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Abstract

Deep neural networks for image super-resolution
(ISR) have shown significant advantages over tra-
ditional approaches like the interpolation. How-
ever, they are often criticized as ‘black boxes’
compared to traditional approaches with solid
mathematical foundations. In this paper, we at-
tempt to interpret the behavior of deep neural
networks in ISR using theories from the field of
signal processing. First, we report an intrigu-
ing phenomenon, referred to as ‘the sinc phe-
nomenon.’ It occurs when an impulse input is
fed to a neural network. Then, building on this
observation, we propose a method named Hy-
brid Response Analysis (HyRA) to analyze the
behavior of neural networks in ISR tasks. Specif-
ically, HyRA decomposes a neural network into
a parallel connection of a linear system and a
non-linear system and demonstrates that the lin-
ear system functions as a low-pass filter while
the non-linear system injects high-frequency in-
formation. Finally, to quantify the injected high-
frequency information, we introduce a metric for
image-to-image tasks called Frequency Spectrum
Distribution Similarity (FSDS). FSDS reflects the
distribution similarity of different frequency com-
ponents and can capture nuances that traditional
metrics may overlook. Code, videos and raw ex-
perimental results for this paper can be found in:
https://github.com/RisingEntropy/LPFInISR.

Please refer to Appx. A for notation conventions.

1. Introduction
The goal of image super-resolution (ISR) is to reconstruct
low-resolution (LR) images into high-resolution (HR) im-
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Figure 1. I is an image in which only the central pixel is 1 and
the other pixels are 0. What would the result look like if image
I is super-resolved using a neural network, A, B, C, or D? Sur-
prisingly, the answer is A. We name this phenomenon as the sinc
phenomenon. In this paper, we give a possible explanation for
this phenomenon.

ages through various techniques. In recent years, with ad-
vances in deep learning, growing ISR methods using neural
networks are proposed, bringing the development of ISR
into a new level. While impressive results persistently arise,
the mechanism under ISR networks remain largely unex-
plored, leading to criticism that they are considered black
boxes. In comparison, traditional methods, such as interpo-
lation or filtering, have strong interpretability. Despite the
principles of traditional methods and neural networks are
different, we can still attempt to explain the behavior of ISR
networks using theories from traditional methods. In this
paper, following this line of thought, we successfully utilize
theories from the field of signal processing techniques to
explain the performance of neural networks in the ISR task.

The target of the ISR task is to upsample a two-dimensional
signal. In traditional signal processing theory (Oppenheim &
Schafer, 2009; Oppenheim et al., 1996), a feasible method
for upsample involves restoring a discrete low-sampling-
rate signal to a continuous signal using a low-pass filter,
and then sampling the continuous signal at a higher rate to
obtain a high-sampling-rate signal. An intriguing aspect
of this process is that when we try to upsample a Dirac
δ signal, we will finally get a sinc signal since the sinc
signal is the time-domain waveform of a low-pass filter, (for
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details about this, please refer to Sec. 3 ). Given this, we
can conjecture: if neural networks exhibit similar behavior,
then when attempt to super-resolve a Dirac δ signal, the
resultant outcome would also be a sinc signal. As shown in
Fig. 1, we indeed observe this phenomenon, and we name it
as ‘the sinc phenomenon’. This phenomenon establishes a
connection between traditional signal processing theory and
the interpretability of neural networks, thus helping us form
a deeper understanding of ISR networks.

Building upon the sinc phenomenon, we further propose a
method named HyRA1, which stands for Hybrid Response
Analysis. HyRA considers the neural network as a paral-
lel combination of a linear system and a non-linear system
with a zero impulse response. It further indicates that this
linear system functions as a low-pass filter, while the non-
linear system utilizes the learned prior knowledge to inject
high-frequency information. By employing HyRA, we can
analyze performance bottlenecks in neural networks, dis-
cerning whether the issue lies in inadequate preservation of
low-frequency components or insufficient injection of high-
frequency components. This analysis facilitates the proposal
of targeted improvements for enhanced adaptability.

Given that the non-linear component is injecting high-
frequency information, there is a pressing need for a metric
to quantitatively describe the extent of the injected high
frequencies. Previous metrics, like PSNR, SSIM (Wang
et al., 2004) and LPIPS (Zhang et al., 2018a), have not
approached the evaluation of images from a frequency per-
spective. Therefore, we propose the frequency spectrum
distribution similarity (FSDS), a metric that evaluates image
quality based on the power distribution in the frequency
spectrum.

In summary, our contribution can be concluded as:

• We report an intriguing phenomenon: the impulse re-
sponses of image super-resolution (ISR) networks are
sinc functions, representing the temporal waveform of
a low-pass filter. We name it the ’sinc phenomenon’.
This observation helps to establish a connection be-
tween signal processing theory and neural networks.
Moreover, we find that for a network, the more similar
the impulse response is to the sinc function, the better
performance it produces.

• In order to further explain the performance of neural
networks in the ISR task through this phenomenon, we
introduce HyRA. HyRA considers the neural network
as a parallel combination of a linear system and a non-
linear system with a zero impulse response. It points
out that the linear system operates as a low-pass fil-
ter, while the non-linear system injects high-frequency

1Pronounce as [haI’rA:]

information.

• To quantitatively describe the injection of high frequen-
cies, we introduce the FSDS metric. FSDS measures
image quality using frequency spectrum produced by
FFT and can reflect high-frequency distortions that
previous metrics fail to capture.

2. Related works
2.1. Super Resolution Using Neural Networks

Recent review articles in ISR include fixed-scale super-
resolution (Yang et al., 2019) and arbitrary-scale super-
resolution review (Liu et al., 2023). There are various archi-
tectures of mainstream ISR backbone networks, including
CNN-style backbones (Ahn et al., 2018; Hui et al., 2019;
Lim et al., 2017; Zhang et al., 2018b;c), transformer-style
backbones (Liang et al., 2021; Wang et al., 2023) and GAN-
style backbone networks (Wang et al., 2018), etc. Based
on these backbones, researchers have proposed quantitative
modules with various functions. For example, ArbSR (Wang
et al., 2021) can expand a fixed-scale super-resolution net-
work to an arbitrary-scale ISR network, LTE (Lee & Jin,
2022) can enhance local textures, etc. What worth mention-
ing is that LIIF (Chen et al., 2021) introduces implicit neural
representation into ISR for the first time, bringing a new
approach for ISR. This paper mainly focuses on approaches
that utilize CNN-style or transformer-style backbones. Ex-
cept for network architectures, numerous datasets have been
proposed to facilitate further research. Commonly used
datasets for ISR includes Set5 (Bevilacqua et al., 2012),
Urban100 (Huang et al., 2015), Flickr2K (Young et al.,
2014), SCI1K (Yang et al., 2021), DIV2K (Agustsson &
Timofte, 2017), etc. We evaluate the effectiveness of our
proposed FSDS metric on DIV2K dataset. The large size of
the DIV2K dataset contributes to increased reliability in our
conclusions.

2.2. Explaining the Behavior of Neural Networks

Despite neural networks are often criticized as ‘black boxes,’
predecessors have made remarkable efforts to mitigate this
situation. Various previous researches have proposed plenty
of methods to analyze the behavior of neural networks.
Since Sundararajan et al. (Sundararajan et al., 2017) intro-
duce the integrated gradients (IG) for attribution in classifica-
tion tasks, numerous researchers have expanded this method
to various domains, broadening the scope of attribution be-
yond classification tasks. Based on IG, Gu & Dong (Gu &
Dong, 2021) propose LAM to analyze the impact of the local
patch on the entire ISR outcome. However, such a method
requires manually determined hyper-parameters and base-
lines, thus introducing subjectivity. Several notable analysis
methods utilizing the Fourier transform have been explored
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in the literature (Xu, 2018; 2020; Xu et al., 2019; Zhang
et al., 2019). Notably, Xu et al. (Xu et al., 2019) propose the
Frequency-Principle, claiming its relevance to both convo-
lutional neural networks (CNNs) and fully-connected deep
neural networks. According to their proposition, these net-
works inherently adhere to the Frequency-Principle, wherein
training data is systematically acquired in a sequential man-
ner, progressing from low to high frequency. Unlike pre-
vious approaches these approaches, HyRA distinguishes
itself by employing impulse response to probe the potential
mechanisms of deep neural networks in the context of the
ISR task.

