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Abstract001

Argument Mining (AM) involves the automatic002
identification of argument structure in natural003
language. Traditional AM methods rely on004
micro-structural features derived from the in-005
ternal properties of individual Argumentative006
Discourse Units (ADUs). However, argument007
structure is shaped by a macro-structure cap-008
turing the functional interdependence among009
ADUs. This macro-structure consists of seg-010
ments, where each segment contains ADUs011
that fulfill specific roles to maintain coher-012
ence within the segment (local coherence) and013
across segments (global coherence). This pa-014
per presents an approach that models macro-015
structure, capturing both local and global co-016
herence to identify argument structures. Exper-017
iments on heterogeneous datasets demonstrate018
superior performance in both in-dataset and019
cross-dataset evaluations. The cross-dataset020
evaluation shows that macro-structure enhances021
transferability to unseen datasets.022

1 Introduction023

Argument Mining (AM), a Natural Language024

Processing (NLP) task, involves identifying and025

analysing argument structures within natural lan-026

guage (Persing and Ng, 2016; Stab and Gurevych,027

2017; Eger et al., 2017; Potash et al., 2016;028

Lawrence and Reed, 2020). It involves argument029

component segmentation (ACS), argument compo-030

nent type classification (ACTC), argument relation031

(AR) identification (ARI), and AR type classifi-032

cation (ARTC) (Peldszus and Stede, 2015a; Eger033

et al., 2017; Lawrence and Reed, 2020). This study034

focuses on ACTC, ARI, and ARTC.035

The identification of argument structures re-036

quires modeling the roles of ADUs and ARs as037

functions of a global structure, governing coherent038

arrangement of these components to fulfill the over-039

arching Discourse Purpose (DP) (Grosz and Sidner,040

1986; Freeman, 2011). The global structure is de-041

composed into local structures, each aligned with a042

specific Discourse Segment Purpose (DSP). These 043

localised structures ensure segment-level coher- 044

ence by organising ADUs and ARs into functional 045

units, much like how words combine into phrases 046

to convey meaning (Grosz and Sidner, 1986). For 047

instance, Figure 1 illustrates four localised struc- 048

tures in a COVID-19 contact tracing argument: (1) 049

the effectiveness of South Korea’s contact tracing, 050

(2) government preparedness, (3) non-app-based 051

tracing, and (4) advancements in testing. In each 052

local structure, the ADUs fulfill the DSP of that 053

segment. For example, the ADUs in segment (3) 054

address the DSP of non-app-based tracing. 055

The arrangement of ADUs and the ARs within 056

the local structures is shaped by the intentions of 057

the arguer and the sequential ordering of ADUs 058

ensuring a natural flow for maintaining coherence 059

(Travis, 1984; Freeman, 2011; Wang et al., 2019; 060

Kazemnejad et al., 2024). The intentional structure 061

captures the logical flow of ADUs and can extend 062

beyond proximity to connect ADUs based on their 063

roles and contributions to the DSP of the segment 064

(Grosz and Sidner, 1986; Freeman, 2011). Figure 1 065

illustrates this interplay, demonstrating the sequen- 066

tial flow of arguments (e.g., ADU1 → ADU2 → 067

ADU3 → ADU4 → ADU5) alongside logical re- 068

lationships transcending proximity (e.g., A14 → 069

A17, A13 → A19, or A20 → A23). This under- 070

scores the importance of modeling macro-structure 071

governing the intentional and the sequential flow 072

of ADUs and their ARs. See details in Appendix C 073

and more examples in Figure 3. 074

However, most previous works focus on features 075

derived from the internal structure of ADUs, often 076

referred to as the micro-structure (Freeman, 2011), 077

while overlooking the broader macro-structure. 078

They frame AM tasks as either dependency pars- 079

ing (Peldszus and Stede, 2015b), sequence tag- 080

ging (Eger et al., 2017), or sequence classification 081

(Reimers et al., 2019; Ruiz-Dolz et al., 2021), con- 082

centrating primarily on isolated ADU pairs. End-to- 083
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Figure 1: An example of the argument structure decomposed into four local structures (1 to 4). It shows how
ADUs and AR are shaped by the intentional structure, where consecutive ADUs may span different segments,
and non-consecutive ADUs can share the same segment. The argument is taken from QT30, illustrating a dialog
between two participants, highlighted in light blue and yellow (Hautli-Janisz et al., 2022).

end AM approaches model dependencies between084

tasks, employing various techniques, including bi-085

affine operations for learning non-tree AM struc-086

tures (Morio et al., 2020), a transition-based model087

for constructing both tree and non-tree argument088

graphs (Bao et al., 2021), and positional encodings089

in generative AM frameworks to mitigate order bi-090

ases (Bao et al., 2022). Recent advancements in091

language models (LM) have enhanced their abil-092

ity to capture higher-level structures for processing093

long documents by encoding document sections,094

hierarchies, and global contexts, resulting in no-095

table improvements in NLP tasks like document096

classification and summarisation (He et al., 2024;097

Cao and Wang, 2022; Liu et al., 2022; Bai et al.,098

2021). However, in the domain of AM, aside from099

position-aware discourse self-attention for identi-100

fying discourse elements (Song et al., 2020) and101

end-to-end approaches focusing on capturing de-102

pendencies between tasks, there has been limited103

progress in addressing the critical aspect of model-104

ing macro-structures, which often remains implicit.105

To our knowledge, no AM work has proposed a106

unified architecture that models coherence by in-107

tegrating macro-structure encoding logical and se-108

quential ADU flows at both local and global levels,109

while anchoring AM tasks to this coherence.110

In this study, we propose CU-MAM: Coherence-111

Driven Unified Macro-Structures for Argument112

Mining, an approach that anchors ACTC, ARI, and113

ARTC tasks to a unified macro-structure. Given a114

pair of ADUs and the entire argument as context,115

the model predicts the ADU types (ACTC) and the116

AR between them (ARI and ARTC), considering117

both local and global structural information. This118

is accomplished through a multi-task learning ap-119

proach that jointly models ACTC, ARI, and ARTC120

as primary tasks while treating local and global 121

structure learning as auxiliary tasks. The argument 122

is represented as a graph, where ADUs are nodes 123

and ARs are edges, capturing the complete argu- 124

ment structure. Local and global structures learning 125

is achieved by classifying graph edges into their re- 126

spective local or global categories. A self-attention 127

layer attends to the graph’s nodes and edges to 128

encode the local and global structures relevant to 129

the ADU pair under consideration. To contextu- 130

alise ADU type and AR predictions within these 131

macro-structures, the self-attention layer’s output is 132

fused with the ADU-pair representation via a cross- 133

attention mechanism. Additionally, the sequential 134

flow of the argument is modeled by incorporating 135

ADU-level positional encodings into the ADU em- 136

beddings. These positional encodings are derived 137

from the order of ADUs and discourse participant 138

transitions (e.g., proponent-opponent shifts) (Free- 139

man, 2011; Budzynska and Reed, 2011). 140

This paper makes the following contributions: 141

(a) We propose a macro-structure to capture the co- 142

herent arrangement of ADUs. (b) We introduce an 143

architecture combining a graph-based neural model 144

with a dual attention mechanism to capture local 145

and global argument structures. A multi-task learn- 146

ing framework anchors ACTC, ARI, and ARTC 147

to these macro-structures. (c) We achieve state- 148

of-the-art (SOTA) results across multiple datasets, 149

including a cross-dataset evaluation where previous 150

SOTA models struggle to surpass random chance. 151

2 Related Work 152

2.1 Argument Mining 153

Argument Mining has been studied through diverse 154

paradigms, emphasising the micro-structure of ar- 155

guments. One common approach frames AM as 156
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a dependency parsing task (Peldszus and Stede,157

