
Under review as a conference paper at ICLR 2024

REINFORCEMENT LEARNING FOR NODE SELECTION
IN BRANCH-AND-BOUND

Anonymous authors
Paper under double-blind review

ABSTRACT

A big challenge in branch and bound lies in identifying the optimal node within
the search tree from which to proceed. Current state-of-the-art selectors utilize
either hand-crafted ensembles that automatically switch between naive sub-node
selectors, or learned node selectors that rely on individual node data. We pro-
pose a novel bi-simulation technique that uses reinforcement learning (RL) while
considering the entire tree state, rather than just isolated nodes. To achieve this,
we train a graph neural network that produces a probability distribution based on
the path from the model’s root to its “to-be-selected” leaves. Modelling node-
selection as a probability distribution allows us to train the model using state-of-
the-art RL techniques that capture both intrinsic node-quality and node-evaluation
costs. Our method induces a high quality node selection policy on a set of varied
and complex problem sets, despite only being trained on specially designed, syn-
thetic travelling salesmen problem (TSP) instances. Using such a fixed pretrained
policy shows significant improvements on several benchmarks in optimality gap
reductions and per-node efficiency under strict time constraints.

1 INTRODUCTION

The optimization paradigm of mixed integer programming plays a crucial role in addressing a wide
range of complex problems, including scheduling (Bayliss et al., 2017), process planning (Floudas &
Lin, 2005), and network design (Menon et al., 2013). A prominent algorithmic approach employed
to solve these problems is branch-and-bound (BnB), which recursively subdivides the original prob-
lem into smaller sub-problems through variable branching and pruning based on inferred problem
bounds. BnB is also one of the main algorithms implemented in SCIP (Bestuzheva et al., 2021a;b),
a state-of-the art mixed integer linear and mixed integer nonlinear solver.

An often understudied aspect is the node selection problem, which involves determining which
nodes within the search tree are most promising for further exploration. This is due to the intrin-
sic complexity of understanding the emergent effects of node selection on overall performance for
human experts. Contemporary methods addressing the node selection problem typically adopt a
per-node perspective (Yilmaz & Yorke-Smith, 2021; He et al., 2014; Morrison et al., 2016), incor-
porating varying levels of complexity and relying on imitation learning (IL) from existing heuris-
tics (Yilmaz & Yorke-Smith, 2021; He et al., 2014). However, they fail to fully capture the rich
structural information present within the branch-and-bound tree itself.

We propose a novel selection heuristic that leverages the power of bi-simulating the branch-and-
bound tree with a neural network-based model and that employs reinforcement learning (RL) for
heuristic training, see Fig. 1. To do so, we reproduce the SCIP state transitions inside our neural net-
work structure (bi-simulation), which allows us to take advantage of the inherent structures induced
by branch-and-bound. By simulating the tree and capturing its underlying dynamics we can extract
valuable insights that inform the RL policy, which learns from the tree’s dynamics, optimizing node
selection choices over time.

We reason that RL specifically is a good fit for this type of training as external parameters outside
the pure quality of a node have to be taken into account. For example, a node A might promise a
significantly bigger decrease in the expected optimality gap than a second node B, but node A might
take twice as long to evaluate, making B the “correct” choice despite its lower theoretical utility. By

1

Under review as a conference paper at ICLR 2024

𝑛!

𝑛" 𝑛#

𝑛$ 𝑛%

Independent Node Processing

extract features

normalize

for each node

MLP processing

Branch and Bound Tree

ℎ!(𝑛")

ℎ!(𝑛#) ℎ$(𝑛%)

ℎ!(𝑛&) ℎ!(𝑛')

𝐾 steps message passing
(+ MLP)

à node representation à tree-dependent node
representations ℎ!(𝑛")

Path Extraction

ℎ!(𝑛")

ℎ!(𝑛#) ℎ$(𝑛%)

ℎ!(𝑛&) ℎ!(𝑛')

branching candidates 𝑛#, 𝑛$, 𝑛%

𝑃 𝑛! = 1
2& 𝑤 ℎ" 𝑛! + 𝑤 ℎ" 𝑛#

𝑃 𝑛$ = 1
3& 𝑤 ℎ" 𝑛$ + 𝑤 ℎ" 𝑛% + 𝑤 ℎ" 𝑛#

𝑃 𝑛& = 1
3& 𝑤 ℎ" 𝑛& + 𝑤 ℎ" 𝑛% + 𝑤 ℎ" 𝑛#

𝜎 ⋅ branching node

1. 2. 3.
4.

Figure 1: Our method: (1) SCIP solves individual nodes and executes existing heuristics. (2) Fea-
tures are extracted from every branch-and-bound node and sent to individual normalization and em-
bedding. (3) The node embeddings are subject to K steps of GNN message passing on the induced
tree-structure. (4) Based on the node embeddings, we generate root-to-leave paths, from which we
sample the next node. The resulting node is submitted to SCIP and we return to step 1.

incorporating the bi-simulation technique, we can effectively capture the intricate interdependencies
of nodes and propagate relevant information throughout the tree.

2 BRANCH AND BOUND

BnB is one of the most effective methods for solving mixed integer programming (MIP) problems. It
recursively solves relaxed versions of the original problem, gradually strengthening the constraints
until it finds an optimal solution. The first step relaxes the original MIP instance into a tractable
subproblem by dropping all integrality constraints such that the subproblem can later be strictified
into a MIP solution. For simplicity, we focus our explanation to the case of mixed integer linear
programs (MILP) while our method theoretically works for any type of constraint allowed in SCIP
(see nonlinear results in Sec. 5.3.2, and (Bestuzheva et al., 2023). Concretely a MILP has the form

PMILP = min{cT1 x+ cT2 y|Ax+By ≥ b, y ∈ Zn}, (1)

where c1 and c2 are coefficient vectors, A and B are constraint matrices, and x and y are variable
vectors. The integrality constraint y ∈ Zn requires y to be an integer. In the relaxation step, this
constraint is dropped, leading to the following simplified problem:

Prelaxed = min{cT1 x+ cT2 y|Ax+By ≥ b}. (2)

Now, the problem becomes a linear program without integrality constraints, which can be exactly
solved using the Simplex (Dantzig, 1982) or other efficient linear programming algorithms.

After solving the relaxed problem, BnB proceeds to the branching step: First, a non-integral yi is
chosen. The branching step then derives two problems: The first problem (Eq. 3) adds a lower
bound to variable yi, while the second problem (Eq. 4) adds an upper bound to variable yi. These
two directions represent the rounding choices to enforce integrality for yi:1

Prelaxed ∪ {y ≤ c} = min{cT1 x+ cT2 y|Ax+By ≥ b, yi ≤ ⌊c⌋} (3)

Prelaxed ∪ {y ≥ c+ 1} = min{cT1 x+ cT2 y|Ax+By ≥ b, yi ≥ ⌈c⌉} (4)

The resulting decision tree, with two nodes representing the derived problems can now be processed
recursively. However, a naive recursive approach exhaustively enumerates all integral vertices, lead-
ing to an impractical computational effort. Hence, in the bounding step, nodes that are deemed
worse than the currently known best solution are discarded. To do this, BnB stores previously found
solutions which can be used as a lower bound to possible solutions. If a node has an upper bound
larger than a currently found integral solution, no node in that subtree has to be processed.

1There are non-binary, “wide” branching strategies which we will not consider here explicitly. However, our
approach is flexible enough to allow for arbitrary branching width. See Morrison et al. (2016) for an overview.

2

Under review as a conference paper at ICLR 2024

The interplay of these three steps—relaxation, branching, and bounding—forms the core of branch-
and-bound. It enables the systematic exploration of the solution space while efficiently pruning
unpromising regions. Through this iterative process, the algorithm converges towards the optimal
solution for the original MIP problem, while producing exact optimality bounds at every iteration.

3 RELATED WORK

While variable selection through learned heuristics has been studied a lot (see e.g. Parsonson et al.
(2022) or Etheve et al. (2020)), learning node selection, where learned heuristics pick the best node
to continue, have only rarely been addressed in research. We study learning algorithms for node se-
lection in state-of-the-art branch-and-cut solvers. Prior work that learns such node selection strate-
gies made significant contributions to improve the efficiency and effectiveness of the optimization.

Notably, many approaches rely on per-node features and Imitation Learning (IL). Otten & Dechter
(2012) examined the estimation of subproblem complexity as a means to enhance parallelization
efficiency. By estimating the complexity of subproblems, the algorithm can allocate computational
resources more effectively. Yilmaz & Yorke-Smith (2021) employed IL to directly select the most
promising node for exploration. Their approach utilized a set of per-node features to train a model
that can accurately determine which node to choose. He et al. (2014) employed support vector
machines and IL to create a hybrid heuristic based on existing heuristics. By leveraging per-node
features, their approach aimed to improve node selection decisions. While these prior approaches
have yielded valuable insights, they are inherently limited by their focus on per-node features.

Labassi et al. (2022) proposed the use of Siamese graph neural networks, representing each node as
a graph that connects variables with the relevant constraints. Their objective was direct imitation of
an optimal diving oracle. This approach facilitated learning from node comparisons and enabled the
model to make informed decisions during node selection. However, the relative quality of two nodes
cannot be fully utilized to make informed branching decisions as interactions between nodes remain
minimal (as they are only communicated through a final score and a singular global embedding
containing the primal and dual estimate). While the relative quality of nodes against each other is
used, the potential performance is limited as the overall (non-leaf) tree structure is not considered.

Another limitation of existing methods is their heavy reliance on pure IL that will be constrained by
the performance of the existing heuristics. Hence, integrating RL to strategically select nodes holds
great promise. This not only aims for short-term optimality but also for the acquisition of valuable
information to make better decisions later in the search process. This is important as node selection
not only has to model the expected decrease in the optimality gap, but also has to account for the
time commitment a certain node brings with it as not all nodes take equal amount of time to process.

4 METHODOLOGY

We combine two major objectives: a representation that effectively captures the inherent structures
and complexities of the branch-and-bound tree, see Sec. 4.1, and an RL policy trained to select
nodes (instead of an heuristic guided via RL), see Sec. 4.2. To do this, we view node-selection as a
probabilistic process where different nodes nk can be sampled from a distribution π: nk ∼ π(nk|so),
where so is the state of the branch-and-bound optimizer. Optimal node selection can now be framed
as learning a node-selection distribution π that, given some representation of the optimizer state
so, selects the optimal node ni to maximize a performance measure. A reasonable performance
measure, for instance, captures the achieved performance against a well-known baseline. In our
case, we choose our performance measure, i.e., our reward, to be

r = −
(

gap(node selector)
gap(scip)

− 1

)
(5)

The aim is to decrease the optimality gap achieved by our node-selector at the end of the solve
(i.e., gap(node selector)), normalized by the results achieved by the existing state-of-the-art node-
selection methods in the SCIP (Bestuzheva et al., 2021a) solver at the end of the solve (i.e.,
gap(scip)). We further shift this performance measure, such that any value > 0 corresponds to
our selector being superior to existing solvers, while a value < 0 corresponds to our selector being

3

Under review as a conference paper at ICLR 2024

worse, and clip the reward objective between (1,−1) to ensure equal size of the reward and “pun-
ishment” ranges as is commonly done in prior work (see, e.g. Mnih et al. (2015). In general, finding
good performance measurements that areis difficult (see Sec. 5). For training we can circumvent a
lot of the downsides of this reward formulation, like divide-by-zero or divide-by-infinity problems,
by simply sampling difficult, but tractable problems (see Sec. 4.3).

4.1 TREE REPRESENTATION

To address the first objective, we propose a novel approach that involves bi-simulating the existing
branch-and-bound tree using a graph neural network (GNN). This entails transforming the tree into a
graph structure, taking into account the features associated with each node (for a full list of features
we used, see Appendix C). We ensure that the features stay at a constant size, independent from,
e.g., the number of variables and constraints, to enable efficient batch-evaluation of the entire tree.

In the reconstructed GNN, the inputs consist of the features of the current node, as well as the fea-
tures of its two child nodes. Pruned or missing nodes are replaced with a constant to maintain the
integrity of the graph structure. This transformation enables us to consider subtrees within a prede-
termined depth limit, denoted as K, by running K steps of message passing. This approach allows
us to balance memory and computational requirements across different nodes, while preventing the
overload of latent dimensions in deep trees.

For our graph processing GNN, we use a well understood method known as “Message Passing”
across nodes. For all nodes, this method passes information from the graph’s neighborhood into
the node itself, by first aggregating all information with a permutation invariant transform (e. g.,
computing the mean across neighbors), and then updating the node-state with the neighborhood
state. In our case, the (directed) neighborhood is simply the set of direct children (see Fig. 1). As
message passing iterates, we accumulate increasing amounts of the neighborhood, as iteration t+ 1
utilizes a node-embedding that already has the last t steps aggregated. Inductively, the message
passing range directly correlates with the number of iterations used to compute the embeddings.

Concretely, the internal representation can be thought of initializing h0(n) = x(n) (with x(n) being
the feature associated with node n) and then running K iterations jointly for all nodes n:

ht+1(n) = ht(n) + emb

(
ht(left(n)) + ht(right(n))

2

)
, (6)

where left(n) and right(n) are the left and right children of n, respectively, ht(n) is the hidden
representation of node n after t steps of message passing, and emb is a function that takes the mean
hidden state of all embeddings and creates an updated node embedding.

