei is the i-th
c-dimensional one-hot vector, and h,w represent the height and width of the image. In CityScapes [4],
h = 32, w = 64, c = 8. We test a number of bridge models with Q : dZt = ςtdWt starting at the
uniform point Z0 = 1/c, with different schedule of the diffusion coefficient ςt, including (Constant
Noise): ςt = 1; (Noise Decay A): ςt = a exp(−bt); (Noise Decay B): ςt = a(1− t); (Noise Decay
C) ςt = a − a exp(−b(1 − t)). Here a and b are hyper-parameters. We measure the negative log-
likelihood (NLL) of the test set using the learned models. The NLL (bits-per-dimension) is estimated
with evidence lower bound (ELBO) and importance weighted bound (IWBO) [2], respectively. The
results are shown in Figure 2 and Table 1.

Time 𝒕

Dimension
#1

Real Generated

0 1

Value 
Distribution

Figure 2: Results on generating categorical segmentation maps. Each pixel here an one-hot vector. Each
dimension of the Ω-bridge starts from a deterministic and evolve through a stochastic trajectory to converge to
either 0 or 1. The generated samples have similar visual quality to the training data.

Methods ELBO (↓) IWBO (↓)
Uniform Dequantization [25] 1.010 0.930
Variational Dequantization [7] 0.334 0.315
Argmax Flow (Softplus thres.) [10] 0.303 0.290
Argmax Flow (Gumbel distr.) [10] 0.365 0.341
Argmax Flow (Gumbel thres.) [10] 0.307 0.287
Multinomial Diffusion [10] 0.305 -
Bridge-Cat. (Constant Noise) 0.844 0.707
Bridge-Cat. (Noise Decay A) 0.276 0.232
Bridge-Cat. (Noise Decay B) 0.301 0.285
Bridge-Cat. (Noise Decay C) 0.363 0.302

Table 1: Results on the CityScapes dataset.

Methods IS (↑) FID (↓) NLL (↓)
Discrete

D3PM uniform Lvb [1] 5.99 51.27 5.08
D3PM absorbing Lvb [1] 6.26 41.28 4.83
D3PM Gauss Lvb [1] 7.75 15.30 3.966
D3PM Gauss Lλ=0.001 [1] 8.54 8.34 3.975
D3PM Gauss + logistic Lλ=0.001 8.56 7.34 3.435
Bridge-Integer (Init. A) 8.77 6.77 3.46
Bridge-Integer (Init. B) 8.68 6.91 3.35
Bridge-Integer (Init. C) 8.72 6.94 3.40

Table 2: Discrete CIFAR10 Image Generation

Generating Discrete CIFAR10 Images In this experiment, we apply three types of bridges. All
of these bridges use the same output domain Ω = {0, . . . , 255}h×w×c, where h,w, c are the height,
width and number of channels of the images, respectively. We set Q to be Brownian motion with
the Noise Decay A in Section 3, that is, Q : dZt = ςtdWt, where ςt = a exp(−bt). We consider
different initializations of Q: (Init. A) Z0 = 128; (Init. B) Z0 = µ̂0, (Init. C) Z0 ∼ N (µ̂0, σ̂0), where
µ̂0 and σ̂0 are the empirical mean and variance of pixels in the CIFAR10 training set. We compare
with the variants of a state-of-the-art discrete diffusion model, D3PM [1]. For fair comparison, we
use the DDPM backbone [8] as the neural drift fθ in our method, similar to D3PM. We report the
Inception Score (IS) [19], Fréchet Inception Distance (FID) [6] and negative log-likelihood (NLL) of
the test dataset. The results are shown in Table 2.

Generating Continuous CIFAR10 Images with Few-Step Diffusion Models In this experiment,
we consider training diffusion models with very few sampling steps to generate continuous CIFAR10
images. For bridge, we use Q : Zt = dWt initialized from Z0 = 0.5. For SMLD, we use the
implementation of NCSN++ in [23]. For DDPM, we use their original configuration. We use the
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DDPM backbone. We train the models with K = 10, 20, 30, 40, 50 diffusion steps. The results are
shown in Table 3.

Methods K = 1000 K = 50 K = 40 K = 30 K = 20 K = 10
DDPM 3.37 37.96 95.79 135.23 199.22 257.78
SMLD 2.45 140.98 157.67 169.62 267.21 361.23
Bridge 9.80 18.55 19.11 21.14 24.93 34.97
Bridge (Init. C) 9.65 17.91 18.71 20.31 24.12 33.38

Table 3: Results on continuous CIFAR10 generation when varying the number of diffusion steps in both training
and testing. Our method shows significant advantages in regime of small diffusion steps (K ≤ 50).
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