2015b), leveraging discourse parsing techniques158

(Muller et al., 2012). Peldszus and Stede (2016) ex-159

tend this by mapping Rhetorical Structure Theory160

(RST) trees (Taboada and Mann, 2006) to argument161

structures. Other works model AM as token-based162

sequence tagging (Eger et al., 2017), classifying163

tokens into argument components and AR types164

using the BIO tagging scheme. Gemechu and Reed165

(2019) decompose ADUs into fine-grained compo-166

nents, predicting ARs based on their interactions.167

Recent studies fine-tune pre-trained LMs, employ-168

ing sequence-pair classification setups (Reimers169

et al., 2019; Ruiz-Dolz et al., 2021). These config-170

urations focus on the internal structure of ADUs,171

while neglecting the broader macro-structure.172

Efforts toward end-to-end AM have largely173

focused on leveraging task interdependencies.174

Pipeline architectures train independent models for175

sub-tasks, integrating global constraints through176

Integer Linear Programming (ILP) (Persing and177

Ng, 2016; Stab and Gurevych, 2017). Neural ap-178

proaches adopt joint multi-task setups to model179

interdependencies across tasks (Eger et al., 2017).180

Morio et al. (2022) introduce a cross-corpus train-181

ing strategy, while Bao et al. (2022) propose a182

generative framework incorporating constrained183

pointer mechanisms and reconstructed positional184

encodings into an end-to-end AM setup. Despite185

these advancements, these methods emphasize task-186

level dependencies, offering limited or no explicit187

modeling of the macro-structure.188

2.2 Structural Encoding in Language Models189

Recent advancements in LMs have improved the190

capacity to encode long texts and represent docu-191

ment structures (He et al., 2024; Cao and Wang,192

2022; Liu et al., 2022; Bai et al., 2021; Zaheer et al.,193

2020; Beltagy et al., 2020). For instance, He et al.194

(2024) and Cao and Wang (2022) utilise section195

structures to encode document hierarchies, while196

Liu et al. (2022) employ hierarchical sparse atten-197

tion and specialised tokens to capture local and198

global information within a document. Similarly,199

Bai et al. (2021) use positional encoding at various200

linguistic segments to capture hierarchies. Belt-201

agy et al. (2020) introduces Longformer, which202

combines local windowed attention with global203

for long-document. Zaheer et al. (2020) propose204

BigBird, a model leveraging sparse attention mech-205

anisms that integrate global, local, and random206

attention patterns to handle long sequences. Al-207

Data No_arg No_ADU No_AR No_LOC Dist_ARs

AAEC 402 6089 5338 3.3 2.6
US2016 499 8610 3772 5.1 3.2
QT30 724 11266 3314 7 4.8
CDCP 731 4779 1353 5.6 3.4

Table 1: Dataset summary of argument counts (No_arg),
average number of ADUs (No_ADU), ARs (No_AR),
local structures (No_LOC), and ADU distance in ARs
(Dist_ARs) per argument.

though these models provide avenues for encoding 208

macro-structures, their effectiveness in addressing 209

the unique challenges of argumentation’s macro- 210

structure remains limited (see Tables 2 and 3), 211

primarily due to their reliance on static document 212

structural features, which fail to capture the distinct 213

characteristics of argumentation—such as logical 214

relationships, argumentative flows, and the inter- 215

play between ADUs. 216

3 Method 217

3.1 Data 218

Heterogeneous datasets encompassing various do- 219

mains and genres are utilised, including stu- 220

dent persuasive essay corpora (AAEC) (Stab and 221

Gurevych, 2017), Consumer Debt Collection Prac- 222

tices (CDCP) (Park and Cardie, 2018), the US 223

2016 presidential debate corpus (US2016) (Visser 224

et al., 2019), and a corpus of argument and con- 225

flict in broadcast debate (QT30) (Hautli-Janisz 226

et al., 2022). The AAEC and CDCP, are mono- 227

logical, while the US2026 and QT30 are dia- 228

logical. The datasets CDCP, AAE, QT30, and 229

US2016 employ different annotation standards 230

for ADUs and ARs. CDCP defines five ADU 231

types—Reference, Fact, Testimony, Value, and Pol- 232

icy—and two AR types—Reason and Evidence. 233

AAE uses three ADU types—MajorClaim, Claim, 234

and Premise—and four AR types—Support, At- 235

tack, For, and Against. In the QT30 and US2016 236

datasets, ADUs are not explicitly labeled; instead, 237

their types are inferred from the direction of the 238

ARs (premise to conclusion), resulting in two ADU 239

types: Premise and Conclusion. 240

3.1.1 Global Structure 241

The global structure consists of all valid ARs within 242

the argument structure, which are essential for 243

achieving the DP. These valid ARs represent a sub- 244

set of the possible permutations of connections 245

between the ADUs in the argument. 246
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Figure 2: CU-MAM Architecture.

