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ABSTRACT

We propose a generic module named Indirection Layer (InLay), which leverages
indirection and data internal relationships to effectively construct symbolic indirect
representations to improve out-of-distribution generalization capabilities of various
neural architectures. InLay receives data input in the form of a sequence of objects,
treats it as a complete weighted graph whose vertices are the objects and edge
weights are scalars representing relationships between vertices. The input is first
mapped via indirection to a symbolic graph with data-independent and trainable
vertices. This symbolic graph is then propagated, resulting in new vertex features
whose indirection will be used for prediction steps afterward. Theoretically, we
show that the distances between indirection representations are bounded by the
distances between corresponding graphs, implying that unseen samples with very
different surface statistics can still be close in the representation space to the seen
samples if they share similar internal relationships. We demonstrate that InLay is
consistently effective in improving out-of-distribution generalization throughout
a comprehensive suite of experiments, including IQ problems, distorted image
classification, and few-shot domain adaptation NLP classification. We also conduct
ablation studies to verify different design choices of InLay.

1 INTRODUCTION

There have been several evidences showing that deep learning models may fail drastically in out-of-
distribution (OOD) testing circumstances (Geirhos et al., 2018; Keysers et al., 2020). One reason
widely agreed upon is that neural networks tend to learn surface statistics of data (Lake et al., 2017)
and thus can not generalize to new samples with different statistics. On the other hand, humans excel
at generalizing, and it has been long believed that the ability to think in a symbolic way is the key
for humans to quickly adapt to new situations (Mitchell, 2021). A powerful concept that can bridge
concrete data and symbols is indirection, which binds two objects together and uses one to refer to
the other. In computer science, indirection is widely used via pointer: data is bound to its memory
address, and programs use the memory address to refer to that data.

The capacity to draw analogies is yet another trait that facilitates human generalization. Several
cognitive science theories have been proposed to explain analogy, and the Structure-Mapping Theory
(SMT) (Gentner, 1983) is one of the most successful among them. SMT argues that not object
attributes but the relationships between them are transferred in an analogy. For example, the hydrogen
atom is analogous to the solar system not because they share the same sizes or temperatures but
because they both have entities revolving around a center due to the attractive force. This suggests
that internal relationships of a situation contain essential information for generalization. In this
paper, we propose a method that simultaneously leverages indirection and data internal relationships
to construct indirection representations, which can be interpreted as symbolic representations that
respect the similarities between internal relationships. For instance, two IQ problems with similar
hidden rules (i.e., similar internal relationships) should have similar indirection representations,
though they contain completely different shapes or images.
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Figure 1: Indirection Layer. Concrete data representation is viewed as a complete graph with weighted edges.
The indirection operator maps this graph to a symbolic graph with the same weight edges, however the vertices
are fixed and trainable. This symbolic graph is propagated and the updated node features are indirection
representations. Different concrete inputs may share the same indirection representations if their corresponding
graphs have the same adjacency matrices. This illustrates the core idea of InLay: constructing indirection
representations by transferring internal relationships through indirection.

To this end, we implement our method in the form of a generic module named Indirection Layer
(InLay), which can construct indirection representations from either encoded or raw low-sensory data
and can be equipped with various models to improve their OOD generalization capabilities. InLay
receives a sequence of objects as input and produces a sequence with the same length including
associated indirection representations. The input sequence is viewed as a complete weighted graph
where each edge weight represents the relationship between two corresponding objects, and thus the
adjacency matrix of this graph captures the internal relationships of the input. The core operation
of InLay consists of two steps: indirection and graph propagation (see Fig. 1 for illustration).
The input is first processed through indirection to transfer all edge weights to another symbolic
graph whose vertices are data-independent and trainable. This symbolic graph is then propagated,
resulting in updated vertex features as the indirection representations of the input. These indirection
representations are used as new representations for prediction steps afterward.

We show both theoretically and empirically that InLay can help to improve OOD generalization.
Theoretically, we show that InLay indirection preserves internal structures of graphs, and the distances
between indirection representations are bounded by the cut distances between corresponding graphs.
Thanks to these theoretical properties, the indirection representation of a new data instance can be
located near a seen one if they share similar internal relationships (although the surface features
may be entirely different), thus the two instances have a higher chance of being interpreted similarly.
Empirically, we show that InLay consistently helps different models to improve their OOD general-
ization capabilities in a comprehensive suite of experiments involving numerous datasets and OOD
scenarios, including IQ problems with unseen objects and unseen rules, distorted image classification,
and few-shot domain adaptation NLP classification. We also conduct ablation experiments to study
the necessity of different design choices in InLay and provide practical analysis on the success of
InLay.

2 METHOD

We introduce our main contribution, namely the Indirection Layer (InLay). InLay takes a sequence
of objects as input and transforms the sequence into a new indirect graph-structured representation.
Concretely, let X = (x1, x2, . . . , xk)

> ∈ Rk×n be the input sequence for InLay, where k is the
number of objects and each xi ∈ Rn represents an object. For example, an object may be either an
image in IQ problems, or a patch of image in image classification task, or a paragraph in few-shot
NLP classification task (see Section 4). To better exploit data internal relationships, we treat each
input sequence as a directed complete weighted graph (with no self-loop) whose vertices represent
the objects and edges represent relationships as scalars in [−1, 1]. Specifically, for each sequence
X , we denote GX as its corresponding graph. We define Gk to be the space of all directed weighted
complete graphs G with k vertices and edge weights in [−1, 1]. From now on, we will only write G
instead of GX when it is not necessary to specify X , and we denote AG as the adjacency matrix of
G. This adjacency matrix captures the internal relationships of the corresponding data sequence.
Remark 2.1. (Canonical indexing assumption) As the set of graph vertices may permute, a graph G
with k vertices may not have an unique adjacency matrix. To assure the well-definedness of AG, we
assume that (when computing the adjacency matrix) the i-th vertex represents the i-th element of the
input sequence. We show in Appendix C that the indirection representations are still maintained if
the canonical indexing assumption is not obeyed.
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We aim to learn suitable representations for the graph such that the internal relationships of the
input sequence can be transferable to novel settings. To this end, we contribute the Indirection
Layer (InLay), which leverages indirection and data internal relationships to construct indirection
representations. InLay is a generic and flexible module that can be equipped into different models to
construct indirection representations from either encoded data or raw low-sensory data (e.g, for the
case of Vision Transformer; see Section 4.2) in two steps: indirection and graph propagation.

Indirection

For each X , the adjacency matrix AGX
∈ Rk×k of GX represents the internal relationships between

objects in X . Each component aXij of AGX
is computed as aXij = tanh

(
Q>xi·K>xj√

4n

)
if i 6= j and

aXij = 0 if i = j, where · is the inner product and Q,K ∈ Rn×4n are trainable weights that project xi
and xj onto a higher dimensional space so that a linear kernel may represent the relationship between
xi and xj . The choice of tanh as a non-linear transformation is important: it maps the dot products
to [−1, 1], allowing InLay to possess nice theoretical properties regarding boundedness of distances
(see Section 3); and, tanh allows negative similarities between objects, which may help to represent
opposite relations, e.g., translations to the left and to the right. See Section 4.1.1 and Appendix G for
experimental details.

