Under review as a conference paper at ICLR 2025

PAVING THE WAY TO RELIABLE BENCHMARKS FOR
REWARD MODELS IN MATHEMATICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward models are key in reinforcement learning from human feedback (RLHF)
systems, aligning the model behavior with human preferences. Particularly in the
math domain, there have been plenty of studies using reward models to align poli-
cies for improving reasoning capabilities. Recently, as the importance of reward
models has been emphasized, RewardBench is proposed to understand their be-
havior. However, we figure out that the math subset of RewardBench has different
representations between chosen and rejected completions, and relies on a single
comparison, which may lead to unreliable results as it considers only an isolated
case. Therefore, it fails to accurately present the robustness of reward models,
leading to a misunderstanding of its performance and potentially resulting in re-
ward hacking. In this work, we propose a direction for designing benchmarks that
reliably evaluate reward models in mathematical reasoning. We conduct compre-
hensive analyses to validate whether our design effectively reflects the robustness
of reward models. The results underscore that the benchmark designed to reduce
the possibility of reward hacking and employ one-to-many comparisons strongly
correlate with the results of optimized policy, whereas the existing benchmark
shows almost no correlation. Furthermore, by analyzing through the lens of re-
ward overoptimization, we show that the design involving multiple comparisons
results in a significantly more reliable benchmark. We make our code and data
publicly available

1 INTRODUCTION

Mathematical reasoning stands as a crucial test-bed for assessing artificial intelligence (Lake et al.,
2017). Solving math problems demands multi-step reasoning, involving capabilities such as abstract
conceptualization and logical reasoning (Staub & Stern, [1997; (Cresswell & Speelman, [2020). To
enhance these reasoning capabilities of large language models (LLMs), several methods have been
proposed, including prompting methods (Wei et al., 2022} |Chen et al.| | 2023; Wang et al.||2023)) and
training with large and high-quality datasets (Yu et al., 2023; Toshniwal et al.,|2024)). Recently, many
studies have increasingly focused on using reward models for re-ranking or applying reinforcement
learning (RL) algorithms (Lightman et al., 2024;|Wang et al.| 2024b; [Luo et al., 2024).

Behind the success of LLMs, such as ChatGPT (OpenAl, |2023a) and Claude (Bai et al., |2022),
reinforcement learning from human feedback (RLHF) has been instrumental in aligning with human
preferences. It enhances not only instruction following abilities (Ouyang et al.,[2022) and safety (Dai
et al., [2024) but also reasoning capabilities like code generation (Shojaee et al., |2023}; |Chae et al.,
2024) and mathematical reasoning (Luo et al., 2023} |Sun et al.,2024). These improvements in LLMs
depend on the quality of reward models (RMs) (Touvron et al., [2023)), and |Shao et al.| (2024])) also
emphasize the importance of building robust RMs for improving reasoning capabilities.

Despite the crucial role of reward models, research has often focused on evaluating policy models
(i.e. post-RLHF models) rather than reward models themselves (Dubois et al., 2024; |Zheng et al.,
2024). This line of research risks neglecting significant issues such as reward hacking—where
policies exploit loopholes of RMs to achieve higher scores—resulting from discrepancies between
human preferences (i.e. true reward function) and proxy RMs (Skalse et al., [2022} |Pan et al., [2022).

'https://huggingface.co/spaces/RewardM ATH/RewardMATH _project

https://huggingface.co/spaces/RewardMATH/RewardMATH_project

Under review as a conference paper at ICLR 2025

Q: For whatvalueof zis2°3-3"z =727 _One-to-One Comparison

) 1 " Ch .

Chosen (Human Solution) ! Reward PU Reward |

__ | Chosen _, | Reward | _, > Win i |

i i i ; . Rejected

1 1. Since the prime factorization of 72 is 72 =2"3 - 3°2, we have 1 I Rejected Model Ve szzg[r?i !

| r=2. { ' I > Lose
I I

Rejected (Machine-generated Solution) e
One-to-Many Comparison

1. I'need to find the value of that makes this equation true.
Chosen Reward

2. I'notice that 72 is divisible by both 2 and 3, so I can try to write it as ... Rejected > > > > > > Win
: Rejected _, | Reward ne-to-Man; ne-to-One
: Rejected Model |,)
10. The first equation gives me the value of z: z = 3. H

Reiefled

Additional

Reliable evaluation of the robustness of reward models

(a) (b)

Figure 1: (a) An example of human-annotated solution (chosen) and machine-generated solution
(rejected) in RewardBench; (b) Since one-to-one comparisons evaluate only isolated solutions, the
results do not accurately reflect the robustness of the reward models.

In such case, while employing a proxy RM for optimization may initially improve the true reward,
it gradually leads to degradation—a phenomenon known as reward overoptimization—ultimately
resulting in the failure of optimization (Gao et al.l [2023). Therefore, a robust reward model should
effectively provide signals for policy learning (Rame et al., 2024).

Recognizing the need for a deeper understanding of the behavior of reward models, [Lambert et al.
(2024) proposed RewardBench, which evaluates RMs by comparing scores for a chosen and rejected
completion. However, we figure out that the math subset of RewardBench (i.e. math—prm is
inadequate for evaluating reward models in mathematical reasoning tasks. As shown in Figure [Ta]
the step-by-step solutions generated by LLMs differ significantly from those written by humans, who
often skip several intermediate steps, making them more susceptible to reward hacking. Moreover,
as illustrated in Figure[Ib] relying solely on a one-to-one comparison may not yield reliable results,
as it only represents an isolated case (i.e. only a single chosen and rejected solutions). Therefore,
even models that perform well on RewardBench could be vulnerable to reward hacking, indicating
the need for a more reliable benchmark.

In this work, we focus on (1) introducing a new design for a more reliable benchmark, and (2)
thoroughly verifying that our design accurately represents the robustness of reward models. To this
end, we construct REWARDMATH to represent our design, which is a reliable benchmark crafted
for evaluating the robustness of reward models in mathematical reasoning. It is designed to miti-
gate the risk of reward hacking and employs comparisons with a variety of incorrect (i.e. rejected)
solutions. To validate that the benchmark effectively represents the robustness of RMs, we assess
whether reward models provide useful signals from which a policy can effectively learn. We con-
duct experiments to determine if the performance on RewardBench and REWARDMATH correlates
with those of policy optimized using best-of-n (BoN) sampling and if the benchmark can accurately
estimate the reward overoptimization.

The results confirm that the performance on RewardBench shows almost no correlation with the
results of BoN sampling, whereas the scores on REWARDMATH exhibit a strong correlation. Fur-
thermore, we observe that reward models achieving high performance on REWARDMATH are more
effective in mitigating reward overoptimization. These findings demonstrate that our design for re-
liable evaluation of reward models effectively measures their robustness and offers a trustworthy
direction for advancing RLHF systems. Our contributions are summarized as follows:

1. Designing the reliable benchmark. To accurately evaluate the robustness of reward mod-
els, we propose a new design for a reliable benchmark, focusing on reducing the possibility
of reward hacking and employing one-to-many comparisons.

2. Validating our design for a reliable benchmark. We conduct extensive experiments and
validate that the performance on REWARDMATH strongly correlates with the results of
optimized policy and effectively estimates reward overoptimization. These findings under-
score that our benchmark design can effectively present the robustness of reward models.

’In this work, we refer to the math subset of RewardBench simply as RewardBench.

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we first categorize three types of reward models that are widely used and outline two
distinct policy optimization methods. We then discuss the robustness of reward models, emphasizing
reward overoptimization as a critical challenge that impacts the effectiveness of policy optimization.

2.1 REWARD MODEL

Generative Reward Model Given the remarkable capabilities of LLMs, these models demon-
strate the potential to effectively replace human annotators in assessing various tasks (Gilardi et al.,
2023; Huang et al.| [2023a)). With the growing interest in the LLM-as-a-judge (Zheng et al., |[2024),
recent studies have attempted to use LLMs as reward models (Luo et al.| 2023} [Yuan et al,|2024b).
In this work, we use two main approaches of the generative RM: (1) conducting pairwise com-
parisons to determine win / lose between two responses (Li et al., 2023} |Kim et al., [2024), and (2)
providing a score for a single response through direct assessment (Cui et al.| 2023} [Kim et al.,[2024).
Classifier-based Reward Model Using annotated preference data D = (%, vy, yf.)?il, the
classifier-based reward model is trained to assign higher reward to the chosen completion y. over
the rejected completion y,-. This training process involves maximizing the log-likelihood under the
Bradley-Terry (BT) model (Bradley & Terryl [1952)) for preference estimation:

Lreward = _]E(z,yc,yr)wD [IOg (U(Td)(xa yc) - 7"¢(£C, yr)))}? (D

where o(+) denotes the sigmoid function. In general, the reward model is obtained by replacing the
final output layer of causal language model with a linear head to predict a scalar.

Process Reward Model (PRM) |Uesato et al.|(2022) and [Lightman et al.|(2024) propose the pro-
cess reward model (PRM), which predicts the correctness of each intermediate step s; in a solution.
The PRM is trained with the following objective function:

K
Lpoimwise = Z gs,; 10g Ys, + (1 - gsl) log(l - ysi)a (2)
i=1
where ¥, is the correctness label of s;, and y, is the sigmoid score of s; assigned by PRM.

2.2 PoLICY OPTIMIZATION METHOD

Best-of-n Sampling (BoN) Best-of-n (BoN) sampling is an inference-time method used to op-
timize the responses generated by a policy model (Nakano et al.| 2021} [Stiennon et al., [2020). In
practice, we generate n completions from the policy model 7 and select the completion with the
highest proxy RM score. To evaluate the degree of optimization, the Kullback-Leibler (KL) diver-
gence of BoN is defined analytically: KLp,, = logn — "T_l (Stiennon et al., 2020).

Proximal Policy Optimization (PPO) Proximal Policy Optimization (PPO) (Schulman et al.,
2017), a commonly used online RL algorithm, is employed to update the policy 7y with a reward
model r4 in RLHF (Ouyang et al.,[2022; Bai et al.,[2022; |Zheng et al.,|2023). PPO aims to maximize
the expected reward, which is adjusted by a KL penalty term to ensure that the optimized policy 7
does not deviate significantly from the reference policy ms:

IQF%XEIND,yNM(.m [ro(z,y)] — BDkL [mo(y]@) || Trer(y|x)], 3)

where f is a scaling factor for the KL penalty.

2.3 THE ROBUSTNESS OF REWARD MODEL

The success of RLHF depends on the quality of the reward model, which significantly influences
the effectiveness of policy optimization (Touvron et al.,[2023). Since the policy model is optimized
based on a proxy reward rather than the true reward (i.e. human evaluation), the discrepancy be-
tween these rewards may result in overfitting to spurious correlations, a phenomenon known as

Under review as a conference paper at ICLR 2025

reward overoptimization (Gao et al., 2023} (Coste et al., 2024} Yang et al., |2024; Rafailov et al.,
2024)). This issue impedes the improvement of the policy model and complicates the checkpoint
selection (Gao et al.| [2023} |Coste et al., [2024; [Rame et al., 2024). In this work, we argue that the
robustness of a reward model should be evaluated based on how effectively it provides signals from
which a policy can learn. To validate the benchmark for evaluating robustness of reward model, we
conduct experiments to determine whether performance on the benchmark correlates with that of
the optimized policy and whether the benchmark can detect overoptimization in reward models.

3 DESIGNING A RELIABLE BENCHMARK

3.1 ON THE ROAD TO THE EVALUATION OF ROBUSTNESS OF REWARD MODEL

The robustness of reward models is a key in RLHF systems. To build a robust reward model, it is
crucial to develop a reliable benchmark that can accurately reflect the robustness of reward models.
However, in RewardBench (Lambert et al., 2024), which is a widely-used benchmark for reward
models, the math domain (i.e. math-prm) does not fully take this into consideration. First, math-
prm is constructed based on PRM800K dataset (Lightman et al.,[2024), and it was recently revealed
that approximately 20% of the annotations in PRM80OK are incorrect, even though it is human-
annotatedﬂﬂ Moreover, RewardBench consists of pairs of human-annotated chosen solutions and
rejected solutions annotated by unaligned GPT-4, which are evaluated by comparing the rewards be-
tween the chosen and rejected solutions. When solving math problems, as|Hendrycks et al.| (2021)
and Sun et al.| (2024) mentioned, humans often skip certain steps and rely on mental calculations,
rather than writing out a complete step-by-step solution, which results in a significant difference
compared to machine-generated solutions. Figure [Ia]demonstrates a noticeable difference between
human and machine-generated solutions in RewardBench, showing a significant distribution gap in
the number of steps between the chosen and rejected solutions, as further demonstrated in Figure [2a]
This discrepancy impedes the reliability of evaluation. Finally, there can be countless incorrect solu-
tions to a single mathematical problem, so simply comparing with a single incorrect solution is not
sufficient to assess the robustness of reward models, as these solutions represent only isolated cases.
As a result, we believe it is difficult to figure out whether RMs with high scores on RewardBench
are genuinely robust or vulnerable to reward hacking. Therefore, we introduce REWARDMATH, a
benchmark that can more reliably evaluate the robustness of RMs on mathematical reasoning.