3.1.2 Local Structure247

An argument structure is represented as graphs248

where ADUs and ARs are nodes connected by249

edges. Local Structure identification involves up-250

ward and downward traversals of the graph from251

each AR node. The upward traversal identifies252

chains of ADUs leading to the AR, capturing the253

local structure that establishes its context. The254

downward traversal, traces the chain of ADUs fol-255

lowing the AR, ensuring the continuity of the argu-256

ment segment. The beginning of a local structure257

is identified by a node with no inward connections258

(start ADU), marking the segment’s starting point,259

while its end is defined by a node without succes-260

sors (end ADU), indicating the segment’s conclu-261

sion. In cases where the start ADU involves mul-262

tiple downward chains (divergent structures), all263

such chains are included. Furthermore, every sub-264

graph—whether serial, divergent, convergent, or265

linked—between the start and end ADUs is incor-266

porated to ensure a complete and coherent segment267

(see Appendix D for details). Table 1 provides268

a summary of the dataset statistics. Among the269

argument structures, 73% involve more than one270

local structure, with 67% containing between 2 to271

7 local structures. Additionally, 64% of ARs occur272

between ADUs positioned 1 to 5 apart, and 17%273

involve ADUs that are within a distance of 1.274

3.2 Model275

This section provides an overview of the task defi-276

nition, model architecture, and baseline configura-277

tions used in the experiment.278

3.2.1 Task Definition279

Given an argument A comprising a sequence of280

ADUs and a specific ADU pair (ADUi, ADUj),281

the model’s primary task is to predict the types282

of ADUi, ADUj , and the AR between them, one283

pair at a time, within the context of the argument’s284

macro-structure (local and global structure). To285

achieve this, the model is trained on auxiliary tasks 286

that predict local and global structures, anchor- 287

ing the primary task to these macro-structures in 288

a multi-task setting. During inference, only the 289

primary task is used. See Section A.2 for input 290

details. 291

3.2.2 Architecture 292

As shown in Figure 2, the model consists of five 293

key components: (A) Unified ADU Represen- 294

tation, which combines ADU embeddings with 295

positional information; (B) Argument Structure 296

Encoder, which employs a graph network where 297

ADUs are nodes and ARs between them are edges; 298

(C) ADU-Pair Encoder, which encodes the spe- 299

cific pair of ADUs under consideration; (D) Macro- 300

Attention Layer, which attends to the graph’s nodes 301

and edges to capture the ADUs and ARs that con- 302

stitute the local and global structures relevant to 303

the ADU pair; and (E) Classification Layers, which 304

predict ADU types, ARs, and classify graph edges 305

as local, global, or none, in a multi-task setting. 306

(A) Unified ADU Representation (UAR) 307

ADU representation combines a pre-trained LM 308

embedding, with two ADU-level positional embed- 309

dings capturing sequential argument flow. Given an 310

argument A = {ADU1, ADU2, . . . , ADUn}, the 311

unified representation, ADU′
i is given by: 312

ADU′
i = ADUi ⊕Oi ⊕Pi (1) 313

where ADUi is the sentence embedding (S) of the 314

ADU obtained by mean pooling token embeddings 315

from LM. Oi is the order-based positional embed- 316

ding indicating the ADU’s sequential index, and 317

Pi is the participant transition embedding, captur- 318

ing participant shifts in multi-participant dialogues, 319

with all ADUs assigned the same index in mono- 320

logues. We experiment with sinusoidal absolute 321

positional encodings (Vaswani et al., 2017) and rel- 322

ative positional embeddings (Shaw et al., 2018). 323
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Absolute positional embeddings are added to ADU324

embeddings, while relative embeddings are fused325

during attention computation (See Section B.2).326

(B) Argument Structure Encoder (ASE)327

A Graph Neural Network (GNN) (Brody et al.,328

2021) models the argument structure as a graph329

G = (V,E), where nodes V = {v1, v2, . . . , vn}330

represent ADUs, and edges E ⊆ V × V capture331

ARs between ADUs, facilitating local and global332

structure predictions relevant to a given ADU pair.333

The graph is constructed using the unified ADU334

embeddings from Equation 1. At each layer, node335

states are updated as:336

h(k+1)
v = σ

Wkh
(k)
v +

∑
u∈N (v)

W′
kh

(k)
u

 (2)337

where h(k)
v is the node state at layer k, and N (v)338

denotes neighboring ADUs. Each AR between339

ADUs is represented by the concatenation of their340

node embeddings.341

(C) ADU-Pair Encoder (APE)342

Encodes the relationship between the pair of ADUs343

(ADUi, ADUj) under consideration. A feedfor-344

ward layer is applied to the unified embeddings of345

ADUi and ADUj to capture their interaction.346

(D) Macro-Attention Layer (MAL)347

Two self-attention layers attends to the argument348

graph from step B, learning the local and global349

structures relevant to the ADU pair from step C.350

The self-attentions are applied to the edge embed-351

dings of the argument graph to capture the relation-352

ships between nodes (i.e., the AR between ADUs).353

The outputs from both attention layers pass through354

fully connected layers, and used to classify the355

edges into their respective macro-structures (see356

Section 3.2.2).357

To contextualise the ADU type and AR predic-358

tions within the macro-structural context, the out-359

puts of the self-attention layers are fused with the360

ADU-pair representation from step C using a cross-361

attention mechanism. The queries are derived from362

the ADU-pair encoder’s output, while the keys and363

values are projections of the summation of the self-364

attention layers. The final representation of the365

ADU pair, denoted as RADU-pair, is obtained by366

adding the cross-attention’s output to the original367

ADU-pair encoder’s output. This final representa-368

tion combining both the structural context and the369

ADU pair representation is used to predict both the 370

ADU types and the ARs between them. 371

(E) Classification Layers 372

Linear classifiers are used for predicting the ADU 373

pair types (ACTC) and AR between them (ARI 374

and ARTC), using the contextualised ADU-pair 375

representations, RADU-pair. We jointly model ARI 376

and ARTC, following the approach in (Bao et al., 377

2021), while also modeling ARI independently for 378

comparison with studies treating them separately. 379

The local and global structures are learned by pre- 380

dicting argument graph edges as binary outputs, 381

trained on gold labels (prepared in Sections 3.1.1 382

and 3.1.2) that indicate the presence or absence 383

of connections between nodes. These tasks are 384

framed as auxiliary within a multi-task setup. The 385

model trains using a loss function (L) that inte- 386

grates task-specific losses and a regularisation term, 387

L = L0+L1+L2+L3+R, where L0 is the loss 388

for ADU type prediction, L1 for AR classification, 389

L2 for global-structure prediction, L3 for local- 390

structure prediction, and R for the regularization 391

term. 392

Due to the significantly higher number of non- 393

AR edges compared to AR edges, L2 is computed 394

exclusively for AR edges, excluding non-AR edges. 395

Similarly, L3 ignores both AR edges and non-AR 396

edges outside the local structure. However, this ap- 397

proach leads to model overfitting on AR edges. To 398

mitigate this issue, a regularisation term (R) based 399

on the distance editing score is introduced to pe- 400

nalise deviations from the gold argument structure, 401

encouraging correct classification of both AR and 402

non-AR edges. 403

3.2.3 Baselines 404

We establish two baselines using RoBERTa (Liu 405

et al., 2019), reportedly achieving strong perfor- 406

mance in AM and BigBird (Zaheer et al., 2020), 407

for its architecture in capturing global context. The 408

first baseline, Vanilla Sequence-Pair Classification 409

(V-SeqCls), fine-tunes the LMs on concatenated 410

ADU pairs. The second, Vanilla Argument Context 411

(V-ArgC), includes the entire argument as context 412

alongside ADU pairs for direct comparison to CU- 413

MAM. Since both LMs are used in CU-MAM for 414

ADU embeddings, evaluating them as standalone 415

baselines ensures robust comparisons. BigBird 416

serves as a strong baseline due to its global context 417

modeling (see Appendix A.3 for more details). 418
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LM Model ACTC ARI ARTC
AAEC CDCP US2016 QT30 AAEC CDCP US2016 QT30 AAEC CDCP US2016 QT30

RoBERTa V-SeqCls (Baseline) 69.4 77.6 69.7 71.1 56.6 62.1 72.5 71.7 50.1 14.2 67.1 68.3
V-ArgC (Baseline) 66.4 73.3 65.0 66.4 54.4 59.2 68.5 69.4 49.3 13.4 64.8 67.3
CU-MAMrel (ours) 77.5 83.1 75.9 75.5 68.1 70.4 78.7 77.1 58.1 30.6 75.8 76.6

BigBird V-SeqCls (Baseline) 69.2 77.4 68.4 70.3 57.8 64.3 69.2 71.1 50.1 15.2 67.4 68.2
V-ArgC (Baseline) 70.7 78.3 70.3 71.6 60.9 64.8 74.2 74.1 49.4 16.7 68.9 68.4
CU-MAMrel (ours) 77.2 84.6 75.4 76.8 70.4 72.3 80.7 78.4 58.4 31.4 76.6 75.2

Table 2: In-dataset evaluation performance of CU-MAM and baseline models (V-SeqCls and V-ArgC).

