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Abstract: Segmenting unseen object instances in cluttered environments is an
important capability that robots need when functioning in unstructured environ-
ments. While previous methods have exhibited promising results, they still tend to
provide incorrect results in highly cluttered scenes. We postulate that a network
architecture that encodes relations between objects at a high-level can be beneficial.
Thus, in this work, we propose a novel framework that refines the output of such
methods by utilizing a graph-based representation of instance masks. We train deep
networks capable of sampling informed perturbations to the segmentations, and a
graph neural network, which can encode relations between objects, to evaluate the
perturbed segmentations. Our proposed method is orthogonal to previous works
and achieves state-of-the-art performance when combined with them. We demon-
strate an application that uses uncertainty estimates generated by our method to
guide a manipulator, leading to efficient understanding of cluttered scenes. Code,
models, and video can be found at https://github.com/chrisdxie/rice.

Keywords: Unseen Object Instance Segmentation, Graph Neural Networks, Robot
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Figure 1: High-level overview of our proposed method. Given an initial segmentation, we encode it
as a graph, sample perturbations, then score the resulting segmentation graphs. The highest scoring
graph and/or contour uncertainty is output. Best viewed in color and zoomed in.

1 Introduction

Perception lies at the core of the ability of a robot to function in an unstructured environment. A
critical component of such a perception system is its capability to solve Unseen Object Instance
Segmentation (UOIS), as it is infeasible to assume all possible objects have been seen in a training
phase. Proper segmentation of these unseen instances can lead a better understanding of the scene,
which can then be exploited by algorithms such as manipulation [1, 2, 3] and re-arrangement [4].

Many methods for UOIS directly predict segments from raw sensory input such as RGB and/or depth
images. While recent methods have shown strong results for this problem [5, 6, 7, 8], they still tend
to fail when dealing with highly cluttered scenes, which are common in manipulation scenarios.
A natural thought is that an architecture with relational reasoning can benefit the predictions. For
example, it can potentially learn to recognize common object configurations (e.g. realizing that one
object is stacked on top of another). While relational inductive biases have shown to be useful for
problems such as scene graph prediction [9, 10, 11], it remains to be seen whether it can be useful in
identifying objects in dense clutter. In this work, we investigate the use of graph neural networks,
which can encode relations between objects, for segmenting densely cluttered unseen objects.
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In this paper, we propose a novel method for Refining Instance masks in Cluttered Environments,
named RICE. Given an initial instance segmentation of unseen objects, we encode it into a segmen-
tation graph, where individual masks are encoded as nodes and connected with edges when they
are close in pixel space. Starting from this initial graph, we build a tree of sampled segmentation
graphs by perturbing the leaves in a CEM-style (Cross Entropy Method) framework, where example
perturbations include splitting and merging. We learn Sampling Operation Networks (SO-Nets) that
sample efficient and informed perturbations that generally lead to better segmentations. The perturbed
segmentation graphs are scored with a graph neural network, denoted Segmentation Graph Scoring
Network (SGS-Net). Finally, we can return the highest scoring segmentation or compute contour
uncertainties, depending on the application. Figure 1 provides a high-level illustration of our method.

RICE is able to improve the results of existing techniques to deliver state-of-the-art performance
for UOIS. An investigatory analysis reveals that applying SGS-Net on top of the SO-Nets results
in more accurate and consistent predictions. In particular, we find that SGS-Net learns to rank
segmentation graphs better than SO-Nets alone. Additionally, we provide a proof-of-concept efficient
scene understanding application that utilizes uncertainties output by RICE to guide a manipulator.

In summary, our main contributions are: 1) We propose a novel framework that utilizes a new
graph-based representation of instance segmentation masks in cluttered scenes, where we learn deep
networks capable of suggesting informed perturbations and scoring of the graphs. 2) Our method
achieves state-of-the-art results for UOIS when combined with previous methods. 3) We demonstrate
that uncertainty outputs from our method can be used to perform efficient scene understanding.