3.2 REWARDMATH DATASET

The design philosophy of REWARDMATH is to caution against a hasty generalization, which oc-
curs when conclusions are drawn from a sample that is too small or consists of too few cases. To
accurately measure the robustness of reward model, it is reasonable to compare m correct solutions
against n incorrect solutions. However, since collecting correct solutions demands significant human
resources, we initially focus on gathering n incorrect solutions to compare against a single correct
solution. Based on MATHS500 (i.e. MATH dataset (Hendrycks et al.l 2021)) excluding overlaps with
PRMB800K), REWARDMATH consists of a total of 483 problems, each comprising 1 correct solution
and 9 incorrect solutionsf] The construction of both correct and incorrect solutions is as follows:

Correct Solution (Chosen) MATHS500 includes human-annotated solutions, which often skip
many intermediate steps, making it difficult for language models to understand and vulnerable to
reward hacking. Hence, we first convert the human-annotated solutions from MATH500 into step-
by-step machine-generated solutions. We prompt GPT-4, using 4 carefully crafted exemplars for
each math subject as part of the prompt. Then, we manually inspect the quality of generated step-
by-step solutions, and correct the errors that are found.

Incorrect Solutions (Rejected) To gather a variety of incorrect solutions, we employ a total of 14
off-the-shelf language models, combining open-source models (e.g. LLaMA3-70B), closed-source
models (e.g. GPT-40), and math expert models (e.g. WizardMATH-7B-v1.1). To ensure a wide

3https://github.com/openai/prm800k/issues/ 1 2#issuecomment-1728491852
4Lambert et al.|(2024) have also recently recognized this. |https://github.com/allenai/reward-bench/issues/88
>We exclude 17 easy problems that most models get correct and the details are in Appendix

https://github.com/openai/prm800k/issues/12#issuecomment-1728491852
https://github.com/allenai/reward-bench/issues/88

Under review as a conference paper at ICLR 2025

Meta-Llama-3-8B

RewardBench 0 RewardMATH

== Chosen = Rejected == Chosen == Rejected / 9

Count
Count

__ Gemma-2-27b-it
713%
Claude-3-Sonnet

~_

I |’mmuuwm - Va LT,

16%
T) ~~__ Meta-Llama-3-70B
Step Step 75%

(@) (b)

Figure 2: A histogram showing the distribution of samples by the number of steps on RewardBench
and REWARDMATH, and the contribution of each model to the rejected solutions.

range of incorrect solutions, we generate 8 samples per problem for closed-source models and 16
samples for other models. Finally, from the generated incorrect solutions, we randomly select 1
incorrect solution from each model to form the final set of 9 rejected solutions. For problems where
fewer than 9 models generate incorrect solutions, we randomly select from the full set of incorrect
solutions. Figure 2b|shows the proportion of incorrect solutions generated by each model within the
rejected solutions, and more details about the REWARDMATH are in Appendix [B.1}

3.3 REWARDMATH SCORING

For each problem, we infer 10 solutions in total—1 correct solution and 9 incorrect solutions—and
then assign a true classification label when a reward of chosen solution is higher than all rewards
of rejected solutions. While RewardBench involves a simple binary classification task comparing
chosen and rejected solutions at a 1:1 ratio, where a random model achieves a result of 50%, RE-
WARDMATH has a 1:9 ratio of chosen to rejected solutions, meaning a random model would achieve
a result of 10%. Furthermore, considering only whether the reward of chosen solution is the highest
can be fairly strict, we also utilize Mean Reciprocal Rank (MRR), where higher ranks for the chosen
solution lead to higher scores. The MRR is calculated using the formula: M RR = % e e
where d is the total number of problems, and rank,, is the rank of the chosen solution for each
problem. In pairwise comparison of generative reward models, the rank of the chosen solution is
determined by the number of the rejected solutions that win the chosen solution.

4 EVALUATION ON REWARDBENCH AND REWARDMATH

4.1 EXPERIMENTAL SETUP

We conduct our experiments using three types of reward models that widely-used in mathematical
reasoning task, i.e. generative RMs, classifier-based RMs, and PRMs. For generative reward models,
we employ a series of large language models, GPT-3.5-turbo/4/40 (OpenAll 2023azb), Claude-3.5-
Sonnet/3-Opus, Prometheus-7B/8x7B (Kim et al., [2024)), and LLaMA3-8B/70B (Al@Meta, |2024)),
which are the off-the-shelf LLM-as-a-judge. To determine whether the reward models ranked at the
top of the RewardBench leaderboard are truly robust, we adopt top-ranked classifier-based reward
models (Wang et al., 2024a; |Cai et al., [2024} | Yuan et al.,|2024a; | Dai et al.| [2024; |Liu & Zeng} 2024;
Yang et al.,|2024), as well as available open-source PRMs (Wang et al., 2024b; [Sun et al.| 2024} Xia
et al.}2024). PRMs require an aggregation function to combine step-level rewards in order to obtain
a solution-level reward. While most prior works simply multiply the rewards of all steps to calculate
the solution-level reward (i.e. prod), we utilize the geometric mean as the aggregation function to
minimize the influence of the number of steps. More detailed explanations of the reward models are
in Appendix [B.2]and the LLM-as-a-judge prompts are in Appendix

4.2 EVALUATION RESULTS

The ability of LLM-as-a-judge as an evaluator on mathematical reasoning. According to the
results from RewardBench in Table [, LLM-as-a-judges, especially GPT-4 or Prometheus-2-7B,
appear capable of serving as reward models. However, rather than the results from RewardBench,

Under review as a conference paper at ICLR 2025

Table 1: The results of generative reward models on RewardBench and REWARDM ATH. The direct
indicates scoring a single response through direct assessment, and the pairwise indicates conducting
pairwise comparisons to determine win/lose between two responses.

Reward Model RewardBench REWARDMATH (direct) REWARDMATH (pairwise)
Acc. Acc. Acc. (w/tie) MRR Acc. MRR
Generative Reward Models (closed-source)
GPT-40-2024-05-13 72.50 25.98 51.75 46.70 24.64 48.92
GPT-4-0125-preview 76.30 22.47 48.45 44.70 29.81 51.92
GPT-3.5-turbo-0125 40.60 0.21 64.74 13.99 0.21 20.33
Claude-3.5-Sonnet 70.70 2.07 73.50 17.60 15.32 40.01
Claude-3-Opus 61.10 2.48 61.49 18.66 6.63 31.72
Generative Reward Models (open-source)
LLaMA3-70B 66.20 0.62 65.42 17.16 9.73 35.90
LLaMA3-8B 54.10 2.07 44.72 18.20 0.62 19.07
Prometheus-2-8x7B 69.70 0.21 76.61 14.92 3.73 26.88
Prometheus-2-7B 86.20 2.28 42.44 16.57 228 21.64

which only evaluates limited cases, the results of direct assessment on REWARDMATH present that
LLMs tend to fall short as reward models, with most scoring close to 0, except for the GPT-4 family.
To understand the reason behind this, we assign a true classification label even when the reward of
the chosen solution is equal to the rewards of the rejected solution (i.e. Acc. (w/ tie)). Consequently,
we observe a significant improvement across all LLM judges. This suggests that most LLMs fail
to distinguish details between correct and incorrect solutions, simply assigning the same scores to
all. Interestingly, most generative RMs demonstrate better performance in the pairwise comparison.
Further analysis on the potential bias (i.e. self-enhancement bias in LLM judges) from the GPT
family being used both for collecting chosen solutions and serving as judges is in Appendix[C.3]

High scores on RewardBench do not guar- Table 2: The results of classifier-based RMs and
antee the robustness of reward models. As PRMs on RewardBench and REWARDMATH.
demonstrated in Table 2} rankings on Reward- PRMs calculate solution-level rewards using the
Bench do not translate to the same level of perfor- aggregation function specified in parentheses.

mance on REWARDMATH. Specifically, Oasst-

rm_2_1-pythia-1_4b, which is one of the top_ Reward Model RewardBench REWARDMATH
ranked models in RewardBench, faces challenges Acc. Acc. MRR
in REWARDMATH, scoring lower than Beaver- Random 50.00 1000 29.29
7b-v2.0-reward, the lowest-ranked model in Re- Classifier-based Reward Models
wardBench. However, Internlm2-7b-reward, /S\;mORi’li{UamfﬁB‘V‘gll = gg;g 52?‘5’ ﬁ;g
. . ywork-Reward-Llamas.1- B . .
yvhlch ranks lower than Oasst—'rm—2. 1-pythia-1.4b Oasst.rm2. pythia-1 4b 95.10 704 2703
in RewardBench, shows relatively strong perfor- [nternim2-20b-reward 95.10 3395 51.95
mance in REWARDMATH, suggesting that it is Internim2-7b-reward 94.90 3727 5517
. . GRM-llama3-8B 89.30 2443 4576
genuinely a robust .re.:ward model for mathematl— YT 66.90 197 2410
cal reasoning. Additionally, PRMs typically tend Eurus-RM-7b 79.90 1698 3830
to achieve high scores on RewardBench due to Beaver-7b-v2.0-reward 60.40 725 2659
an advantageous aggregation function (i.e. prod), Process Reward Models (prod)
but when the step bias is removed by llSil’lg geo- Math-Shepherd-Mistral-7B 94.41 17.18 34.68
. . . f Llemma-7b-prm-prm800k 67.79 14.08 35.29
metric mean (i.e. geo mean) as aggregation func- RosonEval-7B 63.00 1822 3850
tion, it is revealed that most of them struggle even ReasonEval-34B 83.45 1595 3663
in RewardBench. Similar to the classifier-based —— 1\‘/‘1’ Tocelss7geward M‘”";’i 28;” ’”"“")15 SR
ath- epherd-. 1stral- o . .
RMs, the performance of PRMs on RewardBenph Llemma-7b-prm-prm800K 20,06 1636 3751
does not carry over to REWARDMATH, with ReasonEval-7B 14.77 2029 39.26
Math-Shepherd-Mistral-7B, a top-ranked PRM in _ReasonEval-34B 19.69 1843 3896
RewardBench, notably ranking the lowest in RE-
WARDMATH.

5 THE FUTURE DIRECTION FOR A RELIABLE BENCHMARK

In this section, we discuss promising directions to improve the reliability of benchmark for reward
models. First, we explore the structure of a reliable benchmark using RewardBench and REWARD-
MATH. Then, from the perspective of reward overoptimization, we verify which benchmark can
effectively represent the robustness of reward models.

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0
https://huggingface.co/prometheus-eval/prometheus-7b-v2.0
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B
https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/internlm/internlm2-20b-reward
https://huggingface.co/internlm/internlm2-7b-reward
https://huggingface.co/Ray2333/GRM-llama3-8B-sftreg
https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg
https://huggingface.co/openbmb/Eurus-RM-7b
https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-reward
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/GAIR/ReasonEval-7B
https://huggingface.co/GAIR/ReasonEval-34B

Under review as a conference paper at ICLR 2025

® MATHS500 (ID) # Gaokao-math (OOD) ¥ SAT-math (OOD)

MetaMATH-Mistral-78 WizardMATH-7B-v1.1 MetaMATH-Mistral-78 WizardMATH-7B-v1.1
—r = 0.009, p = 7.64e-01 v 20— =0.100, p = 2.93¢-01 Y —r2 = 0.826, p = 1.70e-05 v 20 —p = 0.856, p = 5.89e-06
2 220083, p = 3.41e-01 P s 9e . 2 2205833, p = 1.36e-05 < 15 —r=0.797, p = 3.99-05
15 —r?=0.001, p = 9.16e-01 v e 15 —r=0.654,p = 8.13e-04 2 = 0.550, p = 3.71e-03 /:/v
ve ve o v 10
20 v.e o & w0 v
g .r"_'__/_r“—q‘ : g e
E 8 s
s . $ % o 0 S o 8
) L ° . s 0 e s v
° 10 ~* e 10
v v v v
10 10
20 4 &0 80 100 20 W & 0 100 s 10 15 2 25 3 3% s 10 15 20 25 30 35
Acc. on RewardBench Acc. on RewardBench Acc. on RewardMATH Acc. on RewardMATH

Figure 3: Relationship between the difference in accuracy (Aacc) on math test sets and performance
on each benchmark. The Aacc indicates the difference in accuracy between the performance of BoN
at n=256 and at n=1. The lines illustrate the linear relationship between Aacc and the performance
on benchmark, with the coefficient of determination (1) indicating the strength of this linear corre-
lation. Detailed results of BoN sampling and the MRR metric are provided in Appendix @

5.1 RELIABILITY OF BENCHMARK

Comparing the results of RewardBench and REWARDMATH in optimizing the policies. To
determine whether a reward model is robust, we can assess the performance of the optimized pol-
icy. Therefore, an ideal benchmark is one where the results of reward model on the benchmark
can effectively represent the performance of the policy model optimized by the reward model. To
explore this further, we optimize two policy models, MetaMATH-Mistral-7B and WizardMath-
7B-v1.1, using the BoN sampling with reward models from the Table [2] and evaluate them on
both the in-distribution dataset (i.e. MATHS500) and the out-of-distribution datasets (i.e. Gaokao-
math and SAT-math). Figure [3] illustrates the coefficient of determination between Aacc and
the scores on each benchmark (Table [2), with Aacc indicating the difference in the accuracy of
the policy model between n=256 and n=1. First, the results of the reward models on Reward-
Bench show a very weak linear relationship with those of the optimized policy model, as evi-
denced by the highest coefficient of determination (r2) being only 0.128. On the other hand, the
results on REWARDMATH demonstrate a strong positive relationship across all reward models
and test sets, particularly on MATHS500 (i.e. r? > 0.8). These results highlight the reliability
of REWARDMATH for optimized policy models across a wide range of math problems. Addi-
tional results for policy fine-tuning method (i.e. direct preference optimization) are provided in

Appendix [C.6]