4.2 RL FOR NODE SELECTION

While the GNN model is appealing, it is impossible to train using contemporary imitation learning
techniques, as the expert’s action domain (i.e., leaves) may not be the same as the policy’s action
domain, meaning that the divergence between these policies is undefined. Instead, we phrase our
node selection MDP as a the (state, action, reward) triple of (BnB tree, selectable leaves, reward r)
(where r is defined according to Eq. 5) and use RL techniques to solve this problem. Using the final
node-representation hK(n) we can derive a value for every node V (hK(n)) and a weight W (hK(n))
to be used by our RL agent. Specifically we can produce a probability distribution of node-selections
(i. e., our actions) by computing the expected weight across the unique path from the graph’s root to
the “to-be-selected” leaves. We specifically consider the expectation as to not bias against deeper or
shallower nodes. This definition allows us to have a global view on the node-selection probability,
despite the fact that we only perform a fixed number of message-passing iterations to derive our
node embeddings. Concretely, let n be a leaf node in the set of candidate nodes C , also let P (r, n)
be the unique path from the root r to the candidate leaf node, with |P (r, n)| describing its length.
We define the expected path weight W ′(n) to a leaf node n ∈ C as

W ′(n) =
1

|P (r, n)|
∑

u∈P (r,n)

W (hK(u)). (7)

Selection now is performed in accordance to sampling from a selection policy π induced by
π(n| tree) = softmax ({W ′(n)|∀n ∈ C }). (8)

4

Under review as a conference paper at ICLR 2024

Intuitively, this means that we select a node exactly if the expected utility along its path is high. Note
that this definition is naturally self-correcting as erroneous over-selection of one subtree will lead to
that tree being completed, which removes the leaves from the selection pool C .

By combining the bi-simulation technique, the GNN representation, and the computation of node
probabilities, we establish a framework that enables distributional RL for node selection. We con-
sider proximal policy optimization (PPO) (Schulman et al., 2017) for optimizing the node-selection
policy. For its updates, PPO considers the advantage A of the taken action in episode i against the
current action distribution. Intuitively, this amounts to reducing the frequency of disadvantageous
actions, while increasing the frequency of high quality actions. We choose the generalized advantage
estimator (GAE) (Schulman et al., 2015), which interpolates between an unbiased but high variance
Monte Carlo estimator, and a biased, low variance estimator. For the latter we use a value function
V (s), which we implemented similarly to the policy-utility construction above:

Q(n|s) = Q̃(n|s)
|P (r, n)|

(9)

Q̃(n|s) = Q̃(left child|s) + Q̃(right child|s) + q(hn|s) (10)
V (s) = {maxQ(n) | ∀n ∈ C } (11)

where q(hn) is the per-node estimator, Q̃ the unnormalized Q-value, and C is the set of open nodes
as proposed by the branch-and-bound method. Note that this representation uses the fact that the
value function can be written as the maximal Q-value: V (s) = maxa∈A Q(a|s).
This method provides low, but measurable overhead compared to existing node selectors, even if
we discount the fact that our Python-based implementation is vastly slower than SCIP’s highly
optimized C-based implementations. Hence, we focus our model on being efficient at the beginning
of the selection process, where good node selections are exponentially more important as finding
more optimal solutions earlier allows to prune more nodes from the exponentially expanding search
tree. Specifically we evaluate our heuristic at every node for the first 250 selections, then at every
tenth node for the next 750 nodes, and finally switch to classical selectors for the remaining nodes.2

4.3 DATA GENERATION & AGENT TRAINING

In training MIPs, a critical challenge lies in generating sufficiently complex training problems. First,
to learn from interesting structures, we need to decide on some specific problem, whose e. g., satisfia-
bility is knowable as generating random constraint matrices will likely generate empty polyhedrons,
or polyhedrons with many eliminable constraints (e.g., in the constraint set consisting of cTx ≤ b
and cTx ≤ b+ρ with ρ ̸= 0 one constraint is always eliminable). This may seem unlikely, but notice
how we can construct aligned c vectors by linearly combining different rows (just like in LP-dual
formulations). In practice, selecting a sufficiently large class of problems may be enough as during
the branch-and-cut process many sub-polyhedra are anyways being generated. Since our algorithm
naturally decomposes the problem into sub-trees, we can assume any policy that performs well on
the entire tree also performs well on sub-polyhedra generated during the branch-and-cut.

For this reason we consider the large class of Traveling Salesman Problem (TSP), which itself has
rich use-cases in planning and logistics, but also in optimal control, the manufacturing of microchips
and DNA sequencing (see Cook et al. (2011)). The TSP problem consists of finding a round-trip
path in a weighted graph, such that every vertex is visited exactly once, and the total path-length is
minimal (for more details and a mathematical formulation, see Appendix A)

For training, we would like to use random instances of TSP but generating them can be challeng-
ing. Random sampling of distance matrices often results in easy problem instances, which do not
challenge the solver. Consequently, significant effort has been devoted to devising methods for gen-
erating random but hard instances, particularly for problems like the TSP, where specific generators
for challenging problems have been designed (see Vercesi et al. (2023) and Rardin et al. (1993)).

However, for our specific use cases, these provably hard problems may not be very informative as
they rarely contain efficiently selectable nodes. For instance, blindly selecting knapsack instances

2This accounts for the “phase-transition” in MIP solvers where optimality needs to be proved by closing the
remaining branches although the theoretically optimal point is already found (Morrison et al., 2016). Note that
with a tuned implementation we could run our method for more nodes, where we expect further improvements.

5

Under review as a conference paper at ICLR 2024

according to the Merkle-Hellman cryptosystem (Merkle & Hellman, 1978), would lead to challeng-
ing problems, but ones that are too hard to provide meaningful feedback to the RL agent.

To generate these intermediary-difficult problems, we adopt a multi-step approach: We begin by
generating random instances and then apply some mutation techniques (Bossek et al., 2019) to
introduce variations, and ensure diversity within the problem set. From this population of candidate
problems, we select the median optimality-gap problem. The optimality gap, representing the best
normalized difference between the lower and upper bound for a solution found during the solver’s
budget-restricted execution, serves as a crucial metric to assess difficulty. This method is used to
produce 200 intermediary-difficulty training instances

To ensure the quality of candidate problems, we exclude problems with more than 100% or zero
optimality gap, as these scenarios present challenges in reward assignment during RL. To reduce
overall variance of our training, we limit the ground-truth variance in optimality gap. Additionally,
we impose a constraint on the minimum number of nodes in the problems, discarding every instance
with less than 100 nodes. This is essential as we do not expect such small problems to give clean
reward signals to the reinforcement learner.

5 EXPERIMENTS

For our experiments we consider the instances of TSPLIB (Reinelt, 1991) and MIPLIB (Gleixner
et al., 2021) which are one of the most used datasets for benchmarking MIP frameworks and thusly
form a strong baseline to test against. We further test against the UFLP instance generator by
(Kochetov & Ivanenko, 2005), which specifically produces instances hard to solve for branch-and-
bound, and against MINLPLIB (Bussieck et al., 2003), which contains mixed integer nonlinear
programs, to show generalization towards very foreign problems. The source code for reproducing
our experiments will be made publicly available (see supplementary material).

5.1 BASELINES

We run both our method and SCIP for 45s.3 We then filter out all runs where SCIP has managed to
explore less than 5 nodes, as in these runs we cannot expect even perfect node selection to make any
difference in performance. If we included those in our average, we would have a significant number
of lines where our node-selector has zero advantage over the traditional SCIP one, not because our
selector is better or worse than SCIP, but simply because it wasn’t called in the first place. We set this
time-limit relatively low as our prototype selector only runs at the beginning of the solver process,
meaning that over time the effects of the traditional solver take over. Running the system for longer
yields similar trends, but worse signal-to-noise ratio in the improvement due to the SCIP selector
dominating the learnt solver in the long-runtime regime.

A common issue in testing new node selection techniques against an existing (e.g., SCIP) strategy is
the degree of code-optimization present in industrial-grade solvers compared to research prototypes:
SCIP is a highly optimized C-implementation while our node selector has Python and framework
overhead to contend with. This means the node-throughput is naturally going to be much slower
than the node-throughput of the baseline, even if we disregard the additional cost of evaluating the
neural network. We cannot assess the theoretically possible efficiency of our method, so all of our
results should be taken as a lower-bound on performance4.

5.2 EVALUATION METRICS

A core issue in benchmarking is the overall breadth of difficulty and scale of problem instances.
Comparing the performance of node selection strategies is challenging due to a lack of aggregatable
metrics. Further, the difficulty of the instances in benchmarks do not only depend on the scale
but also specific configuration, e.g., distances in TSPLIB: while swiss42 can be solved quickly,
ulysses22 cannot be solved within our time limit despite only being half the size (see Table 3).

3Unfortunately, we could not include Labassi et al. (2022) and He et al. (2014) as baselines due to compat-
ibility issues between SCIP versions, see Appendix D for more details.

4For instance, our method spends about as much time in the feature-extraction stage as in all other stages
combined. This is due to the limited efficiency of even highly optimized Python code.

6

Under review as a conference paper at ICLR 2024

We can also see this at the range of optimality gaps in Table 3. The gaps range from 1134% to 0%.
Computing the mean gap alone is not very meaningful as instances with large gaps dominate the
average.5 To facilitate meaningful comparisons, we consider three normalized metrics as follows.

The Reward (Eq. 5) considers the shifted ratio between the optimality gap of our approach and that
of the baseline; positive values represent that our method is better and vice verse. This has the natural
advantage of removing the absolute scale of the gaps and only considering relative improvements.
The downside is that small differences can get blown-up in cases where the baseline is already
small.6 Note that the function also has an asymmetric range, since one can have an infinitely negative
reward, but can have at most have a +1 positive reward. Hence, we clip the reward in the range ±1
as this means a single bad result cannot destroy the entire valuation for either method.

Utility defines the difference between both methods normalized using the maximum of both gaps:

Utility =

(
gap(scip) − gap(node selector)

max (gap(node selector), gap(scip))

)
. (12)

The reason we do not use this as a reward measure is because we empirically found it to produce
worse models. This is presumably because some of the negative attributes of our reward, e.g., the
asymmetry of the reward signal, lead to more robust policies. In addition, the utility metric gives
erroneous measurements when both models hit zero optimality gap. This is because utility implicitly
defines 0

0 = 0, rather than reward, which defines it as 0
0 = 1. In some sense the utility measurement

is accurate, in that our method does not improve upon the baseline. On the other hand, our method
is already provably optimal as soon as it reaches a gap of 0%. In general, utility compresses the
differences more than reward which may or may not be beneficial in practice.

Utility per Node normalizes Utility by the number of nodes used during exploration:

Utility/Node =

(
scip− selector

max (selector, scip)

)
, (13a)

where selector = gap(node selector)
nodes(node selector) and scip = gap(scip)

nodes(scip) . The per-node utility gives a proxy for
the total amount of “work” done by each method. However, it ignores the individual node costs, as
solving the different LPs may take different amounts of resources (a model with higher “utility/node”
is not necessarily more efficient as our learner might pick cheap but lower expected utility nodes on
purpose). Further, the metric is underdefined: comparing two ratios, a method may become better
by increasing the number of nodes processed, but keeping the achieved gap constant. In practice the
number of nodes processed by our node selector is dominated by the implementation rather than the
node choices, meaning we can assume it is invariant to changes in policy. Another downside arises
if both methods reach zero optimality gap, the resulting efficiency will also be zero regardless of
how many nodes we processed. As our method tend to reach optimality much faster (see Sec. 5 and
Appendix D), all utility/node results can be seen as a lower-bound for the actual efficiency.

5.3 RESULTS

While all results can be found in Appendix D we report an aggregated view for each benchmark in
Table 6. In addition to our metrics we report the winning ratio of our method over the baseline, and
the geometric mean of the gaps at the end of solving (lower is better).

For benchmarking and training, we leave all settings, such as presolvers, primal heuristics, diving
heuristics, constraint specialisations, etc. at their default settings to allow the baseline to perform
best. All instances are solved using the same model without any fine-tuning. We expect that tuning,
e.g., the aggressiveness of primal heuristics, increases the performance of our method, as it decreases

5A gap decrease from 1, 000% down to 999% has the same overall magnitude as a decrease from 1% to 0%
– but from a practical point of view the latter is much more meaningful. The degree of which a result can be
improved also depends wildely on the problem’s pre-existing optimality gap. For instance an improvement of
2% from 1, 000% down to 998% is easily possible, while becoming impossible for a problem whose baseline
already achieves only 1% gap. This would mean that in a simple average the small-gap problems would
completely vanish under the size of large-gap instances.

6For example, if the baseline has a gap of 0.001 and ours has a gap of 0.002 our method would be 100%
worse, despite the fact that from a practical point of view both of them are almost identical.

7

Under review as a conference paper at ICLR 2024

Table 1: Performance across benchmarks (the policy only saw TSP instances during training). The
5min runs use the same model, evaluated for the first 650 nodes, and processed according to Sec. 5.1.