2 Related Work

Instance Segmentation Traditional methods for 2D instance segmentation include GraphCuts [12],
Connected Components [13], and LCCP [14]. Recently, learning-based approaches have provided
more semantic solutions. For example, top-down solutions combine segmentation with object
proposals in the form of bounding boxes [7, 15, 16, 17]. Mask R-CNN [7] predicts a foreground
mask for each proposal produced by its region proposal network (RPN). However, when bounding
boxes contain multiple objects (e.g. cluttered robot manipulation setups), the true instance mask is
ambiguous and these methods struggle. Recently, a few methods have investigated bottom-up methods
which assign pixels to object instances [18, 19, 20, 21, 22]. Some examples of this include contrastive
losses [18] and unrolling mean shift clustering as a neural network to learn pixel embeddings [22].

Most of the afore-mentioned algorithms provide instance masks with category-level semantic labels,
which do not generalize to unseen objects in novel categories. Class-agnostic methods [23, 24, 25, 26]
and motion segmentation [27, 28, 29] methods have been investigated for this problem. In robotic
perception, Xie et al. [30] proposed to separate the processing of depth and RGB in order to generalize
their method from sim-to-real settings and provide sharp masks. Their follow-on work [5] proposed a
3D voting method to overcome the limitations of their earlier 2D method. Xiang et al. [6] showed that
training a network on RGB-D with simulated data and a simple contrastive loss [18] can demonstrate
strong results for this problem. While these methods show promise, they are not perfect and still
admit mistakes in cluttered scenes, which can hamper downstream robot tasks that rely on such
perception. Our method is orthogonal to these works, and is designed to refine their outputs by
sampling perturbations to result in better instance segmentations in the cluttered environments.

Graph Neural Networks Graph neural networks (GNN) in vision and robotics have recently
become a useful tool for learning relational representations. They have found applications in many
standard computer vision tasks such as image classification [31, 32], object detection [33], semantic
segmentation [34], and question answering [35]. GNNs have also been used to perform “scene
graph generation”, which requires predicting not just object detections, but also the relations between
the objects [9, 10, 11]. The resulting scene graphs have been used for applications such as image
retrieval [36]. GNNs have also been used to learn object dynamics, properties, and relations for
applications such as differential physics engines [37, 38]. Our proposed work represents instance
segmentation masks as graphs and utilizes this architecture in order to refine the predicted masks.

3 Method

Our method, RICE, is designed to Refine Instance masks of unseen objects in Cluttered Environ-
ments. Given an initial segmentation mask S € NZ*W of unseen objects, we first encode this



as a segmentation graph Gg, which is described in Section 3.1. Then, in Section 3.2, we build a
tree T of sampled segmentation graphs by perturbing the leaves in a CEM-style [39] framework.
Section 3.3 details the sampling operations, which are parameterized by our Sampling Operation
Networks (SO-Nets). Each candidate graph (tree node) is scored by a GNN named Segmentation
Graph Scoring Network (SGS-Net), introduced in Section 3.4. Finally, the highest scoring graph in T’
and/or contour uncertainties are returned. Figure 1 provides a high-level illustration of RICE, and
pseudocode can be found in the Supplement.

3.1 Node Encoder

Given a single instance mask S; € {0, 1
for instance %, we crop the RGB image I €
RIXWX3 " an organized point cloud D €
RIXWx3 (computed by backprojecting a depth
image with camera intrinsics), and the mask .S;
with some padding for context. We then resize
the crops to h x w and feed these into a multi-
stream encoder network which we denote as the
Node Encoder. This network applies a separate
convolutional neural network (CNN) to each Figure 2: Given an initial instance segmentation
input, and then fuses the flattened outputs to mask (left), our segmentation graph representa-
provide a feature vector v; for this node. See tion encodes each individual mask as a graph node
Figure 2 for a visual illustration of the network. (red dots) with a corresponding feature vector v;
Note that we also encode the background mask ( bar) output by the Node Encoder (right).
as a node in the graph. This gives the segmenta- Edges (blue lines) connect nearby masks.

tion graph Gg = (V, E), where each v; € V corresponds to an individual instance mask, and nodes
are connected with undirected edges e = (i, j) € F if their set distance is less than a threshold.

