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Abstract
Mixture-of-Experts (MoE) large language mod-
els (LLMs), which leverage dynamic routing and
sparse activation to enhance efficiency and scala-
bility, have achieved higher performance while re-
ducing computational costs. However, these mod-
els face significant memory overheads, limiting
their practical deployment and broader adoption.
Post-training quantization (PTQ), a widely used
method for compressing LLMs, encounters se-
vere accuracy degradation and diminished gener-
alization performance when applied to MoE mod-
els. This paper investigates the impact of MoE’s
sparse and dynamic characteristics on quantiza-
tion and identifies two primary challenges: (1)
Inter-expert imbalance, referring to the uneven
distribution of samples across experts, which
leads to insufficient and biased calibration for
less frequently utilized experts; (2) Intra-expert
imbalance, arising from MoE’s unique aggre-
gation mechanism, which leads to varying de-
grees of correlation between different samples
and their assigned experts. To address these chal-
lenges, we propose MoEQuant, a novel quantiza-
tion framework tailored for MoE LLMs. MoE-
Quant includes two novel techniques: 1) Expert-
Balanced Self-Sampling (EBSS) is an efficient
sampling method that efficiently constructs a cali-
bration set with balanced expert distributions by
leveraging the cumulative probabilities of tokens
and expert balance metrics as guiding factors. 2)
Affinity-Guided Quantization (AGQ), which in-
corporates affinities between experts and samples
into the quantization process, thereby accurately
assessing the impact of individual samples on dif-
ferent experts within the MoE layer. Experiments
demonstrate that MoEQuant achieves substantial
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performance gains (more than 10 points accuracy
gain in the HumanEval for DeepSeekMoE-16B
under 4-bit quantization) and boosts efficiency.

1. Introduction
Recent advances in natural language processing have been
profoundly influenced by the success of large language
models (LLMs). Among these, Mixture-of-Experts (MoE)
LLMs, which leverage the dynamic routing mechanisms
and scalable capabilities of MoE layers, have demonstrated
superior performance and achieved state-of-the-art results,
garnering significant attention from the research commu-
nity (Jiang et al., 2024; Qwen, 2024; Liu et al., 2024b).
However, during deployment, MoE LLMs face not only
the same memory bandwidth constraints as conventional
LLMs (Kim et al., 2023; Dettmers et al., 2022) but also
substantially higher storage requirements. For example, in
Qwen-MoE-A2.7B-14B (Qwen, 2024), only 2.7 billion pa-
rameters are activated during the generation phase, yet all 14
billion parameters must reside in memory, significantly in-
creasing inference costs. Furthermore, MoE layers account
for most of the parameter footprint within the transformer
blocks: approximately 80% when considering activated
experts and up to 97% when including all experts. Conse-
quently, compressing MoE LLMs, particularly their MoE
layers, is critical for reducing inference costs and enabling
deployment on resource-constrained devices with limited
memory capacity and bandwidth.

Post-Training Quantization (PTQ), which quantizes weights
into a low-precision format, effectively reduces model size
and memory footprint, achieving notable success in con-
ventional large language models (LLMs). For example,
AWQ (Lin et al., 2023) and GPTQ (Frantar et al., 2022)
compress model weights by up to four times without requir-
ing additional training, while maintaining nearly lossless
performance. However, when these methods are applied
directly to MoE LLMs, they often lead to overfitting and
significant performance degradation, particularly in terms
of generalization. This is because they focus on layer-wise
quantization while overlooking the unique architecture of
MoE, which routes samples to a limited number of experts
and aggregates their outputs through weighted combinations.
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Figure 1. The relative accuracy gains of GPTQ across various mod-
els for two generative tasks, HumanEval and GSM8k, before and
after applying MoEQuant are presented. The suffix ”I” denotes the
instruction fine-tuned version.

In addition, they fail to account for the inherent sparsity and
heterogeneity introduced by the MoE structure.

We perform a comprehensive analysis of the key factors
that affect the quantization performance of MoE LLMs and
identified two inherent imbalances within the MoE archi-
tecture as the primary contributors. Firstly, there is an
imbalance in the distribution of samples across different
experts. As highlighted in DeepSeek (Liu et al., 2024b),
various techniques have been developed to maintain load
balance among experts, which is equally critical during the
calibration phase. However, calibration sets are often do-
main specific, and the gating mechanism can result in some
experts being overloaded while others remain underloaded.
Underloaded experts naturally receive insufficient calibra-
tion, leading to significant quantization errors. As shown in
Figure 2, both of the two most commonly used calibration
sets exhibit this imbalance. Secondly, there is an imbalance
in the affinities between samples and their assigned experts.
Unlike traditional LLMs, where all samples are processed
by a single feedforward network, MoE architectures use a
gating mechanism to express the output as a weighted sum
of results from multiple experts. Consequently, from the
perspective of each expert, samples exhibit varying levels
of affinity, defined as the correlation between a sample and
its assigned expert. Existing PTQ methods (Xiao et al.,
2022; Lin et al., 2023; Ashkboos et al., 2024) fail to account
for this affinity during expert quantization. For example,
GPTQ (Frantar et al., 2022) disregards the impact of the
gating unit when collecting Hessian information, resulting
in an inaccurate assessment of the importance of individual
samples for each expert. This oversight distorts the Hessian
information and significantly degrades the performance of
the quantized model.

To address the aforementioned two imbalances, this paper
introduces two methods: Expert-Balanced Self-Sampling

Figure 2. Sample distribution on the first MoE layer of Qwen-MoE-
A2.7B-14B for different calibration sets. For C4 and WikiText2,
128 × 512 tokens were sampled, for our EBSS, samples were
generated through the model’s self-sampling method.

(EBSS) and Affinity-Guided Quantization (AGQ). EBSS
constructs calibration sets based on the self-sampling ca-
pabilities of LLMs and incorporates cumulative probabil-
ity and expert balance metrics to guide the sampling pro-
cess. This guidance significantly reduces search complex-
ity. Additionally, it ensures that calibration samples are
evenly distributed among experts and consistent with the
pretraining data distribution. AGQ addresses the imbalance
in token-expert affinity during expert quantization by inte-
grating affinity into layer-wise calibration and constructing
weighted quantization errors. This approach adapts to the
dynamic characteristics of MoE, enabling more accurate cal-
culation of quantization errors and sensitivity. By integrat-
ing these two methods, we present MoEQuant, a framework
that bridges existing quantization techniques with MoE ar-
chitectures, taking a crucial step toward reconciling the effi-
ciency of quantized systems with the unique requirements of
MoE LLMs. As shown in Figure 1, MoEQuant achieves per-
formance improvements of varying degrees across different
models, highlighting its effectiveness and broad applicabil-
ity for enhancing MoE language models. Our contributions
are summarized as follows:

• We identify two critical imbalances—inter-expert and
intra-expert—in the quantization of MoE models: sam-
ple distribution imbalance among experts and token-
expert affinity imbalance.