Benchmark Reward Utility Utility/Node Win-rate geo-mean Ours geo-mean SCIP

TSPLIB (Reinelt, 1991) 0.184 0.030 0.193 0.50 0.931 0.957
UFLP (Kochetov & Ivanenko, 2005) 0.078 0.093 -0.064 0.636 0.491 0.520
MINLPLib (Bussieck et al., 2003) 0.487 0.000 0.114 0.852 28.783 31.185
MIPLIB (Gleixner et al., 2021) 0.140 -0.013 0.208 0.769 545.879 848.628
TSPLIB@5min 0.192 0.056 0.336 0.600 1.615 2.000
MINLPlib@5min 0.486 -0.012 0.078 0.840 17.409 20.460
MINLPlib@5min 0.150 -0.075 0.113 0.671 66.861 106.400

the relative cost of evaluating a neural network, but for the sake of comparison we use the same
parameters. We train our node selection policy on problem instances according to Sec. 4.3 and
apply it on problems from different benchmarks.

First, we will discuss TSPLIB itself, which while dramatically more complex than our selected train-
ing instances, still contains instances from the same problem family as the training set (Sec. 5.3.1).
Second, we consider instances of the Uncapacitated Facility Location Problem (UFLP) as generated
by Kochetov & Ivanenko (2005)’s problem generator. These problems are designed to be particu-
lary challenging to branch-and-bound solvers due to their large optimality gap (Sec. D.3.1). While
the first two benchmarks focused on specific problems (giving you a notion of how well the al-
gorithm does on the problem itself) we next consider “‘meta-benchmarks” that consist of many
different problems, but relatively few instances of each. MINLPLIB (Bussieck et al., 2003) is a
meta-benchmark for nonlinear mixed-integer programming (Sec. 5.3.2), and MIPLIB (Gleixner
et al., 2021) a benchmark for mixed integer programming (Sec. 5.3.3). We also consider gener-
alisation against the uncapacitated facility location problem using a strong instance generator, see
Appendix D.3.1. Our benchmarks are diverse and complex and allow to compare algorithmic im-
provements in state-of-the-art solvers.

5.3.1 TSPLIB

From an aggregative viewpoint we outperform the SCIP node selection by ≈ 20% in both reward
and utility per node. Due to the scoring of zero-gap instances we are only 3.3% ahead in utility.
If both our method and the baseline reach an optimality gap of 0, it is unclear how the normalised
reward should appear. “Reward” defines 0

0 = 1 as our method achieved the mathematically optimal
value, so it should achieve the optimal reward. “Utility” defines 0

0 = 0 as our method did not
improve upon the baseline. While this also persists in “utility per node”, our method is much more
efficient compared to the baseline s.t. zero-gap problems do not affect our results much.

Qualitatively, it is particularly interesting to study the problems our method still looses against SCIP
(in four cases). A possible reason why our method significantly underperforms on Dantzig42 is
that our implementation is just too slow, considering that the baseline manages to evaluate ≈ 40%
more nodes. A similar observation can be made on eil51 where the baseline manages to complete
5× more nodes. KroE100 is the first instance our method looses against SCIP, although it explores
an equal amount of nodes. We believe that this is because our method commits to the wrong subtree
early and never manages to correct into the proper subtree. rd100 is also similar to Dantzig and
eil51 as the baseline is able to explore 60% more nodes. Ignoring these four failure cases, our
method is either on par (up to stochasticity of the algorithm) or exceeds the baseline significantly.

It is also worthwhile to study the cases where both the baseline and our method hit 0 optimality
gap. A quick glance at instances like bayg29, fri26, swiss42 or ulysses16 shows that our
method tends to finish these problems with significantly fewer nodes explored. This is not captured
by any of our metrics as the “utility/node” metric is zero if the utility is zero, as is the case with
0 optimality gap instances. Qualitatively, instances like bayg29 manage to reach the optimum in
only 1

3 the number of explored nodes, which showcases a significant improvement in node-selection
quality. It is worth noting that, due to the different optimization costs for different nodes, it not
always holds that evaluating fewer nodes is faster in wall-clock time. In practice, “fewer nodes is
better” seems to be a good rule-of-thumb to check algorithmic efficiency.

8

Under review as a conference paper at ICLR 2024

5.3.2 MINLPLIB

We now consider MINLPs. To solve these, SCIP and other solvers use branching techniques that
cut nonlinear (often convex) problems from a relaxed master-relaxation towards true solutions. We
consider MINLPLib (Bussieck et al., 2003), a meta-benchmark consisting of hundreds of synthetic
and real-world MINLP instances of varying different types and sizes. As some instances take hours
to solve (making them inadequate to judge our node selector which mainly aims to improve the
starting condition of problems), we also pre-filter the instances. Specifically, we apply the same
filtering for tractable problems as in the TSPLIB case. Full results can be found in Appendix D.3.

Our method still manages to outperform SCIP, even on MINLPs, although it has never seen a single
MINLP problem before, see Table 6. The reason for the significant divergence between the Reward
and Utility performance measures is once again due to the handling of 0

0 . Since MINLPLIB con-
tains a fair few “easy” problems that can be solved to 0% gap, this has a much bigger effect on
this benchmark than the others. Qualitatively, our method either outperforms or is on par with the
majority of problems, but also loses significantly in some problems, greatly decreasing the average.
Despite the fact that utility “rounds down” advantages to zero, the overall utility per node is still
significantly better than that of SCIP. Inspecting the instances with poor results, we also see that for
most of them the baseline manages to complete significantly more nodes than our underoptimized
implementation. We expect features specifically tuned for nonlinear problems to increase perfor-
mance by additional percentage points, but as feature selection is orthogonal to the actual algorithm
design, we leave more thorough discussion of this to future work 7.

5.3.3 MIPLIB

Last, but not least we consider the meta-benchmark MIPLIB (Gleixner et al., 2021), which consists
of hundreds of real-world mixed-integer programming problems of varying size, complexity, and
hardness. Our method is either close to or exceeds the performance of SCIP, see Table 6. It is also
the first benchmark our method looses on, according to the utility-metric.

Considering per-instance results, we see similar patterns as in previous failure cases: Often we
underperform on instances that need to close many nodes, as our method’s throughput lacks behind
that of SCIP. We expect that a more efficient implementation alleviates the issues in those cases.

We also see challenges in problems that are far from the training distribution. Consider
fhnw-binpack4-48, were the baseline yields an optimality gap of 0 while we end at +∞. This
is due to the design of the problem: Instead of a classical optimization problem, this is a satisfaction
problem, where not an optimal value, but any valid value is searched, i.e., we either yield a gap of 0,
or a gap of +∞, as no other gap is possible. Notably, these kinds of problems may pose a challenge
for our algorithm, as the node-pruning dynamics of satisfying MIPs are different than the one for
optimizing MIPs: Satisfying MIPs can only rarely prune nodes since, by definition, no intermediary
primally valid solutions are ever found. We believe this problem could be solved by considering
such problems during training, which we currently do not.

6 CONCLUSION

We have proposed a novel approach to branch-and-bound node selection, leveraging the power of
bisimulation and RL. By aligning our model with the branch-and-bound tree structure, we have
demonstrated the potential to develop a versatile heuristic that can be applied across various opti-
mization problem domains, despite being trained on a narrow set of instances. To our knowledge,
this is the first demonstration of learned node selection to mixed-integer (nonlinear) programming.

There are still open questions. Feature selection remains an area where we expect significant im-
provements, especially for nonlinear programming, which contemporary methods do not account
for. We also expect significant improvements in performance through code optimization. An impor-
tant area for research lies in generalized instance generation: Instead of focusing on single domain
instances for training (e.g. from TSP), an instance generator should create problem instances with
consistent, but varying levels of difficulty across different problem domains.

7We are not aware of a learned BnB node-selection heuristic used for MINLPs, so guidance towards feature
selection doesn’t exist yet. Taking advantage of them presumably also requires to train on nonlinear problems.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What Matters In On-Policy Reinforcement Learning? A Large-Scale Em-
pirical Study, June 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas C. Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, G. Cottrell, and Ju-
lian McAuley. Rezero is all you need: Fast convergence at large depth. In Conference on Un-
certainty in Artificial Intelligence, 2020. URL https://api.semanticscholar.org/
CorpusID:212644626.

Christopher Bayliss, Geert De Maere, Jason Adam David Atkin, and Marc Paelinck. A simulation
scenario based mixed integer programming approach to airline reserve crew scheduling under
uncertainty. Annals of Operations Research, 252:335–363, 2017.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. Technical report,
Optimization Online, December 2021a.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. ZIB-Report 21-41,
Zuse Institute Berlin, December 2021b.

Ksenia Bestuzheva, Antonia Chmiela, Benjamin Müller, Felipe Serrano, Stefan Vigerske, and
Fabian Wegscheider. Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8,
January 2023.

Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike
Trautmann. Evolving diverse tsp instances by means of novel and creative mutation operators.
In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms,
FOGA ’19, pp. 58–71, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362542. doi: 10.1145/3299904.3340307.

Michael R. Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. MINLPLib—a collection of
test models for mixed-integer nonlinear programming. INFORMS Journal on Computing, 15(1):
114–119, February 2003. doi: 10.1287/ijoc.15.1.114.15159.

William J Cook, David L Applegate, Robert E Bixby, and Vasek Chvatal. The traveling salesman
problem: a computational study. Princeton university press, 2011.

George B. Dantzig. Reminiscences about the origins of linear programming. Operations Research
Letters, 1(2):43–48, 1982. ISSN 0167-6377. doi: https://doi.org/10.1016/0167-6377(82)90043-8.

Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-Sidhoum. Reinforcement
learning for variable selection in a branch and bound algorithm. ArXiv, abs/2005.10026, 2020.
URL https://api.semanticscholar.org/CorpusID:211551730.

Christodoulos A. Floudas and Xiaoxia Lin. Mixed integer linear programming in process schedul-
ing: Modeling, algorithms, and applications. Annals of Operations Research, 139:131–162, 2005.

10

https://api.semanticscholar.org/CorpusID:212644626
https://api.semanticscholar.org/CorpusID:212644626
https://api.semanticscholar.org/CorpusID:211551730

Under review as a conference paper at ICLR 2024

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke,
Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano.
MIPLIB 2017: Data-driven compilation of the 6th mixed-integer programming library. Math-
ematical Programming Computation, 13(3):443–490, September 2021. ISSN 1867-2957. doi:
10.1007/s12532-020-00194-3.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Yuri Kochetov and Dmitry Ivanenko. Computationally Difficult Instances for the Uncapacitated
Facility Location Problem, pp. 351–367. Springer US, Boston, MA, 2005. ISBN 978-0-387-
25383-1. doi: 10.1007/0-387-25383-1 16.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and
bound with graph neural networks. In Advances in Neural Information Processing Systems 35,
2022.

Govind Menon, M. Nabil, and Sridharakumar Narasimhan. Branch and bound algorithm for optimal
sensor network design. IFAC Proceedings Volumes, 46(32):690–695, 2013. ISSN 1474-6670.
doi: https://doi.org/10.3182/20131218-3-IN-2045.00143. 10th IFAC International Symposium
on Dynamics and Control of Process Systems.

R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Trans-
actions on Information Theory, 24(5):525–530, September 1978. doi: 10.1109/tit.1978.1055927.
URL https://doi.org/10.1109/tit.1978.1055927.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling sales-
man problems. J. ACM, 7(4):326–329, oct 1960. ISSN 0004-5411. doi: 10.1145/321043.321046.

Hans D. Mittelmann. Decison Tree for Optimization Software. https://plato.asu.edu/
sub/nlores.html, 2021. Accessed: 2023-09-02.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, February 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell. Branch-and-
bound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete
Optimization, 19:79–102, 2016. ISSN 1572-5286. doi: https://doi.org/10.1016/j.disopt.2016.01.
005.

Lars Otten and Rina Dechter. A Case Study in Complexity Estimation: Towards Parallel Branch-
and-Bound over Graphical Models. Uncertainty in Artificial Intelligence - Proceedings of the
28th Conference, UAI 2012, October 2012.

Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D. Barrett. Reinforcement learn-
ing for branch-and-bound optimisation using retrospective trajectories. In AAAI Conference on
Artificial Intelligence, 2022. URL https://api.semanticscholar.org/CorpusID:
249192146.

Ronald L. Rardin, Craig A. Tovey, and Martha G. Pilcher. Analysis of a Random Cut Test In-
stance Generator for the TSP. In Complexity in Numerical Optimization, pp. 387–405. WORLD
SCIENTIFIC, July 1993. ISBN 978-981-02-1415-9. doi: 10.1142/9789814354363 0017.

Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3
(4):376–384, November 1991. doi: 10.1287/ijoc.3.4.376.

J. Schulman, Philipp Moritz, S. Levine, Michael I. Jordan, and P. Abbeel. High-Dimensional Con-
tinuous Control Using Generalized Advantage Estimation. CoRR, June 2015.

