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ABSTRACT

In class-incremental learning (CIL), effective incremental learning strategies are
essential to mitigate task confusion and catastrophic forgetting, especially as the
number of tasks t increases. Current exemplar replay strategies impose O(t)
memory/compute complexities. We propose an autoencoder-based hybrid replay
(AHR) strategy that leverages our new hybrid autoencoder (HAE) to function as
a compressor to alleviate the requirement for large memory, achieving O(0.1t)
at the worst case with the computing complexity of O(t) while accomplishing
state-of-the-art performance. The decoder later recovers the exemplar data stored
in the latent space, rather than in raw format. Additionally, HAE is designed for
both discriminative and generative modeling, enabling classification and replay
capabilities, respectively. HAE adopts the charged particle system energy mini-
mization equations and repulsive force algorithm for the incremental embedding
and distribution of new class centroids in its latent space. Our results demonstrate
that AHR consistently outperforms recent baselines across multiple benchmarks
while operating with the same memory/compute budgets.

1 INTRODUCTION

Incremental learning addresses the challenge of learning from an upcoming stream of data with
a changing distribution (Parisi et al., 2019; De Lange et al., 2021; Hadsell et al., 2020). To study
incremental learning, two common scenarios are often considered: task-incremental learning (TIL)
and class-incremental learning (CIL). CIL at the test phase requires jointly discriminating among all
classes seen in all previous tasks without knowing task-IDs. Given task-IDs to the model during the
test phase, CIL reduces to TIL (Ven & Tolias, 2019). The issue with CIL is that it not only suffers
from catastrophic forgetting (CF) but also task confusion (TC), which happens when the model
struggles to distinguish among different tasks observed so far while still being able to identify classes
within a given task (Rebuffi et al., 2017; Belouadah et al., 2021; Masana et al., 2020; Cormerais et al.,
2021).

Table 1: Hybrid replay strategy versus baseline strategies.

CIL Strategies Memory Compute Performance
Generative Replay O(cte) O(t) non-SOTA

Generative Classifier O(t) O(cte) non-SOTA
Exemplar Replay O(t) O(t) SOTA

Hybrid Replay (ours) O(0.1t) O(t) SOTA

Various strategies have been proposed
for incremental learning such as reg-
ularization (Kirkpatrick et al., 2017;
Zenke et al., 2017; Li & Hoiem,
2017b), bias-correction (Zeno et al.,
2021), replay (Shin et al., 2017; Ven
et al., 2020), and generative classifier
(Ven et al., 2021; Pang et al., 2005; Zając et al., 2023). However, in the context of CIL, only the
latter two strategies have been proven effective in overcoming TC: replay and generative classifier
(Masana et al., 2020; Cormerais et al., 2021; Ven et al., 2021). Nevertheless, current realizations of
the generative classifier strategy (Ven et al., 2021; Pang et al., 2005; Zając et al., 2023) demand an
expanding architecture, leading to a linear increase of memory O(t) with respect to the number of
learned tasks t. Furthermore, such expanding architectures fail to consolidate features of different
tasks within a single model.

To develop a scalable incremental learning algorithm suitable for CIL, we capitalize on replay
strategies (Shin et al., 2017; Ven et al., 2020). However, the current exemplar replay strategies
(Rebuffi et al., 2017) are not scalable due to their reliance on large memory sizes. Specifically, the
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memory requirements for exemplar replay increase linearly with the number of tasks, resulting in
O(t) memory complexity (Hou et al., 2019; Wu et al., 2019; Hayes et al., 2020a).

Figure 1: (a) Usage of RFA for the latent
space. (b) Adoption of Euclidean distance
during test. (c) HAE for compression and
decompression of the dataset for replay.

To address this issue, generative replay strategies (Shin
et al., 2017; Ven et al., 2020), instead of storing the
exact data samples of the previous tasks, train a gen-
erative model to generate the pseudo-data pertaining
to the previous tasks for replay to the discriminative
model, achieving O(cte) memory complexity. Since
the quality of the generated pseudo-data is not satisfac-
tory, these strategies also undergo significant CF unless
a very cumbersome generative model is trained which
is inefficient. Consequently, generative replay diverts
the problem of training a discriminative model incre-
mentally to training a generative model incrementally
which can be equally, if not more, challenging. (Ven
et al., 2020).

The complexity of O(t) for either memory or compute
is indispensable. Because in principle every time an
IL strategy learns task t, there have to be mechanisms
at play to watch for t− 1 conditions imposed by prior
tasks on the weights of the neural networks lest those
knowledge are overwritten. That requires either O(t)
memory or O(t) compute complexity. In Table 1, ei-
ther case can be seen: while generative replay achieves
O(cte) for memory, it nevertheless needsO(t) for com-
putation. Conversely, the generative classifier is exactly
the opposite: it achieves O(cte) for computation but
requires O(t) for memory to accommodate the new
tasks. Neither of these strategies is optimal. The perfor-
mant strategy is exemplar replay which requires O(t)
for both memory and compute.

We demonstrate that it is feasible to combine the strengths of both the exemplar (Rebuffi et al., 2017)
and generative replay (Shin et al., 2017; Ven et al., 2020) in a hybrid replay strategy and consistently
achieve state-of-the-art (SOTA) performance while significantly reducing the memory footprint of
the exemplar replay strategy from O(t) to O(0.1t) at the worst case, using a new hybrid autoencoder
based on hybrid replay. Our main contributions are as follows:

• We propose a novel autoencoder named hybrid autoencoder (HAE): the term hybrid au-
toencoder’ indicates that HAE is capable of both discriminative and generative modeling
(Goodfellow et al., 2016), for classification and replay, respectively. Furthermore, HAE
employs the charged particle system energy minimization (CPSEM) equations and repulsive
force algorithm (RFA) (Nazmitdinov et al., 2017) for the incremental embedding and distri-
bution of new classes in its latent space. HAE uses RFA (Nazmitdinov et al., 2017) in its
latent space to repel samples of different classes away from each other such that in the test
phase the Euclidean distance can be used to measure the distance of a sample from centroids
of different classes in the latent space to know to which class the test sample belongs to (see
Figs. 1(a) and 1(b)).