• We propose Expert-Balanced Self-Sampling to effi-
ciently generate a balanced calibration dataset, ensur-
ing equitable utilization of all experts. We also propose
Affinity-Guided Quantization to introduce token-expert
affinities into the quantization process, thereby improv-
ing weight update accuracy and reducing quantization
errors.

• We develop MoEQuant, which seamlessly integrates
EBSS and AGQ with existing PTQ methods, signifi-
cantly enhancing the quantization performance of MoE
LLMs. As one of the first studies in this area, we will
release the code to encourage further exploration and
drive progress in this field.
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2. Related Work
2.1. Mixture-of-Experts Large Language Models

The Mixture-of-Experts (MoE) model, first introduced
by (Jacobs et al., 1991) and (Jordan & Jacobs, 1994), has
been extensively explored in the various contexts (Eigen
et al., 2013; Theis & Bethge, 2015; Deisenroth & Ng, 2015;
Aljundi et al., 2017). In MoE LLMs, each MoE layer com-
prises multiple expert networks and a gating network. The
gating network, typically implemented as a linear layer
with a softmax function, directs inputs to the appropriate
expert networks and aggregates their outputs. Different mod-
els employ various configurations. For example, Switch-
Transformer (Fedus et al., 2022) introduces a top-1 gating
strategy, achieving competitive results for specific model
sizes. Mixtral-8x7B (Jiang et al., 2024) combines MoE
with infrastructure innovations, utilizing two experts per
layer to achieve excellent performance while maintaining
low computational cost. DeepSeekMoE (Dai et al., 2024)
refines expert segmentation by subdividing the intermediate
hidden dimensions of FFNs, increasing the number of ex-
perts, and activating more of them to improve knowledge
decomposition and capture. It also introduces shared ex-
perts, which are always activated to consolidate common
knowledge across contexts, reducing parameter redundancy
in routing-specific experts. DeepSeekv2 (Liu et al., 2024a)
and DeepSeekv3 (Lu, 2025) further enhance performance
with refined designs. Qwen-Moe (Qwen, 2024) replaces
traditional FFN layers entirely with MoE layers, employ-
ing four shared experts alongside four unshared experts se-
lected from a pool of 60. During training, Qwen-MoE first
adapts the existing Qwen-1.8B model to create Qwen1.5-
MoE-A2.7B-16B, achieving better overall pretraining per-
formance.

2.2. Post-Training Quantization for LLMs

Most LLMs are built upon Transformer(Vaswani et al.,
2017) architecture, which is inherently memory-intensive.
Post-training quantization (PTQ) has become a widely
adopted approach to compress LLMs, effectively reducing
memory consumption while maintaining model accuracy.
Two prominent PTQ methods, GPTQ (Frantar et al., 2022)
and AWQ (Lin et al., 2023), have been extensively stud-
ied. GPTQ employs Hessian-based error compensation to
minimize quantization errors and achieve high compression
rates. AWQ, on the other hand, accounts for the impact
of activation distributions on weight quantization, thereby
improving the performance of quantization. Beyond these
methods, several advanced techniques have emerged to fur-
ther enhance PTQ. Quarot (Ashkboos et al., 2024) applies
Hadamard transformations to remove outliers without alter-
ing the output, thus enhancing the effectiveness of GPTQ.
GPTVQ (van Baalen et al., 2024) explores non-uniform
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Figure 3. The MoE structure in LLMs. The router selects all non-
shared experts and k shared experts with highest confidence. The
predictions from all experts are then aggregated and weighted.

quantization schemes from a vector perspective, offering
better adaptability to weight distributions.

However, these methods overlook the unique challenges
posed by MoE architectures, resulting in significant accu-
racy drop. Our proposed MoEQuant, rooted in the relation-
ship between calibration samples and experts, is orthogonal
to existing PTQ methods, enabling seamless integration for
the effective quantization of MoE-based LLMs.

3. Preliminaries
As illustrated in Figure 3, an MoE layer comprises m shared
and n routing experts, along with a gating network that as-
signs different experts and their corresponding probabilities
to each token. Only the top k shared experts with the highest
affinities are utilized. For a given input token x, the output
y is computed as a weighted sum of the outputs from the
top k routing experts and all shared expert:

y =

m∑
i=1

Es
i (x)gi(x)︸ ︷︷ ︸

shared experts

+
∑
j∈K

Er
j (x)gj(x)︸ ︷︷ ︸

top k routing experts

,
(1)

where K = topk ({gi(x) | i ∈ {1, . . . ,m}}), gi(x) repre-
sents the weight assigned to the i-th expert.

Perplexity (PPL) is a common metric for evaluating the
quality of language models. A lower PPL indicates better
predictive accuracy and closer alignment with the model’s
true distribution. For a sequence composed of n tokens
D = (d1, d2, ...dn), the perplexity with respect to model
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M is defined as:

PPL(D | M) = exp
(
− 1

N

∑N
i=1 logPM (di | d1, d2, . . . , di−1)

)
(2)

where P (di | d1, d2, . . . , di−1) represents the probabil-
ity predicted by the model for di, given the context
d1, d2, . . . , di−1.

Expert balance is evaluated by the standard deviation in
the frequency of expert usage across all layers. We define it
as:

σ =

∑L
l=1 σl

L
(3)

σl =

√√√√ 1

E − 1

E∑
e=1

(ue
l − ûl)2 (4)

where L denotes the number of layers in the MoE model,
E represents the total number of experts in a layer, and σl

refers to the standard deviation of the l-th layer, which is
calculated based on the usage frequency ue

l of each expert
and the average frequency ûl.