11

https://doi.org/10.1109/tit.1978.1055927
https://plato.asu.edu/sub/nlores.html
https://plato.asu.edu/sub/nlores.html
https://doi.org/10.1038/nature14236
https://api.semanticscholar.org/CorpusID:249192146
https://api.semanticscholar.org/CorpusID:249192146

Under review as a conference paper at ICLR 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Eleonora Vercesi, Stefano Gualandi, Monaldo Mastrolilli, and Luca Maria Gambardella. On
the generation of metric TSP instances with a large integrality gap by branch-and-cut. Math-
ematical Programming Computation, 15(2):389–416, June 2023. ISSN 1867-2957. doi:
10.1007/s12532-023-00235-7.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified acti-
vations in convolutional network. ArXiv, abs/1505.00853, 2015. URL https://api.
semanticscholar.org/CorpusID:14083350.

Kaan Yilmaz and Neil Yorke-Smith. A Study of Learning Search Approximation in Mixed Integer
Branch and Bound: Node Selection in SCIP. AI, 2(2):150–178, April 2021. ISSN 2673-2688.
doi: 10.3390/ai2020010.

12

https://api.semanticscholar.org/CorpusID:14083350
https://api.semanticscholar.org/CorpusID:14083350

Under review as a conference paper at ICLR 2024

A TSP-AS-MILP FORMULATION

In general, due to the fact that TSP is amongst the most studied problems in discrete optimization,
we can expect existing mixed-integer programming systems to have rich heuristics that provide
a strong baseline for our method. Mathematically, we choose the Miller–Tucker–Zemlin (MTZ)
formulation (Miller et al., 1960):

min
x

n∑
i=1

n∑
j ̸=i,j=1

cijxij (14a)

subject to
n∑

j=1,i̸=j

xij = 1 ∀i = 1, . . . , n (14b)

n∑
i=1,i̸=j

xij = 1 ∀j = 1, . . . , n (14c)

u1 − uj + (n− 1)xij ≤ n− 2 2 ≤ i ̸= j ≤ n (14d)
2 ≤ ui ≤ n 2 ≤ i ≤ n (14e)
ui ∈ Z, xij ∈ {0, 1} (14f)

Effectively this formulation keeps two buffers: one being the actual (i, j)-edges travelled xij , the
other being a node-order variable ui that makes sure that ui < uj if i is visited before j. There
are alternative formulations, such as the Dantzig–Fulkerson–Johnson (DFJ) formulation, which are
used in modern purpose-built TSP solvers, but those are less useful for general problem generation:
The MTZ formulation essentially relaxes the edge-assignments and order constraints, which then
are branch-and-bounded into hard assignments during the solving process. This is different to DFJ,
which instead relaxes the “has to pass through all nodes” constraint. DFJ allows for subtours (e. g.,
only contain node A,B,C but not D,E) which then get slowly eliminated via the on-the-fly gener-
ation of additional constraints. To generate these constraints one needs specialised row-generators
which, while very powerful from an optimization point-of-view, make the algorithm less general as
a custom row-generator has to intervene into every single node. However, in our usecase we also do
not really care about the ultimate performance of individual algorithms as the reinforcement learner
only looks for improvements to the existing node selections. This means that as long as the degree
of improvement can be adequately judged, we do not need state-of-the-art solver implementations
to give the learner a meaningful improvement signal.

B UNCAPACITATED FACILITY LOCATION PROBLEM

Mathmatically, the uncapacitated facility location problem can be seen as sending a product zij from
facility i to consumer j with cost cij and demand dj . One can only send from i to j if facility i was
built in the first place, which incurs cost fi. The overall problem therefore is

min
x

n∑
i=1

m∑
i=1

cijdjzij +

n∑
i=0

fixi (15a)

subject to
n∑

j=1,i̸=j

zij = 1 ∀i = 1, . . . ,m (15b)

n∑
i=1,i̸=j

zij ≤ Mxi ∀j = 1, . . . , n (15c)

zij ∈ {0, 1} ∀i = 1, . . . , n, ∀j = 1, . . . ,m (15d)
xi ∈ {0, 1} ∀i = 1, . . . , n (15e)

(15f)

where M is a suitably large constant representing the infinite-capacity one has when constructing
xi = 1. One can always choose M ≥ m since that, for the purposes of the polytop is equivalent to
setting M to literal infinity. This is also sometimes referred to as the “big M” method.

13

Under review as a conference paper at ICLR 2024

The instance generator by Kochetov & Ivanenko (2005) works by setting n = m = 100 and setting
all opening costs at 3000. Every city has 10 “cheap” connections sampled from {0, 1, 2, 3, 4} and
the rest have cost 3000, which represents infinity (i. e., also invoking the big M method).

C FEATURES

Table 2 lists the features used on every individual node. The features split into two different types:
One being “model” features, the other being “node” features. Model features describe the state of the
entire model at the currently explored node, while node features are specific to the yet-to-be-solved
added node. We aim to normalize all features with respect to problem size, as e. g., just giving the
lower-bound to a problem is prone to numerical domain shifts. For instance a problem with objective
cTx, x ∈ P is inherently the same from a solver point-of-view as a problem 10cTx, x ∈ P , but
would give different lower-bounds. Since NNs are generally nonlinear estimators, we need to make
sure such changes do not induce huge distribution shifts. We also clamp the feature values between
[−10, 10] which represent “infinite” values, which can occur, for example in the optimality gap. Last
but not least, we standardize features using empirical mean and standard deviation. These features

Table 2: Features used per individual node.

m
od

el
fe

at
ur

es

Number of cuts applied normalized by total number of constraints
Number of separation rounds
optimality gap
lp iterations
mean integrality gap
percentage of variables already integral
histogram of fractional part of variables 10 evenly sized buckets

no
de

fe
at

ur
es

depth of node normalized by total number of nodes
node lowerbound normalized by min of primal and dual bound
node estimate normalized by min of primal and dual bound

are inspired by prior work, such as Labassi et al. (2022); Yilmaz & Yorke-Smith (2021), but adapted
to the fact that we do not need e. g., explicit entries for the left or right child’s optimality gap, as
these (and more general K-step versions of these) can be handled by the GNN.

Further, to make batching tractable, we aim to have constant size features. This is different from
e. g., Labassi et al. (2022), who utilize flexibly sized graphs to represent each node. The upside
of this approach is that certain connections between variables and constraints may become more
apparent, with the downside being the increased complexity of batching these structures and large
amounts of nodes used. This isn’t a problem for them, as they only consider pairwise comparisons
between nodes, rather than the entire branch-and-bound graph, but for us would induce a great deal
of complexity and computational overhead, especially in the larger instances. For this reason, we
represent flexibly sized inputs, such as the values of variables, as histograms: i.e., instead of having
k nodes for k variables and wiring them together, we produce once distribution of variable values
with 10-buckets, and feed this into the network. This looses a bit of detail in the representation, but
allows us to scale to much larger instances than ordinarily possible.

In general, these features are not optimized, and we would expect significant improvements from
more well-tuned features. Extracting generally meaningful features from branch-and-bound is a
nontrivial task and is left as a task for future work.

D FULL RESULTS

The following two sections contain the per-instance results on the two “named” benchmarks
TSPLIB (Reinelt, 1991) and MINLPLIB (Bussieck et al., 2003). We test against the strong SCIP
8.0.4 baseline. Due to compatibility issues, we decided not to test against (Labassi et al., 2022) or
(He et al., 2014): These methods were trained against older versions of SCIP, which not only made
running them challenging, but also would not give valid comparisons as we cannot properly account
for changes between SCIP versions. Labassi et al. (2022) specifically relies on changes to the SCIP
interface, which makes porting to SCIP 8.0.4 intractable. In general, this shouldn’t matter too much,

14

Under review as a conference paper at ICLR 2024

as SCIP is still demonstrably the state-of-the-art non-commercial mixed-integer solver, which fre-
quently outperforms even closed-source commercial solvers (see Mittelmann (2021) for thorough
benchmarks against other solvers), meaning outperforming SCIP can be seen as outperforming the
state-of-the-art.

D.1 TSPLIB RESULTS

Table 3: Results on TSPLIB (Reinelt, 1991) after 45s runtime. Note that we filter out problems in
which less than 5 nodes were explored as those problems cannot gain meaningful advantages even
with perfect node selection. “Name” refers to the instances name, “Gap Base/Ours” corresponds to
the optimization gap achieved by the baseline and our method respectively (lower is better), “Nodes
Base/Ours” to the number of explored Nodes by each method, and “Reward”, “Utility” and “Utility
Node” to the different performance measures as described in Section 5.

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

att48 0.287 0.286 1086 2670 -0.002 -0.002 0.593
bayg29 0.000 0.000 2317 7201 1.000 0.000 0.000
bays29 0.000 0.036 11351 10150 1.000 1.000 0.997
berlin52 0.000 0.000 777 1634 1.000 0.000 0.000
bier127 2.795 2.777 23 25 -0.007 -0.007 0.074
brazil58 0.328 0.644 1432 2182 0.491 0.491 0.666
burma14 0.000 0.000 96 65 1.000 0.000 0.000
ch130 8.801 8.783 48 43 -0.002 -0.002 -0.106
ch150 7.803 7.802 18 18 -0.000 -0.000 -0.000
d198 0.582 0.582 10 11 -0.000 -0.000 0.091
dantzig42 0.185 0.100 2498 3469 -0.847 -0.459 -0.248
eil101 2.434 2.430 31 61 -0.002 -0.002 0.491
eil51 0.178 0.017 828 4306 -1.000 -0.907 -0.514
eil76 0.432 1.099 309 709 0.607 0.607 0.829
fri26 0.000 0.000 1470 6721 1.000 0.000 0.000
gr120 7.078 7.083 41 43 0.001 0.001 0.047
gr137 0.606 0.603 30 25 -0.006 -0.006 -0.171
gr17 0.000 0.000 92 123 1.000 0.000 0.000
gr24 0.000 0.000 110 207 1.000 0.000 0.000
gr48 0.192 0.340 586 2479 0.435 0.435 0.866
gr96 0.569 0.552 93 182 -0.032 -0.031 0.472
hk48 0.071 0.106 2571 2990 0.324 0.324 0.419
kroA100 8.937 8.945 102 233 0.001 0.001 0.563
kroA150 11.343 11.340 23 21 -0.000 -0.000 -0.087
kroA200 13.726 13.723 5 7 -0.000 -0.000 0.286
kroB100 7.164 7.082 83 109 -0.011 -0.011 0.230
kroB150 10.965 10.965 16 14 0.000 0.000 -0.125
kroB200 11.740 11.740 7 6 0.000 0.000 -0.143
kroC100 8.721 8.754 118 133 0.004 0.004 0.116
kroD100 7.959 7.938 70 111 -0.003 -0.003 0.368
kroE100 8.573 2.952 105 108 -1.000 -0.656 -0.646
lin105 2.005 2.003 98 149 -0.001 -0.001 0.341
pr107 1.367 1.336 128 217 -0.024 -0.023 0.396
pr124 0.937 0.935 64 61 -0.001 -0.001 -0.048
pr136 2.351 2.350 31 45 -0.000 -0.000 0.311
pr144 2.228 2.200 47 37 -0.012 -0.012 -0.222
pr152 2.688 2.683 14 41 -0.002 -0.002 0.658
pr226 1.091 1.092 6 6 0.001 0.001 0.001
pr76 0.534 0.476 201 855 -0.123 -0.109 0.736
rat99 0.853 0.849 41 80 -0.005 -0.005 0.485
rd100 5.948 4.462 100 166 -0.333 -0.250 0.197
si175 0.270 0.270 8 7 0.000 0.000 -0.125
st70 0.586 3.018 379 1068 0.806 0.806 0.931
swiss42 0.000 0.000 1075 1133 1.000 0.000 0.000
ulysses16 0.000 0.000 18322 19553 1.000 0.000 0.000
ulysses22 0.103 0.127 13911 13313 0.191 0.191 0.154

Mean — — 1321 1799 0.184 0.030 0.193

15

Under review as a conference paper at ICLR 2024

D.2 MIPLIB RESULTS

Table 4: Results on MIPLIB (Gleixner et al., 2021) after 45s runtime. Note that we filter out prob-
lems in which less than 5 nodes were explored as those problems cannot gain meaningful advan-
tages even with perfect node selection. “Name” refers to the instances name, “Gap Base/Ours”
corresponds to the optimization gap achieved by the baseline and our method respectively (lower
is better), “Nodes Base/Ours” to the number of explored Nodes by each method, and “Reward”,
“Utility” and “Utility Node” to the different performance measures as described in Section 5. Note
that all results where achieved with a policy only trained on TSP instances