3. Preliminaries
Appx. B.1-Appx. B.3 provide a brief overview of signal
processing concepts for readers who are not familiar with it.
Appx. B.1 introduces the concepts of signals and systems,
along with the computation of responses in Linear Time-
Invariant (LTI) systems. Appx. B.2 covers the processes of
signal sampling and reconstruction. Appx. B.3 delves into
the phenomenon of spectrum aliasing, a factor contributing
to the ill-posed nature of the ISR task. And we will introduce
applying low-pass filter for ISR here.

We can employ signal recovery methods to achieve image
super-resolution (ISR). Initially, we conceptualize an image
as a series of impulse trains in a two-dimensional contin-
uous space, with varying densities representing different
resolutions. Then, for the low-resolution image, we begin
by implementing low-pass filtering, following the procedure
outlined in Appx. B.2, to obtain the continuous image Icont,
This process can be mathematically described as:

Icontx,y = sincωx,y ∗ ILRx,y , (1)

where ∗ denotes convolution, ILR
x,y is the low resolution

image with variant x, y and Icontx,y is the continuous signal.
sincωx,y is a two-dimensional sinc function with parameter
ω2, whose frequency spectrum is an ideal low-pass filter
with a passband of 0 ∼ ω. Subsequently, we sample the
‘conceptually continuous signal’ at an elevated sampling
rate to acquire a more densely populated two-dimensional
sequence of impulse trains, i.e., an image with higher reso-
lution denoted as ISR:

ISR
x,y = Icontx,y · s∆X,∆Y

x,y . (2)

In the equation, s∆X,∆Y
x,y denotes the two-dimensional im-

pulse trains with intervals of ∆X in x axis and ∆Y in y
axis.

In fact, commonly used interpolation kernels for ISR, such
as nearest-neighbor interpolation, linear interpolation, cubic

2Please refer to Tab. 3 for Fourier transform pairs
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Figure 2. Various interpolation kernels for ISR. They can all be
seen as an approximation of sinc function.

interpolation, etc., can be seen as approximations of the
sinc function considering a balance between computational
complexity and effectiveness, as illustrated in Fig. 2. Taking
into account the similarity of these interpolation kernels,
in this paper, we collectively refer to these parameter-free
methods as low-pass filter-based super-resolution methods.

4. Method
4.1. Hybrid Response Analysis (HyRA)

In this section, we describe the proposed Hybrid Response
Analysis (HyRA), which treats the neural network as a
combination of a linear system and a non-linear system.
Through the impulse response, we can calculate a linear
time invariant (LTI) system’s output from any input using
the convolution operation (see Appx. B.1). However, since
neural networks are nonlinear systems, we cannot apply
convolution to analyze them. To further explore the net-
work features, we need to split it into a linear system and
a non-linear system, i.e., HyRA. The core concept HyRA
is illustrated in Fig. 3. We denote an ISR network as N(I),
where I is the input image. N(I) is a non-linear system
that can be expressed as the sum of a linear system and a
non-linear system:

N(I) = H(I) +G(I). (3)

Input
Constraints: 

Space Invariant

Constraints:

Output 

Neural Network 

Linear System:

Non-linear System: 

Figure 3. Conceptual diagram of HyRA’s core idea.
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In the equation, H(I) represents a linear system, and G(I)
represents a non-linear system. Without constraints, such a
representation is meaningless because H(I) can be arbitrar-
ily chosen, leading to an infinite variety of representations
with the same form but different meanings. To give mean-
ing to this representation, we introduce a constraint: the
impulse response of G(I) is zero. With this constraint, both
H(I) and G(I) can be uniquely determined. Lemma 4.1
demonstrates that under this constraint, N(I) can still be
expressed in the form of Eq. 3. This straightforward method
is the essence of HyRA.

For the ISR task, there is a distinctive property known as
a ‘spatially invariant system’ (Miller et al., 1992) associ-
ated with it. Consider the definition of time-invariant sys-
tems as mentioned in Appx. B.1, we can naturally extend
the concept of in-variance from one-dimensional to two-
dimensional space and the definition of spatially invariant
systems is: when the input is Ix,y, the output is G(Ix,y) =
O(x, y); when the input becomes I ′ = Ix−x0,y−y0

, the
output should be G(I ′) = O(x − x0, y − y0). For convo-
lution based architectures, we can easily prove its spatial
invariance (see the proof below). For transformer-based ar-
chitectures, we can still use experiments to prove the spatial
invariance (see Fig. 15).

Proof. A convolution operation can be defined as:

Convi,j =
∑
p,q

Ii−p,j−1Kp,q.

Then, the shifting operation can be defined as:

Sh(i, j) → (i+ k, j + l).

Combine these two, we then have:

ConvSh(i,j) = Convi+k,j+l

=
∑
p,q

Ii+k−p,j+l−qKp,q

= Sh(
∑

Ii−p,j−qKp,q)

= Sh(Convi,j).

This is the invariance of a single convolution layer, and still
holds for more layers.

According to HyRA, when we input a Dirac δ signal to
the neural network, we can get the impulse response of the
linear system (please recall Appx. B.1), denoted as H(δ).
For any input I , the response of the linear space invariant
system can be obtained by convolving the input with the
obtained impulse response, which can be expressed as:

H(I) = I ∗H(δ), (4)

where ∗ means the convolution operation. Although the
response of the non-linear component cannot be directly
computed, if we obtain the final output of the neural net-
work, the non-linear part can be deduced by subtracting
the response of the linear component from the final output,
namely the non-linear response can be computed as:

G(I) = N(I)−H(I)

= N(I)− I ∗H(δ).
(5)

Lemma 4.1. A neural network N(I) can be expressed as
a combination of a linear system H(I) and a non-linear
system with an impulse response of zero, i.e., N(I) =
H(I) + G(I), where G(δ) = 0. Here, δ represents the
Dirac delta function.

Proof.
1) When G(δ) = 0, the conclusion holds.

2) When G(δ) ̸= 0, Let H1(I) = H(I) + G(δ) ∗ I and
G1(I) = G(I) − G(δ) ∗ I . In this case, H1(I) remains a
linear system and G′(I) remains a non-linear system. The
equation N(I) = H1(I) + G1(I) holds, and it satisfies
G1(δ) = 0.

4.1.1. H(I) IS A LOW-PASS FILTER

In Sec. 3, we mention that a simple low-pass filter achieves
ISR functionality. Do neural networks possess low-pass
filters internally? If this hypothesis is valid, according to
the principle of HyRA, when we input a Dirac δ signal
into the neural network N(I), the output should be the
impulse response of the low-pass filter, i.e., the sinc function
(please recall Appx. B.1 and Tab. 3). In the experiment
section (Sec. 5.2), we conduct tests on three mainstream
ISR backbones and some derived methods. We find that
their impulse responses are sinc functions3. Now, with both
the impulse response and spatial invariance property, we
can compute the response of the linear system H(I) to any
input through convolution:

H(I)x,y = Ix,y ∗H(δ)

=

∫∫
(τ,u)∈R2

Iτ,uH(δ)x−τ,y−udτdu.
(6)

In a practical scenario, when dealing with a two-dimensional
impulse array represented by I , the integration process can
be effectively substituted with summation, incorporating
appropriate padding. Despite the convolution operator in
PyTorch (Paszke et al., 2019) being inherently a correlation
operator, the symmetric nature of the sinc function allows
for its seamless utilization within such an operator. We

3Strictly speaking, it is a windowed sinc function. Regarding
the windowing operation, please refer to Appx. E
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SR By EDSR Linear Response 

= +

Non-linear Response  

Frequency Spectrum (Amplitude)

Frequency Spectrum (Phase) Phase
Compensation

Figure 4. Top row: a super-resolved image by (Lim et al., 2017)
can be viewed as the summation of a linear response obtained by
convolving impulse response with the input and the non-linear
response gained by subtracting linear-part from the ISR result.
Second row: the corresponding frequency spectrum amplitude of
the top row. Third row: the corresponding frequency spectrum
phase of the top row. The phase compensation indicates that the
non-linear part is compensating distortion.

present a toy example in Fig. 4 in which we compute the
response of the linear component of the EDSR network
(Lim et al., 2017) during ISR. Observing the experimental
results, we notice that the linear function H(I) essentially
achieves super-resolution, but there are some issues: edge
blurring and the presence of grid-like distortions.