Quantization typically involves mapping a floating-point
number to a discrete interval using integer values. For
weight quantization, we focus on the most commonly used
per-channel symmetric uniform quantization. The quantiza-
tion process is expressed as follows:

Q(W ) = clamp

(⌊
W

s

⌉
, qmin, qmax

)
, (5)

where W ∈ Ro×c represents the weight matrix, s ∈ Ro

denotes the channel-wise quantization step, and qmin, qmax

represent the quantization bounds. To facilitate the evalua-
tion of quantization error, we typically perform a dequanti-
zation operation:

Ŵ = Q(W ) · s (6)

For a linear layer, the loss caused by quantizing W can be
formulated as

L(Ŵ ) =
∥∥∥WX − ŴX

∥∥∥2
F
, (7)

where X ∈ Rb×c represents the activation of the calibration
data at this layer. AWQ (Lin et al., 2023) utilizes Equation 7
to guide the selection of smoothing coefficients and weight
pruning. GPTQ (Frantar et al., 2022) follows OBQ (LeCun
et al., 1989), which uses the Hessian to compensate for
the quantization error. In conjunction with Equation 7, the
Hessian can be effectively computed as:

H = XX⊤ (8)

4. Method
4.1. MoEQuant

In this paper, we present MoEQuant, a framework designed
to efficiently quantize LLMs utilizing MoE architectures.
MoEQuant addresses the critical challenge of expert im-
balance, both inter- and intra-expert, which arises during
the quantization process.MoEQuant tackles the imbalance
from two perspectives: the generation of expert-balanced
calibration datasets and the token-expert correlation dur-
ing expert calibration. Correspondingly, it incorporates
two solutions: Expert-Balanced Self-Sampling (EBSS) and
Affinity-Guided Quantization (AGQ). EBSS generates cal-
ibration samples that ensure the balanced engagement of
all experts within MoE architectures. AGQ, on the other
hand, addresses the correlation disparities between samples
introduced by gating units in MoE layers.

Both methods are plug-and-play and can be seamlessly in-
tegrated with other quantization techniques to improve the
performance of MoE LLMs. Detailed descriptions of them
are provided in Sections 4.2 and 4.3.

4.2. Expert-Balanced Self-Sampling
Current PTQ methods typically rely on domain-specific
calibration datasets, such as WikiText-2. Although these
calibration datasets can preserve reasonable generalization
capabilities for standard LLMs, their direct application to
MoE LLMs often leads to significant performance degra-
dation. This degradation occurs because domain-specific
calibration datasets result in an uneven sample distribution
among experts. As illustrated in Figure 2, relying on a single
calibration set usually produces a long-tailed distribution of
samples among different experts.

An intuitive approach is to construct a domain-balanced
calibration set by sampling data from multiple domains.
However, the virtually infinite number of possible domains
makes achieving true domain balance both complex and
impractical. Moreover, as shown in Figure 4, even high-
quality datasets often exhibit high perplexity, indicating a
misalignment between the selected data and the model’s
inherent distribution.

Problem Definition Based on the above, the objective is to
identify a dataset D∗ that satisfies two key properties:

• Low perplexity. The samples in D∗ should align
closely with the inherent distribution of the modelM,
which corresponds to minimizing perplexity.

• Expert balance. The samples should be evenly dis-
tributed among experts in MoE LLMs, ensuring that
no expert is overused or underused.

This dual requirement can be formulated as a joint optimiza-
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tion problem, which can be formulated as:

D∗ = argmin
D

{
PPL(M,D) · exp

(
σ(M,D)

τ

)}
, (9)

where exp
(

σ(M,D)
τ

)
represents the reciprocal of normal-

ized imbalance, exp is used to normalize σ, and τ is a
hyper-parameter controlling the impact of expert imbalance.
Regarding the influence of the hyperparameter τ and the
objective function, we provide a detailed derivation of the
complete process in the Appendix A.1.

The perplexity optimization corresponds to an optimal sub-
set selection problem, while expert balancing is analogous
to a load-balancing problem. Both are NP-hard, making a di-
rect solution computationally infeasible. To enable practical
analysis, the problem can be reformulated in combination
with Equation 2 as

D∗ = argmin
D

{
−1
N

n∑
i=1

(log (P (Di|D1:i−1))) +
σ(M,D)

τ

}
,

subject to D ∈= V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

,

(10)

where V = {v1, v2, . . . , vm} represents the vocabulary that
contains m tokens, P denotes probabilities predicted by
M. n is the sequence length and ⊗ denotes the Cartesian
product. In this context, optimization can be viewed as
searching for the optimal path within an n-dimensional
vocabulary space.

Challenges. One challenge lies in the availability of limited
datasets. Since only a small amount of data is typically
accessible for calibration, it is difficult to ensure ideal do-
main balance or alignment with the pre-training distribution,
which can adversely affect the final quantization perfor-
mance. Another challenge is the computational cost of
searching through the vast space of potential calibration sets.
A brute-force search would require exploring mn possibili-
ties, which is infeasible. Greedy search strategies, although
more efficient, may suffer from local optima, highlighting
the need for more sophisticated but efficient search methods.

Self-Sampling. To address the challenge of data availability,
we leverage the self-sampling capabilities of LLMs to con-
struct calibration data. This data-free approach relies solely
on the model’s vocabulary and is naturally consistent with
the model’s learned language distribution (Liu et al., 2023).
Furthermore, during the self-sampling process, historical
probabilities and expert distributions are cached, eliminating
redundant computations for perplexity and expert balance
metrics. We define the historical cumulative log-probability
of a sequence S as:

RS =

n∑
i=1

log(P (Si|S1:i−1), (11)

where n is the length of S. During the sampling phase,
perplexity can be easily calculated by RS and the predicted
probability P (v|S) by

PPL(M, S∥v) = exp

(
−1

n+ 1
(Rs + P (v|S))

)
(12)

where ∥ denotes concatenation.

Figure 4. Perplexity performance on DeepSeek-MoE-16B of dif-
ferent datasets.

Probability-Guided Path Pruning. When predicting the
next token in a self-sampling approach, the head layer out-
puts probabilities for all possible candidates, which typi-
cally exhibit a multimodal distribution. Tokens with low
probabilities often result in incoherent or semantically in-
correct sequences. Based on this observation, we propose
a probability-guided path pruning method to effectively
improve search efficiency. The core idea is to ignore low-
probability branches during the search process.

Specifically, during the calibration dataset search, we retain
only w branches S =

{
S1, S2, ..., Sw

}
, each with a length

of l. When generating candidate sequences of length l + 1,
each branch St expands to potential sequences within the
space St ⊗ V . The pruning evaluation metric for these
sequences is defined as:

score(S∥v) = −1
l + 1

(RS + logP (v|S)) + σ(M, S)

τ
,

subject to v ∈ V,
(13)

where S is one of S, and RS corresponds to the cumu-
lative probability defined in Equation 11. The process
of generating a new set of w candidate sequences, Ŝ ={
Ŝ1, Ŝs

1
, ..., Ŝw,

}
, is expressed as:

Ŝ = arg topk
S∥v

(w, score(S∥v)) ,

subject to v ∈ V and S ∈
{
Si, S2, ..., Sw

}
,

(14)
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where arg topk x (f(w, x) denotes the set of w values of x
that maximize f(x).