. . MetaMATH-Mistral-7B WizardMATH-7B-v1.1
Deep analySlS on the structure Of eValuathn sets. MATHS500 Gaokao-math SAT-math MATH500 Gaokao-math SAT-math .
Beyond the RewardBench and REW{\RDMATH, we sy DN ... FE.
explore how to construct the evaluation set in a way RewardBench
that best reflects the effectiveness of the reward model. 0490 0.421
First, to emphasize the importance of being resistant —
to reward hacking, we examine an evaluation set con- O-isaREER -0:074 [ORSARINONZIN -0.072 [gos
. . . Chosen (RewardMATH) vs Rejected (GPT-40)
sisting of one-to-one comparisons between the cho-
. . 0.776 0.652 0.831 0.712 0.642
sen solutions from REWARDMATH and the rejected g) vs Rejected (P EERIEE]
solutions from RewardBench, and also review the re- g P - oo
sults when using a single rejected solution generated Chosen (RewardMATH) vs Rejected (LaMA3-708)
by each LLM in REWARDMATH. Figure@represents 0212 0335 -0.121 0308 0.196 0.077
the Spearman correlation between the results of RMs =" "
in each evaluation set and the performance of the pol- LRl 0797 0.7% [N0%630
R L. IrdMATH) vs Rejected (Mixtral-8x78)
icy model optimized by the RMs. As expected, Re-
. . . 0.410 -0.
wardBench, which is vulnerable to reward hacking, | o
. . . . o
shows a low correlation, while the evaluation setusing = 2|\ 0. o1 o181 o2 oase
the chosen solution from REWARDMATH and the re- % chosen vs Rejected
jected solution from RewardBench (i.e. second row), g 0902 0890 | 0.669 089 0851 0.696
“ RewardMATH

which alleviates the vulnerability to reward hacking, -1
shows a relatively high correlation. Furthermore, us- Figure 4: The correlation between the results
ing chosen solutions from RewardBench for one-to- from various design of evaluation sets and the
many comparisons (i.e. the second-to-last row) ex- performance of the optimized policy models
hibits almost no correlation. These results highlight on each dataset. All classifier-based RMs and
the importance of minimizing the representation dif- PRMs in Table2]are employed.

ferences between chosen and rejected solutions to mit-

Under review as a conference paper at ICLR 2025

igate vulnerability to reward hacking, as well as employing one-to-many comparisons for more
reliable evaluations. Interestingly, the evaluation set that includes rejected solutions generated by
Gemma-2-27B or GPT-40-2024-05-13 presents a negative or almost no correlation, which implies
that the current RMs fail to distinguish the sophisticated incorrect solutions and often consider them
better than the chosen solutions. A more in-depth analysis and full results are in Appendix [C.5]

5.2 THROUGH THE LENS OF REWARD OVEROPTIMIZATION

We now discuss whether REWARDM ATH effectively represents the robustness of reward models by
evaluating how well it estimates reward overoptimization. The robust reward model should provide
effective signals for policy learning, which are resilient to reward overoptimization.

5.2.1 EXPERIMENTAL SETUP

To examine the phenomenon of reward overoptimization, we analyze the relation between the true
reward (i.e. human evaluation) and the degree of optimization, quantified by the KL divergence
between the optimized and initial policies. We apply two types of optimizations: BoN sampling and
reinforcement learning via PPO. For BoN sampling, we generate n responses on MATHS500 dataset
and approximate the degree of optimization by KLy, = logn — an (Stiennon et al., 2020). For
PPO, policy is trained over one epoch on the training set of MATH dataset.

Since accessing the true rewards requires human annotators, prior work often relies on a gold RM
to approximate true rewards (Gao et al., |2023; |Coste et al., |2024) or uses win-rates evaluated by
LLM-as-a-judge (Rame et al., 2024} Rafailov et al.,2024). In mathematical reasoning, where hu-
man preference can be measured by accuracy (i.e. pass@1), we assess the true rewards from two
perspectives: (1) gold reward via the gold RM, and (2) oracle reward, which represents human
preferences (i.e. pass@1). We assume Internlm2-7B-reward, which performs well on both Reward-
Bench and REWARDMATH, as the gold RM. Depending on whether the reward model is trained
using synthetic preference data, we take two approaches to both gold and oracle rewards as below:

Synthetic Setup We conduct experiments under a synthetic setup following |Gao et al.| (2023)
and |Coste et al.| (2024), where responses are scored using a gold RM instead of human annotators.
First, we train Mistral-7B-v0.1 (Jiang et al., 2023)) using MetaMATH dataset (Yu et al.,[2023)) as the
initial policy model, after which we collect correct and incorrect solutions generated by the policy
model. These solutions are scored by the gold RM to generate 65K synthetic preference data. Then,
we train proxy RMs based on Mistral-7B-v0.1 while varying the amount of data. For the policy
optimization, we use BoN sampling (n=256f] and PPO to investigate reward overoptimization.

Non-synthetic Setup Unlike in the synthetic setup, we use open-source classifier-based reward
models and PRMs as proxy reward models. We aim to observe whether the performance of the
reward model on RewardBench and REWARDMATH can predict reward overoptimization. We
only use BoN sampling (n=256) as the policy optimization method for MetaM ATH-Mistral-7B
and WizardMATH-7B-v1.1, due to potential instabilities in PPO that may arise from discrepancies
between the reference model ¢ and the base model of the RM. More details of the experimental
setup are provided in Appendix [B.4]

5.2.2 RESULTS

Evaluating the robustness of reward models via reward overoptimization. Typically, a robust
proxy reward model trained to capture human preferences should exhibit increasing gold rewards as
KL divergence increases. Conversely, a collapse in gold rewards at certain point during an increase
in KL divergence indicates a lack of robustness in the proxy reward model. Figure [3] illustrates
how dataset size impacts the behavior of reward model within a synthetic setup. We find that proxy
reward models trained on smaller datasets reach peak rewards at lower KL divergences, indicating
faster overoptimization. This finding suggests that larger datasets can help mitigate reward overop-
timization, aligning with findings from |Gao et al.| (2023)). Furthermore, we confirm that reward
overoptimization can also be observed through oracle rewards (i.e. pass@1) in tasks with well-
defined human preferences, such as mathematics.

6KLB(,N =~ 4.55 nats

Under review as a conference paper at ICLR 2025

== 8,125 == 16,250 32,500 == 65,000
BoN BoN PPO PPO

A M -0.70 -0.22
r AVl

0.2 024 AW VaS

e v -0.75

A

)

0.18

016

=

Gold Reward
2 &
\
racle Reward (pass@1)

\
\
\

Gold Reward

8
Oracle Reward (pass@1)
5 8
N\
N\

0.14 T -\
12 T —N o \

012 \n 095 /

o

o 1 2 ER 0 1 2 3 4 o 25 100 400 500 o 5 100 400 900
KL Divergence KL Divergence KL Divergence KL Divergence

Figure 5: Gold rewards and oracle rewards (pass@1) in BoN and PPO experiments with proxy
reward models across different amounts of data in a synthetic setup. The curve for the results of
PPO is fitted to the function validated by |Gao et al.|(2023)) using 10 checkpoints.

REWARDMATH serves as a reliable metric for evaluat- Table 3: Accuracy of proxy RMs
ing the reward models. We have confirmed that larger trained with different size of data on
dataset sizes generally improve the robustness of RMs. This RewardBench and REWARDMATH.
trend is evident in Table [3] where the performance on RE-

WARDMATH consistently improves as the dataset size in- Data Size | RewardBench REWARDMATH
creases. Hovyevgr, no such 1mprove¥ne¥1t. is pb.served in Re- 65.000 1228 351
wardBench, indicating a lack of reliability in its evaluation 32,500 073 12.68
results for reward models. Additionally, Figure [6]illustrates 16,250 68.68 10.60
how gold and oracle rewards change with increasing KL di- 8125 54.59 457

vergence based on benchmark performance. Notably, some

models with high scores on RewardBench also exhibit overoptimizaton, and there is no clear rela-
tionship between performance on RewardBench and overoptimization. For example, Oasst-rm-2.1-
pythia-1.4b (i.e. ‘J’ in Figure[6a), which is one of the top-ranked models on RewardBench, exhibits a
rapid overoptimization. However, the results from REWARDMATH exhibit a clear trend: the higher
the performance (i.e. the darker the line color in Figure[6)), the less reward collapse occurs. This un-
derscores the reliability of REWARDM ATH—models with strong performance on REWARDMATH
are more effective at avoiding overoptimization, thereby providing more accurate rewards.

5.3 DISCUSSION ON DEVELOPING EFFECTIVE RLHF SYSTEMS

Benchmarks serve as critical milestones in advancing artificial intelligence. In this work, we argue
that a benchmark for reward models should reliably assess their robustness, where a robust RM
indicates a model that provide useful signals to enable effective policy learning. Through extensive
experiments, we confirm that the benchmark design, which mitigates the risk of reward hacking and
employs one-to-many comparisons, accurately reflects the robustness of reward models. While this
work marks a significant step forward, there is still room for improvement. We validate our design
in mathematics, where human preferences can be clearly defined by correctness, making it easier to
gather multiple rejected completions. Since the reward models can be applied to a wide range of
tasks, a crucial next step is to extend our design to cover all of themm We hope that this work will
provide a promising path toward developing more trustworthy and effective RLHF systems.

6 RELATED WORK

Evaluating Reward Models. The success of RLHF depends on the robustness of the reward
model in capturing human preferences (Ouyang et al.,2022). The assessment of reward models pri-
marily relies on downstream evaluation, validating their efficacy by observing performance enhance-
ments in the optimized policy (Dubois et al., [2024; Zheng et al.| 2024). However, these evaluation
approaches are questionable due to numerous ad-hoc choices in the policy optimization process, in-
cluding the selection of the RL algorithm, computational resources, and hyperparameters (Gao et al.,
2023} |Casper et al.l [2023)). Recently, to understand the behavior of the reward models and directly
observe its performance, Lambert et al.|(2024) proposed RewardBench, a benchmark that evaluates
by comparing the reward between chosen and rejected completions. In this work, we address the
limitations in both quality and evaluation approach (i.e. one-to-one comparisons) of RewardBench
in the math domain and demonstrate the effectiveness of our proposed reliable benchmark design.

"Further exploration of its applicability to other domains is discussed in Appendix

Under review as a conference paper at ICLR 2025

LELUN ArmoRM-Llama3
EXIOW sicywork-Reward
LRTCN inicrim2-20b
ERIOM Oasst-rm

LRYOW 1nicrnim2-7b
[EYON GRM-llama3
(IRYEN Math-shepherd
EXION Eurus-RM-Tb

Gold Reward

LMD GRM-Gemma

Oracle Reward (pass@1)

LEYON Beaver-7b

24(©) | Liemma-7b-prm
197(8) ReasonEval-34B

148(A) ReasonEval-7B

—“ AT m» ® QarmEZz

KL Divergence KL Divergence

(a) RewardBench

v BIELON Internim2-7b

s N Internlm2-20b

°
&

PN GRM-llama3
BEION Skywork-Reward
EEIUN ArmoRM-Llama3

,..
S

LEIUN ReasonEval-7B
LEIER ReasonEval-34B

s LUON Eurus-RM-7b

Gold Reward

LEION Llemma-7b-prm

Oracle Reward (pass@1)

LRI Math-shephered
72(6) | Beaver-Tb

c T0®) | Oasstrm

500 | GRM-Gemma

@ EA BE Q CemR

o 1 2 3 4 0 . 2 3 4
KL Divergence KL Divergence

(b) REWARDMATH (ours)

Figure 6: Gold and oracle rewards (pass @ 1) for BoN experiments with MetaM ATH-Mistral-7B. The
heatmap represents the accuracy of reward models on each benchmark. We utilize Internlm?2-7B-
reward as a gold RM. Additional results for WizardMATH-7B-v1.1 (policy) are in Appendix [C.7}

Mathematical Reasoning of LLLMs. The mathematical reasoning capabilities of LLMs play a
major role in evaluating artificial intelligence of these models (Lake et al., 2017). To strengthen
the mathematical reasoning capability of LLMs, researchers often train the models with large and
high-quality datasets (Yu et al., 2023 [Toshniwal et al., [2024), and apply sophisticated prompt en-
gineering, tailored for step-by-step reasoning in mathematics (Wei et al, 2022} (Chen et al., 2023
Wang et al.| 2023} [Yao et al.,[2024). Furthermore, they also seek to address the weakness of LLMs,
such as its limitations in precise calculation and algorithmic processing, by incorporating external
tools like Python interpreters and calculators (Yue et al., 2024; (Gou et al., 2024). Although these
tool-augmented methods present promising results, this work focuses on the intrinsic capability of
LLMs to solve math problems, without relying on external tools. Recently, many studies have ex-
plored the use of reward models for reasoning tasks through two main approaches: using reward
models as verifiers to re-rank outputs during inference, and applying RL algorithms during training
to improve reasoning abilities (Lightman et al., |2024; Wang et al., 2024b} |Sun et al., |2024} |Luo
et al.l2024). Therefore, we investigate ways to further enhance mathematical reasoning abilities in
a RLHF system through comprehensive evaluation of reward models.