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

30n20b8 2.662 ∞ 147 301 1.000 1.000 1.000
50v-10 0.101 0.113 303 1094 0.103 0.103 0.752
CMS750 4 0.100 0.072 68 281 -0.389 -0.280 0.664
air05 0.000 0.000 248 523 1.000 0.000 0.000
assign1-5-8 0.085 0.087 17466 23589 0.030 0.030 0.282
binkar10 1 0.000 0.000 2843 2270 1.000 0.000 0.000
blp-ic98 0.127 0.127 26 43 0.001 0.001 0.396
bnatt400 ∞ ∞ 547 1568 0.000 0.000 0.651
bnatt500 ∞ ∞ 148 936 0.000 0.000 0.842
bppc4-08 0.038 0.038 1318 3277 0.000 0.000 0.598
cost266-UUE 0.130 0.143 468 770 0.094 0.094 0.449
csched007 ∞ ∞ 558 1770 0.000 0.000 0.685
csched008 0.070 ∞ 910 1179 1.000 1.000 1.000
cvs16r128-89 0.560 0.601 6 7 0.068 0.068 0.202
drayage-25-23 0.000 0.000 105 267 1.000 0.000 0.000
dws008-01 ∞ ∞ 123 173 0.000 0.000 0.289
eil33-2 0.194 0.189 191 171 -0.025 -0.024 -0.127
fast0507 0.027 0.027 11 7 -0.003 -0.003 -0.366
fastxgemm-n2r6s0t2 18.519 18.519 785 2531 0.000 0.000 0.690
fhnw-binpack4-4 ∞ ∞ 140002 152608 0.000 0.000 0.083
fhnw-binpack4-48 ∞ 0.000 15019 24649 -1.000 -1.000 -1.000
fiball 0.029 0.036 442 610 0.200 0.200 0.420
gen-ip002 0.008 0.010 88794 125319 0.197 0.197 0.397
gen-ip054 0.008 0.010 157950 179874 0.207 0.207 0.263
glass-sc 0.580 0.495 200 328 -0.173 -0.148 0.285
glass4 1.123 1.033 37424 35671 -0.087 -0.080 -0.123
gmu-35-40 0.001 0.001 28534 27077 0.402 0.398 0.276
gmu-35-50 0.001 0.001 16456 22333 0.177 0.176 0.346
graph20-20-1rand 0.000 0.000 416 283 1.000 0.000 0.000
graphdraw-domain 0.421 0.430 49640 56798 0.022 0.022 0.145
ic97 potential 0.023 0.040 39316 30633 0.415 0.415 0.247
icir97 tension 0.011 0.006 6697 7943 -0.882 -0.468 -0.367
irp 0.000 0.000 6 6 1.000 0.000 0.000
istanbul-no-cutoff 0.514 0.393 37 28 -0.309 -0.236 -0.422
lectsched-5-obj ∞ 2.200 1192 1118 -1.000 -1.000 -1.000
leo1 0.118 0.113 34 108 -0.049 -0.046 0.670
leo2 0.345 0.135 49 61 -1.000 -0.609 -0.514
mad ∞ ∞ 78783 81277 0.000 0.000 0.031
markshare2 ∞ ∞ 91135 127265 0.000 0.000 0.284
markshare 4 0 ∞ ∞ 570277 682069 0.000 0.000 0.164
mas74 0.079 0.084 32005 26180 0.060 0.060 -0.129
mas76 0.014 0.015 49987 52401 0.060 0.060 0.100
mc11 0.008 0.009 333 1989 0.139 0.138 0.855
mcsched 0.090 0.086 439 1526 -0.049 -0.046 0.698
mik-250-20-75-4 0.000 0.000 10067 10120 1.000 0.000 0.000
milo-v12-6-r2-40-1 0.038 0.031 340 514 -0.242 -0.195 0.179
momentum1 2.868 2.868 10 9 -0.000 -0.000 -0.100
n2seq36q 0.665 0.665 5 6 0.000 0.000 0.167
n5-3 0.046 0.000 427 595 -1.000 -1.000 -1.000
neos-1171737 0.032 0.032 7 13 0.000 0.000 0.462
neos-1445765 0.000 0.000 190 263 1.000 0.000 0.000
neos-1456979 ∞ 0.344 204 405 -1.000 -1.000 -1.000
neos-1582420 0.016 0.016 11 11 0.000 0.000 0.000
neos-2657525-crna ∞ ∞ 42826 45188 0.000 0.000 0.052
neos-2978193-inde 0.013 0.013 964 2178 0.000 0.000 0.557
neos-3004026-krka ∞ ∞ 1134 1163 0.000 0.000 0.025
neos-3024952-loue ∞ ∞ 246 377 0.000 0.000 0.347
neos-3046615-murg 2.515 2.631 66921 79117 0.044 0.044 0.191
neos-3083819-nubu 0.000 0.000 1683 1687 1.000 0.000 0.000
neos-3381206-awhea 0.000 0.000 969 230 1.000 0.000 0.000
neos-3402294-bobin ∞ ∞ 10 24 0.000 0.000 0.583
neos-3627168-kasai 0.003 0.008 6269 3338 0.577 0.577 0.205
neos-3754480-nidda ∞ ∞ 87703 106632 0.000 0.000 0.178

Continued on next page

16

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

neos-4338804-snowy 0.024 0.028 37447 36741 0.125 0.125 0.107
neos-4387871-tavua 0.631 0.634 5 7 0.005 0.005 0.289
neos-4738912-atrato 0.016 0.006 529 1064 -1.000 -0.634 -0.265
neos-4954672-berkel 0.265 0.254 454 775 -0.043 -0.041 0.389
neos-5093327-huahum 0.539 0.559 5 6 0.036 0.036 0.197
neos-5107597-kakapo 2.639 5.077 1885 2332 0.480 0.480 0.580
neos-5188808-nattai ∞ ∞ 16 105 0.000 0.000 0.848
neos-5195221-niemur 106.417 106.417 11 12 0.000 0.000 0.083
neos-911970 0.000 0.000 3905 15109 1.000 0.000 0.000
neos17 0.000 0.000 2151 3346 1.000 0.000 0.000
neos5 0.062 0.059 66231 91449 -0.053 -0.050 0.235
neos859080 0.000 0.000 990 1227 1.000 0.000 0.000
net12 2.592 2.114 56 29 -0.227 -0.185 -0.578
ns1208400 ∞ ∞ 82 150 0.000 0.000 0.453
ns1830653 2.831 1.242 334 686 -1.000 -0.561 -0.099
ns1952667 ∞ ∞ 100 52 0.000 0.000 -0.480
nu25-pr12 0.000 0.000 119 153 1.000 0.000 0.000
nursesched-sprint02 0.000 0.000 9 7 1.000 0.000 0.000
nw04 0.000 0.000 6 6 1.000 0.000 0.000
pg 0.000 0.000 460 491 1.000 0.000 0.000
pg5 34 0.004 0.004 275 592 -0.023 -0.022 0.524
piperout-08 0.000 0.000 223 309 1.000 0.000 0.000
piperout-27 0.000 0.000 47 28 1.000 0.000 0.000
pk1 1.244 1.117 102268 120685 -0.113 -0.102 0.057
radiationm18-12-05 0.057 0.167 886 2569 0.661 0.661 0.883
rail507 0.033 0.033 10 9 0.000 0.000 -0.100
ran14x18-disj-8 0.115 0.092 458 975 -0.251 -0.200 0.412
rd-rplusc-21 ∞ ∞ 137 3542 0.000 0.000 0.961
reblock115 0.106 0.139 80 731 0.238 0.238 0.917
rmatr100-p10 0.216 0.326 43 74 0.337 0.337 0.615
rocI-4-11 0.671 0.837 12054 7909 0.198 0.198 -0.181
rocII-5-11 3.479 1.568 164 287 -1.000 -0.549 -0.211
rococoB10-011000 1.244 1.258 12 26 0.012 0.012 0.544
rococoC10-001000 0.337 0.153 135 866 -1.000 -0.546 0.656
roll3000 0.000 0.000 1156 2046 1.000 0.000 0.000
sct2 0.001 0.002 2117 1215 0.619 0.615 0.332
seymour 0.044 0.035 176 563 -0.243 -0.195 0.611
seymour1 0.003 0.003 329 885 0.146 0.145 0.682
sp150x300d 0.000 0.000 148 124 1.000 0.000 0.000
supportcase18 0.081 0.081 178 1372 0.000 -0.000 0.870
supportcase26 0.224 0.231 11191 20287 0.031 0.031 0.465
supportcase33 27.788 0.371 15 28 -1.000 -0.987 -0.975
supportcase40 0.086 0.094 50 111 0.087 0.087 0.589
supportcase42 0.033 0.050 76 256 0.340 0.340 0.804
swath1 0.000 0.000 311 372 1.000 0.000 0.000
swath3 0.110 0.113 1442 2800 0.020 0.020 0.495
timtab1 0.126 0.094 22112 25367 -0.333 -0.250 -0.139
tr12-30 0.002 0.002 8941 14896 0.019 0.019 0.394
traininstance2 ∞ ∞ 412 821 0.000 0.000 0.498
traininstance6 29.355 ∞ 2549 6376 1.000 1.000 1.000
trento1 3.885 3.885 4 7 -0.000 -0.000 0.429
uct-subprob 0.249 0.195 225 263 -0.276 -0.216 -0.084
var-smallemery-m6j6 0.062 0.062 95 224 -0.002 -0.002 0.575
wachplan 0.125 0.125 422 712 0.000 0.000 0.407

Mean — — 16538 19673 0.140 -0.013 0.208

D.3 MINLPLIB RESULTS

Table 5: Results on MINLPLIB (Bussieck et al., 2003) after 45s runtime. Note that we filter out
problems in which less than 5 nodes were explored as those problems cannot gain meaningful ad-
vantages even with perfect node selection. “Name” refers to the instances name, “Gap Base/Ours”
corresponds to the optimization gap achieved by the baseline and our method respectively (lower
is better), “Nodes Base/Ours” to the number of explored Nodes by each method, and “Reward”,
“Utility” and “Utility Node” to the different performance measures as described in Section 5. For
all three measures, higher is better.

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

ball mk4 05 0.000 0.000 1819 1869 1.000 0.000 0.000
ball mk4 10 ∞ ∞ 31684 37656 0.000 0.000 0.159

Continued on next page

17

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

ball mk4 15 ∞ ∞ 1773 2415 0.000 0.000 0.266
bayes2 20 ∞ ∞ 3171 2719 0.000 0.000 -0.143
bayes2 30 ∞ ∞ 4462 4992 0.000 0.000 0.106
bayes2 50 ∞ ∞ 2934 2530 0.000 0.000 -0.138
blend029 0.000 0.000 812 804 1.000 0.000 0.000
blend146 0.097 0.105 12390 18066 0.075 0.075 0.365
blend480 0.071 0.000 4878 6312 -1.000 -1.000 -0.999
blend531 0.000 0.000 3150 7161 1.000 0.000 0.000
blend718 0.898 0.796 22652 26060 -0.127 -0.113 0.020
blend721 0.000 0.000 4650 2708 1.000 0.000 0.000
blend852 0.021 0.000 7726 5413 -1.000 -1.000 -0.997
camshape100 0.076 0.074 18839 22205 -0.027 -0.026 0.128
camshape200 0.145 0.147 8199 9921 0.012 0.012 0.183
camshape400 0.198 0.195 4324 5275 -0.016 -0.016 0.167
camshape800 0.222 0.226 1504 1627 0.019 0.019 0.093
cardqp inlp 1.436 1.660 4316 7232 0.135 0.135 0.484
cardqp iqp 1.089 1.660 4766 7285 0.344 0.344 0.571
carton7 0.000 0.000 55 73 1.000 0.000 0.000
carton9 0.000 0.000 9848 7406 1.000 0.000 0.000
catmix100 ∞ ∞ 186 8750 0.000 0.000 0.979
catmix200 ∞ ∞ 123 3870 0.000 0.000 0.968
catmix400 ∞ ∞ 146 3498 0.000 0.000 0.958
catmix800 ∞ ∞ 75 333 0.000 0.000 0.775
celar6-sub0 ∞ ∞ 4 6 0.000 0.000 0.333
chimera k64ising-01 0.701 16.469 18 21 0.957 0.957 0.964
chimera k64maxcut-01 0.523 0.199 57 198 -1.000 -0.618 0.246
chimera k64maxcut-02 0.368 0.239 72 381 -0.536 -0.349 0.710
chimera lga-02 0.893 0.893 5 6 0.000 0.000 0.167
chimera mgw-c8-439-onc8-001 0.045 0.021 127 521 -1.000 -0.529 0.482
chimera mgw-c8-439-onc8-002 0.067 0.046 72 526 -0.449 -0.310 0.802
chimera mgw-c8-507-onc8-01 0.232 0.233 26 99 0.003 0.003 0.738
chimera mgw-c8-507-onc8-02 0.188 0.346 14 25 0.455 0.455 0.695
chimera mis-01 0.000 0.000 7 7 1.000 0.000 0.000
chimera mis-02 0.000 0.000 7 7 1.000 0.000 0.000
chimera rfr-01 1.029 1.153 70 61 0.108 0.108 -0.023
chimera rfr-02 1.148 1.061 74 63 -0.082 -0.076 -0.213
chimera selby-c8-onc8-01 0.436 0.224 34 111 -0.941 -0.485 0.406
chimera selby-c8-onc8-02 0.439 0.232 40 92 -0.895 -0.472 0.176
clay0203m 0.000 0.000 19 30 1.000 0.000 0.000
clay0204m 0.000 0.000 266 400 1.000 0.000 0.000
clay0205m 0.000 0.000 4058 3908 1.000 0.000 0.000
clay0303m 0.000 0.000 107 45 1.000 0.000 0.000
clay0304m 0.000 0.000 337 897 1.000 0.000 0.000
clay0305m 0.000 0.000 4057 4204 1.000 0.000 0.000
color lab3 3x0 1.445 1.725 320 576 0.162 0.162 0.534
color lab3 4x0 5.581 5.455 265 434 -0.023 -0.023 0.375
crossdock 15x7 4.457 8.216 654 1080 0.458 0.458 0.672
crossdock 15x8 8.578 84.148 391 717 0.898 0.898 0.944
crudeoil lee1 06 0.000 0.000 48 57 1.000 0.000 0.000
crudeoil lee1 07 0.000 0.000 57 92 1.000 0.000 0.000
crudeoil lee1 08 0.000 0.000 161 121 1.000 0.000 0.000
crudeoil lee1 09 0.000 0.000 107 99 1.000 0.000 0.000
crudeoil lee1 10 0.000 0.000 78 109 1.000 0.000 0.000
crudeoil lee2 05 0.000 0.000 10 11 1.000 0.000 0.000
crudeoil lee2 06 0.000 0.000 45 109 1.000 0.000 0.000
crudeoil lee2 07 0.000 0.000 286 81 1.000 0.000 0.000
crudeoil lee2 08 0.000 0.000 150 308 1.000 0.000 0.000
crudeoil lee2 09 0.142 0.015 44 41 -1.000 -0.897 -0.904
crudeoil lee3 05 0.000 0.000 1435 1820 1.000 0.000 0.000
crudeoil lee3 06 0.057 0.013 352 1349 -1.000 -0.764 -0.095
crudeoil lee4 05 0.000 0.000 306 118 1.000 0.000 0.000
crudeoil lee4 06 0.000 0.000 129 60 1.000 0.000 0.000
crudeoil lee4 07 0.000 0.000 193 89 1.000 0.000 0.000
crudeoil lee4 08 0.000 0.001 41 53 0.187 0.184 0.371
crudeoil li01 0.049 0.017 16819 11797 -1.000 -0.657 -0.758
crudeoil li02 0.013 0.013 12172 10426 -0.027 -0.027 -0.165
crudeoil li03 ∞ ∞ 198 899 0.000 0.000 0.780
crudeoil li05 0.157 0.142 553 1031 -0.104 -0.095 0.408
crudeoil li06 ∞ ∞ 41 322 0.000 0.000 0.873
crudeoil li11 ∞ ∞ 20 70 0.000 0.000 0.714
crudeoil pooling ct1 0.943 0.988 2415 6356 0.046 0.046 0.638
crudeoil pooling ct2 0.000 0.000 1480 1589 1.000 0.000 0.000
crudeoil pooling ct3 42.222 120.618 101 101 0.650 0.650 0.650
crudeoil pooling ct4 0.000 0.000 7631 9217 0.365 0.153 0.041
du-opt 0.000 0.000 11282 14174 1.000 0.000 0.000
du-opt5 0.000 0.000 83 60 1.000 0.000 0.000
edgecross10-030 0.000 0.000 7 7 1.000 0.000 0.000