As indicated in Equation 14 and Figure 5, the scores of can-
didate sequences generated from the same input sequence
S are influenced by the probability distribution produced
by the LLM. Additionally, the expert balance metric affects
all candidate sequences derived from S. By introducing an
efficient search method for the calibration set, the search
complexity is significantly reduced from O(mn) to O(wn),
and the risk of local optima is effectively mitigated.

Deferred Expert Imbalance Calculation. It is important to
note that during the pruning process, as shown in Equation
14, the evaluation metric does not incorporate the candidate
token v in the assessment of expert balance. This approach
is justified for several reasons:

• Unlike perplexity, which can be directly computed
from the probability distributions output by LLMs, cal-
culating the expert distribution for each token in the
vocabulary requires iterating over all possible tokens, a
computationally expensive process. Since the distribu-
tion of the current sequence is already known, deferred
computation incurs minimal additional cost.

• The pruning process relies primarily on the predicted
probabilities of the LLM rather than on expert balance.
Including expert distributions during pruning of the
next token is inappropriate, as it may lead to semantic
misalignment or incoherence.

• As demonstrated in Equation 14, the deferred calcula-
tion actually performs branch-level pruning, thereby
ensuring the creation of an expert-balanced calibration
set on the premise of maintaining the perplexity.
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4.3. Affinity-Guided Quantization

In an MoE layer, the gating network assigns a probability
score to each expert based on the input. The most relevant

experts are selected and their outputs are weighted accord-
ing to their assigned probabilities. Traditional layerwise
quantization employs Equation 7 to uniformly minimize the
quantization error but overlooks the probabilities between
samples and experts. We define this correction as affinity,
asserting that it is equally important and should be taken
into account during the quantization process.

Let E be a specific expert and denote the set of b tokens
routed to this expert as X = {x1, x2, ..., xb}, with the cor-
responding affinity scores c = {c1, c2, ..., cb} provided by
the gating network. The output for the i-th token processed
by this expert can be expressed as

yi = ciE(xi). (15)

E is a FFN, which can be expanded into a sequence of linear
layers and an activation function such as ReLU. Here, we
consider a representative FFN structure, leading to:

yi = ci
{(

(xW up)⊙ f(xW gate)
)
W down

}
, (16)

where f denotes the activation function,W denotes the pa-
rameter matrix. Because of the predominantly linear nature
of the FFN and the quasi-linear property of f , the expression
above can be reformulated as follows:

yi =
(
(cixW

up)⊙ f(xW gate)
)
W down

yi =
(
(xW up)⊙ f(xW gate)

)
(ciW

down)

yi ≈
(
(xW up)⊙ f(cixW

gate)
)
W down

(17)

This shows that the token-expert affinity ci propagates
through every layer of the expert network. When focus-
ing on a specific linear layer, ci can be directly integrated
into the layer’s operations. In other words, different tokens
exert a gate-aware influence on the weights of the same
expert, with ci acting as a scaling factor that modulates the
contribution of each token’s input features to the linear layer.

Affinity-aware quantization error. Traditional quantiza-
tion methods for LLMs have not taken into account the
affinity-aware property. Here, we incorporate the gating
coefficients into layer-wise calibration for the first time by
redefining the quantization loss for W as

L(Ŵ ) =

n∑
i=0

ci ·
∥∥∥Wxi − Ŵxi

∥∥∥2
F
. (18)

For PTQ methods based on quantization error, such as
AWQ, Equation 18 incorporates token-expert affinity into
the quantization process. Unlike the original implemen-
tation, which treats all tokens equally during calibration,
our affinity-aware metric emphasizes tokens with higher
affinities, thereby reducing the overall quantization error for
influential tokens.
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Table 1. Results of RTN, Omniquant, AWQ, GPTQ, Quarot+GPTQ and ours MoEQuant with 4-bit Weight Quantization among 9 Tasks
on Qwen-MoE-14B, DeepSeekMoE-16B and Mixtral-8x7B. where + denotes MoEQuant based on AWQ, ++ denotes MoEQuant based
on Quarot+GPTQ. Notably, except for our proposed MoEQuant, other methods utilize Wikitext2 as the calibration dataset, which leads to
overfitting on Wikitext2. Perplexity measured on the C4 dataset more accurately reflects the performance of different methods.

MODEL METHOD
PPL ACCURACY

WIKI
C4 MMLU

HUMAN
GSM8K BOOLQ

HELLA OPEN MATH
AVG.

TEXT2 EVAL SWAG BOOKQA QA

QWEN-
MOE-14B

FP 7.22 9.30 59.60 32.32 62.55 79.82 57.96 30.40 35.77 51.20
RTN 10.83 12.49 48.10 14.63 16.07 72.11 51.42 25.80 30.08 36.89

OMNIQUANT 7.67 9.98 56.30 31.71 52.39 78.20 56.58 29.40 33.63 48.31
AWQ 8.59 10.93 51.63 20.73 36.77 71.96 54.78 30.40 31.39 42.52

MOEQuant+ 8.77 10.67 52.33 22.10 42.22 74.52 54.92 30.40 33.44 44.27
GPTQ 8.00 10.99 53.70 20.73 22.82 73.52 52.70 29.40 28.27 40.16

QUAROT+GPTQ 7.43 10.11 57.90 28.05 56.25 78.77 56.54 29.00 36.48 49.00
MOEQuant++ 7.55 9.62 58.30 29.87 58.38 78.04 56.87 30.20 35.50 49.59

DEEPSEEK-
MOE-16B

FP 6.51 9.04 44.60 26.83 20.16 72.72 58.06 32.20 31.49 40.86
RTN 7.47 10.01 36.10 18.90 10.54 70.21 55.76 30.60 28.87 35.85

OMNIQUANT 6.79 9.49 43.50 21.95 18.65 73.82 56.67 32.40 31.02 39.72
AWQ 6.80 9.50 40.57 25.00 17.06 71.65 56.42 32.20 31.76 39.23

MOEQuant+ 6.94 9.32 41.20 25.00 18.90 71.98 56.79 32.12 31.82 39.68
GPTQ 6.82 10.35 39.60 21.34 11.60 72.14 56.05 30.60 30.35 37.38

QUAROT+GPTQ 6.66 9.39 40.60 22.56 19.18 72.17 57.03 30.60 30.95 39.01
MOEQuant++ 6.78 9.22 42.20 25.00 19.18 73.49 57.20 31.40 31.66 40.01