7 CONCLUSION

In this work, we suggest a new design for reliable evaluation of reward models: (1) mitigating the
risk of reward hacking and (2) employing a one-to-many comparison. To validate our design, we
propose REWARDMATH, a benchmark that effectively represents the robustness of reward models
in mathematical reasoning tasks. Our extensive experiments demonstrate that the performance on
REWARDMATH has a strong correlation with the performance of the optimized policy, whereas the
existing benchmark shows no correlation. Furthermore, we also confirm that REWARDMATH can
effectively estimate the reward overoptimization, a critical concern in RLHF systems. While we
utilize a one-to-many comparison due to resource limitations, a crucial next step may be to employ
many-to-many comparisons for a more thorough assessment. We hope that this work, which aims to
establish a reliable benchmark for evaluating reward models, paves the way toward the development
of a more trustworthy RLHF system.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Process-
ing Systems, 2021. URL https://openreview.net/forum?id=uqv8-U41KBel

Al@Meta. Llama 3 model card, 2024. URL https://github.com/meta-1lama/llama3/
blob/main/MODEL_CARD.md.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Tong Wang,
Samuel Marks, Charbel-Raphael Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen,
Mehul Damani, Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J
Michaud, Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem
Biyik, Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems
and fundamental limitations of reinforcement learning from human feedback. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pbx24KpJ4Eb. Survey Certification.

Hyungjoo Chae, Taeyoon Kwon, Seungjun Moon, Yongho Song, Dongjin Kang, Kai Tzu iunn Ong,
Beong woo Kwak, Seonghyeon Bae, Seung won Hwang, and Jinyoung Yeo. Coffee-gym: An
environment for evaluating and improving natural language feedback on erroneous code, 2024.
URLhttps://arxiv.org/abs/2409.19715.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. Transactions on
Machine Learning Research, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help
mitigate overoptimization. In The Tivelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=dcjtMYkpXx.

Clio Cresswell and Craig P Speelman. Does mathematics training lead to better logical thinking and
reasoning? a cross-sectional assessment from students to professors. PloS one, 15(7):¢0236153,
2020.

11

https://openreview.net/forum?id=uqv8-U4lKBe
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://openreview.net/forum?id=bx24KpJ4Eb
https://openreview.net/forum?id=bx24KpJ4Eb
https://arxiv.org/abs/2409.19715
https://openreview.net/forum?id=dcjtMYkpXx

Under review as a conference paper at ICLR 2025

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=TyFrPOKYXwl.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835-10866. PMLR, 2023.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli. Chatgpt outperforms crowd workers for text-
annotation tasks. Proceedings of the National Academy of Sciences, 120(30):¢2305016120, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solv-
ing. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Ep0Tt jVoap.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Fan Huang, Haewoon Kwak, and Jisun An. Is chatgpt better than human annotators? potential and
limitations of chatgpt in explaining implicit hate speech. In Companion proceedings of the ACM
web conference 2023, pp. 294-297, 2023a.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2023b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language
model specialized in evaluating other language models. arXiv preprint arXiv:2405.01535, 2024.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:¢253, 2017.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Will LeVine, Benjamin Pikus, Anthony Chen, and Sean Hendryx. A baseline analysis of reward
models’ ability to accurately analyze foundation models under distribution shift. arXiv preprint
arXiv:2311.14743, 2023.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_evall 52023.

12

https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://github.com/tatsu-lab/alpaca_eval

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8LOpN6EOi.

Chris Yuhao Liu and Liang Zeng. Skywork reward model series. https://huggingface.co/
Skywork, September 2024. URL https://huggingface.co/Skywork.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

OpenAl. Chatgpt, 2023a. https://openai.com/blog/chatgpt.
OpenAl. Gpt-4 technical report, 2023b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=JYtwGwIL7ye.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
forcement learning, 2023. URL https://arxiv.org/abs/2304.01315,

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, W. Bradley Knox,
Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct align-
ment algorithms. In ICML 2024 Workshop on Models of Human Feedback for Al Alignment,
2024. URL https://openreview.net/forum?id=WTrwDXdRTS.

Alexandre Rame, Nino Vieillard, Leonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. WARM: On the benefits of weight averaged reward models. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=s7RDnNUJy6.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K. Reddy. Execution-based code gen-
eration using deep reinforcement learning. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856. URL https://openreview.net/forum?id=0XBuaxgEcG.

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460-9471, 2022.

Fritz C Staub and Elsbeth Stern. Abstract reasoning with mathematical constructs. International
Journal of Educational Research, 27(1):63-75, 1997.

13

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://openai.com/blog/chatgpt
https://openreview.net/forum?id=JYtwGwIL7ye
https://arxiv.org/abs/2304.01315
https://openreview.net/forum?id=WTrwDXdRTS
https://openreview.net/forum?id=s7RDnNUJy6
https://openreview.net/forum?id=s7RDnNUJy6
https://openreview.net/forum?id=0XBuaxqEcG

Under review as a conference paper at ICLR 2025

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Carbune. Llms cannot find
reasoning errors, but can correct them! arXiv preprint arXiv:2311.08516, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
via multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845,
2024a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2609-2634, 2023.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human anno-
tations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9426-9439, Bangkok, Thailand, August 2024b. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-1ong.510!

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu, and Pengfei Liu. Evaluating mathematical
reasoning beyond accuracy. arXiv preprint arXiv:2404.05692, 2024.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for llms. arXiv preprint arXiv:2406.10216, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2023.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin

Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing llm reasoning generalists with preference trees, 2024a.

14

https://aclanthology.org/2024.acl-long.510

Under review as a conference paper at ICLR 2025

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024.

Boning Zhang, Chengxi Li, and Kai Fan. Mario eval: Evaluate your math 1lm with your math llm-a
mathematical dataset evaluation toolkit, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

APPENDIX

A LIMITATION AND FUTURE DIRECTION

A.1 LIMITATION AND CONSIDERATIONS FOR FUTURE WORK

This work has a few limitations. Since our goal is to validate the design of a reliable benchmark,
we mainly focus on mathematical reasoning, where human preference are relatively well-defined
by correctness. For expansion into other tasks, it is necessary to carefully consider whether the
structure is prone to reward hacking and to validate its impact on policies, such as reward overop-
timization—in other words, whether it accurately represents the robustness of reward models. It
is also noteworthy that we adopt one-to-many comparison rather than many-to-many comparison.
While, collecting correct solutions, unlike incorrect ones, requires substantial human resources, ob-
taining chosen responses from a single model may introduce bias or limit generalizability. Although
we use only GPT-4 to collect correct solutions and confirm in Appendix [C.3]that LLM judges (i.e.
the GPT family) introduce almost no bias, we believe that such bias may arise in domains beyond
reasoning. Hence, it is desirable for future work to address such potential bias by incorporating
chosen and rejected solutions from diverse models and employing multiple comparisons.

Moreover, as the total number of solutions increases, so does the inference cost. For this reason,
we design a benchmark using one-to-many comparisons and demonstrate its promise via extensive
validation. However, if there were no limitations in available resources, many-to-many comparisons
utilizing as many solutions as possible would most accurately reflect the robustness of reward mod-
els. Another natural question is why REWARDMATH has 9 rejected solutions (n=9). As the number
of solutions increases, both the inference cost and the reliability of the results rise. Therefore, it is
also crucial to identify the optimal trade-off point. However, since our primary goal is to validate
our proposed design, finding the optimal value of n is beyond the scope of this work. Finally, the
reinforcement learning via PPO is conducted with only a single random seed due to resource con-
straints. However, given the high level of noise typically present in RL training, it is preferable to
use multiple random seeds for more reliable results (Agarwal et al.| [2021; [Patterson et al., 2023)).

A.2 FUTURE DIRECTION FOR EXPANSION TO OTHER DOMAINS

We introduce a design for a reliable benchmark to evaluate the robustness of reward models and
validate the design with comprehensive experiments. In this paper, we focus on the mathematical
reasoning due to the following two reasons: (1) it is one of the tasks where reward models are most
extensively used; (2) it provides a clear definition of human preference. Through our experiments in
the math domain, we have derived key insights that we believe are applicable to other domains:

15

Under review as a conference paper at ICLR 2025

1. Significant differences between chosen and rejected responses can result in low corre-
lation with downstream tasks due to the potential for reward hacking. This emphasizes
the importance of benchmarks that minimize unnecessary discrepancies, which can hinder
accurate assessment.

2. One-to-one comparisons may yield inaccurate results depending on the preference
pairs, leading to low correlation with downstream tasks and highlighting the need for a
more reliable approach, such as multiple comparisons.

3. Benchmarks employing multiple comparisons effectively capture reward overopti-
mization, indicating its ability to assess the robustness of reward models.

As we mentioned in Limitation (Appendix [A), it is crucial to expand the design we introduce beyond
mathematics. Based on our key insights, we discuss how our approach can be applied to other
domains.

* Considering the possibility of reward hacking. If the benchmark includes preference
pairs with significant difference length differences between chosen and rejected response,
or if the the rejected responses contain obviously incorrect expressions (e.g. “I don’t know”
or “No Answer”), it could create opportunities for reward hacking. In such cases, a reward
model that achieves high scores on the benchmark might exploit these patterns rather than
genuinely aligning with human preferences.

* Collecting various preference pair. LLMs generate responses based on the distribution
learned during pre-training and post-training (i.e. SFT, RLHF). If a benchmark relies solely
on a single preference pair for evaluation (i.e. one-to-one comparisons), it may not effec-
tively capture the full capabilities of the reward model. To address this, preference pairs
should be constructed by gathering chosen and rejected responses from diverse models.
Furthermore, one possible approach is to construct diverse preferences pairs by consider-
ing the similarity between responses.

* Validating the benchmark through the lens of reward overoptimization. Evaluating the
benchmark from the perspective of reward overoptimization is crucial to assess whether the
reward model provides robust and effective learning signals. A reliable benchmark should
effectively capture the extent of reward overoptimization. Failure to address this could
undermine the reliability of benchmark as a tool for evaluating reward models.

Example of chat domain for benchmark design. In the chat domain, designing a reliable bench-
mark faces unique challenges, such as the diversity of conversational contexts and subtle nuances in
human preferences. A key starting point is to define human preferences clearly. For example, using
Reddit as a source, we could define preferences based on the number of upvotes a comment receives
and categorize levels of preference accordingly. After that, an evaluation set can be constructed
for many-to-many comparisons. Rather than following the approach of RewardBench, which com-
pares a single pair of responses, such as a 9-point answer with a 2-point answer or a 7-point answer
with a 5-point answer, the benchmark should involve many-to-many comparisons across a variety
of chosen and rejected responses in the 7-to-9 and 2-to-5 ranges, respectively. The many-to-many
comparisons allow for a more meaningful and robust evaluation of the reward model’s ability to
distinguish between significantly preferred and less preferred responses.

To minimize the potential for reward hacking, benchmarks should avoid simplistic preference pairs,
such as comparing long, detailed chosen responses with short rejected ones. Instead, benchmarks
should focus on pairs with similar fluency and relevance, highlighting nuanced factors such as tone,
and alignment with the intent of users. Additionally, collecting responses from diverse LLMs trained
on varied data ensures a more robust evaluation on the robustness of reward models.

B EXPERIMENTAL DETAILS

B.1 DATA CONSTRUCTION OF REWARDMATH

MATHS00 MATHS00 is derived from the original MATH dataset, which comprises a 7.5K train-
ing set and a 5K test set (Hendrycks et al., [2021). During the development of PRM80OK (Lightman

16

|Under review as a conference paper at ICLR 2025

12024), the initial 7.5K training set was insufficient for training a robust Process Reward Model
(PRM) on step-by-step solution data. Consequently, 4.5K problems from the MATH test set were
incorporated into the training set, leaving a remaining subset of 500 problems now referred to as
MATHS500. Since the release of PRM800K, MATHS500 has been widely adopted to prevent overlap
between training and test sets. We construct REWARDMATH based on the MATHS500 dataset.

Details on obtaining correct solutions. To obtain step-by-step correct solutions, we prompt GPT-
4 to re-generate the human-annotated solutions from MATHS00 into machine-generated solutions.
We dynamically provide 4 exemplars to ensure the quality of the correct solution by retrieving
exemplars from the same subject as the given problem. The exemplars are selected from the train set
of MATH, where each problem is categorized into one of 7 subjects (Precalculus, Number Theory,
Geometry, Counting & Probability, Prealgebra, Intermediate Algebra, and Algebra). Furthermore,
we manually inspect all machine-generated correct solutions to ensure quality by correcting minor
errors. For the inference parameters, we set the temperature to 0.7, top-p to 1.0 and the sampling
number to 1. The detailed prompt can be found in Figure [T4]

Details on the collection of diverse wrong solutions. We employ two types of approach to con-
struct a set of rejected solutions: (1) sampling from 13 off-the-shelf LLMs and (2) modifying the
correct solutions by GPT-4. Firstly, we prompt 13 different LLMs to solve the MATH problem
and collect the wrong solutions. We employ 13 different LLMs consisting of general closed-source
LLMs, general open-source LLMs, and math expert LLMs. Using 2-shot exemplars in their prompt,
closed-source LLMs generate 8 samples per problem, open-source LLMs generate 16 samples, while
math expert LLMs generate 16 samples with 0-shot prompt. We equally set the temperature to 1.0
and top-p to 0.95. Secondly, we instruct GPT-4-0125-preview to select a specific step from the
correct solution, transform it into an erroneous step, and then prompt again to continue generating
the solutions from the erroneous step.

From 14 different sources (i.e. sampling by 13 LLMs and modifying correct solutions), we select
one incorrect solution per source to form the final set of 9 rejected solutions. For problems with
fewer than 9 wrong solutions collected (i.e. where most models produce correct answers for all
samples), we randomly select additional incorrect solutions from models that generate more than
one incorrect solution to complete the rejected solutions. Additionally, we remove problems where
fewer than 5 out of 13 LLMs produce incorrect solutions, resulting in the elimination of 10 problems.