• We propose a new strategy called autoencoder-based hybrid replay (AHR): the term hybrid
replay’ refers to the fact that AHR utilizes a combination of exemplar replay and generative
replay. Specifically, AHR does not store the exemplars in the input space like exemplar
replay which would require a large memory O(t); it rather stores the data samples in the
latent space after they are encoded O(0.1t). Hence, AHR has characteristics that leverage
the advantages of both exemplar and generative replay. AHR can decode data samples
when they are needed for replay with negligible loss of fidelity because the decoder has
been designed to memorize the training data as opposed to being designed to generalize
and produce novel data samples. Fig. 1(c) shows how the data generation for replay is
performed. As a result, AHR does not suffer from hazy pseudo-data during replay like
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other generative replay strategies but has access to the original data. Table 1 contrasts the
memory/compute complexities of ours and three baseline strategies. A detailed description
of how we derived Table 1, along with relevant discussions, can be found in Appendix A.

• We provide comprehensive experiments to demonstrate the strong performance of AHR:
we conduct our experiments across five benchmarks and ten baselines to showcase the
effectiveness of AHR utilizing HAE and RFA while operating with the same memory and
compute budgets.

We present our new strategy AHR in the following section. In Section 3, we contextualize AHR in the
incremental learning literature. Section 4 details our evaluation methodology, including the baselines
and benchmarks used, as well as the results of our experiments. Finally, Section 5 concludes this
paper and provides future works for CIL.

2 OUR STRATEGY: AUTOENCODER-BASED HYBRID REPLAY (AHR)

Figure 2: Task-based and task-free.

In this section, we present our strategy AHR in a task-based
CIL system model for simplicity and comparability with most
of the works in the literature (Parisi et al., 2019; De Lange et al.,
2021; Ven & Tolias, 2019; Masana et al., 2020; Zając et al.,
2023). Nevertheless, our approach AHR is not restricted to
the task-based CIL setting and can operate within the task-free
setting as well (see Fig. 2) (Ven et al., 2021; Aljundi et al.,
2019b). According to the task-based CIL system model, AHR visits a series of distinct non-repeating

tasks T1, T2, . . . , TI . During each task Ti, a dataset Di := {(xj,k
i , yj,ki )}Ji,K

j
i

j,k=1 is presented where i,
j, and k index task, class, and sample, bounded by I , Ji, and Kj

i . In the test phase, AHR must decide
to which class a given input xj,k

i belongs among all possible classes
⋃I

i=1 Ji. Task-ID i is not given
during the test phase of CIL, indicating that AHR has to distinguish not only between classes that
have been seen together in a given task but also between different tasks visited at different times.

HAE. AHR utilizes HAE consisting of an encoder and a decoder that can be formulated as follows:
the encoder function ϕ(xj,k

i ) : Rn → Rm maps the input data xj,k
i ∈ Rn to the low-dimensional

latent representation zj,ki ∈ Rm. The decoder function ψ(zj,ki ) : Rm → Rn reconstructs the input
data from the latent representation. Note that AHR intentionally refuses to use the most popular
autoencoders, Variational Autoencoders (VAE) (Kingma & Welling, 2013), since the goal here is not
generalization or generating new images. Indeed, the goal of AHR is precisely the opposite: to have
the decoder deterministically memorize pairs of (zj,ki ,xj,k

i ). Compared to traditional autoencoders,
HAE not only minimizes the reconstruction error between the input and the reconstructed data
Lx(x, x̂) but also ensures that samples from the same class are clustered closely together in the
latent space Lz(z,p):

L(x, x̂, z) = Lx(x, x̂) + λLz(z,p) =

I∑
i=1

Ji∑
j=1

Kj
i∑

k=1

||xj,k
i − x̂

j,k
i ||

2 + λ∥zj,ki − p
j
i ||

2 (1)

where || · ||2 denotes the L2 norm, pji is the ith task and jth class centroid embedding (CCE), and
λ is a hyperparameter. While the given loss function helps in clustering samples of the same class
together, another crucial aspect is separating different classes. This separation, and in general, the
incremental placement of CCEs in the latent space is addressed through CPSEM equations and RFA,
where pji ’s are akin to charged particles.

To model the energy dynamics within our system akin to charged particles, AHR employs the
formulation based on Coulomb interaction energy. Consider a fixed set of I ×

∑
i Ji particles

representing CCEs, with charges qji at positions pji . The potential energy of this system is given by

U =

I,Ji∑
i,j=1

(qji )
2

2

∑
i′,j′ ̸=i,j

1

∥pj′i′ − p
j
i∥

. (2)

Each particle also possesses kinetic energy Kj
i = 1

2m
j
i∥v

j
i ∥2, where mj

i and vji represent the mass
and speed of particle ij (CCE of task i and class j), respectively. In our optimization framework,
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AHR aims to minimize the total energy E = U + K, where K =
∑I,Ji

k=i,j
1
2m

j
i∥v

j
i ∥2. This can be

achieved through the calculus of variations, leveraging the Lagrangian:

L = K − U =

I,Ji∑
k=i,j

1

2
mj

i∥v
j
i ∥

2 −
I,Ji∑
k=i,j

(qji )
2

2

∑
i′,j′ ̸=i,j

1

∥pj′i′ − p
j
i∥

. (3)

Algorithm 1: AUTOENCODER-BASED HYBRID REPLAY
Input: Tasks {T1, T2, . . . , TI} with {D1, D2, . . . , DI},
HAE model {ϕ(w0),ψ(v0)}, memoryM0

