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Abstract

Vision-language models, such as CLIP, have
achieved significant success in aligning visual
and textual representations, becoming essen-
tial components of many multi-modal large lan-
guage models (MLLMs) like LLaVA and Open-
Flamingo. However, numerous studies have iden-
tified CLIP’s limited fine-grained perception as
a critical drawback, leading to substantial fail-
ures in downstream MLLMs. In contrast, vision-
centric foundation models like DINOv2 demon-
strate remarkable capabilities in capturing fine
details from images. In this work, we propose
a novel kernel-based method to align CLIP’s vi-
sual representation with that of DINOv2, ensur-
ing that the resulting embeddings maintain com-
patibility with text embeddings while enhancing
perceptual capabilities. Our alignment objective
is designed for efficient stochastic optimization.
Following this image-only alignment fine-tuning,
the visual encoder retains compatibility with the
frozen text encoder and exhibits significant im-
provements in zero-shot object recognition, fine-
grained spatial reasoning, and localization. By in-
tegrating the aligned visual encoder, downstream
MLLMs also demonstrate enhanced performance.
The code and models are available at https:
//github.com/peterant330/KUEA.

1. Introduction
Vision-language Models (VLMs) have made significant
strides and transformed the field of computer vision. A
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notable example is CLIP (Radford et al., 2021) and its vari-
ants (Zhai et al., 2023; Sun et al., 2023), which are trained
on extensive datasets of paired text and images to link im-
ages with their corresponding textual descriptions. These
models demonstrate exceptional generalizability and zero-
shot performance on various downstream tasks, including
classification (Saha et al., 2024), segmentation (Yu et al.,
2023), and object detection (Vidit et al., 2023). Beyond
functioning as a standalone tool, CLIP’s vision encoder has
been incorporated into several Multi-modal Large Language
Models (MLLMs), such as LLaVA (Liu et al., 2024), Open-
Flamingo (Awadalla et al., 2023), BLIP-2 (Li et al., 2023a),
and Qwen-VL (Bai et al., 2023), serving as an integral com-
ponent for visual feature extraction.

However, because CLIP is trained with global supervision
from image captions, it struggles to learn finer pixel-level
details such as color (Thrush et al., 2022) and spatial rela-
tionship (Liu et al., 2023; Kamath et al., 2023). This limita-
tion affects CLIP’s performance on vision-focused tasks and
can also impair the fine-grained perception capabilities of
downstream MLLMs. Numerous studies have highlighted
these issues (Yuksekgonul et al., 2023; Guo et al., 2024). For
instance, Jiang et al. (2023) examined feature visualization
from deeper layers and found that it emphasizes global im-
age properties while neglecting intricate details. Similarly,
Tong et al. (2024) reported that current MLLMs struggle
with simple visual pattern questions, such as counting, color
identification, and viewpoint recognition.

Vision-only self-supervised learning protocols, such as
DINO (Caron et al., 2021) and MAE (He et al., 2022),
produce vision-centric representations that are highly effec-
tive for visual grounding. Researchers are exploring these
models to address the inherent limitations of CLIP. Some
studies have combined multiple models as vision encoders
for MLLMs (Jiang et al., 2023; Tong et al., 2024; Shi et al.,
2024; Shen et al., 2024). However, this approach introduces
considerable computational overhead. Other methods focus
on using vision-only self-supervised learning to fine-tune
the CLIP encoder (Wu et al., 2023; Covert et al., 2025),
which can enhance its localization abilities. Nevertheless,
these fine-tuning techniques risk disrupting the alignment
between image and text representations, potentially under-
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Figure 1. Main claim of this work. We propose a kernel-based alignment framework, which is able to enhance the visual representation
of CLIP via image-only fine-tuning. Moreover, the improvement can be transferred to downstream multi-modal large language models.

mining CLIP’s zero-shot performance. Additionally, there
are efforts to integrate region-based task loss (Zhong et al.,
2022; Wan et al., 2024) or distillation loss from vision mod-
els (Salehi et al., 2023) during CLIP’s training, which re-
quires re-training the models and incurs high computational
costs. Most critically, all these methods produce visual em-
beddings that differ significantly from the original CLIP
embeddings, leading to incompatibility with downstream
models trained on the original embeddings. Consequently,
all downstream models (e.g., MLLMs) would need to be
re-tuned from scratch to align visual-text embeddings. The
cost makes these solutions impractical in real applications.