Manual inspection. We utilize the evaluation code provided by [Zhang et al|(2024) and [Li et al.
(2024) to parse the answers from the machine-generated solutions. However, there are solutions that
answer correctly but are mislabeled as incorrect due to parsing errors; therefore, we manually inspect
all solutions to verify and correct the labels. Consequently, 7 more problems are excluded. In total,
we remove 17 problems in which more than 5 models generate entirely correct solutions. Table [I3]
shows the excluded problems and Table ff] demonstrates the statistics of the incorrect solutions per
model.

Table 4: The number of incorrect solutions generated by each LLM. The problems are demonstrated
in Table[T5}

No.
Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

GPT-40-2024-05-13
GPT-3.5-turbo-0125
Claude-3-sonnet-20240229
Meta-Llama-3-70B
Mixtral-8x7B
Gemma-2-27b-it
DeepSeek-V2
Phi-3-medium
Meta-Llama3-8B
Qwenl.5-7B-Chat
Gemma-7b-it
WizardMath-7B-V1.1
Mistral-MetaMATH

17

Under review as a conference paper at ICLR 2025

B.2 BASELINE MODELS

Generative Reward Model We utilize LL.M-as-a-judge to evaluate the solutions, including open-
source, closed-source, and fine-tuned models specialized for evaluation. For close-source models,
we access APIs for models such as gpt-3.5-turbo-0125, gpt-4-0125-preview, GPT-40-2024-05-13
(OpenAll [2023aib), as well as claude-3-opus, and claude-3.5-sonnet. For open-source models, we
employ LLaMA3 8B and 70B (Al@Meta} |2024) and Promethus-2 7B and 8x7B (Kim et al.,|2024),
which is specially fine-tuned for evaluating the responses.

Classifier-based Reward Model Classifier-based reward model is generally used in RLHF and is
trained to assign higher reward to the chosen solution over the rejected. We utilize nine classifier-
based reward models for evaluating the solutions. Among these, |Yuan et al.| (2024a) and Dai et al.
(2024) release human-annotated preference dataset, with Eurus-RM-7b using a mixture of the Ul-
tralnteract, UltraFeedback, and UltraSafety dataset and Beaver-7b-v2.0-reward using the PKU-
SafeRLHF dataset]| Additionally, ArmoRM-Llama3-8B-v0.1[1| Internlm2-7b/20b-reward ||
Oasst—rm—2.1—pythia—1.4kE] are top-ranked in RewardBench. Notably, ArmoRM-Llama3-8B-v0.1
and Internlm2-7b-reward (Wang et al., 2024a; [Cai et al., 2024) have been developed to prevent
reward hacking. Furthermore, we employ Skywork-Reward-Llama-3.1-8B (Liu & Zeng| 2024),
GRM-llama3-8B and GRM-gemma-2B (Yang et al., [2024)), which are recently released models that
rank at the top on RewardBench.

Process Reward Model We employ process reward models (PRM), which assign a score to each
intermediate step of a solution. Lightman et al.|(2024)) releases PRM800K, a comprehensive dataset
comprising 800,000 step-level human feedback labels for training PRMs. [Xia et al.| (2024)) use
PRMS8O00K to train models on WizardMath-7B-V1.1 and Llemma-34B, subsequently proposing Rea-
sonEval 7B and 34B. Additionally, Sun et al.|(2024) introduce an easy-to-hard generation approach,
guided by the observation that evaluation is easier than generation. They provide PRM trained on
the easier data (e.g. level 1-3 problems from the MATH dataset) within PRMSOOK However, due
to the substantial human resources required to construct PRM training data, [Wang et al.| (2024b))
propose a framework to automatically construct process supervision datasets without human anno-
tations for math reasoning tasks, and train Mistral-7B using the MathShepherd dataset

B.3 DETAILS OF REWARD MODEL EVALUATION

Generative Reward Model We adopt two evaluation strategies for generative reward models:
scoring a single solution (i.e. direct) and pairwise comparison between two solutions (i.e. pairwise).
Following|Zheng et al.|(2024), we utilize the prompts shown in Figure[I6|and Figure[T7] To mitigate
position bias in pairwise comparison, we randomly order the options. For Prometheus-2, we utilize
the prompts proposed by [Kim et al| (2024), as illustrated in Figure [18] and Figure [19] applying
criteria specific to reasoning tasks.

Classifier-based Reward Model To accommodate the diverse inference modules of classifier-
based reward models, we primarily utilize the inference code provided by the official RewardBench
repositorypf] For custom classifiers such as ArmoRM-Llama3-8B-v0.1, we adapt the inference code
to meet their specific requirements, thereby maintaining a consistent evaluation framework across
all models.

Process Reward Model PRMs evaluate solutions by assigning scores to individual reasoning
steps. This approach requires an aggregation function to make step-level scores into a solution-

8https://huggingface.co/openbmb/Eurus-RM-7b
“https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-reward
"https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
"https://huggingface.co/internlm/internlm2-7b-reward
Zhttps://huggingface.co/internlm/internlm2-20b-reward
Bhttps://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
“https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level- 1to3-hf
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
1https://github.com/allenai/reward-bench

18

https://huggingface.co/openbmb/Eurus-RM-7b
https://huggingface.co/PKU-Alignment/beaver-7b-v2.0-reward
https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1
https://huggingface.co/internlm/internlm2-7b-reward
https://huggingface.co/internlm/internlm2-20b-reward
https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/ScalableMath/llemma-7b-prm-prm800k-level-1to3-hf
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm
https://github.com/allenai/reward-bench

Under review as a conference paper at ICLR 2025

Table 5: Hyperparematers used to train policy model.

Base Model Mistral-7B-v0.1
Torch dtype BF16
Epoch 3
Train Data MetaMATH (only MATH), 80K
Max Seq Length 2048
Learning Rate 2e-5
Batch Size 16
Gradient accumulation 8
Training Method 8bit QLoRA

level score. To facilitate this process, each solution is split into a sequence of steps, represented as
list of strings, and the PRMs evaluate and score these steps one by one. While many studies have
employed the product of step scores (i.e. prod) as an aggregation function, it introduces a step count
bias, disadvantaging longer solutions. Therefore, in this work, we utilize geometric mean as an ag-
gregation function. More detailed explanations on aggregation functions and in-depth analysis are
presented in Appendix [C.4}

B.4 EXPERIMENTS ON REWARD OVEROPTIMIZATION

In a non-synthetic setup, we employ WizardMath-7B-v1. IFZ] and MetaMATH-Mistral-7B[T_g] as policy
models to assess reward overoptimization using BoN sampling. Furthermore, we conduct experi-
ments to observe reward overoptimization under a synthetic setup, follwowing|Gao et al.| (2023) and
Coste et al.| (2024). We describe the synthetic setup for the experiment below:

Training policy model. We train Mistral-7B-v0.1 on the MetaMATH dataset, an augmented
dataset derived from GSM8K and MATH, to serve as a policy model. For training, we selectively
use only 80K out of the 155K data points augmented from MATH. The hyperparameters we used
for training policy model (i.e. supervised fine-tuned model) are detailed in Table 5]

Collecting synthetic preference dataset. To collect a synthetic preference dataset, we generate
16 solutions per problem using our SFT model (i.e. policy model) on the MetaMATH dataset, which
consists of 75K data from the MATH, excluding those used for training the policy model. The model
was configured to generate responses at a temperature of 1.0 and a top-p of 0.95. Initial preference
data are collected by randomly pairing chosen and rejected solutions from problems containing at
least one incorrect solution alongside a correct one. Finally, we label each data using the gold reward
model (i.e. Internlm2-7B-reward) to create a synthetic preference dataset comprising 65K instances.

Training proxy reward model using synthetic preference dataset. We train proxy reward mod-
els based on Mistral-7B-v0.1 using synthetic preference datasets of varying sizes to investigate the
impact of training dataset size on reward overoptimization. Proxy reward models are trained as
classifier-based reward models. The hyperparameters we used for training proxy reward models are
detailed in Table[6l

Policy optimization. We use BoN sampling and PPO as policy optimization methods. For BoN
sampling, we generates n=256 solutions for each problem within the MATHS500 dataset using a
policy model configured with a temperature of 1.0 and a top-p of 0.95. For PPO, we train the policy
over one epoch using 12K training set of MATH dataset. The hyperparameters we used for PPO are
detailed in Table[7] All experiments are conducted on 8 NVIDIA RTX A6000 GPUs and 8 NVIDIA
RTX A5000 GPUs.

Challenges of PPO in a non-synthetic setup. Many previous studies have used the responses of
an SFT model to train the same pretrained model as the reward model to achieve stable RLHF (e.g.
PPO) training (Ouyang et al., 2022; [Touvron et al., [2023)). In particular, Touvron et al.| (2023)) high-
lights that initializing the reward model with the same pretrained model helps prevent information

https://huggingface.co/WizardLMTeam/WizardMath-7B-V 1.1
Bhttps://huggingface.co/peiyi9979/mistral-7b-sft

19

https://huggingface.co/WizardLMTeam/WizardMath-7B-V1.1
https://huggingface.co/peiyi9979/mistral-7b-sft

Under review as a conference paper at ICLR 2025

Table 6: Hyperparematers used to train proxy reward models.

Base Model Mistral-7B-v0.1
Torch dtype BF16
Epoch 6
Train Data Synthetic Preference Data
Learning Rate le-6
Batch Size 8
Gradient accumulation 4

Table 7: Hyperparematers used in PPO experiments.

Learning rate Se-7
Batch size 16
Gradient accumulation 2
Max Seq Length 2048
KL penalty coefficient 0.05
Value function coefficient | 0.1
PPO epochs 1
Clipping range & value 0.2
GAE lambda 0.95

mismatches with the policy model, contributing to a consistent and accurate reward signal. Addition-
ally, [Touvron et al.[(2023)) and |LeVine et al.|(2023) suggest that as the policy model improves, the
data distribution shifts, and if the reward model is not exposed to this new distribution, its accuracy
may be limited. In our case, the reward models we evaluate are trained on different backbone (i.e.
pretrained) models and also different from the policy model, making stable PPO training challeng-
ing in a non-synthetic setup. Indeed, when we attempted training with several reward models, the
training process was highly unstable. Due to these reasons, it was difficult to perform comprehensive
PPO experiments with various reward models.

C IN-DEPTH ANALYSIS

C.1 DIVERSITY OF REWARDMATH DATASET

We focus on collecting a variety of incorrect solutions
from different LLMs. When selecting LLMs, we take into
account several factors such as whether they are open-
source or closed-source, the type of backbone models,
model parameter sizes, performance on MATH dataset
(covering a range of both high and low), and whether the
models are specifically trained for mathematical reason-
ing. Figure [2b] demonstrates that we have collected re-
jected solutions from a diverse range of models. Further-
more, Figure [7] which visualizes the embedding vector
of rejected solutions from RewardBench and REWARD-
MATH by applying t-SNE, shows that the distribution
region of REWARDMATH is considerably wider, indicat-
ing that REWARDMATH encompasses a broad range of
rejected solutions. This diversity suggests that REWARD-
MATH is capable of assessing the generalization ability
of reward models more effectively.

Figure 7: Visualization of the em-
bedding vector of rejected solutions
by applying t-SNE. We use OpenAl
text-embedding-3-small as embedding
model.

C.2 DISTRIBUTION OF REWARDS.

As shown in Figure[8] we observe that most models, except GPT-4/40, tend to provide high rewards
regardless of whether the solutions are correct (chosen) or incorrect (rejected). This result under-
scores that generative reward models struggle to accurately assess incorrect reasoning, indicating
that LLMs are unable to properly judge the correctness of their reasoning (Tyen et al.| 2023; Huang

20

Under review as a conference paper at ICLR 2025

GPT-40-2024-05-13 GPT-4-0125-preview GPT-3.5-turbo-0125
160 150
0 180 .
140 . 300
120 140 .
100 120
€ 200
é 80 100
150
- 80 5
60
40 100
40
’“ | I I I Il
. ull o vl . = _
2 4 L] 8 10 2 4 6 8 10 2 4 [8 10
Claude-3.5-Scnnet Claude-3-Opus LLaMA3-8B
300
400 350
350 250
300
300
250 200
u 250
g
200
2 200 150
u
150 160 i)
100 100
50 I 50 I o
A 8w . A m m__ [] [|
0 2 4] 8 -1D 0 2 4 6 = B8 10 o 2 4 -B 8
Prometheus-2-7B Prometheus-2-8x7B LLaMA-70B
350
350 300
300
300 250
250
- 250 S
5 200
]
S 1s0 150
150
100 100 100
50 I 50 I 50
o e . - . _
1 2 3 4 5 1 2 3 4 5 2 4 6 8
Reward Reward Reward
Il chosen Rejected

Figure 8: Distribution of rewards for chosen and rejected solutions in REWARDMATH, scored by
generative reward models using direct assessment. The number of rejected solutions in REWARD-
MATH is calculated by dividing by 9.

et al., 2023b). Additionally, the distributions of rewards for classifier-based models are illustrated
in Figure While many models assign higher rewards to chosen solutions in RewardBench, the
results on REWARDMATH indicate that these models often provide similar rewards to both chosen
and rejected solutions.

C.3 Do LLMS HAVE A SELF-ENHANCEMENT BIAS IN MATHEMATICAL REASONING TASK?

Zheng et al.| (2024) suggest that LLM judges may exhibit a self-enhancement bias, favoring re-
sponses generatedby themselves. We conduct the experiments with two research questions to ana-
lyze self-enhancement bias in LLM-as-Judge.

1. Does the model prefer its own incorrect answers over correct answers? In this exper-
iment, we compared the model’s own rejected (incorrect) solutions from REWARDMATH
with correct solutions from REWARDMATH. Note that this experiment involves not only
preference bias but also the model’s judgment ability, which must be considered when in-
terpreting the results.