Output: {ϕ(w∗
I ), ψ(v

∗
I )}, {M∗

i }Ii=1, CCEs {P∗
i }Ii=1

for tasks i = 1, . . . , I do:
Pi = CCE_PLACEMENT(ϕ(wi−1), ψ(vi−1), Di,

{Pi′}i−1
i′=1) via RFA in Algorithm 2 solving Eq. 4

ϕ(wi), ψ(vi) = HAE_TRAIN(ϕ(wi−1), ψ(vi−1),
Di, {Mi′}i−1

i′=1), {Pi′}ii′=1) via Algorithm 3
Mi = MEMORY_POPULATION(ϕ(wi), ψ(vi), ϕ(wi−1),
ψ(vi−1), Di, {Mi′}i−1

i′=1), {Pi′}ii′=1)) via Algorithm 4
Delete ϕ(wi−1), ψ(vi−1)

end for

Algorithm 2: CCE_PLACEMENT
Input: {P1,P2, . . . ,Pℓ−1}, Repulsive Constant ζ,
Particle Mass m, Time Step ∆t, Simulation Duration τ
Output: Pℓ

Pt=0
ℓ = ϕ(wℓ−1, Di) // initialize Pℓ

for time step t = 1, . . . , τ do:
for classes j = 1, . . . , Jℓ do:

for tasks i = 1, . . . , ℓ do:
for classes j′ = 1, . . . , Jℓ do:

if i, j′ ̸= ℓ, j then:
Compute displacement vector djj′

ℓi′ = pj
ℓ − p

j′

i′

Compute repulsive force f jj′

ℓi′ = ζ

|djj′
ℓi′ |

2
·

d
jj′
ℓi′

|djj′
ℓi′ |

Accumulate repulsive force: F j
ℓ = F j

ℓ + f jj′

ℓi′

end for
end for

Update CCE velocity: vj
ℓ = vj

ℓ +
F

j
ℓ

m
·∆t

Update CCE position: pj
ℓ = pj

ℓ + v
j
ℓ ·∆t

end for
end for

Algorithm 3: HAE_TRAIN

Input: ϕ(wℓ−1), ψ(vℓ−1), Dℓ, {Pi}ℓi=1, {Mi}ℓ−1
i=1

Output: ϕ(w∗
ℓ ), ψ(v

∗
ℓ )

D ← Dℓ ∪ ψ(vℓ−1,Mℓ−1)
Copy ϕ(wℓ−1), ψ(vℓ−1) as ϕ(wℓ), ψ(vℓ)
for epochs e = 1, . . . , E do:

for minibatch b = 1, . . . , B do:
minimize the HAE losses in Eq. 1 and Distillation losses

L(D,ψ(vℓ,ϕ(wℓ, D)),ϕ(wℓ, D))+

∥ϕ(wℓ−1, D)− ϕ(wℓ, D)∥+
∥ψ(vℓ−1,ϕ(wℓ−1, D))−ψ(vℓ,ϕ(wℓ, D))∥

with an arbitrary optimizer to obtain ϕ(w∗
ℓ ), ψ(v

∗
ℓ )

end for
end for

The equations of motion for the parti-
cles, derived via the Euler-Lagrange
equation

d

dt

(
∂L
∂vji

)
=

∂L
∂pji

(4)

enable us to determine the optimal
positions of the particles, effectively
minimizing the total energy of our sys-
tem. The above equation helps HAE
to efficiently distribute CCEs within
the latent space.

AHR. Algorithm 1 outlines the
steps of the AHR strategy in the
context of task-based CIL: When-
ever a new task Tℓ arrives AHR
invokes three main routines of
CCE_PLACEMENT, HAE_TRAIN,
and MEMORY_POPULATION: (i) in
CCE_PLACEMENT, AHR determines
the positions of the new CCEs for Dℓ

and returns Pℓ = {pjℓ}
Jℓ
j=1 based on

RFA outlined in Algorithm 2 solving
Eq. 4 where ℓ denotes the latest ar-
rived task (throughout this paper, we
use the notation ℓ referring to the lat-
est task index whereas i might refer
to any task). Note the distinction that,
unlike the centriods in iCaRL (Rebuffi
et al., 2017), CCEs in AHR do not
change over the course of learning.

(ii) After the placement of the CCEs
Pℓ = {pjℓ}

Jℓ
j=1, HAE_TRAIN is in-

voked by AHR (outlined in Algo-
rithm 3) where the model {ϕ(wℓ−1),
ψ(vℓ−1)} is copied as {ϕ(wℓ),
ψ(vℓ)}. While {ϕ(wℓ−1),ψ(vℓ−1)}
is kept frozen, {ϕ(wℓ), ψ(vℓ)} is
trained on the combined training
set featuring the new tasks and the
decoded exemplars D ← Dℓ ∪
ψ(vℓ−1, {Mi}ℓ−1

i=1) for E number of
epochs with the loss function in Eq.
1 and a distillation loss (serving as a
data regularization strategy) to obtain
{ϕ(wℓ), ψ(vℓ)}, where the memory

Mℓ−1 = {ej,kℓ−1}
Jℓ−1,K

j
ℓ−1

j,k=1 stores the
exemplars of task ℓ − 1 and ej,kℓ−1 contains exemplar (ℓ − 1)jk coupled with its label. In AHR,
the memoryMℓ−1 stores embedded vectors in the latent space, not raw data samples. In practice,

4
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for each iteration of the SGD, besides 1/ℓ fraction of the minibatch size that is provided by the
new task Tℓ, (ℓ − 1)/ℓ fraction of minibatch size is selected and instantly decoded from memory
ψ(vℓ−1, {Mi}ℓ−1

i=1) in a statistically representative fashion with respect to the previous tasks/classes
for training. These vectors require significantly less memory O(0.1× t) than raw data and can be
decoded at any time by ψ(vℓ−1, {Mi}ℓ−1

i=1).