4 Experiment419

4.1 Training setup420

The models are trained for six epochs with a batch421

size of 16 using Adam optimiser (Kingma and Ba,422

2014) with a learning rate of 2 × 10−5. The pri-423

mary tasks use categorical cross-entropy, while424

auxiliary tasks for graph edge prediction use bi-425

nary cross-entropy. Results are averaged over three426

runs with different random seeds. Additional ex-427

perimental details are in Appendix A. The code428

and dataset are available at https://github.com/429

ANONYMOUS (anonymised).430

4.2 Implementation Details431

For the AAEC and CDCP, we use the provided432

training and test data, sampling 10% of the training433

set for validation. We split the US2016 and QT30434

datasets into 70% training, 20% testing, and 10%435

validation. For AAEC, results are reported at the es-436

say level, with two paragraph-level results for com-437

parison with related works. The AAEC-P
+

merges438

the Claim:Against and Claim:For labels into a sin-439

gle Claim label, while AAEC-P uses the original440

annotations. For cross-dataset evaluations, we use441

AAEC-P
+

since US2016 and QT30 do not include442

Major Claim as an argument component type. Sim-443

ilarly, we merge ’For’ and ’Against’ into Support444

and Attack, respectively in the AAEC, while the445

’Rephrase’ ARs in QT30 and US2016 are merged446

into Support relation.447

ADU embeddings in the CU-MAM configura-448

tions are obtained from RoBERTa and BigBird.449

4.3 Evaluation Setup450

The models are evaluated using two setups: In-451

Dataset Evaluation (ID) and Cross-Dataset Eval-452

uation (CD). For ID, the models are trained and453

evaluated on the same dataset using the provided454

training-test split. In CD, the models are trained on455

one dataset and evaluated on the remaining n− 1456

datasets to assess their performance on unseen data.457

CDCP is excluded from the CD setup due to dif- 458

ferences in ADU and AR type annotations. Across 459

both setups, average macro F-scores (F) are re- 460

ported for the test dataset. We also report the F1 461

score for comparison with related works. 462

4.4 Comparison Systems 463

CU-MAM is benchmarked against related works, 464

including Bao et al. (2021), Morio et al. (2020), 465

Ruiz-Dolz et al. (2021), Gemechu and Reed (2019), 466

(Potash et al., 2017), (Kikteva et al., 2023) and 467

GPT-4o (OpenAI, 2023). GPT-4o is evaluated us- 468

ing few-shot prompting, the detail is provided in 469

Section B.3. We also make indirect comparisons 470

with Eger et al. (2017), Morio et al. (2022), and 471

Bao et al. (2022), which combine argument seg- 472

mentation with ACT, ARI, and ARTC. 473

4.5 Results 474

Tables 2 and 3 compare the performance of CU- 475

MAM and the two baselines (Section 3.2.3) across 476

the datasets in ID and CD setups. CU-MAM refers 477

to full configuration with local and global structure 478

prediction and MAcro-Attention (unless specified). 479

The main results are reported for CU-MAM with 480

relative positional encoding (CU-MAMrel) due to 481

its superiority over absolute encoding. Tables 2 and 482

3 clearly show that incorporating macro-structural 483

features improves performance across all tasks in 484

both ID and CD, as described below. 485

In-Dataset (ID) Evaluation 486

As can be seen in Tables 2, CU-MAM consistently 487

outperforms the two baseline methods that rely 488

solely on fine-tuning LMs across all tasks. In aver- 489

age, for ACTC, CU-MAM improves by 6.6% over 490

V-SeqCls and 8% over V-ArgC. For ARI, the im- 491

provements are 8.9% and 9%, respectively, while 492

for ARTC, CU-MAM shows 10.9% and 11.3% im- 493

provements over V-SeqCls and V-ArgC. These re- 494

sults highlight the effectiveness of macro-structural 495

features, leading to superior performance compared 496

to the baselines. To calculate the improvement over 497
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LLM Model ACTC ARI ARTC
AAEC US2016 QT30 AAEC US2016 QT30 AAEC US2016 QT30

RoBERTa V-SeqCls (Baseline) 52.1 55.4 48.9 46.2 48.2 47.8 38.9 45.1 44.4
V-ArgC (Baseline) 47.5 52.4 48.6 38.9 46.9 47.5 36.9 44.2 41.6
CU-MAMrel (ours) 64.6 66.1 66.4 56.2 62.0 60.5 50.9 58.5 58.0

BigBird V-SeqCls (Baseline) 55.5 51.4 50.2 43.9 53.6 54.3 40.6 45.4 45.3
V-ArgC (Baseline) 56.6 53.5 55.5 47.3 56.7 56.5 43.6 46.5 47.1
CU-MAMrel (ours) 65.7 67.4 66.3 57.7 66.0 64.5 51.8 61.1 60.5

Table 3: Cross-dataset evaluation performance of CU-MAM and baseline models (V-SeqCls and V-ArgC).

V-SeqCls, we subtract the average performance of498

BigBird and RoBERTa V-SeqCls from the average499

performance of BigBird and RoBERTa CU-MAM.500

Similar approach is used for calculating the im-501

provements over V-ArgC.502

Cross-Dataset (CD) Evaluation503

Similarly, Table 3 shows that CU-MAM excels in504

CD evaluations. For ACTC, CU-MAM improves505

by 13.8% over V-SeqCls and 15.2% over V-ArgC.506

For ARI, the improvements are 12.4% and 12.1%,507

respectively. For ARTC, CU-MAM shows im-508

provements of 13.5% and 14.4%. Notably, CU-509

MAM consistently surpasses the baselines, often510

achieving cross-dataset performance that is compa-511

rable to in-dataset evaluations. For example, when512

trained on the QT30 dataset and tested on US2016,513

the BigBird-based CU-MAM matches in-dataset514

performance. In contrast, baseline models per-515

form near-random chance, showcasing CU-MAM’s516

strong cross-dataset generalisation.517

Comparison Systems518

As can be seen in Table 4, CU-MAM outperforms519

all comparison systems, including the indirect com-520

parison approaches that combine argument segmen-521

tation with ACT, ARI, and ARTC. The indirect522

comparisons should be interpreted cautiously due523

to differences in task setups. BigBird-based CU-524

MAM outperforms RoBERTa-based CU-MAM525

configurations in both ID and CD, highlighting526

its strength in capturing global contexts.527

4.6 Error Analysis528

We categorise the error types in CU-MAM versus529

the baselines as "Jump-to-Conclusion," "Reversed530

Connection," and "Non-relational ADU Link" er-531

rors, all affecting sequential and logical coher-532

ence (see examples in Appendix E). The "Jump-533

to-Conclusion" Error occurs, when an ADU A is534

linked directly to ADU C bypassing the interme-535

diary ADU B. The "Reversed Connection" error536

Dataset Model ACTC ARI ARTC
F1 Macro F1 Macro F1 Macro

AAEC-E Eger et al. (2017) 66.2 - - - 34.8 -
Morio et al. (2022) 76.6 - - - 54.7 -
GPT-4o 61.4 59.7 54.6 56.4 51.1 49.3
CU-MAMrel 79.3 77.2 62.6 70.4 60.1 58.6