In this paper, we present an innovative approach to address
the limitations of CLIP embeddings by aligning them with
embeddings from vision-centric models. Our method in-
volves fine-tuning CLIP’s vision branch to align with the
representations of target models, such as DINOv2 (Oquab
et al., 2024), while maintaining compatibility with CLIP’s
text embeddings, which is totally frozen and untouched (see
Fig. 1). Given the significant differences between the fea-
ture spaces of target models and CLIP, a direct alignment of
the visual representations could disrupt the alignment with
text representations. Instead, we propose to align the embed-
dings in the kernel space, which preserves the integrity of
the original feature space while allowing for flexible adjust-
ments of similarities among samples based on their visual
details. As a result, this alignment could enhance the vision
encoder’s ability to recognize fine-grained visual patterns.
In addition, we design an optimization objective that can
be handled by stochastic optimization, enabling our frame-
work to scale effectively to real-world datasets with minimal
computational hardware requirements.

We examine the enhancements achieved through the pro-
posed alignment in both vision-centric tasks and visual
question answering (VQA). Experiments conducted on
multiple CLIP-benchmark (LAION-AI, 2022) and probing
bench (Covert et al., 2025) reveal that the CLIP after align-
ment demonstrates improved accuracy in zero-shot classi-

fication and dense prediction tasks, without requiring fine-
tuning of the text encoder. Subsequently, we integrate the
aligned CLIP vision encoder into two pre-trained MLLMs,
LLaVA (Liu et al., 2024) and OpenFlamingo (Awadalla
et al., 2023), evaluating their performance across several
standard VQA benchmarks. This also results in significant
enhancements over the original CLIP, even without fine-
tuning the large language model (LLM) component. Our
main contributions can be summarized as follows.

• We introduce a kernel-based alignment method that effec-
tively aligns two sets of embeddings while preserving the
integrity of the original representation space.

• We implement the alignment using CLIP and DINOv2.
With minimal image-only fine-tuning, the aligned CLIP
visual encoder shows substantial improvements while pre-
serving compatibility with the text encoder and ensuring
zero-shot generalizability.

• Evaluation across various vision-language benchmarks
shows that the enhancements in visual representations can
be effectively inherited to downstream MLLMs.

2. Related Work
Kernel Methods in Representation Learning. Kernel
methods (Hofmann et al., 2008) are algorithms that use
the kernel trick, which allows linear algorithms to work in
high-dimensional feature spaces without explicit data trans-
formation. It is widely used in deep representation learning.
For example, He & Ozay (2022) utilized kernel-based met-
rics for evaluating the similarity between two embeddings.
Several work (Allen-Zhu & Li, 2020; He & Ozay, 2022;
Zhou et al., 2024) leveraged kernel functions for knowl-
edge distillation. Dehdashtian et al. (2024) proposed to
de-bias CLIP’s image and text representations in reproduc-
ing kernel Hilbert spaces for better fairness. Kernel methods
have also been applied to evaluating the fidelity (Bińkowski
et al., 2018), diversity (Friedman & Dieng, 2022; Jalali et al.,
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2023; Rezaei et al., 2024; Ospanov & Farnia, 2024; Jalali
et al., 2024; Ospanov et al., 2024a;b), and novelty (Zhang
et al., 2024a;b) of generative models. Our method can be
interpreted as aligning visual representations of CLIP and
other vision models in the kernel space, through kernel trick.

Fine-tuning Vision-Language Models. Fine-tuning of
VLMs has been widely applied to improve the model per-
formance on specific downstream dataset (Zhou et al., 2022;
Zhang et al., 2022; Gao et al., 2024) or domain-specific
applications (Cao et al., 2024; Gong et al., 2024). Be-
yond the accuracy gain, studies have also discovered that
well-designed fine-tuning scheme can promote some desired
properties of the model, such as adversarial robustness (Mao
et al., 2022; Schlarmann et al., 2024), fairness (Shen et al.,
2023), and visual interpretability (Gong et al., 2025). In this
work, we leverage fine-tuning to enhance the general visual
ability of the VLMs. Instead of focusing on single datasets,
we show the enhancement exhibit good generalizability.

Enhancement of CLIP Visual Representations. Several
studies have proposed methods to address the limitations
of CLIP’s visual embeddings and enhance its fine-grained
capabilities. For instance, Salehi et al. (2023) trained the
CLIP encoder using multi-task losses supervised by pseudo
labels generated from other vision encoders. Similarly,
Jiang et al. (2023) and Tong et al. (2024) complemented
CLIP with DINOv2 as the vision encoder for downstream
MLLMs. Shi et al. (2024) and Shen et al. (2024) further
expanded this approach to incorporate a wider variety of
vision encoders. Currently, there are limited explorations fo-
cusing on the fine-tuning phase. Covert et al. (2025) applied
masked fine-tuning to CLIP’s vision encoder to enhance its
localization capabilities. However, their fine-tuned vision
encoders became incompatible with the text encoder and
downstream LLMs. The method most closely related to ours
is DIVA (Wang et al., 2025), which refines CLIP representa-
tions using only images with the help of diffusion models.
Comparing to DIVA, our method demands significantly less
computation and achieves better zero-shot performance.