MIXTRAL-
8X7B

FP 3.84 6.87 70.50 32.93 65.88 85.23 64.88 35.80 42.41 56.80
RTN 5.41 8.13 62.20 28.05 27.90 80.85 61.73 32.20 37.35 47.18

OMNIQUANT 4.19 7.20 68.10 34.75 57.01 84.13 63.03 33.00 41.91 54.56
AWQ 5.01 7.98 62.75 25.00 38.67 79.97 62.11 33.60 38.43 48.64

MOEQuant+ 5.15 7.84 64.66 25.45 50.66 81.03 62.73 34.00 39.77 51.19
GPTQ 4.84 8.08 64.30 24.39 42.15 83.03 58.50 32.00 37.52 48.84

QUAROT+GPTQ 4.03 7.67 68.50 27.60 57.92 84.22 64.08 30.60 41.07 53.42
MOEQuant++ 4.12 7.34 69.60 32.15 61.79 84.98 64.05 33.60 42.95 55.58

Gate-aware Hessian statistics. In contrast to Equation 7,
which assumes equal contributions from all tokens to the
Hessian, the affinity-aware quantization loss (Equation 18)
leads to a more reasonable Hessian computation:

H = (X ·
√
c)(X ·

√
c)⊤ = (X · c)X⊤. (19)

For Hessian-based PTQ methods (e.g., GPTQ), the im-
proved Hessian incorporates token-specific weighting to
better capture the operational dynamics of MoE layers. As a
result, tokens with higher gating coefficients exert a greater
influence when computing sensitivity metrics, which guide
weight updates and help minimize quantization error.

The Full Algorithm. Finally, we present the full pseu-
docode for EBSS and AGQ in Algorithm 1 and Algorithm
2, including the optimizations discussed above.

5. Experiments
5.1. Setup

We employ weight quantization for LLMs using symmet-
ric uniform quantization with per-channel granularity. All
experiments are performed on NVIDIA A6000 GPUs. As
MoEQuant is an efficient post-training quantization (PTQ)
framework, it obviates the need for any fine-tuning.

Models and Datasets. We conduct experiments on

DeepSeek-MoE-16B (Dai et al., 2024), Qwen-MoE-
14B (Qwen, 2024) and Mixtral-8x7B (Jiang et al., 2024). In
addition, we compare instruction-tuned models to demon-
strate the effectiveness of our method. Beyond standard per-
plexity evaluations on Wikitext2 (Merity, 2016) and C4 (Raf-
fel et al., 2020), we evaluate the proposed MoEQuant on
various reasoning tasks, including MMLU (Hendrycks et al.,
2020), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), Openbookqa (Mihaylov et al., 2018), and
MathQA (Amini et al., 2019). Furthermore, we evaluate
MoEQuant using the HumanEval (Chen et al., 2021) and
GSM8k (Cobbe et al., 2021). HumanEval evaluates code
generation capabilities, while GSM8k assesses multistep
mathematical reasoning skills.

Baseline. Our primary baselines consist of vanilla RTN and
the PTQ methods for LLMs: AWQ (Lin et al., 2023) and
GPTQ (Frantar et al., 2022). Despite requiring parameters
training, we still incorporate OmniQuant (Shao et al., 2023)
as a baseline for comparison. For calibration, 128 segments
from the Wikitext2 dataset are selected. Floating-point re-
sults are provided as references.

Implementation Details. For the three complex reason-
ing tasks, MMLU, GSM8k, and HumanEval, we conduct
evaluations based on their official repository. For sev-
eral other zero-shot tasks, we use the open-source tool
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lm-evaluation-harness (version 0.4.4) (Gao et al.,
2024) for assessment. In experiments involving AWQ and
OminiQuant, we adapt their official repository to support
the three MoE models. In addition to the official GPTQ re-
sults in the MoE architecture, we also combine GPTQ with
an equivalent Hadamard transformation to eliminate out-
liers in the weights, consistent with the implementation in
QuaRot (Ashkboos et al., 2024), while avoiding any online
transformations.

5.2. Results

Comparison results. We conduct a comprehensive com-
parison of quantization performance across various LLMs
and datasets. As shown in Table 1, the results of nine tasks
demonstrate that our method, MoEQuant, exhibits a superior
performance compared to other methods for MoE LLMs.
Notably, although GPTQ achieves lower perplexity on Wiki-
text2(likely due to overfitting from using Wikitext2 for cali-
bration), its performance on C4 and other tasks is notably
weaker. In contrast, MoEQuant outperforms GPTQ and
AWQ in most tasks, showing substantial improvements in
both perplexity and task-specific scores. On average, MoE-
Quant exceeds the original performance by 1% across all
three models, as measured by the average score over seven
tasks. In particular, on HumanEval and GSM8k, where
other methods degrade the model’s reasoning ability after
quantization, integrating MoEQuant effectively preserves
this ability in generation tasks, achieving results comparable
to full-precision models. This is particularly important as
reasoning in complex tasks such as HumanEval is crucial
for real-world applications, further highlighting the practical
relevance of MoEQuant’s performance.

Table 2. Results of RTN, AWQ, GPTQ and MoEQuant with 4-bit
weight quantization among 3 tasks on Qwen, DeepSeek and Mix-
tral MoE instruction-tuned models, where + denotes MoEQuant
based on AWQ, ++ denotes MoEQuant based on GPTQ.

MODEL METHOD MMLU
HUMAN

GSM8K
EVAL

QWEN-
MOE-14B-
CHAT

FP 59.00 21.34 30.71
RTN 43.00 7.32 9.70
AWQ 52.06 12.20 17.74

MoEQuant+ 53.22 18.92 22.34
GPTQ 51.30 10.98 16.22

QUAROT+GPTQ 57.30 15.24 26.08
MoEQuant++ 58.00 21.95 29.11

DEEPSEEK-
MOE-16B-
CHAT

FP 48.90 24.39 54.28
RTN 41.40 10.41 28.88
AWQ 46.33 18.90 39.88

MoEQuant+ 46.80 19.20 47.42
GPTQ 43.80 32.93 35.78

QUAROT+GPTQ 46.60 13.41 47.08
MoEQuant++ 47.60 21.95 48.97

Experiments of instruction-tuned models. Instruction
fine-tuning can significantly improve the application ca-

pabilities of the model and has become a necessary pro-
cess for deployment of LLMs in different scenarios. The
quantization of instruction-tuned models is often more chal-
lenging than that of base models. We perform benchmark
tests on Qwen-MoE-14B-Chat (Qwen, 2024) and DeepSeek-
MoE-16B-Chat (Dai et al., 2024), covering three tasks. For
Qwen-MoE-14B-Chat, MoEQuant++ consistently main-
tains more than 94% full-precision performance, with most
of the original reasoning ability effectively restored. As
shown in Table 2, previous methods face more significant
accuracy degradation on instruction-tuned models for code
generation and mathematical reasoning tasks. For ex-

Table 3. Avg score of our methods ablation study on Qwen,
DeepSeek and Mixtral MoE models across 7 tasks, the baseline
method is GPTQ.