2. When given two correct solutions, which one does the model prefer? For this exper-
iment, we collected correct solutions from the LLM-as-a-Judge model itself across 100
problems in MATHS500 where all LLMs we used generated correct solutions. We examined
the model’s preference between its own correct solutions and correct solutions generated
by other models. Since both solutions are correct, we evaluated them under two settings:
(1) when a tie is an available option (w/ tie), and (2) when a tie is not an available option
(w/o tie), to analyze which solution the model prefers more strongly.

21

Under review as a conference paper at ICLR 2025

=@~ GPT-40-2024-05-13 == Meta-Llama-3-70B-Instruct =gke= Others
=l GPT-3.5-turbo-0125 Meta-Llama-3-8B-Instruct

Failure rate

GPT—“D-ZUE‘;‘OS_IE GPT.B.S-[u,bO_DIZS Metﬂl&ma'3'708~1ns:e£“/ama-3-w—m[
Figure 9: The results for generative reward model using pairwise comparison. The failure rate

indicates the proportion of selecting rejected over chosen solutions.

Table 8: The result presents the self-enhancement bias of LLM-as-a-judge, indicating the rate at
which an LLM judge selects its own chosen solution from a set of 100 problems.

LLM-as-judge GPT-40 GPT-3.5-turbo Llama3-70B Llama3-8B Claude-3-Sonnet = Gemma2-27B
Pairwise Comparison (w/o tie)
GPT-4-0125-preview 0.30 0.33 0.34 0.27 0.24 0.29
GPT-40-2024-05-13 - 0.55 0.48 0.5 0.47 0.42
GPT-3.5-turbo-0125 0.54 - 0.53 0.46 0.44 0.45
Meta-Llama-3-70B 0.49 0.22 - 0.28 0.4 0.13
Meta-Llama-3-8B 0.53 0.43 0.38 - 0.41 0.35
Pairwise Comparison (w/ tie)
GPT-4-0125-preview 0.36 0.38 0.40 0.34 0.29 0.35
GPT-40-2024-05-13 - 0.44 0.44 0.41 0.4 0.36
GPT-3.5-turbo-0125 0.35 - 0.21 0.2 0.35 0.13
Meta-Llama-3-70B 0.43 0.16 - 0.18 0.38 0.09
Meta-Llama-3-8B 0.5 0.36 0.35 - 0.44 0.31

Figure O] illustrates the accuracy of one-to-one comparisons between chosen (i.e. REWARDMATH)
and rejected (i.e. each judge) solutions in REWARDMATH, comparing the performance under four
LLM judges to the average performance of others. The results reveal that GPT-4o selects its own
rejected solutions more frequently. Similarly, other LLM judges also show a relatively higher pref-
erence to select their own rejected solution. However, the discrepancies are trivial, indicating a mild
presence of self-enhancement bias. Furthermore, we examine whether models prefer their own cor-
rect solutions over those from other models across a set of 100 problems As shown in Table
there is a general tendency for models to prefer their own solutions, though the results do not suggest
a pronounced bias. For example, when comparing the correct solutions from GPT-40-2024-05-13
and GPT-3.5-turbo with a tie option available, GPT-40 judge selects its own solution 44% of the
time. Ideally, it should choose tie in all cases (since both are correct solutions), resulting in 0%.
Furthermore, while the correct solutions are generated by GPT-4, Table [§| also demonstrates that
GPT-4 judge does not exhibit a bias toward preferring its own solutions. This is likely because the
solutions were not directly generated by GPT-4 but were instead modified versions of human solu-
tions from the MATH dataset. These findings demonstrate that the benchmark is free from potential
bias and affirm the fairness of the experiments.

C.4 ANALYSIS OF AGGREGATION FUNCTIONS

Given a solution S = {s1, 89,..., Sn }, the PRMs assign a score to each step s;, necessitating an
aggregation function to calculate the final reward. Following |[Wang et al.,| (2024b) and [Sun et al.

It is a set of problems for which all models provided the correct answers.

22

Under review as a conference paper at ICLR 2025

Table 9: Analysis of aggregation function in PRMs on RewardBench and REWARDMATH.

Process Reward Model Agg Func RewardBench ~ REWARDMATH
Acc Acc. MRR
Random 50.00 10.00 29.29
geo_mean 81.43 15.74 33.61
min 83.00 15.32 34.67
max 68.68 3.93 21.82
_ g op | Prod 94.41 1718 34.68
Math-Shepherd-Mistral-7B mean 8121 1511 3278
mean_logit 80.76 14.70 31.92
mean_odd 78.52 9.32 26.36
last 65.77 18.22 38.83
geo._mean 29.08 16.36 37.51
min 53.24 12.84 34.16
max 7.61 5.59 25.31
— prod 67.79 1408 3529
Llemma-7b-prm-prm800k -~ » 26.85 1863 39.40
mean_logit 25.95 21.53 41.10
mean_odd 31.54 22.77 42.65
last 31.32 13.25 33.89
geo_mean 14.77 20.29 39.28
min 41.83 19.46 38.67
max 5.82 12.01 34.03
) prod 63.09 18.22 38.50
ReasonEval-78 mean 12.08 2008 39.19
mean_logit 9.84 20.91 40.45
mean_odd 7.83 19.26 40.02
last 23.49 14.91 36.27
geo._mean 19.69 18.43 38.96
min 42.51 19.46 40.35
max 11.19 9.11 31.55
prod 83.45 15.94 36.63
ReasonEval-34B mean 18.35 1822 3896
mean_logit 18.57 18.22 39.30
mean_odd 15.44 17.39 38.23
last 29.08 18.63 38.17
(2024), we consider the aggregation functions as follows:
min = min{sy, s2,...,8,}
max = max{s1,S2,...,8,}

mean_logit =

prod = H Si
i
> i

mean —

mean_odd = ReLU

last = s,

n
s;
Zi 1Og 17187;
ol ————M=

“4)
®)

(6)
(7

®)

©))

(10)

In this work, we propose new aggregation function geo_mean to mitigate step count bias from

prod.

1
geo_mean = (H 57) "

%

(1)

Effect of aggregation function. Table [J] presents the performance on RewardBench and RE-
WARDMATH based on difference aggregation functions. Since RewardBench contains a higher

23

Under review as a conference paper at ICLR 2025

Table 10: The accuracy of BoN sampling (n = 256) on MATHS500, Gaokao-math and SAT-math.
We use MetaMATH-Mistral-7B and WizardMATH-7B-v1.1 as policy models. The parenthesis in-
dicates the difference in accuracy between the performance of BoN at n=256 and at n=1.

R MetaMATH-Mistral-7B WizardMATH-7B-v1.1
eward Model
MATHS500 Gaockao-math SAT-math MATHS500 Gaockao-math SAT-math
BoN sampling (n = 1) 31.80 9.49 54.46 33.60 11.80 64.36
Classifier-based Reward Models
ArmoRM-Llama3-8B-v0.1 40.60 (+8.80) 15.13 (+5.64) 63.37(+8.91) 42.80 (+9.20) 20.00 (4-8.20) 66.34 (4-2.02)
Skywork-Reward-Llama3.1-8B 38.20 (+6.40) 16.15 (+6.67) 56.44 (+1.98) 44.20 (+10.60) 19.74 (4-7.95) 74.26 (4-9.90)
Oasst-rm-1.4b 25.60 (—6.20) 7.18 (—2.31) 48.52 (—5.94) 31.80 (—1.80) 8.46 (—3.33) 59.41 (—4.95)
Internlm2-20b-reward 46.20 (—14.40) 22.31(+12.82) 74.26 (+19.80) 49.20 (+15.60) 23.59 (+11.80) 79.20 (+14.85)
Internlm2-7b-reward 48.00 (+16.20) 27.95 (+18.46) 76.24 (+21.78) 52.40 (+18.80) 30.26 (+18.46) 77.23 (+12.87)
GRM-1lama3-8B 41.80 (+10.00) 17.44 (+7.95) 6831 (+13.86) 44.80 (+11.20) 19.74 (+7.95) 72.27 (+7.92)
GRM-gemma-2B 31.20 (—0.60) 13.08 (+3.59) 56.44 (+1.98) 33.20 (—0.40) 12.82 (4-1.03) 67.33 (+2.97)
Eurus-RM-7b 37.00 (4-5.20) 14.87 (+5.39) 64.36 (+9.90) 38.00 (46.20) 16.92 (+5.90) 67.32 (+7.92)
Beaver-7b-v2.0-reward 28.20 (—3.60) 6.67 (—2.82) 46.54 (—-7.92) 28.80 (—3.00) 11.54 (—1.03) 50.50 (—11.88)
Process Reward Models
Math-Shepherd-Mistral-7B 37.00 (4-5.20) 12.56 (+3.08) 71.29 (+16.83) 43.60 (+10.00) 18.21 (+6.41) 73.27 (+8.91)
Easy-to-Hard 32.40 (4-0.60) 11.03 (+1.54) 59.41 (+4.95) 34.20 (4-0.60) 12.82 (41.03) 60.40 (—3.96)
ReasonEval-7B 40.00 (+8.20) 13.59 (+4.10) 67.33 (+12.87) 40.20 (4-6.60) 13.33 (+1.54) 68.32 (4-3.96)
ReasonEval-34B 43.60 (+11.80) 16.67 (+7.18) 68.32(+13.86) 44.00 (+10.40) 20.51 (+8.72) 75.25(+10.89)

number of steps in the rejected solutions compared to the chosen solutions (Figure [2a)), it is natural
for the prod function to exhibit the best performance. For example, let’s assume that the chosen
solution has 2 steps, while the rejected solutions has 10 steps. If a PRM assigns a reward of 0.9
to every step, the solution-level reward for chosen solution would be 0.81, whereas for the rejected
solution, it would be 0.91° ~ 0.349. Therefore, a strong performance of the PRM using the prod
function on RewardBench does not indicate that the PRM is truly robust, as the high scores are
achieved by exploiting vulnerabilities of RewardBench; thereby we confirm that RewardBench is
vulnerable to reward hacking. Indeed, among all aggregation functions, the prod function shows
the most significant performance drop when comparing RewardBench and REWARDMATH.

Although the prod function is widely used as an aggregation method in many works due to its util-
ity (Lightman et al., 2024; Sun et al.,|2024)), we have identified its vulnerability to length (i.e. number
of steps) bias, which can lead to reward hacking. However, by taking the n'" root of the product, we
can eliminate the bias related to length, making the geometric mean an effective solution. Therefore,
in our paper, we report all results using the geo_mean.

C.5 CORRELATION BETWEEN BENCHMARK PERFORMANCE AND THE RESULT OF BON
SAMPLING

Table |10| presents the results of BoN sampling on various math benchmarks, including MATH500,
Gaokao-math, and SAT-math. Figure [IT] illustrates the relationship between benchmark perfor-
mances and BoN sampling results. We have previously established that accuracy on REWARD-
MATH strongly correlates with the results of BoN sampling. To provide a more comprehensive
evaluation, we have proposed using two metrics: (1) Accuracy and (2) Mean Reciprocal Rank
(MRR). Therefore, we need to validate the correlation between BoN sampling results with MRR
scores on REWARDMATH.

The results of MRR on REWARDMATH. As shown in up1e 11:
Figure the MRR on REWARDMATH also strongly
correlates with BoN sampling results with policy models paced on the benchamrk and the re-
demonstrating 72 > 0.8 in MATHS500. These results indicate sults of the optimized policy with
that BoN sampling results have a strong correlation on both g,N sampling on GSMSK and
metrics (accuracy, MRR) in REWARDMATH, highlighting n\aATH.

the reliability of the proposed benchmark. The detailed re-
sults used in Figure can be found in Table [0}

The Spearman correla-
tion between the performance (Acc.)

| RewardBench REWARDMATH

. .. GSMSK 0.209 0.797
The correlations on GSM8K. We conduct additional ex- parh 0187 0902

periments to calculate the correlation between the results
on GSMSK (Cobbe et al., |[2021), a widely used dataset for
mathematical reasoning, and benchmark performance. As

24

Under review as a conference paper at ICLR 2025

Table 12: The Spearman correlation between the performance on RewardBench and REWARD-
MATH and the results of the optimized policy. This correlation specifically reflects the results
obtained after excluding rejected solutions from REWARDMATH, which were collected from the
policy model (e.g. MetaMATH-Mistral-7B) used during BoN experiments.

. MetaMATH-Mistral-7B WizardMATH-7B-v1.1
Benchmark Metric
MATHS500 Gaockao-math SAT-math MATHS500 Gaockao-math ~ SAT-math
RewardBench Acc. 0.187 0.336 0.030 0.369 0.356 0.190

REWARDMATH Acc.
REWARDMATH MRR

Table 13: The Spearman correlation between the performance (Acc.) based on the benchmark design
and the results of the optimized policy. The results highlight the importance of both reducing the
possibility of reward hacking and employing one-to-many comparisons.