Algorithm 4: MEMORY_POPULATION

Input: ϕ(wℓ), ψ(vℓ), ϕ(wℓ−1), ψ(vℓ−1), Dℓ, {Pi}ℓi=1,
{Mi}ℓ−1

i=1

Output: {Mi}ℓi=1

ε =M/(ℓ×
∑ℓ

j=1 Jj) // memory size / # of classes so far
D ← Dℓ ∪ ψ(vℓ−1, {Mi}ℓ−1

i=1 )
Calculate the losses Lz(ϕ(wℓ, D), {Pi}ℓi=1) as in Eq. 1
for tasks i = 1, . . . , ℓ do:

for classes j = 1, . . . , Jℓ do:
for samples k = 1, . . . , ε do:

Store RANK(Lz(ϕ(wi, D), {Pi}ℓi=1))
j,k
i as ej,ki

end for
end for

end for

(iii) AHR populates its memoryMℓ

via MEMORY_POPULATION in Algo-
rithm 4 based on Herding as in (Re-
buffi et al., 2017). Currently, there
are two competitive approaches for
sampling of exemplars in the liter-
ature (Masana et al., 2020), Herd-
ing and Naive Random, where the
Herding approach on average demon-
strates a slight improvement over
Naive Random sampling when ap-
plied to longer sequences of tasks
(Masana et al., 2020). AHR, in
Algorithm 4, computes the losses
Lz(ϕ(wℓ, D), {Pi}ℓi=1) and ranks
them ascendingly via RANK and then selects ε number of classes for both the new task ℓ and
previous ones.

Finally, at the test stage, it is determined to which task-class ij a given data sample x belongs via
computing the Euclidean distance as follows: argmini,j ∥ϕ(w∗

I ,x)− p
j
i∥. It is clear that in CIL,

not only must the classes within a given task be discriminated, but the different tasks themselves must
also be distinguished, which is why TC takes place on top of CF.

3 LITERATURE REVIEW AND CONTEXTUALIZATION OF AHR

Task-based or task-free. Incremental learning literature features various learning scenarios that
present their own unique challenges, and accordingly, diverse strategies have been developed (Parisi
et al., 2019; De Lange et al., 2021). In the first place, there are two learning scenarios of task-based
(Ven & Tolias, 2019; Masana et al., 2020) and task-free (Ven et al., 2021; Aljundi et al., 2019b).
In task-based, the model receives the data in the form of tasks: The task-based scenario is divided
into two popular scenarios: task-incremental learning (TIL) and class-incremental learning (CIL).
Whereas in TIL the model receives the task-IDs during both training and inference, in CIL the
task-IDs are not given during inference and the model must infer them. The task-free scenario,
meanwhile, totally abandons the notion of tasks altogether (Ven et al., 2021; Aljundi et al., 2019b).
AHR makes no prohibitive assumptions and can operate in all the above scenarios. Nevertheless, for
comparability with the majority of works in IL, this paper examines the performance of AHR in the
CIL setting.

Offline or online. Incremental learning can be either offline (Masana et al., 2020) or online (Zając
et al., 2023), where in the offline learning scenario, the data of each task can be fed to the model
multiple times before moving on to the next task. Conversely, in the online scenario, the model visits
the data only once as they arrive and cannot iterate on them. In the literature, there are more works
on the offline scenario (Parisi et al., 2019; De Lange et al., 2021; Masana et al., 2020). Therefore,
this paper examines the performance of AHR in the offline scenario.

Challenges and strategies. CIL faces many challenges such as CF, weight drift, activation drift,
task-recency bias, and TC (Masana et al., 2020; Cormerais et al., 2021). To tackle the weight drift
and activation drift challenges of CIL (Kao et al., 2020), the most popular category of strategies,
regularization, is often adopted (Zenke et al., 2017). Although regularization is not alone effective in
mitigating the TC challenge of CIL (Ven et al., 2021), it has been proven productive in tandem with
other strategies like exemplar strategies (Rebuffi et al., 2017; Farquhar & Gal, 2018a; Hsu et al., 2018;
Castro et al., 2018; Dhar et al., 2019; Serra et al., 2018). Regularization strategies have two branches:

5
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Weight regularization and data regularization. Weight regularization mitigates weight drift of the
parameters optimized for the previous tasks by assigning an importance coefficient for each parameter
in the network (assuming the independence of weights) after learning each task (Kirkpatrick et al.,
2017; Zenke et al., 2017; Nguyen et al., 2018; Farquhar & Gal, 2018b; Aljundi et al., 2018; Chaudhry
et al., 2018). When learning new tasks, the importance coefficients help in minimizing weight drift.
EWC (Kirkpatrick et al., 2017) and SI (Zenke et al., 2017) are popular weight regularization strategies.
EWC (Kirkpatrick et al., 2017) relies on a diagonal approximation of the Fisher matrix to weigh the
contributions from different parameters. SI (Zenke et al., 2017) maintains and updates per-parameter
importance measures in an online manner.

Data regularization is the second regularization strategy, aimed at preventing activation drift through
knowledge distillation (Buciluundefined et al., 2006; Hinton et al., 2015), originally designed to
learn a more parameter-efficient student network from a larger teacher network. Differs from weight
regularization which imposes constraints on parameter updates, knowledge distillation focuses on
ensuring consistency in the responses of the new and old models. This distinctive feature provides a
broader solution space which is why distillation has become the dominant strategy used in tandem
with rehearsal strategy (Li & Hoiem, 2017a; Jung et al., 2016; Dhar et al., 2019; Zhang et al., 2020;
Lee et al., 2019). LwF (Li & Hoiem, 2017a), a popular data regularization strategy, uses a distillation
loss to keep predictions consistent with the ones from an old model. Our AHR strategy as discussed
in the previous section incorporates LwF into exemplar replay to overcome activation drift.