In indirection, each object is bound to a symbol. We denote by V ind =
(
vind
1 , vind

2 , . . . , vind
k

)> ∈ Rk×n
to be the set of symbols where each vind

i ∈ Rn is data-independent and trainable. Let G ind
k be the

subset of Gk that consists of all graphs whose set of vertices is V ind (i.e., each vertex represents some
vind
i and no two vertices represent the same vind

i ). The space G ind
k can be interpreted as the space of

symbolic graphs with fixed vertices. We define the indirection operator I as follows.

Definition 2.2. Given an input sequence X = (x1, x2, . . . , xk) and its corresponding graph GX ∈
Gk, the indirection operator I is a mapping from Gk to G ind

k that maps GX to I(GX) so that
AGX

= AI(GX) and the i-th vertex of I(GX) represents vind
i .

Remark 2.3. Definition 2.2 is introduced in the case when the canonical indexing assumption (see
Remark 2.1) is obeyed. The vertex order emerges when computing the adjacency matrix. A more
general definition is given in Appendix C.

The indirection operator I maps each object xi to its associated symbol vind
i while assuming the

pairwise relationship between vind
i and vind

j is the same as one between xi and xj (see Fig. 1). That is,
I ignores the concrete features of objects but still maintains the relationships between them.

Graph propagation

After indirection, each data graph G is mapped to a symbolic graph I(G). This operation can be
interpreted as follows: at first, edge weights of I(G) are unspecified; then the indirection operator
I assigns edge weights from the data to I(G). Once receiving this information from data, I(G)
is propagated and the updated vertex features are indirection representations of the input sequence.
Formally, for an input sequence X , if we denote rX to be the indirection representations of X ,
then rX = AGX

V ind. This symbolic rX is used as a new representation for X for prediction steps
afterward.

To summarize, for each input sequence X , InLay constructs associated indirection representation rX :

rX = tanh

(
XQ(XK)>√

4n

)
V ind. (1)

This equation is closely related to self-attention, except for three points: 1. data are projected onto a
higher dimensional space by matrix multiplying with Q and K; 2. the softmax operator is replaced
by tanh; and most importantly, 3. the value V ind is not computed based on the data X . While the first
two differences empirically enhance InLay’s performances (see Section 4.4), the third one stands for
the core idea of indirection in InLay. An ablation study on V ind will also be conducted in Section 4.4
to demonstrate the role of each element.

Initialization of V ind may greatly affect the overall performance. To reduce this effect, we replace
V ind in Eq. (1) by ψ(V ind), where ψ : Rn → Rn is a trainable 2-layer neural network applied to rows
of V ind. We also use multi-heads to compute the adjacency matrix so that local information of feature
vectors is better utilized. The number of heads is tuned for each specific task.
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3 THEORETICAL ANALYSIS

3.1 BOUNDEDNESS WITH RESPECT TO THE CUT DISTANCE

Graph spectrum and Laplacian are important graph characteristics that can be computed entirely by
graph adjacency matrices. From Definition 2.2, it follows that the indirection operator I preserves
graph spectrum and Laplacian, which means I preserves graph internal structure. To some extent, this
agrees with the Structure-Mapping Theory (Gentner, 1983), which states that not the attributes but the
internal relationships are transferred in an analogy. In other words, learning internal relationships may
already be enough to capture the essence of a situation. Further details for the Structure-Mapping
Theory will be given in Section 5.

Next, we investigate how distances between graphs may constrain distances between indirection
representations. Before defining graph distance, we define isomorphism between graphs in Gk.
Definition 3.1. Given two graphs G = (V,E) ∈ Gk and G′ = (V ′, E′) ∈ Gk with associated
adjacency matrices AG = (aij)i,j=1,k and AG′ = (a′ij)i,j=1,k. We say G and G′ are isomorphic,
denote by G ∼= G′, if there exists a bijection φ : V → V ′ so that aij = a′φ(i)φ(j) for every i, j ∈ V .

Two isomorphic graphs can be interpreted as being identical up to isomorphism, and thus a graph
distance defined on Gk should respect this property, i.e., the distance between two isomorphic graphs
is 0. One such distance is the cut distance δ̂� (Borgs et al., 2008), which is a useful tool to compare
similarities betwen structures (Liu et al., 2018), and also for studying the convergence of sequence of
graphs (Borgs et al., 2008). A formal definition for δ̂� is given in Appendix A.

It follows from the definition of δ̂� that δ̂�(G,G′) = 0 if and only if G is isomorphic with G′.
Moreover, if G1

∼= G2 then δ̂�(G1, G
′) = δ̂�(G2, G

′) for any G′. Since G ∼= I(G), the indirection
operator I preserves δ̂� distance, i.e., δ̂�(G,G′) = δ̂�(I(G), I(G′)) for every G,G′ ∈ Gk.

We have shown that the indirection operator I admits invariant properties with respect to the graph
spectrum, Laplacian and the cut graph distance δ̂�. The following result shows that the distances
between indirection representations are bounded by cut distances between corresponding graphs. For
each G ∈ Gk, we denote rG = AGV

ind to be its associated indirection representation.
Theorem 3.2. For any two graphs G ∈ Gk and G′ ∈ Gk, the following inequality holds:

‖rG − rG′‖∞ ≤ k
(
2 + k2δ̂�(G,G

′)
)
‖V ind‖∞, (2)

where ‖.‖∞ is the matrix infinity norm (see Definition A.3 in Appendix A).

Proof. See Appendix B.

Note that even when δ̂�(G,G′) = 0, rG may still be different from rG′ . This is because by design,
InLay also takes into account the ordinal information of input sequence, which may be important in
some specific use cases, e.g., when the input is sequence of image patches. Theorem 3.2 shows that if
G and G′ are close, their indirection representations will not be far away from each other as well.
This is an important property since the original vertex representations of G and G′ may be arbitrarily
far though G and G′ are isomorphic, e.g., two IQ problems with the same hidden rules but different
images may be represented very differently. Theorem 3.2 also shows the necessity of training V ind

to obtain appropriate ‖V ind‖∞: if ‖V ind‖∞ is too large, the bound in Ineq. (2) is loose; conversely,
if ‖V ind‖∞ is too small, the bound may be too strict so that indirection representations are not well
separated enough. An empirical ablation study on V ind will be given in Section 4.4.

3.2 CONNECTION BETWEEN INLAY AND STRUCTURAL ANALOGY

Current machine learning methods follow the manifold hypothesis and tend to interpolate on the
learned manifold during testing. This ability of interpolation is usually referred as making value
analogies, i.e., making analogies between data features. However, value analogy may not be enough
in more extreme generalization cases when surface statistics of testing samples vastly differ from
that of training data. Structural analogy is believed to be necessary for ML models to reach higher
levels of generalization (Chollet, 2021). By making structural analogy, concrete information is partly
ignored while structural information is compared, e.g., two IQ problems with the same hidden rules
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Figure 2: (a) Overall architecture of prediction model when equipped with InLay. (b) Left: A problem in
FINE dataset with images from the Omniglot dataset and hidden rule is 90-degree rotation. Right: A Raven’s
Progressive Matrix problem from RAVEN dataset. Images adapted from original papers.

are structurally analogous even though the data (e.g., images) are entirely different between the
problems. In InLay, the structural information is maintained in the form of adjacency matrices, which
are computed based on data features. To some extent, InLay can be interpreted as a hybrid method of
value analogy and structural analogy.