MODEL EBSS AGQ AVG ACCURACY

QWEN-MOE-14B

FP 51.20
× × 49.00
× ✓ 49.02
✓ × 49.21
✓ ✓ 49.59

DEEPSEEK-MOE-16B

FP 40.86
× × 39.01
× ✓ 39.50
✓ × 39.87
✓ ✓ 40.01

MIXTRAL-8X7B

FP 56.80
× × 53.42
× ✓ 54.24
✓ × 55.15
✓ ✓ 55.58

ample, Quarot+GPTQ experienced a 29% accuracy drop in
HumanEval for Qwen-MoE-14B-Chat. With the integration
of MoEQuant++, the accuracy even surpasses the full-
precision model, further demonstrating the effectiveness of
EBSS and AGQ in improving quantization performance.
More detailed results on perplexity and reasoning tasks can
be found in the Appendix Table 10.

Ablation results. MoEQuant enhances generalization and
reasoning abilities on MoE LLMs through two primary
methods: EBSS and AGQ. We conduct decomposition ex-
periments in Table 3. The results demonstrate the effec-
Table 4. Impact of Calibration Datasets on Expert Balance and
Quantization Performance in deepseek-MoE-16b LLMs. The ex-
pert balance std denotes the standard deviation on frequency of
expert.

MODEL
CALIB EXPERT AVG

DATASET BALANCE STD ACCURACY

DEEPSEEK-
MOE-16B

FLOAT 40.86
RTN 35.85

WIKTEXT2 0.0427 39.01
HUMANEVAL 0.0877 38.90

GSM8K 0.0928 38.88
EBSS 0.0052 39.87

tiveness of both proposed methods individually, each con-
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tributing to improved accuracy. Notably, their combination
yields a synergistic effect, leading to a significant enhance-
ment in average precision that surpasses the sum of their
individual contributions. For EBSS, we perform an ablation
study to examine the impact of two key hyperparameters:
temperature τ and branch number w. The best performance
is achieved when τ is set to 1.2, and we set w to 4 to balance
effectiveness and efficiency. More detailed results can be
seen in Appendix A.2. Meanwhile, we compare the per-
formance between the fixed dataset and our EBSS method
in terms of mean accuracy. The results in Table 4 clearly
demonstrate that EBSS significantly improves the balance
of expert sampling, as evidenced by a notable reduction in
standard deviation, while also achieving the highest mean
accuracy.

Table 5. Average scores of 3-bit on DeepSeek and Mixtral MoE
models, where + denotes MoEQuant based on AWQ, ++ denotes
MoEQuant based on GPTQ

MODEL BITWIDTH METHOD AVG.

DEEPSEEK-
MOE-16B

FP 40.86
3 RTN 20.17
3 AWQ 22.20
3 MoEQuant+ 26.65
3 QUAROT+GPTQ 35.85
3 MoEQuant++ 36.47

MIXTRAL-
8X7B

FP 56.80
3 RTN 18.64
3 AWQ 36.05
3 MoEQuant+ 39.30
3 QUAROT+GPTQ 45.03
3 MoEQuant++ 49.75

Lower bitwidth. We evaluate the generalizability of our
approach under lower bitwidth settings for DeepSeek-MoE-
16B and Mixtral-8x7B. As shown in Table 5, among the
tested methods, MoEQuant+ and MoEQuant++ consis-
tently achieve the highest average scores. These findings
demonstrate that MoEQuant provides superior performance
compared to other quantization methods, effectively main-
taining higher accuracy even at a lower bitwidth. Full results
are provided in Appendix 5.

Table 6. Speedup and memory saving of 3 MoE LLMs, compared
between our 4-bit implementation and FP16. All tests were con-
ducted on Nvidia A6000 GPUs.

MODEL
DECODER SPEED (TOKENS/SEC)

FP QUANTIZED
SPEED

UP

QWEN-MOE-14B 8.35 10.60 1.27
DEEPSEEK-MOE-16B 20.81 24.45 1.17
MIXTRAL-8X7B 10.24 21.25 2.08

MODEL
MEMORY USE (GB)

FP QUANTIZED
MEMORY

SAVING
QWEN-MOE-14B 27.88 8.51 3.28
DEEPSEEK-MOE-16B 32.23 9.87 3.27
MIXTRAL-8X7B 89.64 23.97 3.74

Speedup and memory savings. The motivation behind
MoEQuant is to compress MoE LLMs to a lower bitwidth,
thereby reducing both latency and GPU memory usage dur-
ing inference while preserving accuracy to the greatest ex-
tent, ensuring practical applicability. As shown in Table 6,
MoEQuant achieves an average inference speedup of over
1.2× and memory savings exceeding 3.2×, demonstrating
significant improvements in inference efficiency. These
advancements enable the deployment of MoE LLMs on
consumer-level devices, such as the Nvidia 4090 GPU.

6. Conclusion
We propose MoEQuant, a framework designed to address
the unique challenges of quantizing MoE LLMs. By in-
corporating Expert-Balanced Self-Sampling and Affinity-
Guided Quantization, MoEQuant extends traditional quanti-
zation methods to effectively handle both the uneven distri-
bution of calibration samples among experts and the token-
expert affinity variations introduced by gating units. Experi-
mental results show that MoEQuant achieves near-floating-
point accuracy even with low-bit quantization and signifi-
cantly improves generalizability, particularly in instruction-
finetuned models. These results underscore its potential to
substantially reduce model size and computational require-
ments, making MoE LLMs more feasible for deployment in
resource-constrained environments.
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Impact Statement
MoEQuant addresses the unique quantization challenges of
Mixture-of-Experts (MoE) LLMs by tackling inter-expert
and intra-expert imbalances, ensuring efficient low-bit quan-
tization while preserving model accuracy. By integrat-
ing Expert-Balanced Self-Sampling (EBSS) and Affinity-
Guided Quantization (AGQ), MoEQuant significantly en-
hances calibration balance and token-expert interaction mod-
eling, outperforming existing PTQ methods in generaliza-
tion and reasoning tasks. Experimental results demonstrate
that MoEQuant achieves 3.2× memory savings, 1.2× in-
ference speedup, and substantial accuracy gains, making
MoE LLMs more practical for deployment on consumer-
grade GPUs like the Nvidia RTX 4090. This work advances
the scalability and accessibility of MoE models, bridging
the gap between high-performance language modeling and
efficient deployment.
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A. Appendix
A.1. Derivation of τ and objective function

EBSS optimizes:

D∗ = argminD{
∈[1,+∞)︷ ︸︸ ︷

PPL(M,D)+

∈[0,1]︷ ︸︸ ︷
σ(M,D)

τ
}

where τ balances pretraining distribution alignment (via PPL) and expert balance (via σ). Smaller τ prioritizes expert
balance but may increase PPL.