Bias-correction. Its aim is to address the challenge of task-recency bias, which refers to the tendency
of incrementally learned networks to be biased towards classes in the most recently learned task
(Belouadah et al., 2021; Li et al., 2020; Wu et al., 2019; Maltoni & Lomonaco, 2019; Lomonaco
& Maltoni, 2017; Zeno et al., 2021; Belouadah & Popescu, 2020). Labels trick (LT) (Dhar et al.,
2019) is a rehearsal-free bias-correcting algorithm that prevents negative bias on past tasks. LT
often improves the performance when added on top of other strategies (Wu et al., 2019). However,
because AHR separates representation learning from classification similar to (Rebuffi et al., 2017),
which gives a dose of immunity to task-recency bias. Because AHR samples the tasks/classes for its
minibatch in a statistically representative manner during training inspired by (Castro et al., 2018),
incorporating an explicit bias-correction strategy such as LT proved unnecessary.

Generative classifier. CIL strategies can be categorized into two types: discriminative- and
generative-based classification. Strategies count as discriminative classifiers when eventually a
discriminator performs the classification. However, generative classifiers perform classification only
and directly using generative modeling (Ven et al., 2021; Pang et al., 2005; Zając et al., 2023). Gen-C
(Ven et al., 2021) is a novel rehearsal-free generative classifier strategy; the strategy does energy-based
generative modeling (Li et al., 2020) via VAEs (Kingma & Welling, 2013) and importance sampling
(Burda et al., 2016). SLDA (Hayes & Kanan, 2020) (popular in data mining (Kim et al., 2011; Pang
et al., 2005)) is thought to be another form of generative classifier (Ven et al., 2021); however, it
prevents representation learning.

Exemplar replay. The most popular exemplar replay strategy, iCaRL (Rebuffi et al., 2017), fuses
exemplar replay and LwF (Li & Hoiem, 2017a). To mitigate the task-recency bias, iCaRL separates
the classifier from the representation learning (implicit bias-correction). At inference, iCaRL classifies
via the closest centroid. EEIL (Castro et al., 2018) introduces balanced training, where at the
end of each training session an equal number of exemplars from all classes is used for a limited
number of iterations. Similar to iCaRL, EEIL incorporates data regularization (distillation loss)
into exemplar replay. As discussed in the previous section, our strategy, AHR, also separates the
representation learning and classification. Furthermore, AHR employs balanced training (from EEIL)
and distillation loss via LwF (similar to iCaRL).

MIR (Aljundi et al., 2019a) trains on the exemplar memory by selecting exemplars that have a larger
loss increase after each training step. GD (Lee et al., 2019) utilizes external data to distill knowledge
from previous tasks. BiC (Wu et al., 2019) learns to rectify the bias in predictions by adding an
additional layer while IL2M (Belouadah & Popescu, 2019) introduces saved certainty statistics
for predictions of classes from previous tasks (explicit bias-correction). LUCIR (Hou et al., 2019)
replaces the standard softmax layer with a cosine normalization layer. GDumb (Prabhu et al., 2020)
ensures a balanced training set. ER (Chaudhry et al., 2019) analyzes the effectiveness of episodic
memory.
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Generative replay (pseudo-rehearsal). This strategy generates synthetic examples of previous tasks
via a generative model trained on previous tasks. DGR (Shin et al., 2017) generates synthetic samples
via an unconditional GAN where an auxiliary classifier classifies synthetic samples. MeRGAN (Wu
et al., 2018) improves DGR via a label-conditional GAN and replay alignment. DGM (Ostapenko
et al., 2019) combines the advantages of conditional GANs and synaptic plasticity using neural
masking leveraging dynamic network expansion mechanism to increase model capacity. Lifelong
GAN (Zhai et al., 2019) extends image generation without CF from label-conditional to image-
conditional GANs. Other strategies perform feature replay (Ven et al., 2020; Xiang et al., 2019;
Kemker & Kanan, 2017) which needs a fixed backbone network to provide good representations.

Hybrid replay (AHR). Technically, our AHR strategy lies somewhere between exemplar replay and
generative replay: AHR differs from exemplar replay in that it stores the samples in the latent space.
AHR also differs from generative replay in that it does not rely on synthetic data or pseudo-data;
instead, it relies on the memorization of the original data. By encoding and decoding the exemplars
into and out of the latent space, AHR mitigates the memory complexity of current exemplar replay
strategies significantly and can be readily applied to the exemplar replay strategies. In the literature,
hybrid replay has been studied in several works (Zhou et al., 2022): Tong et al. (2022) utilizes a
closed-loop encoding-decoding framework that stores only the means and covariances of features
rather than the individual features themselves. The authors organize the latent space using a Linear
Discriminative Representation, which partitions the latent space into a series of linear subspaces,
each corresponding to a distinct class of objects. Hayes et al. (2020b); Wang et al. (2021) do not
store raw exemplars but instead using compressed exemplars derived from mid-level CNN features (a
strategy that is increasingly recognized as a promising direction in incremental learning research). In
(Hayes et al., 2020b; Wang et al., 2021), classification occurs after the decoding process, employing
a cross-entropy loss function. In contrast, our method performs classification directly within the
latent space of the encoder, similar to (Tong et al., 2022). Pellegrini et al. (2020) stores ‘activations
volumes’ of intermediate layers rather than raw data.

4 EXPERIMENTAL RESULTS

Baselines. We consider five categories of baselines: vanilla strategies, generative classifier, generative
replay, exemplar replay, and hybrid replay. Vanilla strategies include the naive strategies that serve as
the lower or upper bound: Fine-Tuning (FT) does simple fine-tuning whenever a new task arrives,
FT-E incorporates exemplar replay into fine-tuning, and Joint trains on all tasks seen so far (Masana
et al., 2020). For generative classifiers, we include SLDA (Hayes & Kanan, 2020), Gen-C (Ven
et al., 2021), and PEC (Zając et al., 2023). For generative replay, DGR (Shin et al., 2017), MeRGAN
(Wu et al., 2018), and BI-R-SI (Ven et al., 2020) are considered. For exemplar replay, the most
strong baseline strategy, we include GD (Lee et al., 2019), GDumb (Prabhu et al., 2020), iCaRL
(Rebuffi et al., 2017), EEIL (Castro et al., 2018), BiC (Wu et al., 2019), LUCIR (Hou et al., 2019),
and IL2M (Belouadah & Popescu, 2019). Finally, for hybrid replay, we include i-CTRL (Tong
et al., 2022), REMIND (Hayes et al., 2020b), and REMIND+ (Wang et al., 2021). Note that since
regularization and bias-correction strategies have been often applied to the aforementioned strategies
supplementarily (and they are not performant for CIL on their own), we do not provide results for
them independently.