When it comes to structural analogy, one might need a metric to measure the similarities between
structures. Among different metrics, the cut distance δ̂� is one of the few methods able to compare
directed weighted graphs (Tantardini et al., 2019). For instance, a recent work by Liu et al. (2018)
leverages the cut distance to compare complex networks, including artificial networks and real
networks of chemical molecules. Theorem 3.2 draws a connection between InLay and the cut distance
by showing that the distances between indirection representations are bounded by corresponding cut
distances, and thus emphasizes the structural inductive bias InLay brings into deep learning models.

4 EXPERIMENTS

In this section, we conduct several experiments with different scenarios of OOD generalization to
show that InLay can adapt to various models and improve their performances on various datasets.
The OOD testing scenarios include IQ problems with unseen images and unseen rules, distorted
image classification, and domain adaptation on few-shot NLP classification, all of which require the
ability to understand the problem in a systematic and symbolic way in order to generalize on new
OOD circumstances. Throughout these experiments, we show that InLay consistently helps models
to perform better. We also provide an ablation study on the necessities of different design choices in
InLay, as well as a practical analysis of the success of InLay.

InLay constructs indirection representations from either encoded or raw data. If the prediction
model is equipped with an encoder, InLay will sit between the encoder and prediction to transform
encoded representations to indirection representations (see Fig. 2a for an illustration). When there
is no encoder, e.g., when the prediction model is Vision Transformer, InLay directly constructs
indirection representations from raw data. To be fair when comparing, models with or without InLay
are all trained with the same training settings, including batch size, learning rate, number of training
iterations, optimizer, etc., and we only report test results after the last iteration. Average results are
reported in the main text; full results with standard deviation are given in Appendix D. More training
details are also given in Appendix K.

In practice, we optionally use context normalization (Webb et al., 2020a) to further improve InLay. If
context normalization is applied in InLay, there will be two such layers: one to normalize the original
representation X , and one to normalize the symbolic representation rX .

4.1 OUT-OF-DISTRIBUTION IQ PROBLEMS

IQ problems are powerful testbeds for OOD generalization capability of deep learning models.
Despite their simple appearances, IQ problems are challenging in the sense that they require models
to understand the hidden rules instead of just surface features to solve new problems with unseen
objects or even unseen (but related) rules. There have been evidences showing that current deep
learning models may fail when facing problems with unseen objects (Webb et al., 2020b). In this
experiment, we show that models coupled with InLay achieve better performances on two IQ datasets:
FINE (Pham et al., 2022) and RAVEN (Zhang et al., 2019). Examples are given in Fig. 2b.
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Train set CIFAR100 MNIST
Test set Omniglot CIFAR100

Trans. Rot. Shear Scale Trans. Rot. Shear Scale
NTM 25.5/56.9 27.1/31.4 29.8/58.5 30.3/61.0 35.2/69.2 30.0/34.5 29.6/56.0 31.9/48.7
PrediNet 26.7/28.5 25.5/28.3 25.6/29.0 26.4/29.9 27.5/31.6 26.8/27.8 26.4/28.4 33.6/35.9
RelationNet 25.4/39.3 25.0/34.0 25.1/39.8 24.7/50.2 25.6/45.5 25.6/35.2 25.0/43.4 26.8/44.8
Transformer 26.9/63.3 27.2/40.4 28.3/65.3 30.6/62.0 37.8/63.9 32.0/36.1 30.2/53.5 29.2/48.1

Table 1: Average test accuracy (%) without/with InLay on FINE dataset.

Train configuration Up-Down 3x3Grid Out-InGrid AverageTest configuration Left-Right 2x2Grid Out-InCenter
LSTM 28.8/43.9 19.5/25.1 42.1/48.6 30.1/39.2
Transformer 15.2/56.7 13.6/26.0 16.6/44.7 15.1/42.5
RelationNet 12.7/58.5 12.4/28.9 12.3/51.7 12.5/46.4
PrediNet 13.7/16.5 13.6/14.3 14.2/15.9 13.8/15.6

Table 2: Average test accuracy (%) without/with InLay on RAVEN dataset.

4.1.1 FINE DATASET

FINE dataset consists of IQ problems with geometric transformations as hidden rules. To succeed in
this dataset, models should treat objects as symbols and learn the relationship between these symbols.
Here we consider one of the most challenging OOD scenarios: test problems include unseen objects
and unseen rules. To be specific, images in train and test problems come from different datasets (train
on CIFAR100 (Krizhevsky, 2009) - test on Omniglot (Lake et al., 2015) or train on MNIST (LeCun
et al., 2010) - test on CIFAR100), so the models need to understand the hidden rules instead of image
features to solve test problems. Rules in test problems are also unseen during training; for instance,
we train on IQ problems with rotation angle less than 180◦ and test on ones with rotation angles more
than 180◦; similarly, for translation, we train on problems with translation to the left and test on ones
with translation to the right. More details of other transformations will be given in Appendix. Models
to be considered include the Neural Turing Machine (Graves et al., 2014), PrediNet (Shanahan et al.,
2020), Relation Network (Sung et al., 2018), and Transformer (Vaswani et al., 2017), all of which
have been shown to be effective on different relational reasoning tasks. All models, with or without
InLay, are equipped with context normalization. Results are reported in Table 1.

Overall, models perform better when equipped with InLay, even in very extreme cases when models
are trained on grayscale MNIST images and tested on RGB CIFAR100 images. This shows a clear
advantage of InLay: indirection maps concrete features to symbolic space spanned by V ind, thus
helping models to be less dependent on concrete data. It can also be observed that PrediNet equipped
with InLay improves less than other models. This is because PrediNet also constructs new symbolic
data representations, and thus contains the inductive bias of symbolic representations itself. Again,
this emphasizes the necessity of including symbolic inductive bias to improve OOD generalization.

4.1.2 RAVEN DATASET

RAVEN dataset (Zhang et al., 2019) is inspired by Raven’s Progressive Matrices, which are challeng-
ing IQ tests for humans. RAVEN IQ problems are complex in the sense that a single problem may
consist of different shapes, each of which follows a different rule. Inspired by the original paper, we
conduct experiments to test models’ capabilities to generalize on problems of unseen configurations.
Specifically, we train and test on problems of different but related configurations. For example,
Up-Down problems are related to Left-Right ones in the sense that Left-Right configuration can be
viewed as a 90-degree “rotation” of Up-Down. In this experiment, the three train-test configuration
pairs are UpDown-LeftRight, 3x3Grid-2x2Grid and OutInGrid-OutInCenter. We also apply context
normalization in all models. We further apply Dynamic Residual Tree as proposed in the original
paper to capture the inherent structure of Raven’s Progressive Matrices. Results are reported in
Table 2. A similar pattern can be observed: models equipped with InLay tend to perform better. In
average, InLay helps improve LSTM by 9.1%, Transformer by 27.4%, RelationNet by 33.9%, and
PrediNet by 1.8%. This can be well explained by Theorem 3.2 and Theorem B.1 in the theoretical
analysis: although the test configuration is unseen, it is still related to the train configuration and
thus InLay representations for test problems may still be close to ones of train problems. This helps
models to have a better chance to draw analogies between observed and unobserved configurations.
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Dataset No data augmentation With data augmentation
Rot90 Grayscale Jitter Avg. Rot90 Grayscale Jitter Avg.