The edge is blurred because the low-pass filter removes
some high-frequency details. In the frequency spectrum, it
is manifested as a relatively small range of diffusion of the
central bright spot towards the surroundings. This implies
that the image has more low-frequency components and
fewer high-frequency components. Such an outcome is the
inevitable consequence of applying the low-pass filter.

When computing the response of the linear system, we first
perform zero-interpolation on the low-resolution image to
achieve the target spatial size. This operation leads to pe-
riodic extension in the frequency spectrum4. Since this
low-pass filter is not a complete ideal filter, but an ideal
filter truncated by a certain window function, its filtering

4Please refer to Appx. F in the Appendix for details about the
periodic extension.

The green filter contains too
little high frequency content

The red filter is the best option

The blue filter contains too much
aliased high frequency content

Figure 5. An illustration of how the passband width of a low-pass
filter affects its ISR results. A too wide passband or a too narrow
passband can result in a decline in performance.

performance is weakened by the window function. The
weakened filter cannot completely eliminate the extended
spectrum, meaning the attenuation in the stopband is insuffi-
cient, as referred to in signal processing, thus causing such
gird-like distortions.

In summary, the linear system H(I) (the low-pass filter
approximated by the neural network) can achieve super-
resolution functionality, but it is not perfect. On one hand,
the low-pass filter determines that the image is blurred, lack-
ing high frequencies. On the other hand, the filter is win-
dowed, leading to a weakened filtering performance and
resulting in grid-like distortions. These issues will be com-
pensated for by the nonlinear system G(I).

4.1.2. G(I) INJECTS HIGH-FREQUENCY INFORMATION

Though a low-pass filter can achieve ISR (please refer to
Sec. 3), its performance can never surpass a well-trained neu-
ral network. The outcome of a low-pass filter varies with re-
spect to the passband width, as depicted in Fig. 5. However,
information outside the passband will be completely wiped
out, causing an observable detail loss in high-frequency
components. On the contrary, the non-linear part of neural
networks is able to inject information in high-frequency
domain based on learned or structural priors. Moreover,
it can compensate the grid-like distortions brought by the
windowed low-pass filter. Together with the linear part,
neural networks function as the superset of low-pass filter,
retaining both high and low frequency information.

We compute the non-linear response and its frequency
spectrum of the neural network using the proposed HyRA
paradigm. In the toy example presented in Fig. 4, it can be
noticed that the response of the non-linear component ex-
hibits sharper edges. Compared with the frequency spectrum
of the ISR results, the central bright spot in the response of
G(I) spreads to a larger range, indicating that more power
is distributed into the high-frequency domain. Almost all
the components of the high-frequency part in the final ISR
result are contributed by the non-linear component.

As mentioned in Sec. 4.1.1, the non-linear component also
plays a crucial role in compensating for the distortion intro-
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duced by H(I). Examining the response of G(I), we note
that it also exhibits grid-like distortions, matching those in
the response of H(I). This allows for the cancellation of
the grid-like distortions, achieving the final goal of ISR. As
shown in Fig. 4, upon observing the frequency spectrum,
bright spots corresponding to the amplitude spectrum of
H(I) exist in all four corners of the amplitude spectrum of
G(I). However, the phase spectrum of G(I) is in compen-
sation of the phase spectrum of H(I), indicating that the
grid-like distortion is ‘erased’ here.

In summary, the non-linear component G(I) serves to inject
high-frequency details learned during training to compen-
sate for the loss of high frequencies introduced by the low-
pass filter. Simultaneously, it addresses distortions arising
from the imperfect performance of the low-pass filter.

4.2. Frequency Spectrum Distribution Similarity
(FSDS)

In this section, we introduce the FSDS metric to quantita-
tively describe the so called the ‘injected high frequencies’
as discussed in Sec. 4.1.2.

4.2.1. MOTIVATION AND METHOD

GT GT-FFT GT-FFT-

RDN-LIIF SR-FFT SR-FFT-

Bicubic Bicubic-FFT Bicubic-FFT-

Figure 6. X-FFT-Σ denotes the integrated frequency spectrum,
the integration path is from origin to infinty in every quadrant.
Columns 1 and 2 in the figure respectively show that the differ-
ences in the results of different ISR methods can be reflected in
the frequency spectrum. Column 3 presents the integral of the
spectrum from low to high frequencies in a contour plot. The
distribution of contours visually represents the distinct distribution
of different frequency components.

Since we need to measure the components of injected high
frequencies, we must delve into the issue from a frequency
spectrum perspective. However, commonly used metrics
such as PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang
et al., 2018a) do not measure the quality of an image from a
spectral perspective.

Additionally, we’ve noted that the frequency domain distri-
bution in the ISR field can significantly impact downstream
applications (Xu et al., 2020; Yu et al., 2023). Consequently,
we propose that evaluating the ISR effectiveness of a net-
work requires a thorough assessment of its performance in
the frequency spectrum. This involves examining the sim-
ilarity in frequency spectrum between the low-resolution
image and the high-resolution image. The Frequency Spec-
trum Distribution Similarity (FSDS) metric integrates the
power distribution maps of the spectrum for both images.
The difference is then calculated to generate an error map,
and the total sum of its absolute values is computed.

For an image IHR
x,y , to minimize the impact of the data in-

put range on the results, we normalize the input data and
then perform a two-dimensional Fourier transform to obtain
IHR
jω1,jω2

, which can be mathematically described as:

IHR
jω1,jω2

= F
[
IHR − E(IHR)

σ(IHR)

]
, (7)

where E(IHR) and σ(IHR) are the mean value and variance
of IHR respectively. Similarly, we perform a Fourier trans-
form on the ISR image to obtain ISRjω1,jω2

. It is worth noting
that unlike other metrics, such as PSNR and SSIM(Wang
et al., 2004), which do not incorporate normalization, FSDS
is specifically designed to accentuate numerical variations
due to its emphasis on numerical changes rather than abso-
lute numerical values. Then, the complex integration of the
two spectrum is performed, providing the power distribution
map DHR, which is defined as:

DHR =

∫∫
(ω1,ω2)∈R2

IHRdω1dω2. (8)

Similarly, we can obtain DSR. Subsequently, the difference
between DHR and DSR is calculated, providing a differ-
ence map Ddiff of their power distribution:

Ddiff = DHR −DSR. (9)

Finally, we define the frequency spectrum distribution simi-
larity (FSDS) as:

FSDS = −10 log10

∫∫
(ω1,ω2)∈R2 |Ddiff |2dω1dω2∫∫
(ω1,ω2)∈R2 |DHR|2dω1dω2

, (10)

where | · | represents taking the magnitude of a complex
number. Considering a more concise description of a larger
dynamic range, logarithm is taken. A larger FSDS value
indicates that the two images are closer, thereby suggesting
better ISR results.
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Steganography

JPEG Compression

SSIM: 0.842
FSDS: 26.39

SSIM: 0.995
FSDS: 26.37

FFT

SSIM: 1
FSDS:

FFT

FFT

Figure 7. A comparison of SSIM and FSDS in JPEG compression and steganography. As can be seen, SSIM fails to reflect distortion
brought by steganography, while FSDS captures both cases of distortion.