Continued on next page

18

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

edgecross10-040 0.000 0.000 30 39 1.000 0.000 0.000
edgecross10-050 0.000 0.000 487 469 1.000 0.000 0.000
edgecross10-060 0.000 0.000 2058 2138 1.000 0.000 0.000
edgecross10-070 0.321 0.220 255 329 -0.457 -0.314 -0.115
edgecross10-080 0.077 0.077 352 668 0.001 0.001 0.474
edgecross10-090 0.000 0.000 7 6 1.000 0.000 0.000
edgecross14-039 0.000 0.000 624 731 1.000 0.000 0.000
edgecross14-058 1.251 0.549 84 157 -1.000 -0.561 -0.180
edgecross14-078 1.843 1.865 12 14 0.012 0.012 0.153
edgecross14-098 1.120 1.129 24 31 0.007 0.007 0.232
edgecross14-117 0.963 0.947 9 17 -0.017 -0.017 0.462
edgecross14-137 0.537 0.552 20 30 0.028 0.028 0.352
edgecross14-156 0.338 0.353 13 13 0.042 0.042 0.042
edgecross14-176 0.089 0.080 37 135 -0.117 -0.105 0.694
edgecross20-040 0.000 0.000 71 57 1.000 0.000 0.000
edgecross20-080 3.943 3.943 7 7 0.000 0.000 0.000
edgecross22-048 0.615 0.000 56 81 -1.000 -1.000 -1.000
edgecross24-057 5.219 5.219 7 6 0.000 0.000 -0.143
elf 0.000 0.000 115 112 1.000 0.000 0.000
ex2 1 1 0.000 0.000 17 17 1.000 0.000 0.000
ex2 1 10 0.000 0.000 13 11 1.000 0.000 0.000
ex2 1 5 0.000 0.000 17 19 1.000 0.000 0.000
ex2 1 6 0.000 0.000 13 13 1.000 0.000 0.000
ex2 1 7 0.000 0.000 1523 1831 1.000 0.000 0.000
ex2 1 8 0.000 0.000 75 93 1.000 0.000 0.000
ex2 1 9 0.000 0.000 3735 3947 1.000 0.000 0.000
ex3 1 1 0.000 0.000 405 271 1.000 0.000 0.000
ex3 1 3 0.000 0.000 21 27 1.000 0.000 0.000
ex3 1 4 0.000 0.000 23 23 1.000 0.000 0.000
ex4 0.000 0.000 23 29 1.000 0.000 0.000
ex5 2 2 case1 0.000 0.000 39 19 1.000 0.000 0.000
ex5 2 2 case2 0.000 0.000 57 31 1.000 0.000 0.000
ex5 2 4 0.000 0.000 251 227 1.000 0.000 0.000
ex5 2 5 0.359 0.346 30403 33492 -0.038 -0.036 0.058
ex5 3 2 0.000 0.000 33 31 1.000 0.000 0.000
ex5 3 3 0.339 0.331 29464 31558 -0.024 -0.024 0.044
ex5 4 2 0.000 0.000 41 35 1.000 0.000 0.000
ex8 3 2 23.252 23.608 8907 8680 0.015 0.015 -0.011
ex8 3 3 23.004 23.004 9636 10365 0.000 0.000 0.070
ex8 3 4 1.817 1.793 9447 9563 -0.013 -0.013 -0.001
ex8 3 5 143.677 143.677 9427 9699 0.000 0.000 0.028
ex8 3 8 2.071 2.071 2293 3677 0.000 0.000 0.376
ex8 3 9 12.106 12.106 14272 17310 0.000 -0.000 0.176
ex8 4 1 0.000 0.000 670 650 1.000 0.000 0.000
ex9 2 3 0.000 0.000 25 31 1.000 0.000 0.000
ex9 2 5 0.000 0.000 27 29 1.000 0.000 0.000
ex9 2 7 0.000 0.000 11 11 1.000 0.000 0.000
faclay20h 1.727 1.727 16 15 0.000 0.000 -0.062
faclay25 2.468 2.468 6 6 0.000 0.000 0.000
forest 0.003 0.020 29002 25913 0.860 0.859 0.831
gabriel01 0.139 0.139 6753 9744 -0.000 -0.000 0.307
gabriel02 0.556 0.585 1107 1675 0.050 0.050 0.372
gabriel04 ∞ 1.308 129 285 -1.000 -1.000 -1.000
gabriel05 ∞ ∞ 141 326 0.000 0.000 0.567
gasprod sarawak01 0.000 0.000 11 6 1.000 0.000 0.000
gasprod sarawak16 0.004 0.009 506 1052 0.585 0.585 0.800
genpooling lee1 0.000 0.000 690 676 1.000 0.000 0.000
genpooling lee2 0.000 0.000 1299 2989 1.000 0.000 0.000
genpooling meyer04 0.957 0.691 12855 17889 -0.385 -0.278 0.005
genpooling meyer10 1.276 1.385 1910 2815 0.078 0.078 0.375
genpooling meyer15 6.080 0.691 97 413 -1.000 -0.886 -0.516
graphpart 2g-0099-9211 0.000 0.000 18 14 1.000 0.000 0.000
graphpart 2pm-0077-0777 0.000 0.000 5 6 1.000 0.000 0.000
graphpart 2pm-0088-0888 0.000 0.000 9 7 1.000 0.000 0.000
graphpart 2pm-0099-0999 0.000 0.000 16 12 1.000 0.000 0.000
graphpart 3g-0334-0334 0.000 0.000 21 41 1.000 0.000 0.000
graphpart 3g-0344-0344 0.000 0.000 61 19 1.000 0.000 0.000
graphpart 3g-0444-0444 0.000 0.000 424 562 1.000 0.000 0.000
graphpart 3pm-0244-0244 0.000 0.000 21 15 1.000 0.000 0.000
graphpart 3pm-0334-0334 0.000 0.000 20 38 1.000 0.000 0.000
graphpart 3pm-0344-0344 0.000 0.000 590 619 1.000 0.000 0.000
graphpart 3pm-0444-0444 0.058 0.000 755 1348 -1.000 -1.000 -1.000
graphpart clique-20 0.000 0.000 22 24 1.000 0.000 0.000
graphpart clique-30 0.000 0.000 421 337 1.000 0.000 0.000
graphpart clique-40 1.018 0.920 297 609 -0.106 -0.096 0.461
graphpart clique-50 5.638 6.032 97 191 0.065 0.065 0.525
graphpart clique-60 17.434 9.335 109 204 -0.868 -0.465 0.002

Continued on next page

19

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

graphpart clique-70 30.409 35.053 16 27 0.132 0.132 0.486
haverly 0.000 0.000 45 57 1.000 0.000 0.000
himmel16 0.000 0.000 2193 2089 1.000 0.000 0.000
house 0.000 0.000 58675 58399 1.000 0.000 0.000
hvb11 0.018 0.182 19172 15631 0.899 0.899 0.875
hydroenergy1 0.007 0.007 15060 18149 -0.088 -0.081 0.095
hydroenergy2 0.016 0.016 4834 6712 0.038 0.038 0.306
hydroenergy3 0.022 0.023 565 1060 0.006 0.006 0.470
ising2 5-300 5555 0.508 0.407 57 220 -0.248 -0.199 0.677
kall circles c6a 3.180 2.094 42813 46497 -0.519 -0.342 -0.285
kall circles c6b 2.635 1.452 38722 45596 -0.815 -0.449 -0.351
kall circles c6c ∞ ∞ 33357 36374 0.000 0.000 0.083
kall circles c7a 1.482 1.376 38682 43723 -0.077 -0.072 0.047
kall circles c8a ∞ ∞ 32114 36262 0.000 0.000 0.114
kall circlespolygons c1p12 0.000 0.000 44439 64102 -1.000 -0.733 -0.106
kall circlespolygons c1p13 0.000 0.000 8621 7914 1.000 0.000 0.000
kall circlespolygons c1p5a ∞ ∞ 12369 13200 0.000 0.000 0.063
kall circlespolygons c1p6a ∞ ∞ 404 628 0.000 0.000 0.357
kall circlesrectangles c1r12 0.000 0.000 42587 48285 0.121 0.114 0.061
kall circlesrectangles c1r13 0.000 0.000 4372 3739 1.000 0.000 0.000
kall circlesrectangles c6r1 ∞ ∞ 5850 7908 0.000 0.000 0.260
kall circlesrectangles c6r29 ∞ ∞ 4181 5220 0.000 0.000 0.199
kall circlesrectangles c6r39 ∞ ∞ 2570 2966 0.000 0.000 0.134
kall congruentcircles c31 0.000 0.000 101 95 1.000 0.000 0.000
kall congruentcircles c32 0.000 0.000 133 139 1.000 0.000 0.000
kall congruentcircles c41 0.000 0.000 27 31 1.000 0.000 0.000
kall congruentcircles c42 0.000 0.000 205 125 1.000 0.000 0.000
kall congruentcircles c51 0.000 0.000 4197 4987 1.000 0.000 0.000
kall congruentcircles c52 0.000 0.000 1767 1446 1.000 0.000 0.000
kall congruentcircles c61 0.000 0.000 27338 35199 1.000 0.000 0.000
kall congruentcircles c62 0.000 0.000 2879 6037 1.000 0.000 0.000
kall congruentcircles c63 0.000 0.000 2043 1729 1.000 0.000 0.000
kall congruentcircles c71 ∞ ∞ 39102 43349 0.000 0.000 0.098
kall congruentcircles c72 0.000 0.000 14686 14089 1.000 0.000 0.000
kall diffcircles 10 2.276 4.054 32475 41241 0.439 0.439 0.558
kall diffcircles 5a 0.000 0.000 2020 1218 1.000 0.000 0.000
kall diffcircles 5b 0.000 0.000 6360 5774 1.000 0.000 0.000
kall diffcircles 6 0.000 0.000 2827 2383 1.000 0.000 0.000
kall diffcircles 7 0.000 0.000 9408 9518 1.000 0.000 0.000
kall diffcircles 8 0.406 0.219 48924 57747 -0.851 -0.460 -0.362
kall diffcircles 9 1.676 1.052 42056 48915 -0.594 -0.373 -0.270
knp3-12 1.846 1.963 1987 2132 0.060 0.060 0.124
lop97ic ∞ ∞ 19 33 0.000 0.000 0.424
lop97icx 0.008 0.000 3041 1711 -1.000 -0.999 -0.998
maxcsp-langford-3-11 ∞ ∞ 1356 4038 0.000 0.000 0.664
ndcc12 ∞ ∞ 1394 3975 0.000 0.000 0.649
ndcc12persp ∞ ∞ 1092 2994 0.000 0.000 0.635
ndcc13 ∞ ∞ 298 787 0.000 0.000 0.621
ndcc13persp 0.536 0.546 2982 5662 0.018 0.018 0.483
ndcc14 1.030 1.048 234 499 0.018 0.018 0.539
ndcc14persp 1.044 1.080 572 1052 0.033 0.033 0.474
ndcc15 ∞ ∞ 1293 2120 0.000 0.000 0.390
ndcc15persp ∞ ∞ 5227 6549 0.000 0.000 0.202
ndcc16 ∞ ∞ 407 396 0.000 0.000 -0.027
ndcc16persp ∞ ∞ 1035 2183 0.000 0.000 0.526
netmod dol2 0.047 0.000 112 250 -1.000 -1.000 -1.000
netmod kar1 0.000 0.000 425 285 1.000 0.000 0.000
netmod kar2 0.000 0.000 275 285 1.000 0.000 0.000
nous1 0.000 0.000 3092 2816 1.000 0.000 0.000
nous2 0.000 0.000 81 71 1.000 0.000 0.000
nuclearvb ∞ ∞ 1821 3817 0.000 0.000 0.523
nuclearvc ∞ ∞ 1905 1530 0.000 0.000 -0.197
nuclearvd ∞ ∞ 3781 2521 0.000 0.000 -0.333
nuclearve ∞ ∞ 877 5464 0.000 0.000 0.839
nuclearvf ∞ ∞ 256 3596 0.000 0.000 0.929
nvs13 0.000 0.000 9 9 1.000 0.000 0.000
nvs17 0.000 0.000 89 78 1.000 0.000 0.000
nvs18 0.000 0.000 121 75 1.000 0.000 0.000
nvs19 0.000 0.000 161 154 1.000 0.000 0.000
nvs23 0.000 0.000 465 523 1.000 0.000 0.000
nvs24 0.000 0.000 2060 1944 1.000 0.000 0.000
p ball 10b 5p 2d m 0.000 0.000 353 326 1.000 0.000 0.000
p ball 10b 5p 3d m 0.000 0.000 1204 1032 1.000 0.000 0.000
p ball 10b 5p 4d m 0.000 0.000 1424 1765 1.000 0.000 0.000
p ball 10b 7p 3d m 0.000 0.000 6178 6151 1.000 0.000 0.000
p ball 15b 5p 2d m 0.000 0.000 1377 2068 1.000 0.000 0.000
p ball 20b 5p 2d m 0.000 0.000 1610 2039 1.000 0.000 0.000