AAEC-P
Bao et al. (2022) 75.9 - - - 50.1 -
Eger et al. (2017) 70.8 - - - 45.5 -
Morio et al. (2022) 76.5 - - - 59.6 -
GPT-4o 62.1 63.3 54.9 60.2 52.3 50.4
CU-MAMrel 79.8 78.4 66.3 81.2 64.4 63.1

AAEC-P+ Potash et al. (2017) - 84.9 60.8 76.7 - -
Morio et al. (2022) 88.4 86.8 69.3 - 68.1 57.1
Bao et al. (2021) - 88.4 70.6 82.5 - 81
GPT-4o 66.4 65.6 58.2 67.7 56.5 58.2
CU-MAMrel 88.7 87.1 75.4 85.4 73.1 82.7

CDCP
Bao et al. (2022) 57.7 - - - 16.6 -
Morio et al. (2022) 81.0 82.3 40.2 - 40.1 20.4
Bao et al. (2021) - 82.5 37.3 67.8 - -
Morio et al. (2020) - 78.9 34.0 - - -
GPT-4o 58.5 68.4 30.1 61.3 32.2 23.4
CU-MAMrel 83.4 84.6 44.8 72.3 45.1 31.4

US2016 Ruiz-Dolz et al. (2021) - - - - - 70
Gemechu and Reed (2019) - - - 64 62
GPT-4o 64.9 62.3 52.6 56.7 58.4 54.6
CU-MAMrel 77.3 75.4 63.8 80.7 79.8 76.6

QT30 Kikteva et al. (2023) - - - - - 56.0
GPT-4o 65.1 64.6 51.8 57.1 58.1 52.8
CU-MAMrel 75.8 76.8 62.5 78.4 77.8 75.2

Table 4: CU-MAM performance and comparison ap-
proaches.

happens when the direction of an AR is incorrect, 537

and the "Non-relational ADU Link" error arises 538

when ARs are formed between unrelated ADUs. 539

Misclassification errors are reduced in both lo- 540

cal and global structures, highlighting CU-MAM’s 541

effectiveness in maintaining coherence at both lev- 542

els. Analysis of 50 argument maps shows that 61% 543

of the baseline’s misclassifications occur within 544

the same local structure, compared to just 12% for 545

CU-MAM, resulting in a 77.4% reduction in errors. 546

While CU-MAM is more effective at reducing local 547

structure errors, it also reduces global misclassifi- 548

cations, though most errors still arise from global 549

structure issues, such as incorrect connections be- 550

tween cross-local structures or ADUs outside the 551

argument graph. Moreover, CU-MAM reduces 552

"Jump-to-Conclusion" errors to 16% (down from 553

56% in the baseline) and cuts "Reversed Connec- 554

tion" errors by 32%, demonstrating its ability to 555

preserve logical and sequential flow. 556
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4.7 Ablation study557

Config ACTC ARTC

ID CD ID CD

Baseline 72.1 53.7 50.5 44.7

CU-MAM−G 76.7 63.5 58.7 54.5
CU-MAM−L 74.8 60.5 56.2 52.1

CU-MAM-Att 75.2 64.2 60.1 53.1
CU-MAMAtt-only 73.5 59.8 56.5 50.8

CU-MAMFull 78.5 66.5 60.3 57.8

Table 5: F1-scores of baseline and CU-MAM configu-
rations in ID and CD, averaged across the dataset for
ACTC and ARTC.

We analyse the contributions of local-structure558

prediction and global-structure prediction by evalu-559

ating CU-MAM without local-structure prediction560

(CU-MAM-L) and without global-structure predic-561

tion (CU-MAM-G). We also analyse the impact562

of Macro-Attention by evaluating CU-MAM with-563

out the Macro-Attention (CU-MAM-Att). These564

configurations are compared against: (a) the base-565

line performance, computed as the average of V-566

SeqCls and V-ArgC, and (b) the full CU-MAM567

(CU-MAMFull), which includes local-structure pre-568

diction, global-structure prediction and Macro-569

Attention. These configurations of CU-MAM are570

based on BigBird and absolute positional embed-571

dings, since it achieved the highest performance572

(See Section F.1 for more details). We also assess573

the impacts of the two types of positional informa-574

tion and the effectiveness of absolute versus relative575

embeddings (see Section F.2 for more details).576

Local vs. Global Structure Prediction. As577

shown in Table 5, both CU-MAM-L and CU-578

MAM-G outperform the baseline, highlighting the579

effectiveness of each structure prediction on its580

own. However, either local-structure or global-581

structure prediction can not achieve the perfor-582

mance level of CU-MAMFull individually, confirm-583

ing their complementary benefits. CU-MAM−L584

performs worse than CU-MAM−G, suggesting that585

local-structure prediction has a greater impact than586

global-structure prediction.587

Macro-Attention Layer (MAL). In CU-588

MAM-Att configuration, local and global structures589

are predicted using a stack of feedforward layers590

instead of MAL, applied to the output of argument591

structure encoder, ensuring the same parameter 592

count for a fair comparison with CU-MAMFull. We 593

also evaluate CU-MAM with the MAL but without 594

the auxiliary tasks (CU-MAMAtt-only), to isolate the 595

effect of MAL. In CU-MAMAtt-only, the MAL is 596

used only for computing the cross-attention that 597

contextualises the ADU-pair. As shown in Table 5, 598

ablating MAL results in a performance drop com- 599

pared to CU-MAMFull, although it still outperforms 600

the baseline. However, CU-MAMAtt-only performs 601

worse than CU-MAM-Att, emphasising MAL is 602

more effective when combined with auxiliary tasks. 603

Positional Encoding: We evaluate the impact 604

of order embedding (O) and participant transition 605

embedding (P ) individually using absolute (Abs) 606

and relative (Rel) positional encodings. Table 6 607

shows the performance with each positional feature 608

ablated, highlighting the reduction in performance 609

when each feature is removed (e.g., P− represents 610

CU-MAM without P ). As can be seen from the 611

Table, ablating O results in a greater performance 612

drop compared to ablating P on both monological 613

and dialogical datasets, with P showing no impact 614

on the monological dataset. In average, Rel based 615

configurations outperform Abs configurations. 616

Config Monologue Dialogue
Full (Abs) 43.3 74.4
Full (Rel) 44.5 76.1
O− (Abs) 42.1 71.3
O− (Rel) 42.4 71.6
P− (Abs) 43.1 72.4
P− (Rel) 44.3 72.7

Table 6: F1-scores for configurations without P , O on
monological and dialogical datasets in the ID evaluation.
The results are averaged across the dataset on ARTC.