4.2.2. THE MERITS OF FSDS

Previous image evaluation metrics, such as PSNR, SSIM
(Wang et al., 2004), have focused on statistical or structural
features of images, but no work has evaluated images from
the perspective of their frequency spectrum. The spectrum
is the concentrated expression of components with different
changing rates in a signal or image. It is crucial for capturing
details, eliminating noise, and comprehensively understand-
ing image features. In image processing, spectrum analysis
provides a more accurate evaluation, particularly playing
a key role in applications sensitive to details. Due to the
nature of Fourier transformation, which involves every pixel
of the image in the computation, it encompasses not only
information such as signal-to-noise ratio and structural sim-
ilarity but also the overall similarity of the entire image.
Therefore, evaluating image quality from the perspective of
the spectrum is highly reasonable and necessary. Our FSDS
metric can reflect distribution differences by employing a
paradigm of integrating first in the frequency spectrum and
then comparing. In other words, FSDS not only reflects
the signal-to-noise ratio captured by the PSNR metric and
the structural similarity indicated by the SSIM metric, but
also captures features that these two metrics cannot repre-
sent. In the next paragraph, we will use two toy examples
to demonstrate the rationale and advantages of FSDS.

From Fig. 6, it can be observed that images obtained by
different ISR methods have different proportions of high-
frequency components (the center of the spectrum figure
represents low frequency, while higher frequencies extend
outward). After integration, this is reflected in the varying

widths of the dark cross-shaped patterns in the center. A nar-
rower width indicates a higher proportion of low-frequency
components in the spectrum, and vice versa. Existing meth-
ods may not effectively capture the loss of high-frequency
components with low power in the frequency spectrum. Per-
forming information steganography in the frequency spec-
trum can effectively highlight this aspect. As shown in
Fig. 7, we embed some content in the frequency spectrum
of the image. Such steganography causes our FSDS metric
to drop to 26.37dB while the SSIM metric remains in a high
level of 0.995. we can observe that after applying specific
steganography to the spectrum of an image, the image ex-
hibits some blurring and oscillation. Such oscillations are
actually the Gibbs phenomenon, a typical oscillation phe-
nomenon caused by the loss of high-frequency information.
Meanwhile, when we apply JEPG compression to the im-
age5, when FSDS drops to 26.39dB, SSIM together drops to
0.842. This toy example demonstrates that there indeed
exists some feature SSIM cannot reflect while that can
be reflected by FSDS.

In summary, previous methods may not effectively reflect
the situation in the image frequency spectrum, while our
proposed FSDS metric can sensitively detect distortions in
the frequency spectrum.

5. Experiments
Due to the page limitation, we can only present three of
the most crucial experiments in this section, namely: 1) the

5In this example, the compression quality is set to 10.

7



Exploring the Low-Pass Filtering Behavior in Image Super-Resolution

0 25 50 75 100
0

5

10

15

20

25

30

35
P

S
N

R

 PSNR
 SSIM

0.3

0.4

0.5

0.6

0.7

0.8

S
S

IM

Figure 8. The ISR performance using a low-pass filter shows varia-
tions with the cutoff frequency ω. This figure illustrates the results
obtained from the ×2 ISR task conducted on the DIV2K dataset.
To enhance the clarity of the visualization, the curve has been
smoothed using a moving average with a window length of 10.

relationship between the low-pass filter passband width and
ISR performance; 2) various network impulse responses;
3) a comparison of FSDS metrics with PSNR, SSIM and
LPIPS (Zhang et al., 2018a) metrics on the DIV2K dataset.
For more experiments, please refer to Appx. C.

5.1. Experiment on Low-pass Filtering Super-resolution
Performance

In Sec. 4.1.2, we mention that a vanilla low-pass filter can
achieve ISR, we now present an experiment on the relation-
ship between the low-pass filter passband width and ISR
performance. As shown in Fig. 8, we utilized various low-
pass filters to perform ×2 ISR on the validation set from of
DIV2K dataset. Subsequently, we evaluated the ISR results
using the PSNR and SSIM metrics. When ω = 48, PSNR
reaches its maximum value of 31.40. When ω = 45.8,
SSIM reaches its maximum value of 0.87. We assert that,
in terms of neural network performance, for ×2 ISR, the
PSNR should not fall below 31.40, and the SSIM should
not be lower than 0.87. Otherwise, it can be considered
that the neural network may not effectively capture both
low-frequency and high-frequency information.

5.2. Experiment on Impulse Response

We select several mainstream backbones and their deriva-
tives commonly used for the ISR task (Chen et al., 2021;
Hu et al., 2019; Lee & Jin, 2022; Liang et al., 2021; Lim
et al., 2017; Song et al., 2023; Wei & Zhang, 2023; Zhang
et al., 2018b;c) and conduct impulse response tests. The
experimental results are compared with the sinc function
and depicted in Fig. 9. The input image is an 11× 11 image
where only the pixel at position (5, 5) is white (the values
for all three channels at this position are 255, with indices

starting from 0), and the rest of the image is black (with
values of 0). According to Tab. 3, it can be observed that as
the ISR factor increases, the central peak of the output sinc
function becomes wider and more pronounced. To balance
visual saliency and the maximum ISR factor achievable by
certain networks, we opted for a 4x ISR factor. Observing
the experimental results, we can notice that regardless of
the neural network structure used for ISR, whether it’s a
CNN or a transformer, the impulse response exhibits some
degree of similarity to the two-dimensional sinc function.
This similarity is particularly pronounced in networks like
RDN (Zhang et al., 2018c) and RCAN (Zhang et al., 2018b).
Despite some distortion in comparison to the sinc function,
EDSR (Lim et al., 2017), EQSR (Wang et al., 2023), and
their derivatives still exhibit significant features of the sinc
function, including the central bright spot and elongated
bright patches in the cardinal directions. From Tab. 1, we
observe that networks exhibiting superior performance tend
to generate impulse responses that closely resemble the sinc
function. This observation suggests that preserving low-
frequency information more effectively can also enhance
performance. However, few previous works has focus
on low-frequency, giving us a new idea for furture ISR
networks.

5.3. Experiment on FSDS Metric

We conducted tests on the validation set of the DIV2K
dataset (Agustsson & Timofte, 2017) using several methods
(Chen et al., 2021; Lee & Jin, 2022; Liang et al., 2021; Lim
et al., 2017; Song et al., 2023; Wei & Zhang, 2023; Yang
et al., 2021; Zhang et al., 2018c), depicted in Tab. 1. The
evaluation metrics include PSNR, SSIM (Wang et al., 2004),
LPIPS (Zhang et al., 2018a), and our FSDS. All tests are
performed using code and weights available in open-source
official repositories. For all methods, we conduct experi-
ment for ×2 to ×4. For methods that support arbitrary-scale
ISR, we test for ×6 and ×12 as well. In the ×2 to ×4
range, GRLBase(Li et al., 2023) consistently achieves the
best performance across PSNR, SSIM and LPIPS metrics,
and FSDS shows that SwinIR (Liang et al., 2021) achieves
the best performance. For ×6 and ×12, RDN-LTE (Lee &
Jin, 2022) exhibits the best PSNR and SSIM metrics, while
RDN-LIIF performs best on LPIPS and the FSDS metric.