3.2 Building the Sample Tree

Our sample tree-building procedure operates in a CEM-style fashion. CEM [39] is an iterative
sampling-based optimization algorithm that updates its sampling distribution based on an “elite set”
of the top & (or top percentile) samples. For more details, we refer the reader to [39]. Following this
terminology, our elite set consists of the leaves of our sample tree 7', each of which are guaranteed
to be better with respect to our proxy objective function, SGS-Net. Then, the sampling distribution
is implicitly defined by the SO-Nets; while we cannot explicitly write out the distribution, we can
certainly sample from it with our sampling operations described in Section 3.3.

}H><W

Our sample tree T starts off with the root Gg. We expand the tree from the leaves with K expansion
iterations. For each expansion iteration, we iterate through the current leaves of 7I". For a leaf G, we
randomly choose a sample operation from Section 3.3 and apply it to G to obtain candidate graph
G’. We then compare the scores sg, sgr output by SGS-Net, and add G’ to T as a child of G if
sgr > Sg. Thus, any leaf of T is guaranteed to be at least as good as the root Gg w.r.t. our proxy
objective function SGS-Net. We apply this procedure B times for GG, such that each tree node can
have a maximum of B children. Thus, B is a branching factor. Finally, due to constraints of limited
GPU memory, we exit the process in an anytime fashion whenever we exceed a budget of maximum
graph nodes and/or graph edges (not to be confused with tree nodes/edges). See the Supplement for
pseudocode and an example of the sample tree-building procedure.

It is important to note that while we utilize our learned SO-Nets and SGS-Net to build the sample
tree T', they are applied in different manners (although they are trained on the same dataset). In order
to add a candidate graph to the tree, they must both agree in the sense that the perturbation must
be suggested via an SO-Net and SGS-Net must approve of the candidate graph via its score. This
redundancy offers a level of robustness, Section 4.4 shows that the combination of these leads to
more accurate performance with lower variance.

3.3 Sampling Operations

We consider four sampling operations: 1) splitting, 2) merging, 3) deleting, and 4) adding. However,
randomly performing these operations leads to inefficient samples which wastes computation time and
memory. For example, it is not clear how to split or add an instance mask randomly such that it may
result in a better segmentation. Thus, we introduce two networks for these four operations, SplitNet
and DeleteNet, which comprise our SO-Nets. They are learned to suggest informed perturbations to
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Figure 3: We show real-world examples of the sampling operations and how they can refine the
original segmentation. Best viewed in color on a computer screen and zoomed in.

bias the sampling towards better graphs, lowering the amount of samples needed in order to favorably
refine the segmentation. Examples of each operation can be found in Figure 3.

Split It is not clear how to randomly split a mask such that it provides an effective split. For
example, a naive thing to do is to sample a straight line to split the mask, however in many cases
this will not result in a reasonable split (see Figure 3a for an example). Thus, we propose to learn a
deep network denoted SplitNet to handle this. SplitNet takes the output of the Node Encoder (before
flattening), fuses them with concatenation followed by a convolution, then passes them through a
single decoder with skip connections. Essentially it is a multi-stream encoder-decoder U-Net [40]
architecture, much like Y-Net [27], except that it has three streams for RGB, depth, and the mask. The
output of SplitNet is a pixel-dense probability map p; € [0, 1]"** of split-able object boundaries. To
sample a split for instance mask S;, we first sample two end points on the contour of the original mask
Si, and calculate the highest probability path from the end points that travels through p;, resulting in a
trajectory 7 = {(uys, v;)} =, of length L;. We score the split with s, = % > Dilug, v¢] € R, which
is the average probability along the sampled path. More details can be found in the Supplement.