5 Conclusion 617

This work introduces CU-MAM, the first ap- 618

proach modeling AM tasks as a function of macro- 619

structure to capture coherence. By leveraging struc- 620

tural representations, it models logical and sequen- 621

tial argument flow, capturing local and global de- 622

pendencies. CU-MAM achieves significant per- 623

formance gains over baselines and comparison ap- 624

proaches, setting new SOTA results across datasets. 625

Its strong cross-dataset adaptability overcomes do- 626

main adaptation challenges where existing SOTA 627

models struggle, demonstrating its ability to gener- 628

alise across diverse argumentation structures. 629
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Limitations630

Despite its merits, the CU-MAM approach has the631

following limitations:632

Limited Applicability to Other NLP Tasks:633

The participants transitions features and local-634

structure encoding are specifically designed for ar-635

gumentation tasks. As such, their applicability to636

other NLP tasks that do not involve argumentative637

structures is limited.638

Pre-Training Objectives Not Addressed: Al-639

though the evaluation focuses on fine-tuning for640

leveraging macro-structural features, it does not641

address the training objectives that could be em-642

ployed during the pre-training phase of LLMs to643

better integrate these features.644

Interpretability and Explainability: The expla-645

nations for the model’s performance are based on646

empirical results, ablation studies, and error analy-647

sis. While these analyses are valuable, additional648

techniques such as attention mechanism analysis649

could provide a more comprehensive understand-650

ing of model behavior.651
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A Experiment Setup858

A.1 Training Procedure859

Hyper-parameters: We employ Adam optimisa-860

tion (Kingma and Ba, 2014) to minimise the cost861

function, using a learning rate of 2 × 10−5 and862

categorical cross-entropy loss and a batch size of863

16. Experimental results are reported based on the864

average of three runs with different random seeds.865

Gradient Clipping: To prevent exploding866

gradients during training, we applied gradient867

clipping. We used a maximum gradient norm868

(max_grad_norm) parameter to determine the869

threshold for gradient clipping.870

Warm-up and Learning Rate Schedule: We871

employ a linear warm-up strategy for the learning872

rate. The number of warm-up steps is set to 10%873

of the total training steps. Following the warm-up874

phase, the learning rate schedule is determined by875

a lambda function. This function linearly increases876

the learning rate during the warm-up phase and877

decreases it linearly thereafter.878

A.2 Input Setup879

Except the V-SeqClas configurations, the entire880

argument along with the pair of ADUs is provided881

to the model.882

The Input Format:“{Argument} [EG]883

{premise} [SEP] {conclusion}”, where Argument884

= {ADU1 [SEP] ADU2 [SEP] ... ADUn}, with n885

representing the number of ADUs in the argument.886

Extracting Relevant Argument: When the887

entire argument exceeds the maximum sequence888

length allowed by the underlying LM, a relevant889

span of the argument is extracted that includes both890

the premise and conclusion while staying within891

the length limit. This process is carried out as fol- 892

lows: 893

1. Length Calculation: The argument, premise, 894

and conclusion are tokenized using the 895

model’s tokenizer. The total length is then 896

calculated by summing the tokens for the 897

premise, conclusion, argument, and special 898

tokens ([CLS] and [SEP]). 899

2. Span Selection: 900

• If the total length is within the model’s 901

maximum sequence limit, the entire ar- 902

gument is concatenated with the premise 903

and conclusion. 904

• If the total length exceeds the limit: 905

– The positions of the premise and con- 906

clusion within the argument are iden- 907

tified, and a span is selected that in- 908

cludes both, along with additional 909

surrounding context, ensuring the to- 910

tal length fits within the limit. 911

– If including the span involving both 912

the premise and conclusion exceed 913

the maximum limit, start with the 914

premise, expand the span towards the 915

conclusion until the size constraint is 916

met, and append the conclusion to 917

the argument span. 918

Maximum Number of ADUs in an Argument: 919

We set the maximum number of ADUs to 128 for 920

computational efficiency. 921

A.3 Base LM 922

Both for the baselines and the CU-MAM configura- 923

tions, we utilise the HuggingFace implementation 924

of RoBERTa1, BigBird 2. In the baseline setup 925

(both with and without argument context), we fine- 926

tune the models based on the output of the [CLS] 927

token from the final output layer. Similarly, ADU 928

embeddings in the CU-MAM configurations are 929

obtained from RoBERTa and BigBird. 930

B CU-MAM Architecture 931

B.1 ADU Embedding 932

We utilise pre-trained LMs (Liu et al., 2019; Rad- 933

ford et al., 2019; Zhang et al., 2020) to obtain con- 934

textualised token embeddings H ∈ Rn×d for the 935

1https://huggingface.co/docs/transformers/en/
model_doc/roberta

2https://huggingface.co/docs/transformers/en/
model_doc/big_bird
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entire input where n is the input length and d is936