Benchmark Design MetaMATH-Mistral-7B WizardMATH-7B-v1.1
Chosen Rejected Comparison ~ MATHS500 ~ Gaockao-math ~ SAT-math MATHS500 Gaockao-math ~ SAT-math
RewardBench RewardBench One-to-One 0.187 0.336 0.030 0.369 0.356 0.190
Modified with GPT-4 0.201 0.203 0.217 0.341 0.342 0.335
GPT-40-2024-05-13 -0.184 -0.157 -0.245 -0.118 -0.041 -0.146
GPT-3.5-turbo-0125 0.135 0.126 0.124 0.264 0.256 0.247
Claude-3-sonnet-20240229 0.234 0.247 0.143 0.341 0.373 0.308
Meta-Llama-3-70B 0.058 0.066 0.096 0.165 0.185 0.236
Mixtral-8x7B 0.193 0.187 0.124 0.291 0.317 0.236
Gemma-2-27-it 0.008 0.011 -0.022 0.099 0.124 0.082
RewardBench DeepSeek-V2 One-to-One 0.292 0.313 0.286 0.434 0.446 0.463
Phi-3-medium 0.074 0.071 0.069 0.209 0.196 0.187
Meta-Llama3-8B 0.025 0.055 0.055 0.159 0.160 0.225
Qwenl.5-7B-Chat 0.316 0.330 0.259 0.434 0.446 0.396
Gemma-7b-it 0.311 0.335 0.259 0.439 0.463 0.434
WizardMath-7B-v1.1 0.275 0.324 0.195 0.429 0.446 0.341
Mistral-MetaMATH 0.308 0.237 0.204 0.341 0.397 0.269
REWARDMATH (random choice) 0.162 0.170 0.107 0.264 0.287 0.247
RewardBench (unaligned GPT-4) 0.432 0.593 0.281 0.544 0.490 0.421

Modified with GPT-4 0.507
GPT-40-2024-05-13 b L -0.074 0.154 0.171 -0.072
GPT-3.5-turbo-0125
Claude-3-sonnet-20240229
Meta-Llama-3-70B K 0.434
Mixtral-8x7B
Gemma-2-27-it
DeepSeek-V2
Phi-3-medium
Meta-Llama3-8B
Qwenl.5-7B-Chat
Gemma-7b-it
WizardMath-7B-v1.1
Mistral-MetaMATH
REWARDMATH (random choice)

RewardBench REWARDMATH
REWARDMATH REWARDMATH

0.308 0.196

REWARDMATH One-to-One

0.143 -0.014 0.181 0.220

One-to-Many

shown in Table [TT} our design (i.e. REWARDMATH) also demonstrates a strong correlation on
GSMS8K, whereas RewardBench exhibits a weak correlation.

Overlap between the policy and the model used for sampling rejected solutions. We have
demonstrated that REWARDMATH exhibits a strong correlation with the results of BoN sampling.
However, a natural question is whether this strong correlation arises because the rejected solutions in
REWARDMATH are sampled from the same model used as the policy. To address this potential con-
found, we employ one-to-eight comparisons, removing rejected solutions from the same model as
the policy out of the 9 rejected solutions and examining the correlation between benchmark perfor-
mance and accuracy/MRR. Table [T2]indicates that even with this adjusted approach, there remains
a strong correlation. This persistent correlation underscores the reliability of REWARDMATH.

In-depth analysis on reliable benchmark design. In Section [5.1} we have explored the impor-
tance of having similar representations between the chosen and rejected solutions, as well as the
significance of one-to-many comparisons. To further analyze, we examine the results of one-to-one
comparisons between the chosen solutions in REWARDMATH and randomly selected rejected so-
lutions from REWARDMATH. The correlation is similar to that of the one-to-many comparisons
in REWARDMATH, suggesting that even one-to-one comparison with higher diversity can be con-
sidered sufficiently effective, without the need for a full one-to-many comparisons. However, the

25

Under review as a conference paper at ICLR 2025

results of the one-to-one comparisons for Gemma-2-27b-it and GPT-40-2024-05-13 indicate that
existing reward models struggle to accurately distinguish the subtle incorrect solutions generated by
these models, which explains why the one-to-many comparisons in REWARDMATH shows lower
correlation compared to some of the one-to-one comparisons.

To further investigate the reasons behind the lower correlations observed in RewardBench, we con-
ducted an additional analysis. Specifically, we performed one-to-one and one-to-many comparisons
between the chosen responses from RewardBench and the rejected responses from RewardMATH.
As shown in Table 12, these comparisons exhibited low correlations. Additionally, we performed a
one-to-one comparisons between the chosen responses from REWARDMATH and the rejected re-
sponses from RewardBench. While this setup shows higher correlations compared to RewardBench,
it still demonstrates lower correlations than the one-to-many comparisons using REWARDMATH.
These findings underscore the importance of both reducing the possibility of reward hacking and
employing one-to-many comparisons.

C.6 CORRELATION BETWEEN BENCHMARK PERFORMANCE AND THE RESULT OF POLICY
FINE-TUNING

Since BoN sampling utilizes the reward model at inference
time, we aim to investigate the correlation with policy train-
ing methods and benchmark performance. As previously paced on the benchamrk and the re-
mentioned, due to the instability of PPO experiments in our ¢,1ts of the optimized policy with
setup, we focused on conducting experiments where the re- ppQ and BoN sampling.

ward model can effectively provide learning signals:

Table 14: The Spearman correla-
tion between the performance (Acc.)

. Data Size | RewardBench REWARDMATH
* Preference data for DPO constructed using the |
DPO 0.156 0.725

reward model: We created a preference dataset for

: . . BoN 0.187 0902
DPO by selecting the response with the highest re-
ward as the chosen sample and the response with
the lowest reward as the rejected sample.

For this experiments, we used MetaMATH-Mistral-7B as the SFT model and selected a 32K subset
of data from the MetaMATH dataset as the training dataset. We performed n = 32 sampling with
the SFT model and removed instances that were entirely correct or incorrect to reduce noise and
better assess whether the reward model provides meaningful learning signals. Finally, we obtained

rewards from each reward model for a final dataset of 13.5K responses and conducted training with
and DPO.

Table |14| presents the correlation between the results of the optimized policy on MATHS500 and the
benchmark results. As a result, we reconfirm that the results on DPO also show a stronger correlation
than RewardBench.

C.7 EXPERIMENTS ON REWARD OVEROPTIMIZATION

We conduct additional experiments to assess how well the benchmark estimates reward overopti-
mization. As Figure [6] demonstrated a clear relationship between accuracy and reward overopti-
mization in REWARDMATH, we also observed a strong correlation with MRR score (Figure [13).
We also provide the results of different policy models with both accuracy and MRR metrics in Fig-
ure [12b]and Figure respectively. These results demonstrate that REWARDMATH consistently
exhibits the ability to detect overoptimization across various policy models.

D PROMPTS

Figure[14] [I5] present the prompts used for dataset construction. Furthermore, our prompts used for
evaluating generative RMs are demonstrated in Figure [16} [I7} [T8] [T9]

26

Under review as a conference paper at ICLR 2025

Table 15: The problems from MATHS500 excluded when constructing REWARDMATH.

No. Problem
1 Determine the remainder of 54 (mod 6).
-2
2 Find the dot productof [0 | and
7 -5
2
3 Find the projection of aontob = | 6 | ifa-b = 8.
3

4 If2® = 4%, what is the value of z?
5 The point (a, b) lies on the line with the equation 3z + 2y = 12. When a = 4, what is the value of b?
6 What is 1277779
7 What is % expressed as a decimal?
8 What is the difference between the positive square root of 64 and the cube root of 64?
9 Write % as a decimal.
10 You have 5 shirts, 6 pairs of pants, and 8 hats. How many outfits can you make consisting of one shirt, one pair of

pants, and one hat?
11 For a constant ¢, in cylindrical coordinates (r, 6, z), find the shape described by the equation z = c.

(A) Line (B) Circle (C) Plane (D) Sphere (E) Cylinder (F) Cone

Enter the letter of the correct option.
12 In how many ways can 5 students be selected from a group of 6 students?
13 Karla drove her vehicle 12,000 miles last year. How many gallons of gasoline would she have saved last year had she

driven a fuel-efficient hybrid car averaging 48 miles per gallon rather than an SUV averaging 15 miles per gallon?
14 Simplify v/242.
15 What is v/53 in simplest radical form?
16 ~ What is the distance, in units, between the points (2, —6) and (—4, 3)? Express your answer in simplest radical form.
17 Whatis the value of 513% — 487°?

27

Under review as a conference paper at ICLR 2025

ArmoRM-Llama3-8B-v0.1 Skywork-Reward-Llama3.1-8B Oasst-rm-2.1-pythia-1.4b
25
50l 50
E a0 40 ZD
=
7]
% Y 30 15
2
o O
g 20 20 10
@
o bl .I"l ||| il o A |I|l|l|||.. o ||\‘|\"||| ” I ol
0.1 0.2 0.3 0.4 -20 0 20 40 -2 -1 0 1 2 3
ArmoRM-Llama3-8B-v0.1 Skywork-Reward-Llama3.1-8B Oasst-rm-2.1-pythia-1.4b
50 as 30
40
E 40 asl 25
<< 30 20
s €%
5 3 5
[gye] 20 15
© 20
= 15 10
5
——yl" ||| ...) .||| I |I||...I . o dH |||H.\. -
0.1 0.2 03 0.4 -20 0 20 40 -5 ° 5
Internlm2-7b-reward Internim2-20b-reward Eurus-RM-7b
35
20 25
= 30
e 15 25 2
5 = 20
T 3 15
2
‘,E o 19 15
z 10
[o 10
=4
10111 1T ‘H |
0] Hl"ll I ‘ ol Il \”u"h““ | | |\|\”\| 0 |\‘||||\H“||| |\”\”|| ‘\
-z 0 2 4 -2 0 2 1000 -500) 500
Internlm2-7b-reward Internim2-20b-reward Eurus-RM-7b
30
30
T 25 20
25
'E 20 i »
z e
15
‘rE S 10l 15
% 10 10
o 5
5 5
i Ill” | “ 1 |\ ||\\|||Hh ‘ H\hHH\"U“m | ”thH “"\M
v -2 0 2 4 v -2 0 2 % jo0 ' 500 ot
GRM-llama3-8B GRM-gemma-28 Beaver-7b-v2.0-reward
0 o 25
E 25 2 20
c 30
Q 20
om 2 25 15
T s
— o 15 20
© o
= 1 10
] 10
o 10
orall ||| || ||||n||| 0 Al | | il .. ot Ll “||||\|| H||\|||‘||
150 -0 -5 0 5 10 -10 -5 0 5 -2 a 2
GRM-llama3-8B GRM-gemma-2B Beaver-7b-v2.0-reward
50 40
35 50
50
E 30
< 40
40 25
z .
E é:o 20 30
Z 15 20
] 20
EZ 10
0
] 5 i 1 |
il |II|| il (il a |.|| I
v 0 5 10 v 0 5o LT 0 & 2
Reward Reward Reward
Il cChosen Rejected

Figure 10: Distribution of rewards for chosen and rejected solutions in RewardBench and REWARD-
MATH, scored by classifier-based reward models. The number of rejected solutions in REWARD-
MATH is calculated by dividing by 9.

28

Under review as a conference paper at ICLR 2025

BoN (MetaMATH-Mistral-7B)

MATHS00 Gaokao-math SAT-math MATHS00 (ID) # Gaokao-math (00D) v SAT-math (000)
W L p— s Ol #rmori-ames v
15 20 8. 20 ‘
© Skoywork v
I * L 96.9 15 H
. i -
S 10 o | B g v e
28 o g0 o $
==, S
ig - g
iy % s g s ﬁf*
3]| I B i I s 5 &
EaEN | % g I' "] . o L M
@ [| N) I 1 : M »
. %] s \ " ' .
s 10 -10
R 2 0 0 50 100
BoN (WizardMATH-78-v1.1)
20 W wamson 20 g Guokao-math 15 B sar-man [cuusRMTb 20 100, Y
e 15 .128, [
1w 5 w0 . o5,
% 10
g 10 s Beaver-7 3
i , Janl ES -
]) o | |] g =
i, - ' P i == TR
5 E .
g whn_m ° 3 - v v
s o ME_- - 0 -
1 V] 10 : -10
s -5 A 5
A Mooa Mooa M » w© £y s 100
Models Acc. on RewardBench Acc. on RewardBench
BoN (MetaMATH-Mistral-78)
MATHS00 Gaokao-math SAT-math @ MATH500 (ID) # Gaokao-math (OOD) v SAT-math (00D)
W maTHS00 20 g Gaokao-math ‘SAT-math M forninzzy) S, 12 Lorzns
s 2 2 535, p = 1.360:05
© 13004
g E " . i . -
510 _ T
g GRilama3 S
2 0 0 v | g
87 s SkyworkcReward § s
g
§< I I : L I] ’ N < 4
5 0= 4 & l o B rory-uamas °
g 4, HBuk E 205 s
- -
. 2y | ez .
s 10 203 -10
B easoncval-sen 5 1w 15 20 25 30 35
Tos BoN (WizardMATH-78-v1.1)
20 MATHSC 20 sa0kao-math \T-matt Eurus-RM-7b 2
W vaTHson B Gl 15 | B saT-math F 17.0
is
Jn s w0 W e o
g tea "
b -
25 o 0 s o 5
T ; e
£y ’ N L]
e I I 5 ' E a . . .
£ s
g - C w 8 -
= 0 — - o w -
a1 7 :
v
- s
A M A Moa " s 1 15 0 25 % 3
o Acc. on RewardMATH e, on RewardMATH
BoN (MetaMATH-Mistral-78)
MATH500 Gaokao-math SAT-math @ MATHS00 (ID) # Gaokao-math (OOD) ¥ SAT-math (00D)
W athsoo 20 @ Gaokao-math SAT-math M
15 20 e
© Intermimz-206
o *® 15 L 520 15
,E,; GRM-llama3 g
2L 1o 10 K 458 £
ig s 8
= s , g s
53 5 l 447 <
| 7 #x4%% o g = | s :
4 22
2 o
- L] - i . s R]
- o 3 -
Reasontval-348
G 39.0
20 | wamisoo 20 g Gaokaormath 15 B saTmatn F | Gomen 20
s 15 10 M Lema7o-prm "
E 375 "
b -
&2 . 0 s o 5
38 g
£ v N | flw §
5 5 % c 50
P I l :
5 -
g ; s
H = 0% = s
10 . wo
-
A Mooa Mooa M s w3 s s s
Models MRR on RewardMATH MRR on RewardMATH

(c) MRR on REWARDMATH (ours)

Figure 11: Relationship between the difference in accuracy (Aacc) on math test sets and perfor-
mance on each benchmark.