Merge We exploit the fact that merging is the opposite of splitting and adapt SplitNet for this
operation. For each pair (i, j) of neighboring masks, we take their union S,; and pass it through
SplitNet to get p;;. Note that we do not consider merging disjoint masks that may belong to the
same instance, which is a limitation of this work. To compute the merge score m;;, we first compute
the union of the boundaries of .S; and S, denoted B;; € {0, l}hX“’. Then, we calculate the merge
score as m;; = 1 — (p;; © B;j/(17p;;1)) where © is element-wise multiplication, 1 is a vector of
ones. This is essentially a weighted average of B;; with weights p;;.This score indicates how likely
SplitNet thinks S; and S; correspond to different objects. Figure 3b shows an ideal merge operation.

Delete We design a network, DeleteNet, to provide delete scores d; € R for every instance (graph
node) 7. This network is also built on top of the Node Encoder: it computes the difference v; — vy,
where vy is the feature vector for the background node output by the Node Encoder. This difference
is then provided as input to a multi-layer perceptron (MLP) which outputs a scalar d;. See Figure 3c
for an example of how DeleteNet can help remove false positives from the segmentation.

Add Similarly to merging, we can exploit the fact that adding is the opposite of deleting. Given a
candidate mask Sy 41 to add to the graph, we can use DeleteNet to compute its delete score dy 1. If
dpn 1 is below a threshold, we successfully add the mask to the graph. However, the question remains
of how to generate such candidate masks. Given an external foreground mask F' € {0, 1}7*W
(provided by UOIS-Net-3D [5]), we run connected components on F'\ {U;.S; }, and use the discovered
components as potential new masks. A successful addition operation can be seen in Figure 3d.

3.4 Segmentation Graph Scoring Network

While our sample operations provide efficient samples that typically lead to better segmentation
graphs, they can also suggest samples that worsen the segmentation. Thus, we learn SGS-Net
which acts as a proxy for the objective function in the CEM framework. Our proposed SGS-Net
learns to score a segmentation graph by considering the fused feature vectors v; in context of their
neighboring graph nodes (masks). We posit that this context will aid SGS-Net in predicting whether
the perturbations improve the segmentation. For example, it can potentially learn to recognize
common object configurations from the training set, and score such configurations higher.

(0)

A high-level illustration of SGS-Net can be found in Figure 4. The initial node features v, ~ are

given by the Node Encoder, and we obtain initial edge features egg) by running the Node Encoder on
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Figure 4: A high-level illustration of our Segmentation Graph Scoring Network (SGS-Net). It is
composed of a Node Encoder (see Figure 2), multiple Residual GraphNet Layers, and an output layer.
We borrowed elements from Figure 3 of Battaglia et al. [41].

all neighboring union masks S;;. Then, we pass them through multiple Residual GraphNet Layers
(RGLs), which are essentially GraphNet Layers [41] with a residual connection. We refer readers to
Battaglia et al. [41] for details of GraphNet Layers, and also provide a full mathematical specification
of RGLs in the Supplement for completeness. The output of SGS-Net is a scalar score in [0, 1].

3.5 Training Procedure

For SplitNet, we apply a weighted binary cross entropy (BCE) loss to the probability map p: s =
> u Wu Loce (Pu, Pu) Where u ranges over pixels, p € {0, 1}7*w is ground truth boundary, and ...
is the binary cross entropy loss. The weight w,, is inversely proportional to the number of pixels with
labels equal to p,,. DeleteNet is also trained with standard BCE loss. SGS-Net is trained with £ to
regress to .8F' + .2F @.75, where F' is the Overlap F-measure [30] and F'@.75 is the Overlap F'@.75
measure [42]. The latter measures the percentage of correctly segmented instances. Thus, SGS-Net
learns to predict a score based on the number of correctly identified pixels and instances. Note that
this regression problem is very difficult to solve. However, the scores do not actually matter as long
as the relative scoring is correct, since building the sample tree relies only on this (Section 3.2). In
Section 4.5 we show that while SGS-Net may not solve the regression problem well, it learns to rank
graphs accurately. Further training and implementation details can be found in the Supplement.