Continued on next page

20

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

p ball 20b 5p 3d m 0.000 0.000 10647 11510 1.000 0.000 0.000
p ball 30b 10p 2d m ∞ ∞ 3795 4965 0.000 0.000 0.236
p ball 30b 5p 2d m 0.000 0.000 2827 3275 1.000 0.000 0.000
p ball 30b 5p 3d m 0.000 0.000 10150 11489 1.000 0.000 0.000
p ball 30b 7p 2d m ∞ ∞ 8511 11906 0.000 0.000 0.285
p ball 40b 5p 3d m ∞ ∞ 9620 13718 0.000 0.000 0.299
p ball 40b 5p 4d m ∞ ∞ 8100 11826 0.000 0.000 0.315
pedigree ex485 0.019 0.019 315 962 0.030 0.030 0.682
pedigree ex485 2 0.000 0.000 121 344 1.000 0.000 0.000
pedigree sim400 0.061 0.053 1094 1533 -0.156 -0.135 0.175
pedigree sp top4 250 0.053 0.036 61 173 -0.482 -0.325 0.477
pedigree sp top4 300 0.014 0.015 294 670 0.014 0.014 0.567
pedigree sp top4 350tr 0.000 0.014 365 1096 1.000 0.999 1.000
pedigree sp top5 250 0.050 0.057 28 39 0.125 0.125 0.372
pinene200 ∞ ∞ 12 12 0.000 0.000 0.000
pointpack06 0.000 0.000 2099 2051 1.000 0.000 0.000
pointpack08 0.015 0.000 35620 34315 -1.000 -0.999 -0.978
pointpack10 0.612 0.613 18366 22179 0.001 0.001 0.173
pointpack12 0.854 0.839 15197 17796 -0.018 -0.018 0.131
pointpack14 1.535 1.537 8919 9550 0.001 0.001 0.067
pooling adhya1pq 0.000 0.000 383 365 1.000 0.000 0.000
pooling adhya1stp 0.000 0.000 737 638 1.000 0.000 0.000
pooling adhya1tp 0.000 0.000 611 806 1.000 0.000 0.000
pooling adhya2pq 0.000 0.000 569 588 1.000 0.000 0.000
pooling adhya2stp 0.000 0.000 832 934 1.000 0.000 0.000
pooling adhya2tp 0.000 0.000 345 288 1.000 0.000 0.000
pooling adhya3pq 0.000 0.000 377 289 1.000 0.000 0.000
pooling adhya3stp 0.000 0.000 834 1078 1.000 0.000 0.000
pooling adhya3tp 0.000 0.000 675 585 1.000 0.000 0.000
pooling adhya4pq 0.000 0.000 274 150 1.000 0.000 0.000
pooling adhya4stp 0.000 0.000 385 686 1.000 0.000 0.000
pooling adhya4tp 0.000 0.000 317 387 1.000 0.000 0.000
pooling bental5stp 0.000 0.000 2818 4434 1.000 0.000 0.000
pooling digabel16 0.000 0.000 27577 35207 -1.000 -0.715 -0.160
pooling digabel18 0.013 0.008 4109 5110 -0.496 -0.331 -0.168
pooling digabel19 0.001 0.001 14953 18095 0.168 0.166 0.267
pooling foulds2stp 0.000 0.000 36 25 1.000 0.000 0.000
pooling foulds3stp 0.000 0.000 1084 416 1.000 0.000 0.000
pooling foulds4stp 0.000 0.000 717 339 1.000 0.000 0.000
pooling foulds5stp 0.019 0.000 1808 2741 -1.000 -0.999 -0.999
pooling haverly2stp 0.000 0.000 10 12 1.000 0.000 0.000
pooling rt2pq 0.000 0.000 237 431 1.000 0.000 0.000
pooling rt2stp 0.000 0.000 109 195 1.000 0.000 0.000
pooling rt2tp 0.000 0.000 53 57 1.000 0.000 0.000
pooling sppa0pq 0.038 0.031 2424 3666 -0.230 -0.187 0.187
pooling sppa0stp 2.829 2.865 2577 3068 0.012 0.012 0.170
pooling sppa0tp 0.179 0.183 2804 3623 0.021 0.021 0.242
pooling sppa5pq 0.037 0.018 709 781 -0.995 -0.499 -0.448
pooling sppa5stp 3.959 3.959 220 278 0.000 0.000 0.209
pooling sppa5tp 1.579 1.579 299 448 0.000 0.000 0.333
pooling sppa9pq 0.007 0.007 222 295 0.000 0.000 0.247
pooling sppb0pq 0.098 0.098 223 301 0.000 -0.000 0.259
popdynm100 ∞ ∞ 7556 11105 0.000 0.000 0.320
popdynm25 ∞ ∞ 14627 19046 0.000 0.000 0.232
popdynm50 ∞ ∞ 12085 15252 0.000 0.000 0.208
portfol classical050 1 0.000 0.000 651 817 1.000 0.000 0.000
portfol classical200 2 0.141 0.125 396 491 -0.134 -0.118 0.086
portfol robust050 34 0.000 0.000 94 49 1.000 0.000 0.000
portfol robust100 09 0.000 0.000 489 361 1.000 0.000 0.000
portfol robust200 03 0.182 0.189 95 75 0.034 0.034 -0.183
portfol shortfall050 68 0.000 0.000 467 375 1.000 0.000 0.000
portfol shortfall100 04 0.010 0.010 595 1398 -0.055 -0.052 0.551
portfol shortfall200 05 0.033 0.028 224 232 -0.169 -0.145 -0.114
powerflow0009r 0.000 0.000 15230 13141 -1.000 -0.037 -0.003
powerflow0014r 0.001 0.001 8052 8041 0.368 0.366 0.346
powerflow0030r 0.023 0.034 369 403 0.328 0.328 0.384
powerflow0039r 0.017 0.016 212 224 -0.058 -0.054 -0.001
product 0.028 0.034 236 650 0.197 0.197 0.708
qap 198.418 ∞ 709 3352 1.000 1.000 1.000
qapw 351.271 ∞ 874 2437 1.000 1.000 1.000
qp3 ∞ ∞ 29875 32155 0.000 0.000 0.071
qspp 0 10 0 1 10 1 0.849 1.238 3860 3982 0.314 0.314 0.335
qspp 0 11 0 1 10 1 1.071 1.886 1314 3036 0.432 0.432 0.754
qspp 0 12 0 1 10 1 1.674 2.102 794 1847 0.204 0.203 0.658
qspp 0 13 0 1 10 1 1.893 4.660 935 1380 0.594 0.594 0.725
qspp 0 14 0 1 10 1 3.038 3.200 299 1081 0.050 0.050 0.737
qspp 0 15 0 1 10 1 4.356 4.293 229 544 -0.015 -0.015 0.573

Continued on next page

21

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

ringpack 10 1 0.082 1.000 5346 6348 0.918 0.918 0.931
ringpack 10 2 0.082 0.811 5402 6366 0.899 0.899 0.914
ringpack 20 1 1.551 3.527 525 492 0.560 0.560 0.531
ringpack 20 2 9.000 9.000 239 183 0.000 0.000 -0.234
ringpack 20 3 6.251 6.251 272 243 0.000 0.000 -0.107
ringpack 30 2 14.000 14.000 36 49 0.000 0.000 0.265
sep1 0.000 0.000 39 29 1.000 0.000 0.000
slay04h 0.000 0.000 8 8 1.000 0.000 0.000
slay04m 0.000 0.000 7 7 1.000 0.000 0.000
slay05h 0.000 0.000 64 119 1.000 0.000 0.000
slay06h 0.000 0.000 120 208 1.000 0.000 0.000
slay06m 0.000 0.000 8 8 1.000 0.000 0.000
slay07h 0.000 0.000 420 952 1.000 0.000 0.000
slay07m 0.000 0.000 218 501 1.000 0.000 0.000
slay08h 0.000 0.000 513 1181 1.000 0.000 0.000
slay08m 0.000 0.000 193 554 1.000 0.000 0.000
slay09h 0.104 0.135 612 488 0.229 0.229 0.033
slay09m 0.000 0.000 324 212 1.000 0.000 0.000
slay10h 0.103 0.407 703 451 0.746 0.745 0.603
slay10m 0.000 0.000 3933 4138 1.000 0.000 0.000
smallinvDAXr1b010-011 0.000 0.000 324 264 1.000 0.000 0.000
smallinvDAXr1b020-022 0.000 0.000 657 906 1.000 0.000 0.000
smallinvDAXr1b050-055 0.000 0.000 6083 4430 1.000 0.000 0.000
smallinvDAXr1b100-110 0.000 0.000 15366 34917 1.000 0.000 0.000
smallinvDAXr1b150-165 0.000 0.001 26952 40900 1.000 0.986 0.730
smallinvDAXr1b200-220 0.000 0.001 38238 46021 0.348 0.342 0.269
smallinvDAXr2b010-011 0.000 0.000 254 358 1.000 0.000 0.000
smallinvDAXr2b020-022 0.000 0.000 1204 2016 1.000 0.000 0.000
smallinvDAXr2b050-055 0.000 0.000 7868 6682 1.000 0.000 0.000
smallinvDAXr2b100-110 0.000 0.000 12971 14333 1.000 0.000 0.000
smallinvDAXr2b150-165 0.000 0.000 39670 68543 1.000 0.966 0.421
smallinvDAXr2b200-220 0.000 0.000 712 651 1.000 0.000 0.000
smallinvDAXr3b010-011 0.000 0.000 260 358 1.000 0.000 0.000
smallinvDAXr3b020-022 0.000 0.000 1676 906 1.000 0.000 0.000
smallinvDAXr3b050-055 0.000 0.000 5716 5024 1.000 0.000 0.000
smallinvDAXr3b100-110 0.000 0.000 39948 13726 1.000 0.000 0.000
smallinvDAXr3b150-165 0.000 0.000 34109 22132 1.000 0.000 0.000
smallinvDAXr3b200-220 0.000 0.000 1078 433 1.000 0.000 0.000
smallinvDAXr4b010-011 0.000 0.000 272 292 1.000 0.000 0.000
smallinvDAXr4b020-022 0.000 0.000 1078 990 1.000 0.000 0.000
smallinvDAXr4b050-055 0.000 0.000 3098 2666 1.000 0.000 0.000
smallinvDAXr4b100-110 0.000 0.000 17899 26316 1.000 0.000 0.000
smallinvDAXr4b150-165 0.000 0.000 32042 56419 1.000 0.000 0.000
smallinvDAXr4b200-220 0.000 0.000 935 612 1.000 0.000 0.000
smallinvDAXr5b010-011 0.000 0.000 242 381 1.000 0.000 0.000
smallinvDAXr5b020-022 0.000 0.000 1798 884 1.000 0.000 0.000
smallinvDAXr5b050-055 0.000 0.000 4276 3312 1.000 0.000 0.000
smallinvDAXr5b100-110 0.000 0.000 37028 72501 1.000 0.980 0.570
smallinvDAXr5b150-165 0.000 0.000 40757 78031 1.000 0.966 0.414
smallinvDAXr5b200-220 0.000 0.000 783 585 1.000 0.000 0.000
sonet22v5 3.752 2.911 105 356 -0.289 -0.224 0.620
sonet23v4 1.407 1.366 79 181 -0.030 -0.029 0.550
sonet24v5 4.070 3.914 21 212 -0.040 -0.038 0.897
sonet25v6 5.161 4.812 10 45 -0.072 -0.068 0.762
sonetgr17 2.252 2.602 400 1247 0.134 0.134 0.722
space25 ∞ ∞ 154 143 0.000 0.000 -0.071
spectra2 0.000 0.000 8 8 1.000 0.000 0.000
squfl010-025 0.000 0.000 71985 75945 0.692 0.000 0.000
squfl010-040 0.000 0.000 18478 20101 0.529 0.000 0.000
squfl010-080 0.000 0.000 4509 8339 0.568 -0.000 0.000
squfl010-080persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl015-060 0.000 0.000 7372 10223 0.608 -0.000 0.000
squfl015-060persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl015-080 0.000 0.001 3475 6667 1.000 0.993 0.976
squfl020-040 0.000 0.000 8358 10679 0.570 0.000 0.000
squfl020-050 0.000 0.000 4094 8025 0.365 -0.000 0.000
squfl020-150 0.014 0.014 9 7 0.000 0.000 -0.222
squfl020-150persp 0.000 0.000 16 16 1.000 0.000 0.000
squfl025-025 0.000 0.000 15093 11992 0.997 -0.000 -0.000
squfl025-025persp 0.000 0.000 12 12 1.000 0.000 0.000
squfl025-030 0.000 0.000 5523 14798 1.000 0.000 0.000
squfl025-030persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl025-040 0.000 0.000 6438 7860 0.519 0.000 0.000
squfl025-040persp 0.000 0.000 12 12 1.000 0.000 0.000
squfl030-100 0.000 0.000 1291 1402 0.289 0.000 0.000
squfl040-080 0.000 0.001 1034 1477 1.000 0.983 0.983
squfl040-080persp 0.000 0.000 8 8 1.000 0.000 0.000