From Sec. 4.2, we claim that previous metrics are not sensi-
tive to high-frequency information, while FSDS does. This
can be proven by Tab. 1. In the case of slight high-frequency
loss, such as on scales × 2 to × 4, FSDS responds differ-
ently compared to previous metrics. In cases that suffer
from severe high-frequency loss, such as on × 6 and ×
12 scales, FSDS shows consistency with previous metrics.
This is because when high-frequency loss is slight, previous
metrics fail to reflect such high-frequency loss and while the
loss becomes more severe, they start to capture such loss.
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Impulse Input

Super-Resolution Network

2D Sinc Function
(Top View)

2D Sinc Function
(Side View I)

2D Sinc Function
(Side View II)

11x11 44x44

Views Of 2D Sinc Function

EDSR EDSR-LIIF

Bicubic

RDN RDN-LIIF

RCAN

RDN-MetaSR

EDSR-OPESR

RDN-OPESR

EDSR-LTE

SwinIR SwinIR-LTE

Figure 9. Comparison of impulse responses and the sinc function for several mainstream backbone networks and their derivatives. The
impulse response of the bicubic interpolation result is presented as a reference.

Method
PSNR SSIM LPIPS FSDS (Ours)

×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12

EDSR(Lim et al., 2017) 34.6312 30.9514 28.8716 - - 0.93712 0.87413 0.81616 - - 0.04212 0.10114 0.15516 - - 39.2115 34.1510 31.387 - -
EDSR-LIIF(Lim et al., 2017) 34.5514 30.9215 28.9815 26.764 23.754 0.93715 0.87414 0.81914 0.7414 0.6334 0.04315 0.10013 0.15313 0.2434 0.4282 39.3713 34.536 31.329 28.454 23.153

EDSR-OPESR(Lim et al., 2017) 34.3416 30.9612 29.0412 - - 0.93616 0.87511 0.82013 - - 0.04313 0.10011 0.15314 - - 39.806 34.635 31.2911 - -
EDSR-SRNO(Lim et al., 2017) 34.729 31.0510 29.1310 26.903 23.873 0.9399 0.87610 0.82211 0.7463 0.6383 0.0418 0.09810 0.14910 0.2413 0.4374 39.5311 34.537 31.456 28.463 22.784

EDSR-LTE(Lim et al., 2017) 34.6113 30.9711 29.0314 - - 0.93714 0.87412 0.82012 - - 0.04314 0.10012 0.15212 - - 39.2914 34.338 31.3010 - -
RDN(Zhang et al., 2018c) 34.6910 30.5816 29.1211 - - 0.93810 0.86716 0.82310 - - 0.0419 0.10616 0.15011 - - 40.023 32.9516 31.654 - -
RDN-LIIF(Zhang et al., 2018c) 34.868 31.218 29.269 26.992 23.932 0.9398 0.8798 0.8269 0.7492 0.6392 0.04110 0.0968 0.1478 0.2311 0.4061 39.699 34.833 31.833 28.891 23.781

RDN-OPESR(Zhang et al., 2018c) 34.5215 31.199 29.288 - - 0.93811 0.8799 0.8268 - - 0.04211 0.0967 0.1489 - - 40.192 34.962 31.485 - -
RDN-LTE(Zhang et al., 2018c) 34.917 31.267 29.317 27.051 23.991 0.9397 0.8797 0.8277 0.7501 0.6411 0.0417 0.0956 0.1446 0.2332 0.4313 39.825 34.754 31.842 28.652 23.352

SwinIR-classical(Liang et al., 2021) 35.345 31.645 29.634 - - 0.9435 0.8855 0.8355 - - 0.0385 0.0924 0.1405 - - 40.371 35.131 32.371 - -
ITSRN(Yang et al., 2021) 32.6717 30.4917 28.7317 26.645 23.725 0.92217 0.86617 0.81317 0.7365 0.6305 0.05217 0.11317 0.16717 0.2715 0.4695 31.2518 26.1818 25.8818 25.625 21.575

HAT-S(Chen et al., 2023) 35.462 31.723 29.723 - - 0.9442 0.8873 0.8373 - - 0.0382 0.0923 0.1393 - - 39.787 33.8013 31.0614 - -
HAT(Chen et al., 2023) 35.462 31.772 29.752 - - 0.9442 0.8872 0.8372 - - 0.0382 0.0902 0.1382 - - 39.787 33.9111 31.2012 - -
HDSRNet(Tian et al., 2024) 34.6411 30.9513 29.0413 - - 0.93713 0.87315 0.81915 - - 0.04316 0.10315 0.15415 - - 39.4612 34.209 31.338 - -
GRLBase(Li et al., 2023) 35.661 31.931 29.911 - - 0.9451 0.8891 0.8411 - - 0.0371 0.0891 0.1351 - - 39.994 33.8412 31.1213 - -
GRLSmall(Li et al., 2023) 35.394 31.654 29.635 - - 0.9434 0.8864 0.8354 - - 0.0384 0.0925 0.1404 - - 39.5410 33.6814 31.0315 - -
GRLTiny(Li et al., 2023) 35.176 31.416 29.406 - - 0.9426 0.8826 0.8306 - - 0.0396 0.0969 0.1467 - - 39.2016 33.2015 30.5616 - -
Bicubic 31.0418 28.2518 26.6918 24.876 22.346 0.89318 0.81318 0.75218 0.6756 0.5876 0.09618 0.19118 0.29118 0.4396 0.6136 32.7917 28.9017 26.5717 23.456 18.746

Table 1. Comparison of PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018a) and FSDS metrics for different methods on the
DIV2K dataset (Agustsson & Timofte, 2017). Items with the highest and the second-highest mean values are highlighted in red and blue,
respectively. The gray superscripts are the order of each method.

This observation shows the necessity of applying the FSDS
metrics to assess image quality objectively.

5.4. Some Exceptions to Impulse Responses

SwinIR-Real ESRGAN

Figure 10. The impulse response of SwinIR-Real (Liang et al.,
2021) and ESRGAN (Wang et al., 2018) is not an obvious sinc
function.

We observe that not all impulse response of networks is
‘sinc’ function, as shown in Fig. 10. SwinIR-Real (Liang
et al., 2021) and ESRGAN (Wang et al., 2018) are trained
using adversarial loss, while methods in Fig. 9 uses loss
like ℓ1 or ℓ2 loss. Therefore, we believe the ‘sinc’ impulse

response is related to the loss function.

6. Conclusion
In this paper, we report an intriguing observation. i.e., the
sinc phenomenon, which reveals that the impulse response
of ISR networks act as low-pass filters. Building on this
observation, we introduce a novel approach called Hybrid
Response Analysis (HyRA) to explore the hidden behavior
of ISR networks. HyRA treats a neural network as a com-
bination of a linear system and a non-linear system with
a zero impulse response. The linear system functions as a
low-pass filter, while the non-linear system utilizes prior
knowledge to inject high-frequency details. To assess the
neural network’s information recovery across the frequency
spectrum, we propose the Frequency Spectrum Distribution
Similarity (FSDS) metric. FSDS uncovers properties over-
looked by previous metrics, and experiments validate the
rationality and necessity of it.
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A. Notation Conventions

Symbols
j Imaginary number unit
∗ Convolution operator
Icomment
x,y 2-D signal with variant x, y
Icomment
jω1,jω2

Fourier transform of Ix,y
x(t) 1-D signal with variant t
X(jω) Fourier transform of x(t), jω is a notation, ω is the variant
x[n] Discrete signal with index n
X[k] DFT of x[n]
F [x(t)] Fourier transform operator, X(jω) = F [x(t)]
F−1[X(jω)] Inverse Fourier transform, x(t) = F−1[X(jω)]
Signals
δ(t) Dirac δ function
sincω(t) The sinc funtion with parameter ω, sincω(t) = sin(ωt)

πt . The sinc function is the time-domain
waveform of an ideal low-pass filter.

sincωx,y 2-D sinc function with parameter ω, sincωx,y = sin(ωx)
πx · sin(ωy)

πy

s∆T (t) 1-D sample signal with a sample interval of ∆T , s∆T (t) =
∞∑

n=−∞
δ(t− nT )

Table 2. Notation Conventions

B. Signal Processing Theories
We briefly introduce some related concepts and methods used in this paper in this section.

B.1. System and Response

The word ‘system’ has many meanings and interpretations. This paper views a system as a process in which input signals
are transformed by the system or cause the system to respond in some way, resulting in other signals as output (Oppenheim
et al., 1996). Systems can be divided into linear systems and nonlinear systems according to their mathematical properties.
A linear system refers to a system with such a property: the response of the system to the input x1(t), x2(t) is y1(t), y2(t)
respectively, then when the input is x1(t) + x2(t), the response of the system is y1(t) + y2(t).