There is no risk of over-balancing as the cost of PPL because PPL is bounded, we prove it below:

When ignoring σ, we denote PPL = p, p typically remains close to 1 due to self-sampling. We have the following:

D∗ = PPL(M,D) + σ(M,D)
τ ≤ p+ 1

τ ,

since σ ≥ 0,

we have: PPL(M,D) ≤ p+ 1
τ −

σ
τ ≤ p+ 1

τ

The hyperparameter τ is determined via ablation studies below.

A.2. Ablation study

In this section, we provide the complete comparison of results for our method EBSS and AGQ. As shown in Table 7, taking
DeepSeek-MoE-16B as an example, when applied alone, EBSS brings a nearly 1.3% improvement, while AGQ brings
about 2%. When both techniques are combined, the performance improves significantly by 2.6%, which is similar on the
Qwen-MoE-14B. This demonstrates the benefit of combining EBSS and AGQ, as the combined method outperforms both
individual methods. It is inevitable that for Mixtral 8x7b, the result of AGQ is not better than that of convential GPTQ, but
the combination result is still the optimal one.

Table 7. Complete comparison of our methods ablation study on Qwen, DeepSeek and Mixtral MoE models across 9 tasks, the baseline
method is GPTQ.

MODEL EBSS AGQ
PPL SCORE

WIKI
C4 MMLU

HUMAN
GSM8K BOOLQ

HELLA OPEN MATH
AVG.

TEXT2 EVAL SWAG BOOKQA QA

QWEN-
MOE-14B

FP 7.22 9.30 59.60 32.32 62.55 79.82 57.96 30.40 35.77 51.20
× × 7.43 10.11 57.90 28.05 56.25 78.77 56.54 29.00 36.48 49.00
× ✓ 7.44 10.09 57.30 29.27 56.41 76.45 56.86 31.00 35.87 49.02
✓ × 7.56 9.62 58.80 27.44 56.71 78.77 56.73 30.80 35.27 49.21
✓ ✓ 7.55 9.68 58.30 29.87 58.38 78.04 56.87 30.20 35.50 49.59

DEEPSEEK-
MOE-16B

FP 6.51 9.04 44.60 26.83 20.16 72.72 58.06 32.20 31.49 40.86
× × 6.66 9.39 40.60 22.56 19.18 72.17 57.03 30.60 30.95 39.01
× ✓ 6.66 9.38 41.60 23.17 17.89 74.52 57.30 31.20 30.88 39.50
✓ × 6.77 9.22 44.00 23.78 18.19 73.24 57.21 31.80 30.92 39.87
✓ ✓ 6.78 9.25 42.20 25.00 19.18 73.49 57.20 31.40 31.66 40.01

MIXTRAL-
8X7B

FP 3.84 6.87 70.50 32.93 65.88 85.23 64.88 35.80 42.41 56.80
× × 4.03 7.67 68.50 27.60 57.92 84.22 64.08 30.60 41.07 53.42
× ✓ 4.04 7.64 68.30 29.54 60.12 83.36 64.04 32.80 41.54 54.24
✓ × 4.10 7.38 69.10 31.19 60.50 84.83 64.21 34.20 42.01 55.15
✓ ✓ 4.12 7.38 69.60 32.15 61.79 84.98 64.05 33.60 42.95 55.58

In EBSS, we conduct an ablation study to examine the impact of two key hyperparameters: temperature τ and branch
number w. The τ controls the significance of expert balance in the sentence probability distribution, while w determines the
diversity of the generated sentences. Although increasing w improves sentence diversity, it also incurs higher computational
costs. The experiments are performed on DeepSeek-MoE-16B across seven tasks, as shown in Table 8 and Table 9. When τ
is set to 1.2, the average score across datasets is maximized. Similarly, setting w to 4 yields optimal results, with further
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increases in w offering only marginal score improvements while significantly increasing generation time.

Table 8. Different τ on avg scores across 7 tasks for DeepSeek-MoE-16B with MoEQuant++.

τ 1.0 1.1 1.2 1.3 1.4 1.5

AVG. 39.82 39.89 40.01 39.98 39.69 39.71

Table 9. Different branch number w on avg scores across 7 tasks for DeepSeek-MoE-16B with MoEQuant++.

w 2 3 4 5 6 7 8 9 10 20 30 40 50

AVG. 39.77 39.80 40.01 39.98 40.01 40.00 40.00 40.01 40.00 40.10 40.07 40.08 40.11

A.3. Full results

In this section, we provide a comprehensive presentation of our results across various datasets to complement the main paper.
Specifically, the results include the following.

• Complete comparison on two perplexity and seven accuracy tasks for instruction-tuned MoE LLMs: Qwen-MoE-14B-
chat, and DeepSeek-MoE-16B-chat.

• Complete comparision with the lower bit on 2 perplexity and 7 accuracy tasks for DeepSeek-MoE-16B and Mixtral-
8x7B.

Table 10. Complete comparison of RTN, AWQ, GPTQ, Quarot+GPTQ and ours MoEQuant with 4-bit weight quantization among 9 tasks
on Qwen, DeepSeek and Mixtral MoE instruction-tuned models, where + denotes MoEQuant based on AWQ, ++ denotes MoEQuant
based on GPTQ.

MODEL METHOD
PPL SCORE

WIKI
C4 MMLU

HUMAN
GSM8K BOOLQ

HELLA OPEN MATH
AVG.