the hidden size of the model. ADUs are identified937

within the sequence using the special separator to-938

ken ([SEP]). To obtain embeddings for each ADU,939

we apply mean pooling over the token embeddings940

within each ADU. Let Hi ∈ Rli×d represent the941

token embeddings for the i-th ADU, where li is942

the length of the i-th ADU. The ADU embedding943

ADUi ∈ Rd is computed as:944

ADUi =
1

li

li∑
j=1

Hi,j945

The resulting set of ADU embeddings forms a946

matrix A ∈ Rm×d, where m is the number of947

ADUs.948

B.2 Positional Encoding949

We experiment with both fixed and relative posi-950

tional embeddings. For absolute positional embed-951

dings, we employ the sinusoidal position signal,952

following the approach introduced by the Trans-953

former model (Vaswani et al., 2017). For relative954

positional embeddings, we adopt the method pro-955

posed by Shaw et al. (2018), which encodes the956

relative distances between ADU in the argument,957

aij = ej−i, where e represents the learnable em-958

beddings and j − i indicates the relative distance959

between ADU j and ADU i. We leverage dual960

positional embeddings to incorporate the two types961

of positional information: the index representing962

the order of each ADUs within the argument (ADU963

order embedding) and the participant transition em-964

bedding. Both approaches are further explained965

below.966

Absolute Positional Encoding. The embedding967

of an ADU, denoted as ADUi, is enhanced with968

absolute positional information by incorporating969

both order embeddings and participant transition970

embeddings. This process involves the following971

steps:972

1. Sinusoidal Function for Embeddings: Con-973

sistent with the approach used in standard974

Transformers, sinusoidal functions are em-975

ployed to generate embeddings for argument976

flow (Ti) based on both ADU order (Oi) and977

proponent-opponent transitions (Pi):978

T(index,2i) = sin

(
index

100002i/dmodel

)
979

980

T(index,2i+1) = cos

(
index

100002i/dmodel

)
981

where index denotes the position of the ADU 982

and dmodel is the dimensionality of the model. 983

This method applies to both ADU order and 984

participant transition embeddings, providing a 985

unified approach for incorporating positional 986

information. 987

Each ADU is represented by fusing its ADU 988

embedding (ADUi), order embedding (Oi), 989

and participant transition embedding (Pi) 990

to form a unified representation of ADU 991

(ADU′
abs) . A matrix Aabs of size n × d is 992

formed, where n is the number of ADUs in the 993

argument and d is the embedding dimension: 994

ADUi,j
abs = ADUi +Oi +Pi 995

2. Relative Positional Encoding. The attention 996

mechanism adjusts the attention scores A′
i,j 997

to integrate relative distances on the fly: 998

ADUi,j
rel = softmax

(
QiK

⊤
j√

dk
+RO

i,j +RP
i,j

)
999

where Q, K, and V are the query, key, and 1000

value matrices, respectively, derived from the 1001

ADUs embeddings. RO
i,j represents the em- 1002

beddings of the relative order information and 1003

is given by, RO
i,j = WO(posi − posj).W

O 1004

is the learnable weight matrix for ADU posi- 1005

tions, and Oi and Oj are the index reflecting 1006

the order of the ADUs i and j within the ar- 1007

gument. RP
i,j represents the relative embed- 1008

dings for participant transition and is given 1009

by, RP
i,j = WP(Pi − Pj).W

P is the learnable 1010

weight matrix for turn number, and Pi and Pj 1011

are the transition numbers of ADUs i and j 1012

within the argument. 1013

B.3 GPT for AR Prediction 1014

B.3.1 Experimental Settings 1015

We utilise the chat completion configuration 1016

of GPT-4o for the three tasks. 1017

(a) Configurations: We use GPT-4o and 1018

set a maximum token limit of 2048, a 1019

temperature of 0.7, a top-p probability of 1020

0.9. 1021

(b) Prompts Strategy: We employ few-shot 1022

prompts, where specific examples are 1023

provided as part of the instruction. We 1024
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create prompt templates that include in-1025

structions and two examples randomly1026

selected from a list of examples. An1027

example of a prompt tamplate for the1028

ARTC task is shown below.1029

You are a 3-class classifier model tasked1030

with assigning a label to the argument1031

relation between two argument units1032

(argument 1 and argument 2).1033

Classify the following pair of arguments,1034

argument 1: {ADU_1}1035

argument 2: {ADU_2},1036

into:1037

"support" (if argument 1 supports1038

argument 2),1039

"contradict" (if argument 1 attacks1040

argument 2),1041

and "None" (if no argument relation exists1042

between argument 1 and argument 2).1043

Please enter:1044

1 - for support,1045

2 - for contradict,1046

0 - for None relation.1047

Examples from each argument1048

relation types are provided below:1049

Example 1: the argument relation between1050

the argument "people feel, when they have1051

been voicing opinions on different1052

matters, that they have been not1053

listened to", and1054

the argument "people feel that they have1055

been treated disrespectfully on all1056

sides of the different arguments and1057

disputes going on"1058

is support, and hence prediction label is 1.1059

Example 2: The argument relation between1060

"there would be no non-tariff barriers1061

with the deal done with the EU" and1062

the argument "there are lots of1063

non-tariff barriers1064

with the deal done with the EU"1065

is contradiction, and1066

hence prediction label is 2.1067

Note: We use the actual examples to show sup-1068

port and contradiction relations, which should1069

be a placeholder variable in the final prompt1070

template.1071

C Macro-Structure 1072

An argument is a coherent arrangement of ut- 1073

terances organised in a specific order (Grosz 1074

and Sidner, 1986; Toulmin, 1958; Freeman, 1075

2011). Freeman (2011) propose a framework 1076

describing how these utterances collectively 1077

contribute to natural language argumentation, 1078

particularly focusing on their supportive roles 1079

and structural patterns, termed as “macro- 1080

structure”. This framework encompasses tech- 1081

niques such as divergent, convergent, linked, 1082

and serial reasoning, which illustrate how rea- 1083

sons combine to support conclusions. It un- 1084

derscores the significance of understanding 1085

the entire sequence of ideas within an argu- 1086

ment, including claims, challenges, responses, 1087

and counter-responses, to establish coherent 1088

structure. 1089

Coherence within discourse can be viewed at 1090

two levels: local coherence and global co- 1091

herence. Local coherence refers to coherence 1092

among the utterances in a segment of an argu- 1093

ment, while global coherence refers to the co- 1094

herence spanning segments (Grosz and Sidner, 1095

1986; Grosz et al., 1995). Grosz and Sidner 1096

argue that the coherence depends on the in- 1097

tentional structure of discourse addressed via 1098

the overall DP and DSP (Grosz and Sidner, 1099

1986; Grosz et al., 1995). These intentions 1100

are reflective of the speaker’s goals, akin to 1101

Gricean conversational implicatures (Grice, 1102

1975). In a multi-party discourse, the DSP for 1103

a given segment aligns with the intention of 1104

the conversational participant initiating that 1105

segment (Lochbaum, 1994). Freeman (2011) 1106

models these interactions as the interplay be- 1107

tween the proponents and opponents, showing 1108

how proponents assert and address opponents’ 1109

challenges, forming a chain of reasoning and 1110

highlighting the importance of tracing these 1111

transitions for understanding the argument. 1112

IAT (Budzynska and Reed, 2011) offers a 1113

framework representing how argument struc- 1114

ture is linked to the intentional structure and 1115

the dynamics within dialogue structure. In 1116

essence, IAT offers a macro-structural anal- 1117

ysis by representing the intentional structure 1118

and illocutionary dynamics within argumenta- 1119

tive discourse, by linking dialogical moves 1120

to their communicative intentions and illo- 1121
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Algorithm 1 Extract Local-Structures from Argument Map

Require: Argument map represented as nodes and edges, with each node categorised as ADU, and AR
Ensure: List of local-structures

Initialise an empty list to store local-structures: local_structures
Identify nodes corresponding to AR Nodes in the argument map
for each ADU Node in the argument map do

Perform an upward traversal to identify the chain of ADUs leading to the AR
Perform a downward traversal to identify the chain of ADUs following the AR Node
Mark the start of each local-structure in the upward traversal by identifying nodes without inward

connections
Mark the end of each local-structure in the downward traversal by identifying nodes without

successors
Include all chains of ADUs between the start and end node
Add the identified local-structure to local_structures