Systems can also be divided into time-variant ones and time-invariant ones according to their temporal properties. A
time-invariant system refers to that the properties of the system do not change with time, that is, the system has the same
impulse response at any time. It satisfies such a relationship: when the input is x(t), the output is y(t), and when the input is
x(t− t0), the output is y(t− t0).

A system with both linear and time-invariant properties is a linear time-invariant (LTI) system. For an LTI system, we can
use ‘impulse response’ to uniquely describe it: systems with the same impulse response are the same system, vice versa.
The impulse response h(t) is defined as the output of the system when the input signal is δ(t) (Dirac delta function). The
response of a linear system to an arbitrary input signal can be computed through the convolution operation of its impulse
response and the input signal, namely:

y(t) = x(t) ∗ h(t) =
∫ +∞

−∞
x(τ)h(t− τ)dτ. (11)

In the equation, ∗ is the convolution operator, y(t) is the system output and x(t) is the input signal. When we apply Fourier
transform to the impulse response h(t), then we can obtain the transfer function H(jω) of the system. The transfer function
describes the frequency domain waveform of the impulse response. According to the convolution theorem, the response of a
linear system can also be obtained by multiplying the Fourier transform of the input signal by the transfer function of the
system and then performing the inverse Fourier transform. In summary, given the impulse response of an LTI system, we
can calculate the system’s response to any output.
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B.2. Signal Sampling and Recovery

Time domain:

Frequency domain:

Figure 11. Time-domain to frequency-domain waveform variation of the continuous signal sampling process. The sampling function sδT
is an impulse train sequence with an interval of T , and SδT (t) is its frequency domain waveform, which is also an impulse train sequence.
Sampling a signal causes duplication in the frequency domain.

Time domain:

Frequency domain:

Figure 12. Time-domain to frequency-domain waveform variation in the process of sampling signal recovery. hLP (t) is the time-domain
impulse response of a low-pass filter, and HLP (jω) is its frequency-domain waveform.

Signal sampling and sample recovery are very common operations, and in this section, we will briefly analyze this process
from the perspective of both the time-domain and frequency-domain. The upper part of Fig. 11 shows the time domain
waveform variation of signal sampling process, and the lower part shows the frequency domain waveform variation of signal
sampling process. To sample a continuous signal, the sampling process can be regarded as the multiplication of the original
signal x(t)and an impulse train signal s∆T (t). It can be described as: x′(t) = x(t) · s∆T (t),

s∆T (t) =
∞∑

n=−∞
δ(t− nT ),

(12)

where T denotes the sampling interval, x′(t) denotes the sampled signal. According to the convolution theorem, the
frequency domain change of the sampling process can be described in the following way:

X ′(jω) = X(jω) ∗ SδT (jω)

=

∞∑
k=−∞

X[j(ω − k
2π

T
)].

(13)

That is, the sampling process is reflected in the frequency spectrum as a periodic extension of the frequency spectrum
of the original signal x(t).
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Fig. 12 shows the time domain and frequency domain waveform variation during the recovery process. For sampling
recovery, in order to restore the sampled signal x′(t) to the original signal x(t), from the perspective of frequency domain, a
low-pass filter is all we needed, that is, convolving the sampled signal with a low-pass filter hLP (t). This process can be
expressed as:

x(t) = x′(t) ∗ hLP (t)

= x′(t) ∗ sincω(t),
(14)

where in the equation, hLP (t) = sincω0(t) = sin(ω0t)
πt is the time domain response of the ideal low-pass filter, and its

frequency-domain waveform HLP (jω) is a rectangular window.

B.3. Spectrum Aliasing

Time domain:

Frequency domain: Frequency domain:

Time domain:

Overlap

No frequency overlapping Frequency overlapping

Figure 13. The illustration of spectrum aliasing. On the left, there is no aliasing as the sampling rate is sufficiently high. On the right,
aliasing occurs due to an insufficient sampling rate.

Spectrum aliasing is a manifestation of information loss. Fig. 13 depicts the time-domain and frequency-domain scenarios
of no frequency overlapping and frequency overlapping, respectively. When the sampling rate is lower than the Nyquist
sampling rate6 (Nyquist, 1928). When the sampling rate is below the Nyquist sampling rate, the approach mentioned in
Appx. B.2 cannot completely restore the original signal x(t). From Tab. 3, we can see that for the sample signal s∆T (t),
the larger T is, the sparser its time domain impulse train gets, while in the frequency spectrum the impulse trains gets
denser. When the impulse trains in the frequency domain become sufficiently dense, and the spectrum of the original
signal is periodically extended, overlapping occurs, preventing the complete recovery of the original signal. In ISR tasks,
spectrum aliasing is manifested when restoring a low-resolution image to a high-resolution image, resulting in the loss of
high-frequency information such as details and textures.

C. Extra Experiments
C.1. Linear and Non-linear Responses

In Fig. 14, we present the linear and nonlinear responses of various ISR networks along with their corresponding spectrums.
From the figure, it is evident that different networks exhibit varying filtering effects in their linear components. EDSR
demonstrates a pronounced removal of high-frequency components, and compared to other methods, it exhibits the smallest
area of brightness diffusion around the central bright spot in its spectrum. From the nonlinear responses, it can be observed
that the nonlinear components of the networks are all involved in supplementing high-frequency information and correcting
distortions.
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Figure 14. Linear and non-linear responses and their corresponding frequency spectrum of various ISR methods.

C.2. Space Invariance

We conducted spatial invariance testing on RDN (Zhang et al., 2018c) (For the concept of spatial invariance, please refer to
Sec. 4.1). The input data consists of an image where only one pixel is white (the pixel value is 1), and all other pixels are
black (the pixel value is 0). By shifting the position of this white pixel, we obtain I(x−∆x, y −∆y). This shifted input
I(x−∆x, y −∆y) is then fed into the neural network, and we obtain its shifted impulse response, as illustrated in Fig. 15.
Observing the experimental results, we find that the responses to different I(x−∆x, y −∆y) are consistent, with the only
difference being their position. This demonstrates that, for ISR networks, the linear component in HyRA exhibits spatial
invariance.

C.3. Exploration of the Positional Origin of Sinc-like Patterns

As shown in Fig. 16, we visualize the output features of different components in the EDSR (Lim et al., 2017) network for
analysis. We observe that the approximate shape of the sinc function begins to take form after the Upsampler module, and
after a convolution, it essentially forms the shape of a sinc function. Interestingly, in the EDSR network, the Upsample

6The minimum sampling rate that can completely restore the origin of the sampled from sampled signal, which is twice the highest
frequency of the original signal
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Figure 15. Spatial invariance experiment conducted on SwinIR (Liang et al., 2021). When we feed the SwinIR network with impulses at
various positions, the ISR results demonstrate that the RDN exhibits spatial invariance.
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Figure 16. Visualization of feature maps in different EDSR (Lim et al., 2017) network layers. The sinc-like pattern start to take shapes
after the sub-pixel convolution, before the last convolution layer.

module uses sub-pixel convolution (convolution + pixel shuffle) for upsampling without any interpolation. This indicates
that the low-pass filter present in the network is learned by the network itself and not introduced by interpolation kernels.