Continued on next page

22

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

sssd08-04persp 0.000 0.000 20080 17359 1.000 0.000 0.000
sssd12-05persp 0.131 0.133 63030 73358 0.016 0.016 0.154
sssd15-04persp 0.188 0.181 76121 77773 -0.041 -0.039 -0.018
sssd15-06persp 0.285 0.260 43387 47623 -0.095 -0.087 0.002
sssd15-08persp 0.235 0.234 30374 41340 -0.005 -0.005 0.261
sssd16-07persp 0.232 0.214 41858 46101 -0.086 -0.079 0.014
sssd18-06persp 0.200 0.188 40346 48551 -0.063 -0.059 0.117
sssd18-08persp 0.383 0.372 31676 41841 -0.028 -0.027 0.221
sssd20-04persp 0.202 0.202 63012 69887 0.002 0.002 0.100
sssd20-08persp 0.202 0.195 27951 34670 -0.036 -0.035 0.164
sssd22-08persp 0.228 0.212 31593 33795 -0.077 -0.071 -0.007
sssd25-08persp 0.178 0.172 27400 33837 -0.038 -0.037 0.159
st bsj2 0.000 0.000 17 15 1.000 0.000 0.000
st e05 0.000 0.000 59 75 1.000 0.000 0.000
st e24 0.000 0.000 7 7 1.000 0.000 0.000
st e25 0.000 0.000 15 15 1.000 0.000 0.000
st e30 0.000 0.000 47 61 1.000 0.000 0.000
st e31 0.000 0.000 593 490 1.000 0.000 0.000
st fp7a 0.000 0.000 297 345 1.000 0.000 0.000
st fp7b 0.000 0.000 349 341 1.000 0.000 0.000
st fp7c 0.000 0.000 253 449 1.000 0.000 0.000
st fp7d 0.000 0.000 277 355 1.000 0.000 0.000
st fp7e 0.000 0.000 1605 1831 1.000 0.000 0.000
st fp8 0.000 0.000 69 63 1.000 0.000 0.000
st glmp ss1 0.000 0.000 23 25 1.000 0.000 0.000
st ht 0.000 0.000 13 11 1.000 0.000 0.000
st iqpbk1 0.000 0.000 37 37 1.000 0.000 0.000
st iqpbk2 0.000 0.000 39 37 1.000 0.000 0.000
st jcbpaf2 0.000 0.000 9 13 1.000 0.000 0.000
st m1 0.000 0.000 783 383 1.000 0.000 0.000
st m2 0.000 0.000 637 619 1.000 0.000 0.000
st pan1 0.000 0.000 11 11 1.000 0.000 0.000
st ph11 0.000 0.000 11 11 1.000 0.000 0.000
st ph12 0.000 0.000 13 13 1.000 0.000 0.000
st ph13 0.000 0.000 9 9 1.000 0.000 0.000
st qpc-m1 0.000 0.000 15 17 1.000 0.000 0.000
st qpc-m3a 0.000 0.000 1269 1291 1.000 0.000 0.000
st qpk1 0.000 0.000 7 7 1.000 0.000 0.000
st qpk2 0.000 0.000 27 27 1.000 0.000 0.000
st qpk3 0.000 0.000 137 133 1.000 0.000 0.000
st rv1 0.000 0.000 107 81 1.000 0.000 0.000
st rv2 0.000 0.000 133 119 1.000 0.000 0.000
st rv3 0.000 0.000 511 629 1.000 0.000 0.000
st rv7 0.000 0.000 1143 1153 1.000 0.000 0.000
st rv8 0.000 0.000 1047 1269 1.000 0.000 0.000
st rv9 0.000 0.000 3349 1875 1.000 0.000 0.000
st testgr1 0.000 0.000 38 21 1.000 0.000 0.000
st z 0.000 0.000 9 9 1.000 0.000 0.000
supplychain 0.000 0.000 119 95 1.000 0.000 0.000
tln12 0.295 0.217 20517 22942 -0.362 -0.266 -0.179
tln4 0.000 0.000 13 25 1.000 0.000 0.000
tln6 0.000 0.000 40 38 1.000 0.000 0.000
tln7 0.075 0.121 52425 60523 0.375 0.375 0.457
toroidal3g7 6666 0.200 0.117 51 213 -0.706 -0.414 0.592
tricp ∞ ∞ 275 356 0.000 0.000 0.228
util 0.000 0.000 48 38 1.000 0.000 0.000
wastewater02m1 0.000 0.000 43 43 1.000 0.000 0.000
wastewater02m2 0.000 0.000 35 31 1.000 0.000 0.000
wastewater04m1 0.000 0.000 117 81 1.000 0.000 0.000
wastewater04m2 0.000 0.000 25 25 1.000 0.000 0.000
wastewater05m1 0.000 0.000 2561 3047 1.000 0.000 0.000
wastewater05m2 0.000 0.000 4068 7429 1.000 0.000 0.000
wastewater11m1 0.116 0.131 40219 43385 0.113 0.113 0.177
wastewater11m2 0.385 0.431 15161 15304 0.106 0.106 0.114
wastewater12m1 0.099 0.045 23070 28082 -1.000 -0.541 -0.440
wastewater12m2 0.460 0.654 7232 7822 0.296 0.296 0.349
wastewater13m1 0.446 0.370 12150 16381 -0.207 -0.171 0.105
wastewater13m2 0.538 0.538 6204 6129 0.000 0.000 -0.012
wastewater14m1 0.151 0.122 38064 42510 -0.236 -0.191 -0.096
wastewater14m2 0.191 0.209 11743 13355 0.084 0.084 0.194
wastewater15m1 0.000 0.000 7735 8130 1.000 0.000 0.000
wastewater15m2 0.000 0.000 54228 59163 0.982 -0.000 -0.000
watercontamination0303 0.000 0.000 9 9 1.000 0.000 0.000
watercontamination0303r ∞ ∞ 22 37 0.000 0.000 0.405
waterund01 0.000 0.000 49001 57176 -0.022 -0.021 0.056
waterund08 0.000 0.000 38355 41489 0.335 0.083 0.003
waterund11 0.001 0.001 35021 40695 -0.736 -0.420 -0.241

Continued on next page

23

Under review as a conference paper at ICLR 2024

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

waterund14 0.009 0.009 9789 10684 -0.012 -0.012 0.072
waterund17 0.001 0.001 35708 36527 0.549 0.545 0.436
waterund18 0.001 0.001 34080 36286 0.049 0.048 0.085
waterund22 0.016 0.017 10195 10702 0.016 0.016 0.062
waterund25 0.080 0.094 11100 10382 0.154 0.153 0.095
waterund27 0.089 0.089 2253 2835 0.001 0.001 0.206
waterund28 0.080 0.080 18 17 0.000 0.000 -0.056
waterund36 0.100 0.082 1841 2443 -0.217 -0.178 0.083

Mean — — 6315 7463 0.487 0.000 0.114

D.3.1 KOCHETOV-UFLP

To demonstrate the generalizability of the learned heuristics, we test our method on the Uncapaci-
tated Facility Location Problem (see Appendix B) without further finetuning, i.e., we only train on
TSP instances and never show the algorithm any other linear or nonlinear problem. For testing, we
generate 1000 instances using the well-known problem generator by Kochetov & Ivanenko (2005),
which was designed to have large optimality gaps, making these problems particularly challenging.

Our method performs very similar to the highly optimized baseline, despite never having seen the
UFL problem, see Table 6. We argue that this is specifically because our method relies on tree-
wide behaviour, rather than individual features to make decisions. We further hypothesize that the
reason for the advantage over the baseline being so small is due to the fact that UFLP consists
of “adversarial examples” to the branch-and-bound method where cuts have reduced effectiveness.
This means clever node-selection strategies have limited impact on overall performance.

An interesting aspect is that our method processes more nodes than the baseline, which also leads
to the loss in node-efficiency. This implies that our method selects significantly easier nodes, as
ordinarily our solver is slower just due to the additional overhead. Considering that this benchmark
was specifically designed to produce high optimality gaps, it makes sense that our solver favours
node quantity over quality, which is an interesting emergent behaviour of our solver.

E ARCHITECTURE

Our network consists of two subsystems: First, we have the feature embedder that transforms the raw
features into embeddings, without considering other nodes this network consists of one linear layer
|dfeatures| → |dmodel| with LeakyReLU (Xu et al., 2015) activation followed by two |dmodel| →
|dmodel| linear layers (activated by LeakyReLU) with skip connections. We finally normalize the
outputs using a Layernorm (Ba et al., 2016) without trainable parameters (i. e., just shifting and
scaling the feature dimension to a normal distribution).

Second, we consider the GNN model, whose objective is the aggregation across nodes according to
the tree topology. This consists of a single LeakyReLU activated layer with skip-connections. We
use ReZero (Bachlechner et al., 2020) initialization to improve the convergence properties of the
network. Both the weight and value heads are simple linear projections from the embedding space.
Following the guidance in (Andrychowicz et al., 2020), we make sure the value and weight networks
are independent by detaching the value head’s gradient from the embedding network.

F NECESSITY OF GNN

In addition to the tests done above, we also investigated running the model without a GNN: We found
that when removing the GNN, the model tended to become very noisy and produce unreproducible
experiments. Considering only the cases where the GNN-free model did well, we still found the
model needed roughly 30% more nodes than the SCIP or our model with a GNN. More importantly,
we notice the GNN-free model diverges during training: starting with a reward of roughly zero,
the model diverges down to a reward of ≈ −0.2, which amounts to a score roughly 20% worse
than SCIP. We therefore conclude that, at least for our architecture, the GNN is necessary for both
robustness and performance.

24

Under review as a conference paper at ICLR 2024

G RESULTS ON TRAINING SET

Table 6: Performance on the training set.

Benchmark Reward Utility Utility/Node Win-rate geo-mean Ours geo-mean SCIP

Training set 0.102 0.116 0.383 0.76 0.506 0.582

25

	Introduction
	Branch and Bound
	Related Work
	Methodology
	Tree Representation
	RL for Node Selection
	Data Generation & Agent Training

	Experiments
	Baselines
	Evaluation Metrics
	Results
	TSPLIB
	MINLPLIB
	MIPLIB

	Conclusion
	TSP-as-MILP Formulation
	Uncapacitated facility location Problem
	Features
	Full Results
	TSPLIB results
	MIPLIB results
	MINLPLIB results
	Kochetov-UFLP

	Architecture
	Necessity of GNN
	Results on training set