Benchmarks. The series of tasks for CIL are constructed according to (Masana et al., 2020; Ven
et al., 2021; Zając et al., 2023), where the popular image classification datasets are split up such
that each task presents data pertaining to a subset of classes, in a non-overlapping manner. For
naming benchmarks, we follow (Masana et al., 2020), where dataset D is divided into T tasks with C
classes for each task. Hence, a benchmark is named as D(T/C). Accordingly, we have MNIST(5/2)
(LeCun et al., 2010), Balanced SVHN(5/2) (Netzer et al., 2011), CIFAR-10(5/2) (Krizhevsky et al.,
2009), CIFAR-100(10/10) (Krizhevsky et al., 2009), and miniImageNet(20/5) (Vinyals et al., 2016)
benchmarks. Metrics. Performance is evaluated by the final test accuracy after training on the series
of all tasks.

Network architectures. For MNIST benchmark, as in (Ven et al., 2021), a dense network with 2
hidden layers of 400 ReLU units was used. We utilized its mirror for the decoder. For larger datasets,
as suggested by Masana et al. (2020); He et al. (2016), ResNet-32 is used. We employed 3 layers of
CNNs for the decoder. Hyperparameters. We adopt Adam (Kingma & Ba, 2014) as the optimizer.
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Table 2: Empirical evaluation of AHR against a suite of CIL baselines. Accuracies and the SEMs.

Benchmarks B
C

R
eg MNIST BalancedSVHN CIFAR-10 CIFAR-100 miniImageNet

Tasks Conf. (5/2) (5/2) (5/2) (10/10) (20/5)
#Total Exemplars 200 200 200 2000 2000

Vanilla Strategies (Lower and Upper Bounds)
FT N N 19.93 ±0.03 19.19 ±0.04 18.72 ±0.30 8.91 ±0.12 4.32 ±0.06

FT-E I N 92.17 ±0.16 87.13 ±0.37 72.17 ±0.84 48.47 ±0.83 39.02 ±0.74

Joint N N 98.48 ±0.06 95.88 ±0.04 92.37 ±0.09 73.87 ±0.10 73.45 ±0.15

Generative Classifier Strategies (Dynamically Expanding Architectures)
SLDA N N 87.30 ±0.02 42.32 ±0.04 38.34 ±0.04 25.83 ±0.01 19.03 ±0.02

Gen-C N N 89.19 ±0.05 51.92 ±0.59 49.38 ±0.37 29.69 ±0.62 22.57 ±0.40

PEC N N 90.81 ±0.06 55.61 ±0.21 52.41 ±0.33 37.53 ±0.41 28.39 ±0.36

Generative Replay Strategies (Rehearsal of Pseudo-Exemplars)
DGR I N 88.50 ±0.43 28.17 ±1.27 25.43 ±1.72 9.20 ±1.25 6.59 ±1.13

MeRGAN I N 89.83 ±0.37 33.49 ±1.35 27.17 ±1.84 11.39 ±1.23 7.82 ±1.05

BI-R-SI I W - 38.32 ±1.43 37.48 ±1.96 34.37 ±1.20 29.71 ±1.03

Exemplar Replay Strategies (Rehearsal of Exemplars)
GD I D 92.02 ±0.17 89.11 ±0.56 71.13 ±0.72 49.01 ±0.86 38.47 ±0.62

GDumb I D 91.13 ±0.19 88.02 ±0.47 72.79 ±0.50 47.29 ±0.71 39.64 ±0.70

iCaRL I D 93.06 ±0.33 89.63 ±0.61 73.29 ±0.73 49.38 ±0.62 43.51 ±0.68

EEIL E D 93.88 ±0.39 90.75 ±0.53 73.85 ±0.84 51.03 ±0.75 41.09 ±0.54

BiC E D 94.13 ±0.25 91.04 ±0.63 75.01 ±0.93 51.41 ±0.88 44.80 ±0.57

LUCIR I D 92.62 ±0.29 87.01 ±0.44 71.52 ±0.71 47.08 ±0.94 36.95 ±0.79

IL2M E W 94.07 ±0.21 90.64 ±0.57 73.86 ±0.78 50.06 ±0.73 43.64 ±0.59

Hybrid Exemplar-Generative Strategy (Rehearsal of Decoded Exemplars)
i-CTRL I D 94.31 ±0.27 91.07 ±0.40 74.61 ±0.61 51.74 ±0.69 44.78 ±0.68

REMIND I D 93.95 ±0.19 91.38 ±0.64 75.02 ±0.65 50.93 ±0.75 43.92 ±0.71

REMIND+ I D 95.62 ±0.33 92.15 ±0.72 75.49 ±0.70 52.36 ±0.77 45.02 ±0.65

AHR I D 97.53 ±0.32 93.02 ±0.65 77.12 ±0.75 54.43 ±0.93 48.09 ±0.64

AHR Ablation Study (Impact of Compression and RFA)
AHR-lossy-mini 93.35 ±0.32 90.40 ±0.58 73.28 ±0.47 50.29 ±0.90 42.39 ±0.64

AHR-lossless-mini 93.76 ±0.26 90.88 ±0.50 73.68 ±0.41 50.85 ±0.81 42.88 ±0.59

AHR-lossless 98.12 ±0.08 94.21 ±0.23 78.35 ±0.37 56.71 ±0.57 49.70 ±0.32

AHR-contrastive 95.12 ±0.29 91.43 ±0.54 74.87 ±0.47 51.98 ±0.76 44.60 ±0.53

AHR-GMM 92.49 ±0.23 88.70 ±0.50 72.63 ±0.39 49.48 ±0.71 42.52 ±0.48

Exemplar rehearsal. All the strategies always follow the fixed exemplar memory, not growing
exemplar memory, implying that the number of exemplars per class decreases over time to keep the
overall memory size constant (Masana et al., 2020; Rebuffi et al., 2017). The learning rates, batch
sizes, and strategy-dependent hyperparameters are detailed in Appendix B.