SVHN 11.8/12.5 86.9/91.8 87.2/91.6 62.0/65.3 17.3/19.1 92.9/94.7 91.8/93.4 67.3/69.1
CIFAR10 25.7/27.9 48.3/62.7 46.6/59.7 40.2/50.1 24.2/27.3 54.2/69.2 50.2/68.4 42.2/55.0
CIFAR100 13.4/15.0 16.4/23.9 18.1/25.0 16.0/21.3 11.1/14.0 18.5/27.8 19.4/28.7 16.3/23.5

Table 3: Average test accuracy (%) without/with InLay on OOD classification task with ViT.

ProtoNet SNAIL GNN MTB
5-way-1-shot 64.7/65.4 38.6/60.6 36.7/63.1 66.1/68.9

10-way-1-shot 49.1/41.7 17.3/34.9 27.1/43.3 52.9/54.1
Average 56.9/53.6 28.0/47.8 31.9/53.2 59.5/61.5

Table 4: Average validation accuracy (%) without/with InLay on FewRel 2.0.

4.2 OUT-OF-DISTRIBUTION CLASSIFICATION

Humans can consistently recognize objects in different positions, angles, or colors. Current deep
learning models may not. Geirhos et al. (2018) show that when test images are injected with different
kinds of distortions other than ones in training, deep neural networks may fail drastically on image
classification tasks. We take inspiration from that result and conduct similar experiments to test
whether InLay can help models improve their performances on OOD image classification tasks.
We use a vanilla 6-layer Vision Transformer (ViT) (Dosovitskiy et al., 2020) as the base model
and test it, with or without InLay, on different datasets, namely the SVHN (Netzer et al., 2011)
and CIFAR10&100 (Krizhevsky, 2009). The models are trained on original images in two cases:
with and without data augmentation, and tested on images with various distortions, including image
transformation (90-degree rotation) and color transformations (color jitter, grayscale). In the case
of data augmentation, we use all other distortions for augmentation except one used for testing. If
InLay is equipped, we divide each 32× 32 image into overlapping patches of size 8× 8 and stride
4. These patches are vertices of the graph that represents the current image. The patch indirection
representations are reassembled to form a new image of the same size as the original one. This new
image is then fed into ViT. Context normalization is not used in this task.

Results are shown in Table 3. As expected, ViT performs poorly when the images are distorted. In
average, InLay helps to improve its performance by 3.3% on SVHN, 0.9% on CIFAR10, and 5.3%
on CIFAR100 when there is no data augmentation and 1.8% on SVHN, 12.8% on CIFAR10, and
7.2% on CIFAR100 when data augmentation is included. We can also observe that 1. ViT with
data augmentation but without InLay is still mostly worse than ViT with InLay but without data
augmentation; and 2. InLay helps improve ViT in both cases of with and without data augmentation.
Note that it should not be interpreted that adding InLay to ViT is equivalent to adding a Transformer
layer. Empirically, performances of 7-layer ViT only slightly differ from 6-layer ViT (see Appendix
E), while it is clear that adding InLay may boost performances significantly.

4.3 FEW-SHOT NLP DOMAIN ADAPTATION

Humans can handle NLP classification tasks given a small number of examples. While humans can
quickly adapt to such new scenarios, deep language models may not. Gao et al. (2019) proposed the
FewRel 2.0 dataset that consists of few-shot NLP classification tasks, where the domains of train and
test tasks vastly differ. Specifically, the training texts are taken from the Wikipedia corpus, while texts
for testing originate from the PubMed and UMLS databases that contain large amounts of biomedical
literature and sciences. This creates a big obstacle for few-shot language models to adapt to: their
performances drop drastically as reported in the original paper.

Inspired by this result, we conduct an experiment on FewRel 2.0 dataset to show that InLay works
well for language models. Different few-shot models, including Prototypical Network (Snell et al.,
2017), SNAIL (Mishra et al., 2017), Graph Neural Network (Garcia and Bruna, 2017), and MTB
(Soares et al., 2019), are trained with BERT encoder (Devlin et al., 2018) on 5-way-1-shot and
10-way-1-shot tasks. All models are equipped with context normalization. Since the test set is not
provided for the public, we only report the test results on validation set, which shares the same
domain as the test set. Results are shown in Table 4. Except ProtoNet, InLay helps other models
improve: 19.8% for SNAIL, 21.3% for GNN, and 2.0% for MTB in average. The case of ProtoNet
can be explained as follows: ProtoNet depends the distances between data instances, which is similar
to the spirit of our InLay. Because ProtoNet already has this inductive bias, InLay can not help to
improve it.

7



Published as a conference paper at ICLR 2023

activation SVHN
project
higher non-trainable Vind CIFAR10 CIFAR100

(a) (b)

data-
dependent

value
relative

pos. enc.

Figure 3: (a) Ablation study. Test accuracies of ViT equipped with InLay on grayscale images when a design
choice of InLay is replaced or removed. (b) Relative distances between original and distorted representations
with and without InLay in different testing cases.

4.4 ABLATION AND ANALYSIS

4.4.1 ABLATION ON INLAY DESIGN CHOICES

We conduct ablation experiments to study the necessities of different design choices of InLay. All
experiments are conducted on OOD classification task (see Section 4.2) with ViT and grayscale
testing images. In each experiment, we modify one design choice and keep others fixed. We consider
three main design choices: activation function to compute adjacency matrices, projection on higher
space to compute dot products, and trainability and data-independence of V ind. We also consider the
case when the indirection representations are treated as relative positional encoding to be added to
the original input. Results are reported in Fig. 3a.

In the ablation for activation function, replacing tanh with softmax significantly decreases the
performance, while the result when no activation is applied is only slightly lower. This is because
softmax does not allow negative values; moreover, it imposes the constraint of summing-to-one on
edges of graph, which is unnecessary in the theoretical analysis. On the other side, projecting data
onto higher dimensional spaces also plays a vital role in InLay as it helps linearize the relations
between objects so that dot products may manage to represent those relations, and not doing so may
lead to a drastic drop in performance. Maintaining a trainable set of symbols V ind is beneficial for
InLay, and the performances with randomly sampled V ind from Gaussian tend to decrease when the
standard deviations of the Gaussians increase. This can be explained by Theorem 3.2: increase of
standard deviations leads to bigger ‖V ind‖∞, which loosens the bound in Ineq. (2). Keeping V ind

data-independent is also important, and treating the indirection representations as relative positional
encoding is not efficient.

