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In this work, we present a neural network-based model that predicts growth kinetics by incorporating
multiple biochemical constraints into the loss function of the neural network, in particular material
(carbon and nitrogen) balance and metabolic flux balance. These constraints effectively reduce
the data requirements, narrow the solution spaces to biologically feasible solutions, and enhance
interpretability. Additionally, it enables the inference of critical, yet often difficult-to-measure, bio-
process parameters such as gas consumption rates and biomass composition. We demonstrate the
application of this approach through a case study on E. coli cell culture. Finally, we discuss poten-
tial extensions of this approach, emphasizing how the application of multiple biological constraints
can serve as a foundation for a multilevel framework in AI-driven virtual cell models, enabling
interpretable and biologically grounded predictions Bunne et al. (2024).

Data generation: To demonstrate this approach we generate synthetic data by performing Flux
Balance Analysis (FBA) simulations of E. coli cultures using the CORBApy package Ebrahim et al.
(2013). O2, glucose, glutamine, glutamate, and lactate are used as substrates to generate biomass,
along with CO2 and ammonia as by-products (e coli core dataset: 72 metabolites, 95 reactions). A
dataset is generated which optimizes the instantaneous biomass production rate, qbm, as a function
of metabolite and gas consumption rates, qi, under varying constrained media compositions (Fig.
1a). To reflect biological variability, 5% of white noise is added to (qbm, qi).

Predicting the biomass composition and CO2 production: We model the instantaneous biomass
production rate, qbm, as a function of specific metabolite and gas consumption rates, qi, using a
simple feed-forward neural network: q̄bm = f(qi). To train the model under material balance
constraints (carbon and nitrogen), we define a constrained loss function Raissi et al. (2019),

L = mse (q̄bm, qbm) + λ1L2
c + λ2L2

n. (1)
Besides the mse, the loss function contains a carbon Lc =

∑
aiqi − qco2 − αbmqbm and nitrogen

Ln =
∑

biqi − qnh4+ − αbmqbm material balance constraint. Here, ai and bi are the respective
carbon and nitrogen numbers, and αbm, βbm the (unknown) biomass composition’s carbon and
nitrogen numbers. λ1 and λ2 are model parameters that regulate the magnitude of the constraint
and are set to 10−4 throughout the rest of the paper. When the biomass composition (αbm, βbm)
and the CO2 production (qco2) are know, training the model to predict the biomass production rates,
qbm, using Eq. 1, constrains the solution space for q̄bm to solutions permitted under the carbon and
nitrogen balance.

When the relative carbon, αbm, and nitrogen, βbm, content are unknown, the model can learn these
parameters, alongside the neural network parameters to predict q̄bm, by defining them as trainable
parameters Raissi et al. (2019); Lagergren et al. (2020). As demonstration, this task has been per-
formed on the aforementioned e-coli data-set and, with as few as 100 training samples, the values
for (αbm, βbm) were recovered with an error inferior to 2% 1. These values provide valuable insights
in the biomass composition, an important process and quality control parameter.

In many experimental settings, the CO2 production rate, qco2, is often challenging to measure di-
rectly due to factors like pH buffers. By including this as hidden variable q̄co2(qi, qbm) directly in
the architecture (Fig. 1b) it can be learned alongside the prediction of q̄bm Tartakovsky et al. (2018).
Using the previously utilized dataset, but now with qco2 treated as unknown, allows for its predic-
tion while ensuring compliance with the enforced carbon and nitrogen constraints. In Fig. 1(d) we

1Throughout this paper work, we use a two layer FFNN for f(qi) (64 neurons), trained with SGD, with
default hyper-parameters.
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Figure 1: a) Metabolic flux model and two network architectures covered: b) with hidden variable
prediction and c) including the learned internal fluxes. d) MSE and Constrain loss, as well as the
relative residual error in the hidden CO2 production rate (compared to ground truth data).

display the mse and constrain loss (Eq. 1) during training as well as the relative error in the the CO2

production rate |qco2 − q̄co2|/qco2. This shows that both the biomass production as well as the CO2

production rate can be learned simultaneously.

Learning Internal Fluxes: Beyond material balance constraints, more complex constraints, such
as the stoichiometric relationships governing metabolic flux balance can be imposed to i) uncover
internal metabolic fluxes and ii) further constrain the biomass production rate q̄bm. For each in-
ternal metabolic node, incoming fluxes equal outgoing fluxes (See Fig 1a and c), represented by
S · v̄ = 0, where S is the stoichiometric matrix and v̄ the learned internal flux vectors. Adding this
supplemental constraint to the loss function,

L = mse (q̄bm, qbm) + λ1L2
c + λ2L2

n + λ3|S · v|2, (2)
enforces internal consistency of the metabolic fluxes Faure et al. (2023). Using the data-set of the
previous paragraph and including specific consumption rates of all relevant amino acids, qi, as input,
we successfully infer the internal fluxes, v̄i, coherent with the stoichiometric constraint imposed,
S · v < 10−3. Uncovering these internal fluxes v̄ permits to identify metabolic limitations and
bottlenecks, informing further process and media optimization.

Discussion: The proposed framework incorporates material and flux balance constraints into neu-
ral networks and serves a dual purpose: (i) Narrowing the solution space to biologically plausible
regions and (ii) facilitating the identification of hidden variables and parameters. Key design choices,
such as neural network architecture and loss function formulation, play an important role in improv-
ing generalization beyond the training distribution Xu et al. (2020). Further refinements—such as
specialized network architectures tailored for metabolic dependencies, or introducing uncertainty
quantification Yang et al. (2021) could enhance model extrapolation and predictive accuracy further.

Future extensions will explicitly incorporate the temporal dynamics of the cell culture to capture
metabolic changes in cellular growth under varying nutrient availability, leveraging the full potential
of Physics-Informed Neural Networks (PINNs) Raissi et al. (2019). Additionally, Integrating further
levels of domain-specific knowledge, such as gene-regulatory interactions Fortelny & Bock (2020)
offers further potential to enhance interpretability and biological relevance. These advancements
would make the framework a more comprehensive and scalable solution for optimizing industrial
bioprocesses through metabolic constraints.

MEANINGFULNESS STATEMENT

Life, at its core, is governed by a complex interplay of biochemical reactions, resource allocation,
and regulatory mechanisms to sustain essential functions such as metabolism and proliferation. To
capture these dynamics with predictive machine learning, we must constrain these models by incor-
porate ”known” fundamental biological principles.
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