3. Method
3.1. Kernel Function and Kernel Matrix

Consider a function k : Rd × Rd → R that assigns a simi-
larity score k(x,y) ∈ R to every pair of vectors x,y ∈ Rd.
The function k qualifies as a kernel function if and only if,
for any set of samples x1, · · · ,xn ∈ Rd, the resulting ker-
nel matrix K = [k(xi,xj)]1≤i,j≤n is positive semi-definite.
This kernel matrix well captures the pairwise similarities
among the samples. Common examples of kernel functions
include Gaussian kernel, cosine kernel, and polynomial ker-
nel. In this work, we mainly focus on the polynomial kernel

with coefficient γ, constant offset c, and degree d:

kpolynomial(γ,c,d)(x,y) := (γxTy + c)d. (1)

We call a kernel function normalized if k(x,x) = 1 for any
vector x ∈ Rd. A kernel function can be normalized via:

k̃(x,y) =
k(x,y)√

k(x,x)k(y,y)
. (2)

Note that for each valid kernel function k, there exists a
feature map ϕ : Rd → Rs such that for every input vectors
x,y, the following holds:

k(x,y) = ⟨ϕ(x), ϕ(y)⟩, (3)

where ⟨·, ·⟩ denotes the inner product in Rs. s is usually
much greater than d, indicating that ϕ maps the input fea-
tures into a higher-dimensional kernel space.

3.2. Kernel-based Embedding Alignment

CLIP consists of two components: an image encoder fθ
and a text encoder fφ. These encoders transform each
language-image pair (Ti, Ii) into their respective represen-
tations fθ(Ii), fφ(Ti) ∈ Rd. The target model g is a vi-
sion encoder (e.g., DINOv2) that generates the representa-
tion g(Ii) ∈ Rd′

for the image Ii. While CLIP effectively
achieves visual-language alignment, it struggles to capture
fine-grained visual details, an area where the target model
excels. As noted by Tong et al. (2024), samples that carry
similar semantic meanings but differ in visual details exhibit
high similarity in the CLIP feature space, while showing
low similarity in the DINOv2 feature space. The value of
kernel function is a measure of similarity between two sam-
ples. The kernel matrix of the target model reflects how
samples are arranged in feature spaces based on their visual
similarities, whereas the kernel matrix of CLIP only cap-
tures semantic similarities. Consequently, it is a natural idea
to align the kernel matrix of CLIP with that of the target
model, as it can encourage the arrangement of samples in
the feature space to better represent their visual patterns,
thus alleviating the limitations of CLIP (as illustrated in
Fig. 1). Due to the large sample size, directly minimizing
the distance between the two kernel matrices can be com-
putationally infeasible. To address this, we propose the
following optimization objective for alignment fine-tuning:

min
θ

E
Ii,Ij∼Dtrain

[(k1(fθ(Ii), fθ(Ij))− k2(g(Ii), g(Ij)))
2],

(4)
where k1 and k2 are the kernel functions for CLIP and the
target model, which may take different forms or with differ-
ent parameters to reflect the variation in the feature space.
According to Hoeffding’s inequality (Hoeffding, 1994), the
empirical estimate of the objective function is an unbiased
estimator, and the following proposition implies that the gra-
dient w.r.t θ can also be computed through limited samples.
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Table 1. Accuracy evaluation on zero-shot image classification benchmarks of CLIP models w/wo alignment. Projection means
training a linear layer to map DINOv2 representations into the CLIP feature space. Feature means directing aligning the representation
pairs subjecting to a linear transformation. DIVA refers to the method proposed by Wang et al. (2025). Kernel is our proposed method.
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Proposition 3.1. Assume that both k1 and k2 take values in
the range [−1, 1]. Let (Im1

, Im2
) for 1 ≤ m ≤ M represent

M pairs of images independently sampled from the data
distribution. Assume k1(fθ(Im1), fθ(Im2)) is L-Lipschitz
w.r.t. θ for any sampled pairs. Define the sample-wise
gradient as

t(θ; Im1
, Im2

)

:=∇θ

(
k1(fθ(Im1

), fθ(Im2
))− k2(g(Im1

), g(Im2
))
)2

,

and the true expected gradient is defined as E[t(θ)] :=

∇θEIi,Ij∼Dtrain

[(
k1(fθ(Ii), fθ(Ij))− k2(g(Ii), g(Ij))

)2]
.

Then, for every 0 < ϵ < 8L, we have

P

(∥∥∥ 1

M

M∑
m=1

t(θ; Im1
, Im2

)− E[t(θ)]
∥∥∥
2
≥ ϵ

)
≤ exp

(
− Mϵ2

512L2
+

1

4

)
(5)

As a result, we can utilize stochastic optimization methods,
such as mini-batch gradient descent, to solve the problem
efficiently. In each iteration, we sample a batch of data
pairs and minimize the difference in kernel functions specif-
ically for those pairs. This approach enables the alignment
framework to scale effectively to datasets of real-world size.