4.4.2 FURTHER PRACTICAL ANALYSIS

Besides theoretical analysis in Section 3, we further provide practical evidence showing why InLay
may help models to generalize better. We again use the OOD classification tasks as a testbed. In short,
we would like to show that InLay reduces the distance between an image and its distorted version,
thus models may recognize the similarity between the two images more easily. Using the absolute
distance may not be a fair metric since scaling two vectors by the same factor may already reduce the
distance between them. Instead, we compute the relative distances between vectors, i.e. the relative
distance between u and v is 2× ‖u−v‖∞

‖u‖∞+‖v‖∞ . Relative distances between images and their distorted
versions are computed in two cases: with InLay and without InLay. Results are shown in Fig. 3b,
and it is clear that the relative distances in InLay case are lower than those without InLay. This
can be partly explained by Theorem 3.2: the original image corresponds with G, and the distorted
image corresponds with G′. Since the distorted image is closely related to the original one, the
distance between their corresponding graphs is small, and thus the distance between their indirection
representations rG and rG′ also tends to be small according to Ineq. (2).

5 RELATED WORK

Systematic generalization has attracted attention recently in the deep neural networks community.
One approach is to train a mixture of experts as functional modules, and these experts either compete
(Parascandolo et al., 2018) or are composed by attention mechanism (Rahaman et al., 2021) to
solve a task. Fedus et al. (2021) proposed the Switch Transformer to simplify routing algorithms in
mixture-of-experts models to reduce communication and computational costs. Another approach is
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to design architectures that mimic human’s ability to think and reason sequentially. One well-known
early model following this approach is the Module Network (Andreas et al., 2016) which attacks
the image-QA tasks by parsing the query into sequential sub-queries, each of which is solved by
a module in the form of neural networks. The MAC recurrent network (Hudson and Manning,
2018) and the Neural State Machine (Hudson and Manning, 2019) follow a similar idea, however,
in MAC the query is explicitly and expressively decomposed by a sequence of RNN-type MAC
cells, while Neural State Machine relies on probabilistic graphs representing underlying semantics to
reason sequentially. Recently, Wei et al. (2022) proposed the idea of chain of thought to improve
the ability of large language models to perform complex reasoning. Our InLay also follows the idea
of injecting symbolic inductive bias, however, we focus on representations instead of functional
modules. Models equipped with InLay can be interpreted as 2-step reasoning: the low-level sensory
data is first represented symbolically by InLay, then processed by the following models.

Indirection is one of the most useful ideas that has been long applied in different areas of computer
science. One of the most illustrative examples for indirection is the concept of pointer. Recently,
there have been works leveraging indirection to improve generalization capabilities of deep learning
models. ESBN (Webb et al., 2020b) uses an RNN controller to sequentially produce a symbolic key
for each object and reasons on keys only. The keys in ESBN are computed based on the controller
and similarities between objects, which is similar to our InLay; however, the keys are produced
sequentially, which may increase the computational cost. Recently, Pham et al. (2022) proposed
FINE, which is a fast-weight approach that utilizes indirection on functional spaces and has achieved
promising performances on different OOD testing scenarios of IQ problems.

The idea of transferring relationships in InLay is inspired from the Structure Mapping Theory (SMT)
(Gentner, 1983), which is a revolutionary theory of analogy in cognitive science. Analogy is a vital
concept to explain human cognition, and it has been long argued that analogy-making underlies
humans’ ability to flexibly adapt to new situations (Gentner et al., 2001). Before SMT, it had been
assumed that in a strong analogy, the base and the target should share several attributes in common
(Tversky, 1977). SMT, in contrast, argues that not attributes but the relationships between objects
are transferred in an analogy; in other words, the essence of a situation lies in internal relationships
instead of concrete attributes. From this point of view, the theoretical results in Section 3 can be
interpreted as a justification for SMT in the case of InLay: transferring relationships only does not
lose significant information such as graph characteristics and graph topology.

It is also worth noting that from few-shot learning perspective, our InLay can be categorized as
fast-weight (Malsburg, 1994) embedding learning model, in which the attentional weight AGX

is
computed on-the-fly and the indirection representation rX is computed accordingly.

The trainable set of symbols V ind can be interpreted as positional encodings, and the output rX of
InLay is a relative positional encoding regarding the input X . The idea of relative positional encoding
(Shaw et al., 2018), as a replacement for the absolute positional encoding in Transformer, has been
widely investigated and several variants have been proposed (Dai et al., 2019; Huang et al., 2018).
It is worth noting that the relative positional encoding is added to the original input, while rX in
InLay plays the role of the input for the following model. InLay thus should not be considered as a
variant of a Transformer layer or relative positional encoding; instead, its design highlights the idea
of indirection and symbolic representations.

6 CONCLUSION
In this paper, we propose InLay as a separate module that can be plugged into different models to
improve OOD generalization. InLay leverages the idea of indirection to redirect data representation
based on a trainable set of symbols. Viewing each data point as a complete weighted graph, we prove
theoretically that InLay preserves graph internal structure and graph topology, and the distances
between refined representations are bounded by the distances between corresponding graphs. We
show the effectiveness of InLay through a comprehensive suite of experiments, including different
OOD testing scenarios on IQ problems, distorted image classification, and few-shot NLP domain
adaptation classification tasks. We also conduct ablation experiments to study necessities of different
design choices in InLay, as well as further practical analysis on the success of InLay.

InLay opens up several future directions. From the theoretical side, it is worth investigating how the
manifold containing original data representations is transformed during InLay, and why this manifold
transformation can help generalization. From the practical view, stacking multiple InLay’s to form a
hierarchical indirection network is a promising idea.
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APPENDIX

A DEFINITION OF δ̂� AND ‖.‖∞

We first define the cut distance d� between graphs with the same set of vertices.
Definition A.1. (Borgs et al., 2008) Given two graphs G = (V,E) ∈ Gk and G′ = (V,E′) ∈ Gk
with associated adjacency matrices AG = (aij)i,j=1,k and AG′ = (a′ij)i,j=1,k. The cut distance d�
between G and G′ is

d�(G,G
′) = max

S,T⊂V

1

k2
|eG(S, T )− eG′(S, T )|, (3)

where
eG(S, T ) =

∑
i∈S,j∈T

aij and eG′(S, T ) =
∑

i∈S,j∈T
a′ij .

The distance d� can also be interpreted as the distance between the internal relationships (i.e., the
adjacency matrices) of two graphs. However, one drawback of d� is that it is not invariant under
isomorphism. The generalized cut distance δ̂� is proposed to overcome this drawback.
Definition A.2. (Borgs et al., 2008) Given two graphs G = (V,E) ∈ Gk and G′ = (V,E′) ∈ Gk
with associated adjacency matrices AG = (aij)i,j=1,k and AG′ = (a′ij)i,j=1,k. The generalized cut

distance δ̂� between G and G′ is computed as δ̂�(G,G′) = minG̃∼=G d�(G̃,G
′), where G̃ shares

the same set of vertices with G′.