Table 2 demonstrates that hybrid approaches on average outperform alternative baselines on all five
benchmarks (for a fixed compute, matched parameter count, and equal memory size for exemplar
replay to ensure fairness in comparisons). Although hybrid approaches are given the same memory
size, they can store more exemplars, depending on the compression rate given in Table 2 for each
benchmark. The performance improvement of hybrid approaches, compared to exemplar rehearsal-
based strategies, can be attributed to exemplar diversity (availability of more exemplars). The
effectiveness of the availability of more exemplars, exemplar diversity, is well-documented in the
literature (Masana et al., 2020). Notably, our AHR approach outperforms other hybrid replay methods.
This superior performance is due to AHR’s more effective embedding in the latent space using RFA,
in contrast to i-CTRL, which relies on Linear Discriminative Representation. Additionally, AHR’s
architecture offers an advantage by classifying directly in the latent space, whereas REMIND and
REMIND+ perform classification only after the decoding process.

Ablating the impact of lossy compression. As shown in Table 2, in the AHR-lossy-mini and
AHR-lossless-mini settings, AHR is given as many exemplars as other exemplar rehearsal-based
baselines, with imperfect and perfect quality. In the AHR-lossless setting, AHR is given as many
exemplars as AHR, but with perfect quality. The aim of these three settings is to investigate how
much compression by the encoder, and therefore the opportunity to store more examples benefit AHR.
In the AHR-lossy-mini and AHR-lossless-mini settings, AHR performs on par with other exemplar

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Images produced by the decoder at different tasks (for the decoder size of 1.8M).

rehearsal-based strategies. Interestingly, the performance loss in these settings is significantly greater
than the performance gain in the AHR-lossless setting. This observation supports two key findings:
(a) more exemplars, even decoded exemplars, significantly enhance performance (Masana et al.,
2020); and (b) for mitigating CF, decoded exemplars are nearly as effective as perfect exemplars (Ven
et al., 2020). Fig. 3 shows both the original and decoded images at different tasks (miniImageNet).

Ablating the approaches for structuring the latent space. Hybrid approaches such as REMIND
and REMIND+ do not impose any explicit structure on the latent space. As a result, our discussion
here will not cover these methods, focusing instead on techniques that structure the latent space.
Among these, i-CTRL employs Linear Discriminative Representation, whereas AHR utilizes RFA.
The comparative analysis presented in the latter rows of Table 2 also considers alternative structuring
methods, such as contrastive loss (Cha et al., 2021) and the Gaussian Mixture Model (Ven et al.,
2020). Our findings, as detailed in Table 2, indicate that RFA outperforms these alternatives. This
is because RFA systematically embeds the class centroids of new classes into the latent space with
minimal amount of shift from their natural position and minimum changes to the weights of the
neural network achieved by CPSEM. This level of systematic embedding, necessary for ensuring the
structuredness of the latent space, is not possible in alternative approaches.

Bias-correction and regularization. Table 2 also outlines the bias-correction and regularization
methods used by different strategies. For bias-correction, “N,” “I,” and “E” represent none, implicit,
and explicit, respectively. Implicit bias-correction, as seen in (Castro et al., 2018), relies on data
equalization without directly manipulating the weights, whereas explicit correction, as in (Belouadah
& Popescu, 2019), involves direct weight adjustment. For regularization, “N,” “D,” and “W” denote
none, data regularization, and weight regularization, respectively. Most exemplar rehearsal-based
baselines, along with our AHR strategy, use implicit bias-correction via data equalization and data
distillation for regularization.

1 2 4 8 16 32 64 128 256
Number of Exemplars

30

40

50

60

70

Ac
cu
ra
cy

The Impact of Decoder Size (CIFAR-100)

AHR-up
AHR-1.4
AHR-1.2

AHR-1
AHR-0.8
AHR-0.6

1 2 4 8 16 32 64 128 256
Number of Exemplars

20

30

40

50

60

The Impact of Decoder Size (miniImageNet)

AHR-up
AHR-1.8
AHR-1.6

AHR-1.4
AHR-1.2
AHR-1

Figure 4: Performances for various decoder/memory sizes.

Resource-consumption. Fig. 5
assesses the performances for
three benchmarks: CIFAR-10(5/2),
CIFAR-100(10/10), and miniIm-
ageNet(20/5). It explores the
relationships between (i) exemplar
memory size and performance, (ii)
exemplar memory size and compute
time (epochs) for a target perfor-
mance, and (iii) performance for a
range of allocated compute times
(wall-clock time), presented in the first, second, and third rows, respectively. In the first row, we
observe that for small exemplar memory sizes, the performance gap between AHR and the baselines
is more significant compared to larger memory sizes across all benchmarks. In the second row,
AHR proves to be the least resource-consuming in terms of exemplar memory size and compute
(epochs) needed to meet a target performance. In the third row, the performance is reported for
various allocated wall-clock times.

Decoder impact. Fig. 4 examines decoder sizes of [0.6, 0.8, 1, 1.2, 1.4] and [1, 1.2, 1.4, 1.6, 1.8]
million parameters for CIFAR-100(10/10) and miniImageNet(20/5) benchmarks, respectively. It
is surprising how much memory can be saved—and, conversely, how much performance can be
improved—with a relatively simple decoder consisting of just three layers of CNNs, which incurs
minimal memory and compute overhead. Table 3 shows that the memory requirement of the decoder
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Table 3: Performances for fixed memory (both the decoder and exemplars) and compute budgets.