D. The Fourier Transform Pairs Involved in This Paper
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Symbol/Name Section(s) Time domain Frequency Domain

s∆T (t), ∆T is the samping in-
terval

Appx. B.2, Appx. B.3
∞∑

n=−∞
δ(t− nT ) 2π

T

∞∑
k=−∞

δ(ω − k 2π
T )

Ideal Low-pass filter Sec. 4.1.1 x(t) = sincω0
(t) = sin(ω0t)

πt ,
ω0 is called the cut-off fre-
quency

X(jω) =

{
1, |ω| < ω0

0, |ω| > ω0

δ(t) Sec. 4.1.1 lim
τ→0

∫ +τ

−τ
δ(t) = 1 1

Table 3. Fourier transform pairs

E. The Windowing Operation
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Figure 17. Various window functions.

The time-domain waveform of an ideal low-pass filter is a sinc function. The sinc function is defined over [−∞,∞], and the
number of zero crossings is countable. This implies that in reality, an ideal low-pass filter does not exist. In discrete-time
signal processing, truncating a designed filter using a window function is common. There are many window functions,
such as the rectangular window, Hanning window, Blackman window, and so on. Fig. 17 illustrates some commonly used
window functions. Observing the experimental results and analyzing the relationship between the peak values of the main
lobe and the first side lobe, we find that the impulse response of the neural network seems to undergo windowing. However,
different networks appear to adopt different window functions.

F. Frequency Spectrum Period Extension Caused by Zero Padding
When considering integer factor ISR, our approach to computing the linear component response is as follows: first, upsample
the low-resolution image to the high-resolution image through zero-padding, and then convolve it with the impulse response
to obtain the response. During the zero-padding process, it leads to period extension in the frequency spectrum. For a signal
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0 Interpolate

Duplicate

Figure 18. Performing zero-padding on an image to reach the target size will result in periodic extension in the frequency spectrum
obtained through its Discrete Fourier Transform.

x[n] of length N undergoing DFT to obtain X[k], we have:

X[k] =

N−1∑
n=0

x[n]e−j 2π
N kn. (15)

Then, zero-padding is applied to x[n], producing in a new signal x2[n] of length 3N :

x2[n] =

{
x[n3 ], n = 0, 3, · · · , 3N − 3
0, otherwise.

(16)

Perform DFT to x2[n] to obtain X ′[k], then we have:

X ′[k] =

3N−1∑
n=0

x2[n]e
−j 2π

3N k·n

=

N−1∑
n=0

x[n]e−j 2π
3N k·3n

=

N−1∑
n=0

x[n]e−j 2π
N kn

. (17)

When k < N , there exists:
e−j 2π

N kn = e−j 2π
N (k+N)n = e−j 2π

N (k+2N)n = · · · . (18)

Therefore,

X ′[k] =

{
X[k] 0 ≤ k < N
X[k mod N ] N ≤ k < 3N − 1

(19)

Thus, zero-padding causes period extension in the frequency spectrum. Ideally, the extended spectrum would be filtered out
by the low-pass filter used in the ISR process. However, due to the limited filtering capability of the potential filters within
the neural network, the stopband attenuation is low, and the extended spectrum cannot be completely filtered out.

G. Comparison Between FSDS and ℓ1, ℓ2 norms
We compare our proposed FSDS metric with ℓ1 norm, and ℓ2 norm on both frequency domain and image domain as depicted
in Tab. 4 and Tab. 5. From these two figures, we can observe that ℓ1 norm and ℓ2 norm produces similar ranking orders
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when they are calculated on the same domain, indicating that ℓ1 norm is equivalent to ℓ2 norm when assessing image quality.
However, the ranking orders produced by FSDS is distinctive to that of ℓ1 and ℓ2. This means our FSDS metric reflects
image quality in a unique way.

Method
FSDS (Ours) ℓ1 Norm in Frequency Domain ℓ1 Norm

×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12

EDSR(Lim et al., 2017) 39.21015 34.14810 31.3807 - - 35.19012 51.67612 62.47816 - - 0.01210 0.01913 0.02316 - -
EDSR-LIIF(Lim et al., 2017) 39.37113 34.5356 31.3219 28.4464 23.1473 35.36914 51.88614 61.99615 73.9634 88.2035 0.01315 0.01915 0.02315 0.0294 0.0424

EDSR-OPESR(Lim et al., 2017) 39.7986 34.6305 31.28611 - - 36.79616 51.94815 61.71114 - - 0.01316 0.01811 0.02312 - -
EDSR-SRNO(Lim et al., 2017) 39.53311 34.5277 31.4486 28.4583 22.7784 34.68810 51.11310 61.14011 73.1363 87.7043 0.01211 0.01810 0.02310 0.0293 0.0413

EDSR-LTE(Lim et al., 2017) 39.29014 34.3288 31.30310 - - 35.11011 51.55611 61.70612 - - 0.01314 0.01914 0.02314 - -
RDN(Zhang et al., 2018c) 40.0223 32.94616 31.6464 - - 34.5959 53.43116 61.06910 - - 0.01312 0.01916 0.02311 - -
RDN-LIIF(Zhang et al., 2018c) 39.6909 34.8313 31.8323 28.8941 23.7781 34.2248 50.4348 60.5639 72.7532 87.4882 0.0128 0.0189 0.0229 0.0292 0.0412

RDN-OPESR(Zhang et al., 2018c) 40.1882 34.9592 31.4755 - - 36.12615 50.7929 60.3888 - - 0.01313 0.0187 0.0227 - -
RDN-LTE(Zhang et al., 2018c) 39.8255 34.7494 31.8372 28.6542 23.3462 33.9977 50.1067 60.2297 72.3011 87.0901 0.0127 0.0188 0.0228 0.0291 0.0411

SwinIR-classical(Liang et al., 2021) 40.3721 35.1251 32.3701 - - 32.7505 48.3804 58.5794 - - 0.0125 0.0175 0.0215 - -
ITSRN(Yang et al., 2021) 31.25418 26.17818 25.87618 25.6195 21.5665 41.92817 53.45917 62.92717 74.2605 88.1604 0.01517 0.02017 0.02417 0.0305 0.0425

Bicubic 32.79017 28.89617 26.56817 23.4506 18.7366 50.57118 64.94918 73.41218 82.5676 93.0126 0.01818 0.02418 0.02918 0.0366 0.0506

HAT-S(Chen et al., 2023) 39.7847 33.79913 31.05714 - - 32.3872 48.0473 58.2323 - - 0.0112 0.0173 0.0213 - -
HAT(Chen et al., 2023) 39.7847 33.91311 31.19612 - - 32.3872 47.8152 58.0522 - - 0.0112 0.0172 0.0212 - -
HDSRNet(Tian et al., 2024) 39.45812 34.2039 31.3258 - - 35.24513 51.69013 61.70913 - - 0.0129 0.01912 0.02313 - -
GRLBase(Li et al., 2023) 39.9904 33.84012 31.12113 - - 31.8071 47.2631 57.2961 - - 0.0111 0.0171 0.0211 - -
GRLSmall(Li et al., 2023) 39.54410 33.67914 31.02715 - - 32.7144 48.5935 58.8055 - - 0.0124 0.0174 0.0214 - -
GRLTiny(Li et al., 2023) 39.20516 33.19715 30.55616 - - 33.3946 49.5506 59.8356 - - 0.0126 0.0186 0.0226 - -

Table 4. Comparison between our proposed FSDS metric and ℓ1 norm in both frequency domain and image domain. Items with the
highest mean values are highlighted in red and secondary mean values in blue. The gray superscripts denote the ranking order.