Next, we define the matrix infinity norm ‖.‖∞induced from the vector max norm.
Definition A.3. For a given matrix A = (aij)i=1,k,j=1,n, its infinity norm is computed as ‖A‖∞ =

max
1≤i≤k

n∑
j=1

|aij |. In words, the matrix infinity norm is the max row sum.

Proposition A.4. The matrix infinity norm is sub-multiplicative, i.e., ‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

B PROOF OF THEOREM 3.2 AND MORE THEORETICAL RESULTS

In this section, we provide proofs for theoretical results in the main text. An illustration of theoretical
results are given in Fig. 4.

Proof of Theorem 3.2. Denote ε = δ̂�(G,G
′). Since G ∼= I(G) and G′ ∼= I(G′), it folows

that δ̂�(I(G), I(G′)) = δ̂�(G,G
′) = ε. From the definition of δ̂� (Definition A.2), there exists

Gind ∈ G ind
k so that Gind ∼= I(G) and d�(Gind, I(G′)) = ε. Denote E = AGind − AI(G′), where

AGind and AI(G′) are the adjacency matrices of Gind and I(G′) respectively, it follows from the
definition of d� that ‖E‖∞ ≤ k3ε (since the absolute value of each element of E is less than k2ε
due to Definition A.1 of d�, and the infinity matrix norm is the max row sum where each row has k
elements). Finally, note that AI(G′) = AG′ , we have

‖rG − rG′‖∞ = ‖AGV ind −AG′V ind‖∞
≤ ‖AG −AGind + E‖∞‖V ind‖∞
= ‖AI(G) −AGind + E‖∞‖V ind‖∞
≤ (‖AG‖∞ + ‖AGind‖∞ + ‖E‖∞) ‖V ind‖∞
≤ (2k + k3ε)‖V ind‖∞
= k(2 + k2ε)‖V ind‖∞. �

Theorem 3.2 focuses on the distance between two single indirection representations. Now we move
our attention to the distance between sets of indirection representations associated with isomorphic
classes of graphs. For each G ∈ Gk, denote RG = {rG̃ : G̃ ∈ Gk, G̃ ∼= G}. According to
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Figure 4: Illustration of Theorem 3.2 and Theorem B.1.

Theorem 3.2, diam RG ≤ 2‖V ind‖∞ for every G ∈ Gk, where diam stands for the diameter of a set.
We now focus on the distance between RG and RG′ , and we use the popular Hausdorff metric to
measure this distance. The distance between RG and RG′ is meaningful in the sense that for any
r′ ∈ RG′ , we can find r ∈ RG so that ‖r − r′‖∞ ≤ dH(RG, RG′). If dH(RG, RG′) is small and
r is observed, then r′ is likely to be treated similarly as r. The following last theorem shows that
the Hausdorff distance dH with respect to the ‖.‖∞ norm between RG and RG′ also depends on the
distance between G and G′.
Theorem B.1. Given two graphs G ∈ Gk and G′ ∈ Gk. The following inequality holds:

dH(RG, RG′) ≤ k3‖V ind‖∞δ̂(G,G′). (4)

Moreover, if G and G′ are not isomorphic and rank V ind = k, then RG ∩RG′ = ∅.

Proof of Theorem B.1. Denote [G] = {G̃ ∈ Gk : G̃ ∼= G}. We will prove that for every G1 ∈ [G],
there exits G2 ∈ [G′] so that ‖rG1

− rG2
‖∞ ≤ k3‖V ind‖∞δ̂(G,G′).

Following the definition of δ̂�, for G1 ∈ [G], there exists G2 ∈ [G′] so that δ̂�(G1, G
′) =

d�(G1, G2). On the other hand, since G1
∼= G, it follows that δ̂�(G1, G

′) = δ̂�(G,G
′), and

hence d�(G1, G2) = δ̂�(G,G
′). This leads to

‖rG1 − rG2‖∞ = ‖AG1V
ind −AG2V

ind‖∞
≤ ‖AG1

−AG2
‖∞‖V ind‖∞

≤ k3d�(G1, G2)‖V ind‖∞
= k3δ̂�(G,G

′)‖V ind‖∞.

This means

d(rG1
, RG′) = inf

G̃∈[G′]
‖rG1

− rG̃‖ ≤ k
3δ̂�(G,G

′)‖V ind‖∞

for every G1 ∈ [G]. Similary, d(rG2 , RG) = inf
G̃∈[G]

‖rG2
− rG̃‖ ≤ k

3δ̂�(G,G
′)‖V ind‖∞ for every

G2 ∈ [G′]. This leads to

dH(RG, RG′) = max

{
sup

G1∈[G]

d(rG1
, RG′), sup

G2∈[G′]

d(rG2
, RG)

}
≤ k3‖V ind‖∞δ̂(G,G′).

Finally, if rank V ind = k and G and G′ are not isomorphic, suppose there exists r ∈ RG∩RG′ . Since
r ∈ RG, there exists G1 ∈ [G] so that r = rG1 = AG1V

ind. Similarly, there exists G2 ∈ [G′] so that
r = AG2

V ind. This leads to AG1
V ind = AG2

V ind, and since rank V ind = k, we obtain AG1
= AG2

.
This means G1

∼= G2, and hence G ∼= G′, which is a contradiction. Hence RG ∩RG′ = ∅. �

C WELL-DEFINEDNESS OF INDIRECTION REPRESENTATION

In this section, we consider the case when the canonical assumption (see Remark 2.1) is not obeyed.
First, we need a more general definition for the indirection operator (Definition 2.2).

14



Published as a conference paper at ICLR 2023

Definition C.1. Given an input sequence X = (x1, x2, . . . , xk) and its corresponding graph GX ∈
Gk, the indirection operator I is a mapping from Gk to G ind

k that maps GX to I(GX) so that 1.
AGX

= AI(GX) and 2. if the i-th vertex of GX represents for xj , then the i-th vertex of I(GX)

represents for vind
j .

Consider an input sequence X = (x1, x2, . . . , xk) and its corresponding graph GX with adjacency
matrix AGX

, which is computed based on the assumption in Remark 2.1. The associated indirection
representation computed by Eq. (1) is rX , i.e., the i-th element of rX is the indirection representation
for xi.

Now consider an arbitrary graph G′X that also represents X with adjacency matrix AG′
X

and set of
vertices {v′1, v′2, . . . , v′k}. This means there exists a permutation σ (with an associated permutation
matrix P ) so that v′σ(i) represents for xi for all i, and AG′

X
= PAGX

P>. Suppose that G′X is
mapped to I(G′X) with set of vertices {u′1, u′2, . . . , u′k}. By the definition of indirection operator
(Definition (2.2)), v′i is mapped to u′i (so that AG′

X
= AI(G′

X)) and u′σ(i) represents vind
i (since v′σ(i)

represents for xi). It follows that the associated indirection representation r′X with respect to G′X is
computed as

r′X = AG′
X
PV ind = PAGX

P>PV ind = PAGX
V ind = PrX .