4 Experiments

4.1 Encoding RGB and Modality Tuning

We use ResNet50 [43] with Feature Pyramid Networks [44] (FPN) to encode RGB images before
passing them to the Node Encoder. However, since we are training with (a more cluttered version
of) the non-photorealistic synthetic dataset from Xie et al. [30], we perform modality tuning [45],
where we fine-tune earlier convolutional layers of ResNet50 during training, and use the COCO [46]
pretrained weights during inference. For all experiments, we modality tune the conv1 and conv2_1
blocks of ResNet. We provide an experiment in the Supplement that shows this setting is optimal.

4.2 Datasets and Metrics

We evaluate our method on two real-world datasets of challenging cluttered tabletop scenes: OCID
[47] and OSD [48], which have 2346 images of semi-automatically constructed labels and 111
manually labeled images, respectively. Our SO-Nets and SGS-Net are trained on a more cluttered
version of the synthetic Tabletop Object Dataset (TOD) [30], where each scene has anywhere between
20 and 30 ShapeNet [49] objects. We use 20k scenes in total, with 5 images per scene.

Xie et al. [30] introduced the Overlap P/R/F and Boundary P/R/F measures for the problem of UOIS.
However, these metrics do not weight objects equally; they are dependent on the size and larger
objects tend to dominate the metrics. Thus, we introduce a variation to these metrics that equally
weights the errors of individual objects regardless of their size. Given a Hungarian assignment A

between the predicted instance masks {S;}¥; and the ground truth instance masks {3 1L, we
compute our Object Size Normalized (OSN) P/R/F measures as follows:
> By > Ry > Ey > 1{F; >=0.75}
(i,5)€A (i,j)€A (i,j)€A (i,5)€A
Po=—F—— BRo=—"—7—, Ihn=—"—"—"—, FL@I5= )
N M max(M, N) max(M, N)

where P;;, R;;, F;; are the precision, recall, and F-measure of S;, Sj. Note that the F;, @.75 penalizes
both false positive and false negative instances, as opposed to the normal F'@.75, which does not
penalize false positives. Similarly to Xie et al. [30], we can apply the OSN metrics to the pixels and
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Figure 5: Applying RICE to refine results from state-of-the-art instance segmentation methods leads
to improved performance across the board. Note that standard deviation bars are shown, but are very
tight and difficult to see.

Overlap Boundary
SO-Nets  SGS-Net R, F, R, F, F@075  F,@0.75
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Table 1: Ablation to test the utility of SO-Nets and SGS-Net on OCID [47] starting from UOIS-
Net-3D [5] masks. Only using the sample operator networks (SO-Nets) in an iterative sampling
scheme already provides an increase in performance, showing that the informed samples are generally
improving the initial segmentations. However, the standard deviations (shown in parentheses) are
relatively high. Adding in SGS-Net boosts performance while drastically lowering the variance,
demonstrating the efficacy of SGS-Net in consistently filtering out bad suggestions by the SO-Nets.

boundaries, giving us Overlap and Boundary P,,/R,,/F,, measures. For comparison, we also show
results with the normal Overlap and Boundary P/R/F measures in the appendix.

We run each experiment 5 times and show means and standard deviations for all metrics.