TEXT2 EVAL SWAG BOOKQA QA

QWEN-
MOE-14B-
CHAT

FP 8.07 9.74 59.0 21.34 30.71 81.31 59.33 31.00 34.91 45.37
RTN 12.81 14.03 43.00 7.32 9.70 71.13 51.41 24.40 28.81 33.68
AWQ 9.97 11.90 52.06 12.20 17.74 74.74 55.37 30.40 31.46 39.14

MOEQuant+ 10.12 11.55 55.34 13.60 20.87 76.22 56.64 30.60 32.50 40.82
GPTQ 9.16 12.24 51.30 10.98 16.22 72.91 51.97 28.00 26.67 36.86

QUAROT+GPTQ 8.38 10.78 57.30 15.24 26.08 78.92 58.72 31.40 34.17 43.19
MOEQuant++ 8.65 10.21 58.00 21.95 29.11 79.11 58.53 33.20 34.77 44.95

DEEPSEEK-
MOE-16B-
CHAT

FP 7.35 9.96 48.90 24.39 54.28 79.81 60.69 33.40 34.27 47.96
RTN 8.63 11.06 41.40 10.41 28.88 75.84 57.59 31.40 29.04 39.22
AWQ 7.72 10.49 46.33 18.90 39.88 78.20 58.97 33.80 32.86 44.13

MOEQuant+ 7.85 10.23 46.40 18.90 45.41 78.20 59.03 33.60 33.14 44.95
GPTQ 7.72 11.52 43.80 32.93 35.78 76.82 57.21 33.60 33.30 44.78

QUAROT+GPTQ 7.55 10.24 46.60 13.41 47.08 78.87 59.64 33.20 32.76 44.50
MOEQuant++ 7.70 10.08 47.60 21.95 48.97 79.20 59.30 33.80 32.60 46.20
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Table 11. Complete results of of lower-bit among 9 tasks on DeepSeek and Mixtral MoE models, where + denotes MoEQuant based on
AWQ, ++ denotes MoEQuant based on GPTQ.

MODEL
BIT

METHOD
PPL SCORE

WIDTH WIKI
C4 MMLU

HUMAN
GSM8K BOOLQ

HELLA OPEN MATH
AVG.

TEXT2 EVAL SWAG BOOKQA QA

DEEPSEEK-
MOE-16B

FP 6.51 9.04 44.60 26.83 20.16 72.72 58.06 32.20 31.49 40.86
3BIT RTN 26352 32357 24.8 0.00 1.59 51.62 26.18 15.60 21.44 20.17
3BIT AWQ 4622 5505 27.80 1.90 2.88 53.20 27.97 17.80 23.86 22.20
3BIT MOEQuant+ 5100 4924 33.20 8.72 10.44 59.24 29.22 20.60 25.14 26.65
3BIT QUAROT+GPTQ 7.17 11.66 37.30 17.68 11.60 72.31 53.68 27.80 29.72 35.85
3BIT MOEQuant++ 7.55 10.88 40.00 20.12 12.81 69.72 54.09 29.00 29.61 36.47

MIXTRAL-
8X7B

FP 3.84 6.87 70.50 32.93 65.88 85.23 64.88 35.80 42.41 56.80
3BIT RTN 44944 51241 25.30 0.00 0.00 41.52 25.61 18.40 19.66 18.64
3BIT AWQ 7.38 13.13 45.80 10.37 10.39 75.23 53.04 28.00 29.55 36.05
3BIT MOEQuant+ 8.77 11.44 49.40 14.44 17.29 77.22 54.29 30.10 32.34 39.30
3BIT QUAROT+GPTQ 4.64 9.12 57.80 22.56 22.59 79.82 61.30 30.40 40.80 45.04
3BIT MOEQuant++ 4.90 8.24 64.10 28.05 43.21 82.81 60.07 31.20 38.82 49.75
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Algorithm 1 EBSS-based Sentence Generation with Expert-Balanced Pruning
input M : MoE-LLM model

NS: Number of sentences
Seqlen: Sequence length
V : Vocabulary size
w: EBSS width
τ : Expert balance temperature

output Final sentences: Generated sentence list
1: Final sentences← ∅
2: for i ∈ [1, NS] do
3: first token← Random(V )
4: candidates← [first token] {Initialize candidate pool}
5: for j ∈ [1, Seqlen− 1] do
6: expanded candidates← ∅
7: for each candidate ∈ candidates do
8: logits, EB scores←M(candidate)
9: RS ← ComputeCumulativeProbability(candidate) {Eq. 11}

10: for each v ∈ V do
11: new candidate← candidate+ v
12: prob← Softmax(logits)[v]
13: score← −RS+log(prob)

j+1 + σ(M,new candidate)
τ {Eq. 13}

14: expanded candidates.append((new candidate, score))
15: end for
16: end for
17: candidates← Topk(expanded candidates, w, key = score) {Keep top-w candidates}
18: end for
19: best sentence← argmaxc∈candidates Score(c)
20: Final sentences.append(best sentence)
21: end for
22: return Final sentences

23: Subroutine: ComputeCumulativeProbability(sequence)
24: return

∑|sequence|
t=1 logP (sequence[t]|sequence[1..t− 1]) {Eq. 11}

25: Subroutine: ComputeExpertBalance(sequence)
26: expert usage←M.get expert activations(sequence)

27: σ ←
√

E
E−1

∑E
e=1(expert usage[e]− µ)2 {Eq. 4}

28: return σ

29: Subroutine: Score(candidate)
30: RS ← ComputeCumulativeProbability(candidate)
31: σ ← ComputeExpertBalance(candidate)
32: return − RS

|candidate| +
σ
τ {Combined scoring function}
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Algorithm 2 AGQ-Enhanced GPTQ Quantization for MoE LLMs
input M : Pre-trained MoE-LLM
Dcal: Calibration dataset (EBSS-generated)
bits: Target quantization bits (e.g., 4)
τ : Expert balance temperature
w: EBSS width parameter

output Quantized model Mq

1: for each MoE layer l in M do
2: El ← Get expert list of layer l
3: Hl ← Initialize weighted Hessian matrix
4: Cl ← Initialize affinity cache
5: for each sample x ∈ Dcal do
6: gates← Compute gating scores g(x) for El {Expert affinities}
7: topk experts← Select top-k experts based on gates
8: for each expert E ∈ topk experts do
9: c← gates[E] {Get expert affinity}

10: a← E(x) {Expert activation}
11: Cl[E]← Cl[E] ∪ {c} {Cache affinities}
12: Hl[E]← Hl[E] + c · aa⊤ {Eq. 19}
13: end for
14: end for
15: for each expert E in El do
16: WE ← Get expert weights
17: SE ← Compute sensitivity scores using Hl[E]
18: QE ← Quantize WE with: {AGQ-GPTQ parameters}
19: - Bit-width bits
20: - Sensitivity SE

21: - Affinity-weighted Hessian Hl[E]
22: Replace E’s weights with QE

23: end for
24: end for
25: return Mq
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