This means the σ(i)-th element of r′X is the i-th element of rX . On the other hand, after graph
propagation, u′σ(i) represents for the σ(i)-th element of r′X , which is the i-th element of rX . Since
v′σ(i) represents for xi and v′σ(i) is mapped to u′σ(i) by the indirection operator I, it follows that
the i-th element of rX is the indirection representation for xi. This shows that the indirection
representations of xi’s are unchanged when the vertices of GX permute.

D FULL EXPERIMENTAL RESULTS

D.1 OOD IQ PROBLEMS

D.1.1 FINE DATASET

We report full results with standard deviations of experiments on FINE dataset with trainset CIFAR10
and testset Omniglot in Table 5.

Train set CIFAR100
Test set Omniglot

Trans. Rot. Shear Scale
NTM 25.5±1.7/56.9±5.0 27.1±0.6/31.4±1.7 29.8±1.3/58.5±4.6 30.3±2.9/61.0±3.9
PrediNet 26.7±0.9/28.5±4.5 25.5±0.3/28.3±0.5 25.6±0.4/29.0±1.7 26.4±1.0/29.9±1.7
RelationNet 25.4±0.5/39.3±1.4 25.0±0.5/34.0±0.4 25.1±0.2/39.8±1.1 24.7±0.6/50.2±1.0
Transformer 26.9±1.9/63.3±3.7 27.2±1.1/40.4±4.3 28.3±1.4/65.3±2.8 30.6±3.0/62.0±6.2

Table 5: Test accuracy (%) without/with InLay on FINE dataset with trainset CIFAR10 and testset Omniglot.

We report full results with standard deviations of experiments on FINE dataset with trainset MNIST
and testset CIFAR10 in Table 6.

Train set MNIST
Test set CIFAR100

Trans. Rot. Shear Scale
NTM 35.2±1.6/69.2±3.8 30.0±1.9/34.5±5.6 29.6±1.1/56.0±7.4 31.9±4.7/48.7±7.8

PrediNet 27.5±1.4/31.6±5.1 26.8±1.4/27.8±1.5 26.4±1.4/28.4±2.3 33.6±2.5/35.9±6.7
RelationNet 25.6±0.5/45.5±2.5 25.6±0.6/35.2±1.2 25.0±0.5/43.4±1.8 26.8±0.7/44.8±4.1
Transformer 37.8±2.7/63.9±6.5 32.0±1.5/36.1±10.1 30.2±2.5/53.5±6.8 29.2±3.6/48.1±7.0

Table 6: Test accuracy (%) without/with InLay on FINE dataset.

D.1.2 RAVEN DATASET

We report full results with standard deviations of experiments on RAVEN dataset in Table 7.
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Train configuration Up-Down 3x3Grid Out-InGrid
Test configuration Left-Right 2x2Grid Out-InCenter
LSTM 28.8±3.1/43.9±6.2 19.5±0.6/25.1±2.4 42.1±1.3/48.6±2.7
Transformer 15.2±0.3/56.7±2.3 13.6±0.4/26.0±0.9 16.6±4.5/44.7±1.6
RelationNet 12.7±0.3/58.5±2.0 12.4±0.4/28.9±0.4 12.3±0.3/51.7±2.8
PrediNet 13.7±0.3/16.5±0.9 13.6±0.3/14.3±0.6 14.2±0.6/15.9±0.5

Table 7: Test accuracy (%) without/with InLay on RAVEN dataset.

D.2 OOD IMAGE CLASSIFICATION

We report full results with standard deviations of OOD image classification experiments in Table 8.

Dataset
No data augmentation With data augmentation

Rot90 Grayscale Jitter Rot90 Grayscale Jitter

SVHN 11.8±0.4/12.5±0.7 86.9±0.5/91.8±0.7 87.2±0.2/91.6±0.3 17.3±1.1/19.1±1.6 92.9±0.2/94.7±0.2 91.8±0.2/93.4±0.2
CIFAR10 25.7±0.1/27.9±0.3 48.3±0.8/62.7±0.2 46.6±0.9/59.7±0.8 24.2±0.4/27.3±1.3 54.2±0.4/69.2±0.9 50.2±0.7/68.4±0.5

CIFAR100 13.4±0.4/15.0±0.2 16.4±0.3/23.9±0.4 18.1±0.2/25.0±0.6 11.1±0.5/14.0±0.4 18.5±0.7/27.8±0.5 19.4±0.5/28.7±0.5

Table 8: Test accuracy (%) without/with InLay on OOD classification task with ViT.

D.3 FEW-SHOT NLP DOMAIN ADAPTATION

We report full results with standard deviations of few-shot NLP classification tasks on FewRel 2.0
dataset in Table 9.

ProtoNet SNAIL GNN MTB
5-way-1-shot 64.7±1.5/65.4±3.0 38.6±2.9/60.6±4.9 36.7±2.9/63.1±1.3 66.1±1.7/68.9±1.0
10-way-1-shot 49.1±2.0/41.7±3.2 17.3±1.2/34.9±5.8 27.1/43.3±3.4 52.9±1.2/54.1±1.3

Table 9: Validation accuracy (%) without/with InLay on FewRel 2.0.

E 6-LAYER VIT VS. 7-LAYER VIT

We report results of 6-layer ViT and 7-layer ViT, along with 6-layer ViT equipped with InLay, in
OOD CIFAR10 classification tasks in Table 10. Overall, average performance of 6-layer ViT and
7-layer ViT is not much different (38.2% and 38%, respectively), while 6-layer ViT equipped with
InLay clearly improve performances with average accuracy of 43.1%.

F RUNNING TIME OF INLAY

We report running time (s/iter) of ViT and ViT+InLay on CIFAR10 dataset. Models are trained on a
single Tesla V100-SXM2 GPU. Overall, ViT+InLay requires roughly 10% more computational time.

G MORE ABLATION STUDIES ON TANH ACTIVATION

Readers may observe in Fig. 3a that having no activation in InLay still achieves almost equal
performance. However, that is just a special case; Table shows results of similar ablation experiments
with NTM on the FINE dataset with different activation functions. Among all, the tanh activation
achieves best average performance.

H ABOUT INPUT SEQUENCE LENGTH

H.1 WHEN THE SEQUENCE IS TOO LONG

When the number of nodes is large, graph neural networks usually suffer from the issue of over-
smoothness, which is the phenomenon that all nodes become nearly the same after updated. However,
we show that InLay may mildly suffer from this issue. In the OOD classification task, we increase
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Image transformation Color transformation
Average

Rot90 VFlip Jitter Invert Blur Grayscale
6-layer ViT 25.7±0.1 32.1±0.6 23.2±1.1 39.4±2.8 60.2±0.5 48.3±0.8 38.2
7-layer ViT 26.4 ±0.5 31.5±0.3 22.4±1.2 38.6±3.2 60.8 ±0.6 48.3 ±0.7 38
6-layer ViT + InLay 27.9±0.3 35.0±0.9 24.9±0.7 48.3±3.3 59.5±1.2 62.7±0.2 43.1

Table 10: Test accuracy (%) without/with InLay on OOD CIFAR10 classification tasks with 6-layer ViT, 7-layer
ViT, and 6-layer ViT equipped with InLay.