Strategies Benchmarks # Exemplars Memory # Epochs Wall-Clock Time Performance
Decoder Exemplar

AHR CIFAR-100(10/10) 150 (latent) 1.4M 4.6M 50 462min 54.43 ±0.93

miniImageNet(20/5) 190 (latent) 1.8M 40.54M 70 842min 48.09 ±0.64

BiC CIFAR-100(10/10) 20 (raw) - 6M 60 473min 52.12 ±0.91

miniImageNet(20/5) 20 (raw) - 42.34M 80 837min 45.23 ±0.62

IL2M CIFAR-100(10/10) 20 (raw) - 6M 60 455min 50.81 ±0.74

miniImageNet(20/5) 20 (raw) - 42.34M 80 861min 44.67 ±0.63

EEIL CIFAR-100(10/10) 20 (raw) - 6M 60 478min 51.70 ±0.79

miniImageNet(20/5) 20 (raw) - 42.34M 80 859min 41.83 ±0.55
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Figure 5: The impact of the memory size (first row). The required resources to achieve a target
performance (second row). The achieved performance for a given compute time (third row).

is negligible compared to storing raw exemplars, and that the encoder-decoder architecture of AHR
makes it possible to store one order of magnitude more exemplars in the latent space. Overall, Table
3 demonstrates that AHR delivers superior results with the same memory/compute footprints.

5 CONCLUSION

Exemplar replay strategies rely on storing raw data, which can be highly memory-consuming,
especially since datasets usually require orders of magnitude more memory than models. Meanwhile,
generative replay, training a (generative) model for generating the pseudo-data of past tasks, requires
far less memory but tends to be less effective. We proposed AHR, a hybrid approach that combines
the strengths of both methods, utilizing HAE with RFA for the incremental embedding of new tasks
in the latent space. Instead of storing the raw data in the input space, AHR stores them in the latent
space of HAE. Our experiments demonstrate the effectiveness of AHR.
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A COMPLEXITY ANALYSIS

Generative replay. This strategy (Shin et al., 2017) utilizes a generative model denoted by GEN()
whose size is not growing with respect to the total number of tasks I . GEN() generates data of the
past tasks {1, . . . , Tℓ − 1} to be interleaved with the new task Tℓ to be fed into discriminative model
DIS() as well as GEN() lest they are forgotten. Since neither the size of GEN() nor DIS() is growing
with respect to the total number of tasks I , the memory complexity can be said to be O(cte). The
compute complexity, however, depends on the total amount of data to be fed to both GEN() and DIS()
which is a function of the number of tasks seen so far if they are not to be forgotten. Hence, the
compute complexity is O(t).
Generative classifier. This strategy (Ven et al., 2021) trains a brand new out-of-distribution detector
for each new class c (not task) denoted by OODc(). Hence, the number of the models grows as new
classes arrive indicating that the memory complexity isO(t). Because this strategy trains a brand new
model each time, it does not have to overwrite previous knowledge, and therefore, does not require
replaying of the old data. As a result, the amount of data to be fed into each OODc() whenever each
model is trained does not grow with the number of classes so far because only the data of class c is
fed into OODc(). Hence, the compute complexity is O(cte).
Exemplar replay. This strategy (Rebuffi et al., 2017) uses a memory denoted by MEM that stores
dozens of exemplars per class so that each time a new task arrives a representative minibatch of data
consisting of all previous tasks is fed into the discriminative model denoted by DIS(). In this strategy,
both the memory MEM has to grow in proportion to the number of tasks, and, the amount of data
each time the discriminative model DIS() must consume has to increase in proportion to the number
of tasks seen so far, therefore, memory and compute complexities are O(t).
Hybrid replay (ours). Although learning new tasks requires high-quality data, mitigating forgetting,
as it has been reported (Ven et al., 2020), can be effectively accomplished with tolerably lossy
data. Leveraging that, our hybrid replay strategy, a combination of generative and exemplar replay,
proposes to use an autoencoder consisting of an encoder denoted by ENC() and a decoder denoted by
DEC(). ENC() serves two goals: (i) it maps the input data to the latent space making it possible to use
Euclidean distance for classification, and (ii) it compresses down the input data such that they can be
stored in the memory MEM efficiently. Meanwhile, DEC() decompresses the data in MEM each time
learning a new task. Since ENC() compresses down the input data, 10 times at the very least in our
experiments, the memory complexity becomes O(0.1t), whereas the compute complexity is O(t).
Note that the introduced overhead by adding DEC() is negligible as discussed in the experimental
results section.

B HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We outline the hyperparameters for the 19 CIL strategies including vanilla and joint strategies serving
as the lower and upper bounds for image classification on 5 benchmarks as specified in Table 4.
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Table 4: Number of latent exemplars for each benchmark for our AHR strategy.

Dataset MNIST SVHN CIFAR-10 CIFAR-100 miniImageNet
Tasks Configuration (5/2) (5/2) (5/2) (10/10) (20/5)

# Tasks 5 5 5 10 20
# Classes/Task 2 2 2 10 5

# Classes 10 10 10 100 100
Model Dense ResNet32 ResNet32 ResNet32 ResNet32

Learning Rate 0.001 0.001 0.001 0.001 0.001
Momentum 0.9 0.9 0.9 0.9 0.9
# Epochs 40 50 50 50 70

Minibatch Size 128 128 128 256 256
Input Dimensions 28× 28× 1 32× 32× 3 32× 32× 3 32× 32× 3 84× 84× 3

Input Size 784 3072 3072 3072 21168
Latent Size 20 307 307 307 2117

Compression Ratio ≈ 40 ≈ 10 ≈ 10 ≈ 10 ≈ 10
# Raw Exemplars 200 200 200 2000 2000

# Latent Exemplars 8000 2000 2000 20000 20000
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