4.3 SOTA Improvements

We demonstrate how RICE can improve upon predicted instance segmentations from state-of-the-art
methods. In particular, we apply it to the results of Mask R-CNN [7], PointGroup [8], UOIS-Net-
3D [5], and UCN [6], all of which consume RGB-D as input. We employ RICE by returning the
best segmentation. For brevity, we only show Overlap F;,, Boundary F,,, FF@.75, and F;, @.75 in
Figure 5 on both OCID and OSD. The light orange bars show the additional performance that RICE
provides over the output of the methods. Standard deviations are shown as error bars, but are in
general very narrow, showing that our method provides consistent results despite its stochasticity.
RICE provides substantial improvements to all methods. The largest gains occur in Mask R-CNN and
PointGroup, with 21.6% and 32.3% relative gain in F,, @.75 on OCID, respectively. Additionally, on
the already strong results from UOIS-Net-3D and UCN, RICE achieves 11.0% and 4.0% relative gain
in F,, @.75 on OCID, respectively. These results are similar on OSD, with the gains being slightly
less pronounced, which we believe is due to OSD being a smaller dataset with less clutter. Note
that applying RICE increases both F'@.75 and F,, @.75, indicating that not only is it capturing the
object identities correctly, it is not simultaneously predicting more instances (false positives). In the
appendix, we show full results for all metrics including P,,, R,,, and normal P/R/F metrics.

4.4 Ablation Study

We aim to answer two questions with this study: 1) how good are the samples suggested by our
SO-Nets, and 2) to what degree does SGS-Net increase performance and robustness? We study these
questions on the larger OCID.

Since the SO-Nets alone do not provide scores of the perturbed segmentation graphs, we structure
our ablation such that this is not needed in order to answer 1). Our SO-Nets are trained to provide
informed perturbations that are closer to the ground truth segmentation, so every sample is supposed
to be better than the original graph. With this insight, we design an experiment where we run
RICE with branch factor B = 1 and K = 5 iterations, always add the candidate graph to the tree
without consulting SGS-Net, and return the final graph. Essentially, this can be seen as an iterative
segmentation graph refinement procedure where the sampled graph should be better than the previous
in every iteration. Starting from initial masks provided by UOIS-Net-3D [5], we see in Table 1 that
applying this iterative sampling scheme with SO-Nets only provides better results on almost all



metrics than without. However, adding SGS-Net back into the procedure results in better Overlap F,,
Boundary F,,, and F;,, @.75, while significantly reducing the standard deviation of the results by two
orders of magnitude. This demonstrates that having SGS-Net in RICE delivers not only more accurate
performance, but also more robust performance with relatively small variance, which answers 2).
Note that F'@.75 is slightly lower with F;, @.75 higher, indicating that SO-Nets are suggesting more
samples that better capture the objects, but are suggesting too many instance segments.

4.5 SGS-Net Ranking

Figure 6 shows an example of how difficult scoring the GT Score: 0.820 GT Score: 0.848
segmentations graphs is; the two slightly different segmen-
tations have a significant difference in their ground truth
scores. In fact, SGS-Net does a poor job at scoring the
graphs, with a mean absolute error (MAE) of 0.184 and
even higher standard deviation shown in Table 2. These
values are high given that the scores are in the range [0,1]. ]
Then, this begs the question, why does SGS-Net work Figure 6: Can you spot the differences
well within our proposed RICE framework? Recall that between the segmentations?

the score magnitudes do not matter, only the relative scoring (Section 3.2). We claim that SGS-Net
learns to rank the graphs accurately, and design an experiment to test this hypothesis.

We leverage the normalized Discounted Cumula-
tive Gain (nDCG) [50] which is a popular ranking H M_AE 0 8:411)(%(‘19 o)
metric in the information retrieval community. The _ 0'9 44 (0.098)

0.184 (0.212)  0.952 (0.095)

Minimum
] b el ) SO-Nets
DCG is computed as » ;_, g, ity Wherereliis  §GS-Net
the numerical relevance (1 to p, higher is better) of
the item at position 4. This essentially computes  Table 2: Ranking study on OCID and OSD.

a weighted sum of the relevance with a discount

factor for further items, which places more emphasis on the high-ranking predictions. The normalized
version divides DCG by the “ideal” version, i.e. the DCG of the correct ranking. This results in
nDCG € [0, 1] with higher being better. We compute nDCG of the ranking of the iterative sampling
experiment in Section 4.4, with relevance values in {0, ..., K'}. The ranking for SO-Nets is given
by the order of the predicted graphs, and we use SGS-Net scores to compute its ranking/relevance.
We also compute the nDCG of the worst ranking, denoted “minimum”. In Table 2, we see that both
SO-Nets and SGS-Net perform significantly better than the worst ranking. SGS-Net provides better
ranking than SO-Nets with slightly lower variance, which helps to explain its effectiveness in RICE.