No data augmentation With data augmentation
ViT 0.095 0.100

ViT+InLay 0.108 0.110
Table 11: Running time (s/iter) of ViT and ViT+InLay on CIFAR10 dataset.

the number of nodes by duplicating each node 4 times, resulting in a graph with 196 nodes. The
results are reported in Table 13. It can be observed that the test accuracy in the case of 196 nodes is
not much different from the case of 49 nodes.

H.2 WHEN THE SEQUENCE LENGTH IS NOT FIXED

All input sequences in our experiments are of fixed length. The case of varying input sequence
length can be treated as fixed-length case if the maximum sequence length is known: we can use
empty nodes to fulfill any sequence to reach that maximum length. We conduct experiments on OOD
classification task to illustrate this idea: for each image patches sequence, we randomly remove some
(2 to 6) patches, so that the resulting sequences have different lengths; we then use zero tensors for
padding so that all sequences now have the same lengths. We train ViT+InLay on CIFAR10 dataset
and test on images with grayscale distortion. The test accuracy is 61.4%, which is not much different
from 62.7% of the fixed-length case.

A more challenging scenario is when the lengths of testing sequences are longer than training ones.
Current design of InLay does not allow it to deal with this situation. We believe this is promising for
future work.

I COMPARISON WITH OTHER INDIRECTION APPROACHES

We compare InLay with different indirection approaches like ESBN (Webb et al., 2020b) and FINE
(Pham et al., 2022) on FINE dataset. We incorporate InLay with Transformer as it shows the best
performance among different models. For FINE, we use NICE backbone as suggested in the original
paper. Results are shown in Table 14. Overall, Transformer+InLay shows competitive results with
the best performances on 5/8 tasks and second-best performances on 2/8 tasks.

J MORE ABLATION EXPERIMENTS ON CONTEXT NORMALIZATION

We further conduct ablation experiments to show the necessity of context normalization in InLay.
Table 15 show performances of NTM and NTM+InLay, with and without context normalization.
First, we may observe that InLay is really effective in the sense that NTM+InLay without context
normalization is still far better than original NTM, both with and without context normalization.
Second, context normalization helps to boost the performances of NTM+InLay by a large margin.

K TRAINING DETAILS

K.1 IQ OOD PROBLEMS

K.1.1 FINE DATASET

We use 3-layer p4-CNN encoder (Cohen and Welling, 2016) with kernel size 3 and padding 1 to
encode raw 32× 32 images to feature vectors of size 128. This encoder can help model adapt better
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Train set MNIST
Test set CIFAR100

Trans. Rot. Shear Scale Avg.
NTM+InLay(tanh) 69.2 34.5 56.0 48.7 52.1
NTM+InLay(none) 58.1 31.2 52.5 47.8 47.4
NTM+InLay(softmax) 62.1 31.9 58.4 41.2 48.4
NTM+InLay (relu) 52.7 32.3 51.2 33.5 42.4
NTM 35.2 30.0 29.6 31.9 31.7

Table 12: Average test accuracy (%) of NTM (with or without InLay) on FINE dataset with different activation
functions.

ViT ViT+InLay (49 nodes) ViT+InLay (196 nodes)
Test accuracy (%) 48.3 62.7 62.5

Table 13: Experiment results of ViT+InLay with different number of graph nodes on OOD classification task on
CIFAR10 dataset. Test distortion is grayscale.

with transformed images. We use Adam optimizer (Kingma and Ba, 2014) with learning rates ranging
from 10−5 to 3 · 10−4, depending on specific model and transformation. We train all models with
batch size 32 in 200 epochs. The indirection representations are computed as in Eq. (1) with 1
attention head.

The training set contains 5,000 IQ problems, while testing set contains 10,000 IQ problems of unseen
images and unseen rules. Specifically:

• With translation, models are trained on problems with translation vectors (a, b) with a ∈
{0, 3, 6, 9} and b ∈ {0,±3,±6,±9}, and tested with a ∈ {−3,−6,−9}, i.e., train on
problems with translations to the right and test on problems with translations to the left.

• With rotation, models are trained on problems with rotation angle α ∈
{0◦, 15◦, 30◦, . . . , 180◦}, tested with α ∈ {195◦, 210◦, . . . , 345◦}.

• With shear, models are trained on problems with shear angles (α, β) with α ∈
{0, 15◦, 30◦, 45◦, 60◦} and β ∈ {0,±15◦,±30◦,±45◦,±60◦}, and tested with α ∈
{−15◦,−30◦,−45◦,−60◦}.

• With scale, models are trained on problems with scale factor α ∈ {1, 1.25} and tested with
α ∈ {0.5, 0.75}, i.e., train with larger scale and test with smaller scale.

K.1.2 RAVEN DATASET

We use 3-layer CNN encoder with kernel size 3 and stride 2 to encode 80 × 80 images to feature
vectors of size 256. We use Adam optimizer with learning rates ranging from 10−4 to 3 · 10−4
and gradient clipping 1. All models are trained with batch size 32 in 250 epochs. The indirection
representations are computed as in Eq. (1) with 1 attention head.

We apply the Dynamic Residual Tree (DRT) as follows: we first apply DRT to feature vectors, then
pass resulting vectors through InLay to obtain indirection representations, then apply DRT once again
and these final resulting vectors will be the input for prediction models. Other details are similar to
the original paper and codes are also adapted from the original paper.

K.2 OOD IMAGE CLASSIFICATION

We use Adam optimizer with learning rate 5 · 10−4. All models are trained with batch size 32 in 200
epochs. The indirection representations are computed as in Eq. (1) with 32 attention heads.

We use 6-layer ViT with patch size 8, 16 attention heads and dropout rate 0.1. The dimension of
feedforward layer is 2048.

K.3 FEW-SHOT NLP DOMAIN ADAPTATION

We use BERT to encode paragraphs to feature vectors of size 768. Models are trained with batch size
32 on 5-way-1-shot tasks and batch size 16 on 10-way-1-shot tasks. We use SGD optimizer with
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Train set CIFAR100 MNIST
Test set Omniglot CIFAR100

Trans. Rot. Shear Scale Trans. Rot. Shear Scale
FINE 27.3 37.6 18.7 19.5 47.7 45.2 48.8 26.6
ESBN 53.5 39.9 56.6 45.2 54.1 50.3 70.7 58.8
Transformer+InLay 63.3 40.4 65.3 62.0 63.9 36.1 53.5 48.1

Table 14: Average test accuracy (%) without/with InLay on FINE dataset.

Train set MNIST
Test set CIFAR100

Trans. Rot. Shear Scale Avg.
NTM+InLay(with context norm.) 69.2 34.5 56.0 48.7 52.1
NTM+InLay (without context norm.) 44.0 41.3 43.6 36.3 41.3
NTM (with context norm.) 35.2 30.0 29.6 31.9 31.7
NTM (without context norm.) 33.9 28.7 32.3 37.1 33

Table 15: Average test accuracy (%) of NTM (with or without InLay) on FINE dataset with different activation
functions.

learning rate 2 · 10−5. The indirection representations are computed as in Eq. (1) with 32 attention
heads. Other details are similar to the original paper and codes are also adapted from the original
paper.
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