29

Under review as a conference paper at ICLR 2025

Gold Reward

Gold Reward

Gold Reward

oo

KL Divergence

KL Divergence

(c) MRR on REWARDMATH (ours)

7

omzr=s

0 o-rwm

on REWARDMATH (ours)

OA——m -

mEO T 0>

Oracle Reward (pass@1) Oracle Reward (pass@1)

Oracle Reward (pass@1)

KL Divergence

. on RewardBench

&

°
S

KL Divergence

KL Divergence

=

Zowrz

C = ma

—oo-n

T

owEm

w0 em

98.7 ()
969 (L)
95.1(K)
95.1)
9490
803 ()
5L4G)
799 (6)
69 (1)

60.4 (D)

300

ML)

244()

23an
18.4(G)
1700
164®)

157 @)

4550
410
220
3030
»9()
B30
5E)

3360)

ArmoRM-Llama3
Skywork-Reward
Internim2-20b
Oasst-rm
Internlm2-7b
GRM-llama3
Math-shepherd
Eurus-RM-7b
GRM-Gemma
Beaver-7b
Llemma-Tb-prm
ReasonEval-34B
ReasonEval-7B

Internim2-7h
Internim2-20b
GRM-llama3
Skywork-Reward
ArmoRM-Llama3
ReasonEval-7B
ReasonEval-34B
Eurus-RM-7b,
Llemma-Tb-prm
Math-shephered
Beaver-Tb
Ousst-rm

GRM-Gemma

Internlm2-Th
Internim2-20b
GRM-llama3
Skywork-Reward
ArmoRM-Llama3
ReasonEval-7B
ReasonEval-34B
Eurus-RM-7b,
Llemma-Tb-prm
Math-shephered
Ousst-rm
Beaver-Th
GRM-Gemma

Figure 12: Gold rewards and oracle rewards (pass@ 1) of BoN experiments for WizardMATH-7B-

vl.1.

Gold Reward

KL Divergence

=

SR

Q

© mo T

Oracle Reward (pass@1)

KL Divergence

- 2

Om— TR O

Internlm2-7b

Internlm2-20b

GRM-llama3

Skywork-Reward
ArmoRM-Llama3
EEEICIN ReasonEval-7B
SUEN ReasonEval-34B
ERION Curus-RM-7b

SAION Llemma-7b-prm
SN Math-shephered
Oasst-rm

Beaver-7b

241() | GRM-Gemma

Figure 13: Gold rewards and oracle rewards (pass@ 1) of BoN experiments for MetaM ATH-Mistral-

7B. The heatmap represents the MRR of reward models on REWARDMATH.

30

Under review as a conference paper at ICLR 2025

Table 16: An example of chosen and rejected solution in REWARDMATH.

Problem The smallest distance between the origin and a point on the graph of y = %12 — 9 can be
expressed as a. Find a?.

Chosen 1. The point on the graph of y = %12 — 9 that is closest to the origin occurs when the distance
from the origin to the point is minimized. To find this distance, I can use the distance formula:
d= /x> +y>.

2. Substituting y = %x'z — 9 into the distance formula gives d = /2 + (9)2.

7. Therefore, the value of a” is

Rejected

Modified-with-GPT-4 1. The point on the graph of y = %1‘2 — 9 that is closest to the origin occurs when the distance
from the origin to the point is minimized. To find this distance, I can use the distance formula:
d= /22 +y%

2. Substituting y = %:r,‘z — 9 into the distance formula gives d =

10. Thus, the smallest distance squared, a?,

GPT-3.5-turbo-0125 1. To find the smallest distance between the origin and a point on the graph of y = %12 -9,
we need to find the minimum distance between the origin and a point on the parabola.
2.The distance between the origin (0,0) and a point (z, %) on the parabola can be calculated
using the distance formula: d = \/z2 + y2.

9. So, the smallest distance squared can be expressed a:

Claude-3-sonnet 1. The parabola is in the form y = ax? + bx + ¢, where a = %, b=0,and c = —9.
2. The vertex of a parabola with equation y = ax? + bx + c is given by (—2% f (—2%)),
where f(z) = az? + bz + c.

8. Therefore, the smallest distance between the origin and a point on the graph of y = %12 -9

isa=9,anda® =

Meta-Llama-3-70B- 1. To find the smallest distance between the origin and a point on the graph of y =
Instruct we can use the distance formula: d = \/(xz — 0)2 + (y — 0)2 = \/x? + y2.

2. Substitute y = ‘512 — 9into the formula: d =

9. Thus, a? is equal to

Mixtral-8x7B-Instruct-v0.1 1. To find the smallest distance between the origin and a point on the graph of y = 122 — 9,
we first need to find the minimum value of the function.
2. The function y = %xz — 9 is a parabola opening upwards, and its minimum value occurs at
the vertex.

7. Since we need to find (12, the answer is 9%

Gemma-2-27b-it 1. Distance Formula: The distance between the origin (0, 0) and a point (z,y) on the curve is

given by \/x? + 2.

2. Substitute: Since the point lies on the curve, substitute y with its expression:
a2+ (322 — 9)2.

11. Find ®: Finally, a*> = D?

DeepSeek-V2-Lite-Chat 1. The graph of y = %1‘2 — 9 s a parabola that opens upward because the coefficient of 2 is
positive.

3. A point on the graph of y = %12 — 9 from the origin means the distance from the origin to
the point on the graph is the z-coordinate of the vertex, which is — £ = — —é) =9=2

4. Therefore, a* = (%)2 = % and the answer i

Meta-Llama-3-8B-Instruct 1. The distance between the origin and a point on the graph can be expressed using the distance

formula: d = 1/ (z — 0)* + (y — 0)* = /2% + 2.

2. The point on the graph has the coordinates (2,y) = (z, 32° — 9).

6. Substitute these values back into the original distance formula and take the square root of the

resulting squared value to find the smallest distance: a® = /2 (0)* —9(0)* +81 = .

Qwenl.5-7B-Chat 1. The distance d between a point (z, y) and the origin is given by the formula d = /22 + y>.
2. For a point on the parabola y 2 9, the point is at the vertex of the parabola, which
has the smallest distance to the ori

8. The final answer is

31

Under review as a conference paper at ICLR 2025

Based on the given solution, please regenerate your own solution. Solve the problem STEP-BY-STEP
like human. The answer must be in the Latex notation, "$\boxed{{}}3$".

[Example 1]
Problem: Two-thirds of the people in a room are seated in three-fourths of the chairs. The rest of the
people are standing. If there are 6 empty chairs, how many people are in the room?

Solution: Because the 6 empty chairs are $\\frac{1}{4}$ of the chairs in the room, there are $6\\times
4=24$ chairs in all. The number of seated people is $\\frac{3}{4}\\times24=18$, and this is $\
\frac{2}{3}$ of the people present. It follows that \\[\\frac{ 18} {\\textrm{people present} } =\\frac{2}
{3}.\\1So there are $\\boxed{27}$ people in the room.

New Solution:

Step 1. I need to find the number of people in the room, which I'll call P.

Step 2. 1 also need to find the number of chairs in the room, which I'll call C.

gt-ep 7. Then I can plug that value into the first equation and simplify: (2/3)P = (3/4)C, (2/3)P =

(3/4)(24), (2/3)P = 18, P = 18 * (3/2), P = 27.
Step 8. So there are $\\boxed{27}$ people in the room.

[Example 5]
Problem: {problem}

Solution: {solution}

New Solution:

Figure 14: Prompt for converting a human solution to a machine-generated solution. This is an
example applied to a problem belonging to the subject of Algebra among seven subjects.

Your task is to solve a given mathematical problem. Generate the solution in a numbered list format.
Make sure to put the answer (and only answer) inside \\boxed{ }. Finally, write the correct answer
separately under '### Answer:'. Let's think step by step.

[Example 1]
Problem: Find the domain of the expression $\\frac{\\sqrt{x-2} } {\\sqrt{5-x}}$.}

Solution:

. To find the domain of the expression Y\(\\frac{\\sqrt{x-2}} {\\sqrt{5-x}} \1), we need to consider
where the expression is defined.

. The expressions inside both square roots must be non-negative.

. Therefore, $x-2 \\ge 0%, so $x\\ge2$, and $5 - x V\ge 0%, so $x \ile 58.

. Also, the denominator cannot be equal to zero, so $3-x> 08, which gives $x<35$.

. Therefore, the domain in interval notation is $\\boxed{[2,5)}$

—

h B L

[Example 3]
Problem: {problem}

Figure 15: Prompt for collecting incorrect solutions from various LLMs.

Please act as an impartial judge and evaluate the quality of the response provided by an Al assistant to
the user question displayed below. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of the response. Begin your evaluation by
providing a short explanation. Be as objective as possible. After providing your explanation, please rate
the response on a scale of 1 to 10 by strictly following this format: "[[rating]]", for example: "Rating:
[[511". Let's think step by step.

[Question]
{problem}

[The Start of Assistant’s Answer]|
Solution:

{eval_solution}

[The End of Assistant’s Answer]

Figure 16: The default prompt for direct assessment.

32

Under review as a conference paper at ICLR 2025

Please act as an impartial judge and evaluate the quality of the responses provided by two Al assistants
to the user question displayed below. You should choose the assistant that follows the user's instructions
and answers the user's question better. Your evaluation should consider factors such as the helpfulness,
relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by
comparing the two responses and provide a short explanation. Avoid any position biases and ensure that
the order in which the responses were presented does not influence your decision. Do not allow the
length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as
objective as possible. After providing your explanation, output your final verdict by strictly following
this format: "Judgement: [[A]]" if assistant A is better, "Judgement: [[B]]" if assistant B is better.

[User Question]
{problem}

[The Start of Assistant A's Answer]
{eval_solution_A}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{eval_solution_B}
[The End of Assistant B's Answer]

Figure 17: The default prompt for pairwise comparison.

You are a fair judge assistant tasked with providing clear, objective feedback based on specific criteria,
ensuring each assessment reflects the absolute standards set for performance.

###Task Description:

An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a
evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not
evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score
rubric.

3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer
number between 1 and 5)"

4. Please do not generate any other opening, closing, and explanations.

###The instruction to evaluate:
{problem}

###Response to evaluate:
{eval_solution}

###Score Rubric:

[Does the model demonstrate logical and effective reasoning in its responses?]

Score 1: The model's responses show a complete lack of logical reasoning, often resulting in irrelevant or
nonsensical answers.

Score 2: The model occasionally shows signs of logical reasoning but generally struggles to provide coherent or
relevant responses.

Score 3: The model usually demonstrates basic reasoning capabilities, though it may not consistently apply
logical principles or fully resolve complex issues.

Score 4: The model frequently exhibits strong reasoning skills, effectively addressing complex questions with
minor inconsistencies or errors.

Score 5: The model consistently demonstrates advanced reasoning abilities, providing logically sound,
coherent, and sophisticated responses to complex queries.

###Feedback:

Figure 18: Prompt for direct assessment using prometheus models.

33

Under review as a conference paper at ICLR 2025

You are a fair judge assistant assigned to deliver insightful feedback that compares individual performances,
highlighting how each stands relative to others within the same cohort.

###Task Description:

An instruction (might include an Input inside it), a response to evaluate, and a score rubric representing a
evaluation criteria are given.

1. Write a detailed feedback that assess the quality of two responses strictly based on the given score rubric,
not evaluating in general.

2. After writing a feedback, choose a better response between Response A and Response B. You should refer
to the score rubric.

3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (A or B)"
4. Please do not generate any other opening, closing, and explanations.

###Instruction:
{problem}

###Response A:
{eval_solution_A}

###Response B:
{eval_solution_B}

###Score Rubric:
Does the model demonstrate logical and effective reasoning in its responses?

###Feedback:

Figure 19: Prompt for pairwise comparison using prometheus models.

34

	Introduction
	Preliminaries
	Reward Model
	Policy Optimization Method
	The Robustness of Reward Model

	Designing a Reliable Benchmark
	On the road to the Evaluation of Robustness of Reward Model
	RewardMATH Dataset
	RewardMATH Scoring

	Evaluation on RewardBench and RewardMATH
	Experimental Setup
	Evaluation Results

	The Future Direction for a Reliable Benchmark
	Reliability of Benchmark
	Through the Lens of Reward Overoptimization
	Experimental Setup
	Results

	Discussion on Developing Effective RLHF Systems

	Related Work
	Conclusion
	Limitation and Future Direction
	Limitation and Considerations for Future Work
	Future Direction for Expansion to Other Domains

	Experimental Details
	Data Construction of RewardMATH
	Baseline Models
	Details of Reward Model Evaluation
	Experiments on Reward Overoptimization

	In-depth Analysis
	Diversity of RewardMATH dataset
	Distribution of Rewards.
	Do LLMs have a Self-Enhancement Bias in Mathematical Reasoning Task?
	Analysis of Aggregation Functions
	Correlation between Benchmark Performance and the Result of BoN Sampling
	Correlation between Benchmark Performance and the Result of Policy Fine-tuning
	Experiments on Reward Overoptimization

	Prompts