4.6 Visualizing Refinements

In the left side of Figure 7 (green box), we qualitatively demonstrate successful refinements from
applying RICE to instance masks provided by state-of-the-art methods. The first column shows an
example where many nearby objects are under-segmented. Indeed, RICE manages to find all of the
necessary splits except for one. In general, RICE is quite adept at splitting under-segmented instance
masks. This is quantitatively confirmed in an additional ablation in the Supplement that studies the
usefulness of each sampling operation. Column two shows an initial mask that is fixed with a merge
operation. Column three shows a false positive mask on the textured background, which is suppressed
by RICE’s deletion sampling operation. In the fourth column, the initial mask is missing quite a few
objects, and RICE is able to not only recover them but also correctly segment them, resulting in an
almost perfect instance segmentation. In the last column, the bottom left segment is bleeding into a
neighboring segment, which is fixed through multiple perturbations (i.e. split, then merge).

4.7 Failures and Limitations

In the right side of Figure 7 (red box), we discuss some failure modes and limitations. The first
column demonstrates a failure mode where RICE tends to over-segment objects with a lot of texture
(e.g. cereal box). We believe that this is due to TOD lacking texture on many of its objects [5]. The
second column shows a limitation: since RICE only considers merging neighboring masks, it cannot
merge non-neighboring masks that belong to the same object. RICE does nothing and the book is
still incorrectly segmented in two pieces. We leave this as an interesting avenue for future work.

4.8 Guiding a Manipulator with Contour Uncertainties for Efficient Scene Understanding

Fully segmenting and understanding a scene of cluttered objects is necessary for various manipulation
tasks, such as counting objects or re-arranging and sorting them. One way for doing this is to actively
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Figure 7: We demonstrate successful refinements (left, green box) for each of the sampling operations.
Failure modes (right, red box) include textured objects and non-neighboring masks that belong to the
same object. Best viewed in color and zoomed in on a computer screen.
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Figure 8: UCN masks [6] (top row) and contour uncertainties from RICE (bottom row, uncertainties
are shown in red with average contours in green) in a trial of our scene understanding experiment.
After grasping the milk carton and red cup, the scene is segmented with full certainty, indicating that
the scene is fully understood. Thus, the algorithm terminates without having to singulate each object.

singulate each object [51]. However, such an approach can be extremely inefficient. Here we show
how contour uncertainties extracted from RICE can help to solve this problem with potentially far
less interactions. Specifically, we extract contour uncertainties by computing the standard deviation
of the mask contours of each leaf graph. These uncertainties let us distinguish between objects that
are already confidently segmented and those that require physical interaction to resolve segmentation
uncertainty. We grasp [52] any object that has uncertain contours in order to determine its correct
segmentation, and repeat this until no more uncertainty persists. Thus, interactions are only required
to resolve the uncertain portions of the scene, which can potentially be much less than the number of
objects, leading to a more efficient scene understanding method. For example, in Figure 8, only two
grasps are required to fully understand the scene. See the Supplemental video for more results.

5 Conclusion and Future Work

We have proposed a novel framework that utilizes a graph-based representation of instance segmenta-
tion masks. It incorporates deep networks capable of sampling smart perturbations, and a graph neural
network that exploits relational inductive biases. Our experimental analysis revealed insight into why
our method achieves state-of-the-art performance when combined with previous methods. We further
demonstrated that our uncertainty outputs can be utilized to perform efficient scene understanding.

A main limitation of our work is the computational burden; the algorithm runs at 10-15 seconds per
frame, depending on the expansion of the sample tree. Additionally, it is GPU-memory intensive as
the sample tree must be stored in GPU memory. Future work will explore how to make the method
more computationally efficient, along with solving the inherent limitations mentioned in Section 4.7.
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