end for
return local_structures

cutionary forces. For example, Figure (1b)1122

illustrates participant interactions alongside1123

argument structures, showcasing diverse dia-1124

logue moves such as “Asserting”, “Arguing”,1125

“Questioning”, “Illocuting”, and “Restating”1126

(Budzynska and Reed, 2011). Annotated cor-1127

pora, such as the corpus of US presidential1128

debate 2016 (Visser et al., 2019) annotated1129

following such framework, exemplify how1130

dialogical interactions unfold as a series of1131

moves, each mapped to a structural element1132

within the argument graph. Although these dy-1133

namics are common in dialogue, similar con-1134

ceptualisations apply to monologue, where1135

a speaker delivers multiple utterances to an1136

audience (Grosz et al., 1995).1137

D Local Structures Extraction from1138

Argument Map1139

We navigate through argument following an1140

upward traversal to identify the chain of1141

ADUs leading to the AR node and a down-1142

ward traversal to identify the chain of ADUs1143

following the AR node. The algorithm marks1144

the end of each local-structure in the upward1145

traversal by identifying nodes without inward1146

connections and in the downward traversal1147

by identifying nodes without successors. It1148

includes all chains of ADUs that end at the1149

same node to form the local-structure.1150

Local-structures are segments of the argument1151

map that represent coherent chains of ADUs1152

leading to and following an AR. We present1153

Algorithm 1 to outline the procedure for ex- 1154

tracting local-structures from a global argu- 1155

ment map. The algorithm takes as input the 1156

argument map represented as nodes and edges, 1157

where each node represents ADUs and the 1158

ARs. The relations between ADUs are pre- 1159

sented based on the edges between the ADU 1160

and AR nodes. The algorithm generates a list 1161

of local-structures that are pertinent to the re- 1162

spective ARs within the argument map. To 1163

evaluate the correctness of local structures, 1164

two annotators assessed each local structure 1165

produced by the algorithm as either correct 1166

or incorrect. A local structure is considered 1167

correct if it aligns with the expected argument 1168

segment. The annotators are provided with a 1169

guideline that describes an argument segment. 1170

The inter-annotator agreement, measured with 1171

the Kappa statistic, was 0.78, indicating sub- 1172

stantial agreement. 1173

For illustrative purposes, Figure 3 presents 1174

several examples showcasing argument maps 1175

that feature multiple local-structures. In these 1176

examples, the local-structures are annotated 1177

with numerical labels. Each number used 1178

for annotation corresponds to a distinct local- 1179

structure. ARs that share the same numerical 1180

label are part of the same local-structure. 1181

E Error Analysis 1182

Figure 4 presents an example of an argument 1183

map generated by the baseline model. In 1184

this map, argument relations are labeled with 1185
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(a) An argument structure with 5 segments (A,B,C,D and
E)

A

A

A

A

A

A

A

A

A

A
A

A

A

B

B

C
C

CC

C

C

C
C

C

A
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(d) An argument structure with 5 segments (A,B,C,D and
E)

Figure 3: An example of argument structures involving multiple segments. ADUs are logically interconnected via
AR to form coherent argument structure. Figure (a) and (b) are taken from AAEC, while (c) and (d) are taken from
QT30. As can be seen from the figure, (a) and (b) forms one complete graph while (c) and (d) are scattered into
multiple disconnected graphs forming islands of argument segments.
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Figure 4: Example of error analysis. The argument map displays relations with arbitrary numbering, where incorrect
predictions are marked with an (x) symbol.

numbers, and incorrect AR predictions are1186

highlighted with an (x) symbol. The figure1187

provides a visual representation of the errors1188

made by the baseline model, allowing for a1189

clearer understanding of the error types in AR1190

predictions.1191

F Ablation Study Setup1192

In this section, we outline the setup for the ab-1193

lation study, which aims to assess the impact1194

of different components within the CU-MAM1195

architecture. By systematically removing spe-1196

cific components or features, we compare the1197

resulting configurations against both the com-1198

plete CU-MAM model (upper-bound perfor-1199

mance) and the baseline (lower-bound perfor-1200

mance). The study evaluates the effect of key1201

components, including local-structure predic-1202

tion, global-structure prediction, the Macro-1203

Attention Layer (MAL), and positional in-1204

formation in various configurations of CU- 1205

MAM. 1206

F.1 Local and Global Structure 1207

prediction and MAL Ablation 1208

We evaluate several configurations of the CU- 1209

MAM architecture, each of which targets the 1210

ablation of a specific component: 1211

• CU-MAM-L: This configuration re- 1212

moves the local-structure prediction, re- 1213

taining only the global-structure pre- 1214

diction and the Macro-Attention Layer 1215

(MAL). 1216

• CU-MAM-G: This configuration re- 1217

moves the global-structure prediction, re- 1218

taining the local-structure prediction and 1219

MAL. 1220

• CU-MAM-Att: This configuration re- 1221

moves the MAL and replaces it with a 1222
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stack of feedforward layers (with a com-1223

parable number of parameters to MAL)1224

for local and global structure predictions.1225

This substitution allows a fair compari-1226

son of model size between the two con-1227

figurations.1228

• CU-MAMAtt-only: This configuration1229

isolates the effect of MAL by using it1230

only to compute the cross-attention be-1231

tween the pair of ADUs under consid-1232

eration, without involving any auxiliary1233

tasks. In this setup, the two classifier lay-1234

ers predicting the local and global struc-1235

tures are removed, allowing for an evalu-1236

ation of MAL’s impact without the auxil-1237

iary tasks.1238

• CU-MAMFull: This configuration incor-1239

porates all components: local-structure1240

prediction, global-structure prediction,1241

and the Macro-Attention Layer, repre-1242

senting the full CU-MAM model.1243

For Simplicity, the following points outline1244

the setup for the local and global structure1245

prediction and MAL ablation study:1246

• we consider ACTS and ARTC task.1247

• The study is based on BigBird based CU-1248

MAM configuration with relative posi-1249

tional encoding since it achieve the high-1250

est performance.1251

• For each configuration an average perfor-1252

mance across the dataset is reported for1253

both ID and CD to provide a single per-1254

formance value for each configuration.1255

The baseline performance is calculated by av-1256

eraging the F1-scores of the two baseline, V-1257

SeqCls and V-ArgC, across the entire dataset1258

for each task. Specifically, the baseline for1259

each task is calculated as follows:1260

BaselineACTC = avg(V-SeqCls,V-ArgC)ACTC1261

BaselineARTC = avg(V-SeqCls,V-ArgC)ARTC1262

This average is computed over the complete1263

dataset for each respective task.1264

F.2 Positional Encoding Ablation 1265

We investigate the impact of different posi- 1266

tional encoding strategies through an abla- 1267

tion study, where each positional feature is 1268

removed individually to assess its effect on 1269

model performance. Specifically, we evaluate 1270

the use of two types of positional information: 1271

• Order embedding (O) 1272

• Participant transition embedding (P ) 1273

For each type of positional encoding, we test 1274

both absolute (Abs) and relative (Rel) encod- 1275

ings. The ablation study is conducted by sys- 1276

tematically removing each of these positional 1277

features and comparing the resulting perfor- 1278

mance against the full configuration, which 1279

includes both O and P embeddings. A drop 1280

in performance after removing a feature high- 1281

lights its contribution to the overall model’s 1282

effectiveness. By comparing the performance 1283

of each ablated configuration to the full model, 1284

we isolate and quantify the impact of each po- 1285

sitional feature. The configurations for ablat- 1286

ing the positional information are as follows: 1287

• Full (Abs): The model uses both order 1288

and participant transition embeddings 1289

with absolute positional encoding. 1290

• Full (Rel): The model uses both order 1291

and participant transition embeddings 1292

with relative positional encoding. 1293

• O− (Abs): The model is ablated by re- 1294

moving the order embedding with abso- 1295

lute positional encoding. 1296

• O− (Rel): The model is ablated by re- 1297

moving the order embedding with rela- 1298

tive positional encoding. 1299

• P− (Abs): The model is ablated by re- 1300

moving the participant transition embed- 1301

ding with absolute positional encoding. 1302

• P− (Rel): The model is ablated by re- 1303

moving the participant transition embed- 1304

ding with relative positional encoding. 1305

For simplicity, the following points outline 1306

the setup for the positional encoding ablation 1307

study: 1308

• The study is conducted on the ARTC 1309

task. 1310

• The ablation study is based on the 1311

BigBird-based CU-MAM configuration, 1312
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as it achieved the highest performance in1313

previous experiments.1314

• For each configuration, the average per-1315

formance across the dataset is reported1316

for CD evaluations on monologue and1317

dialogue datasets separately, providing a1318

single performance value for each config-1319

uration and comparing their effectiveness1320

with respect to the dataset nature.1321
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