Method
FSDS (Ours) ℓ2 Norm in Frequency Domain ℓ2 Norm

×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12 ×2 ×3 ×4 ×6 ×12

EDSR(Lim et al., 2017) 39.21015 34.14810 31.3807 - - 4966.90513 11163.14815 17206.00916 - - 4966.90613 11163.14915 17206.01016 - -
EDSR-LIIF(Lim et al., 2017) 39.37113 34.5356 31.3219 28.4464 23.1473 4967.72714 11163.11214 16947.23515 27007.7484 49280.8834 4967.72714 11163.11314 16947.23615 27007.7494 49280.8864

EDSR-OPESR(Lim et al., 2017) 39.7986 34.6305 31.28611 - - 5247.22916 11117.69412 16818.59814 - - 5247.22916 11117.69512 16818.59914 - -
EDSR-SRNO(Lim et al., 2017) 39.53311 34.5277 31.4486 28.4583 22.7784 4794.9039 10845.39010 16453.70110 26236.2463 48097.2463 4794.9039 10845.39110 16453.70210 26236.2473 48097.2493

EDSR-LTE(Lim et al., 2017) 39.29014 34.3288 31.30310 - - 4907.85511 11032.25211 16781.62113 - - 4907.85511 11032.25211 16781.62213 - -
RDN(Zhang et al., 2018c) 40.0223 32.94616 31.6464 - - 4820.54010 12055.74516 16462.59411 - - 4820.54110 12055.74616 16462.59511 - -
RDN-LIIF(Zhang et al., 2018c) 39.6909 34.8313 31.8323 28.8941 23.7781 4627.8068 10477.3038 15993.7978 25720.7662 47650.6812 4627.8068 10477.3048 15993.7988 25720.7682 47650.6832

RDN-OPESR(Zhang et al., 2018c) 40.1882 34.9592 31.4755 - - 5061.53515 10609.1689 16034.9259 - - 5061.53515 10609.1699 16034.9269 - -
RDN-LTE(Zhang et al., 2018c) 39.8255 34.7494 31.8372 28.6542 23.3462 4576.6527 10349.2737 15808.8907 25384.5971 46955.7291 4576.6527 10349.2747 15808.8917 25384.5981 46955.7311

SwinIR-classical(Liang et al., 2021) 40.3721 35.1251 32.3701 - - 4222.2265 9617.2125 14804.5335 - - 4222.2265 9617.2125 14804.5345 - -
ITSRN(Yang et al., 2021) 31.25418 26.17818 25.87618 25.6195 21.5665 7483.58217 12244.89717 17878.39917 27664.0545 49417.0615 7483.58217 12244.89817 17878.40017 27664.0565 49417.0645

Bicubic 32.79017 28.89617 26.56817 23.4506 18.7366 10873.90018 19564.47318 26817.58018 38541.6756 64011.6986 10873.90118 19564.47418 26817.58118 38541.6776 64011.7026

HAT-S(Chen et al., 2023) 39.7847 33.79913 31.05714 - - 4107.3822 9423.4473 14498.5093 - - 4107.3832 9423.4483 14498.5103 - -
HAT(Chen et al., 2023) 39.7847 33.91311 31.19612 - - 4107.3822 9326.6132 14407.4572 - - 4107.3832 9326.6132 14407.4582 - -
HDSRNet(Tian et al., 2024) 39.45812 34.2039 31.3258 - - 4948.23712 11121.91213 16697.18512 - - 4948.23812 11121.91213 16697.18612 - -
GRLBase(Li et al., 2023) 39.9904 33.84012 31.12113 - - 3937.0131 9073.9131 13959.0781 - - 3937.0131 9073.9131 13959.0791 - -
GRLSmall(Li et al., 2023) 39.54410 33.67914 31.02715 - - 4170.8534 9585.3264 14742.7874 - - 4170.8534 9585.3274 14742.7884 - -
GRLTiny(Li et al., 2023) 39.20516 33.19715 30.55616 - - 4384.3646 10079.0176 15488.3166 - - 4384.3646 10079.0186 15488.3176 - -

Table 5. Comparison between our proposed FSDS metric and ℓ2 norm in both frequency domain and image domain. Items with the highest
mean values are highlighted in red and secondary mean values in blue. The gray superscripts denote the ranking order. To demonstrate
Parseval’s theorem, we omit the mean operation when calculating ℓ2 norm.

H. How G(I) is Trained and How G(I) and H(I) Vary Dependently
To better explain how G(I) is trained and how G(I) and H(I) vary dependently, we conduct a new experiment on observing
their varying progress during training. We train a vanilla RDN (Zhang et al., 2018c) network from scratch and obtain the
impulse response, H(I), G(I), and N(I) from each epoch (see Fig. 19). As shown in the figure, in the second row, the
sinc phenomenon becomes clearer along with the training process, this indicates that the network is gradually learning
the low-pass filter. The same conclusion can be further supported by observing the variation in H(I) as shown in the
third row. In this row, H(I) illustrates the phenomenon of the grid-like distortion vanishing while low-frequency areas
getting smoother. The fourth row depict the plot of G(I). This row demonstrates that G(I) is capturing more and more
high-frequency information, such as edges. This is very significant especially when comparing the result from Epoch 1
and Epoch 50. Such increase in high-frequncy information can also be found in the frequency spectrum. During the entire
training process, the network fails to recover the words on the wall (please see the magnified area, there are words on the
wall next to the blue awning). Observing G(I), we can find no sign of words as well. This indicates that the network treats
it as low-frequency information and ignores it, pointing the way for future network improvements.
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Figure 19. N(I), H(I) and G(I) from different epoches during training.
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I. Code Repositories

Abbreviate Title Publication Year Code Link

EDSR (Lim et al., 2017) Enhanced Deep Residual Networks for Single Image
Super-Resolution

CVPRW 2017 Github

LIIF(Chen et al., 2021) Learning Continuous Image Representation with Local
Implicit Image Function

CVPR 2021 Github

OPE-SR(Song et al., 2023) OPE-SR: Orthogonal Position Encoding for Designing a
Parameter-Free Upsampling Module in Arbitrary-Scale
Image Super-Resolution

CVPR 2023 Github

SRNO(Wei & Zhang, 2023) Super-Resolution Neural Operator CVPR 2023 Github
LTE (Lee & Jin, 2022) Local Texture Estimator for Implicit Representation Func-

tion
CVPR 2022 Github

RDN (Zhang et al., 2018c) Residual Dense Network for Image Super-Resolution CVPR 2018 Github
SwinIR (Liang et al., 2021) SwinIR: Image Restoration Using Swin Transformer ICCV 2021 Github
ITSRN (Yang et al., 2021) Implicit Transformer Network for Screen Content Image

Continuous Super-Resolution
NeurIPS 2021 Github

RCAN (Zhang et al., 2018b) Image Super-Resolution Using Very Deep Residual Chan-
nel Attention Networks

ECCV 2018 Github

HAT (Chen et al., 2023) Activating More Pixels in Image Super-Resolution Trans-
former

CVPR 2023 Github

HDSRNet (Tian et al., 2024) Heterogeneous Dynamic Convolutional Network in Image
Super-Resolution

Arxiv 2024 Github

GRL (Li et al., 2023) Efficient and Explicit Modelling of Image Hierarchies for
Image Restoration

CVPR 2023 Github

Table 6. The papers and repository links used in this paper.
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https://github.com/sanghyun-son/EDSR-PyTorchGithub
https://github.com/yinboc/liif
https://github.com/gaochao-s/ope-sr
https://github.com/2y7c3/Super-Resolution-Neural-Operator
https://github.com/jaewon-lee-b/lte
https://github.com/yulunzhang/RDN
https://github.com/JingyunLiang/SwinIR
https://github.com/codyshen0000/ITSRN
https://github.com/yulunzhang/RCAN
https://github.com/XPixelGroup/HAT
https://github.com/hellloxiaotian/HDSRNet
https://github.com/ofsoundof/GRL-Image-Restoration