3.3. Regularization for Visual-language Alignment

To ensure the alignment with the text branch is preserved,
we introduce a regularization to prevent the aligned features

from straying too far from their original direction. This
term is represented by the L2 distance between the visual
representations before and after the alignment fine-tuning.
The final optimization objective is expressed as follows:

min
θ

w · EIi,Ij∼Dtrain

[(
k1
(
fθ(Ii), fθ(Ij)

)
(6)

− k2
(
g(Ii), g(Ij)

))2]
+ EIi∼Dtrain

[∥∥fθ(Ii)− fθ0(Ii)
∥∥2
2

]
,

where θ0 is the parameters of the pre-trained CLIP and is
frozen during the alignment phase. w is a coefficient balanc-
ing the two loss terms. The regularization term ensures that
the alignment process does not cause the aligned embed-
dings to deviate significantly from the original embeddings.
The following proposition illustrates how this regularization
helps preserve the language-image alignment.

Proposition 3.2. (Schlarmann et al., 2024) For every
language-image pair (T, I), if ∥fθ(I)−fθ0(I)∥2 ≤ λ holds,
then we will have∣∣∣ cos(fθ0(I), g(T ))− cos

(
fθ(I), g(T )

) ∣∣∣
≤ 2λ

max
{
∥fθ(I)∥2, ∥fθ0(I)∥2

}
The proposition shows this regularization helps preserve the
language-image alignment without the need of incorporating
any text data during the fine-tuning phase.

4



Kernel-based Unsupervised Alignment of CLIP and DINOv2 Embeddings

Table 2. Summary of zero-shot image-to-text and text-to-image retrieval performance on Flickr30K (Young et al., 2014) and
COCO benchmark (Chen et al., 2015) datasets. Our alignment will not sacrifice the image-text alignment property of the original CLIP.

Vision
Encoder

Image-to-Text Retrieval Text-to-Image Retrieval
Flickr30K MSCOCO Flickr30K MSCOCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViT-B-16 w/o align 77.90 94.30 97.40 48.36 72.68 81.76 60.64 83.82 90.36 31.80 55.91 66.97
w/ align 78.10 94.10 97.50 48.06 72.86 81.78 60.92 84.30 90.62 32.12 56.51 67.15

ViT-L-14 w/o align 81.40 96.20 98.70 50.64 74.20 82.96 63.62 86.36 91.86 34.51 59.21 69.37
DIVA 78.70 94.80 98.30 49.88 74.06 82.82 59.80 83.36 89.40 34.21 58.76 68.97
w/ align 83.00 96.90 99.00 51.72 75.52 83.30 64.78 87.20 92.32 35.98 61.08 71.02

ViT-L-14-336 w/o align 83.00 96.60 99.00 52.12 76.12 83.82 64.78 87.92 93.06 35.65 60.30 70.66
DIVA 80.20 95.90 98.30 52.34 76.48 84.16 61.20 84.72 90.80 35.77 60.29 70.44
w/ align 84.60 96.80 99.10 53.48 77.64 85.30 67.08 88.98 93.62 37.61 62.48 72.46

Table 3. Accuracy evaluation on counting, spatial reasoning,
and caption recognition tasks of CLIP models w/wo alignment.

Vision
Encoder

svhn gtsrb clevr
distance

clevr
counts

Zero-
shot

ViT-B-16 31.31 43.34 22.37 21.21
+align 27.40 44.35 22.40 21.30

ViT-L-14 57.02 50.55 20.21 19.43
+align 59.63 52.53 23.39 21.11

ViT-L-14-336 56.03 52.41 18.93 20.05
+align 57.65 53.43 20.91 20.90

Linear
Probe

ViT-B-16 45.02 57.13 31.19 23.68
+align 49.27 58.30 30.92 24.02

ViT-L-14 65.20 72.94 22.97 41.25
+align 69.39 74.51 30.82 49.67

ViT-L-14-336 61.49 70.17 28.43 53.07
+align 70.02 71.77 34.65 55.32

4. Experiments
4.1. Implementation Details

Models. The above framework is actually flexible enough to
align any two sets of embeddings. In this study, we primarily
examine the alignment of visual representations from CLIP
and vision-focused models. We experiment with several
versions of CLIP, including ViT-B-16, ViT-L-14, and ViT-
L-14-336, all pre-trained by OpenAI. For the vision-centric
target model, we employ DINOv2 (Oquab et al., 2024) with
ViT-L-14 as the backbone, after registration (Darcet et al.,
2024). This setup allows for aligned embedding pairs to
originate from models with different architectures or to cor-
respond to images of varying resolutions, demonstrating the
flexibility and generalizability of our proposed framework.

Training data. We utilize the training set of ImageNet-
1K (Deng et al., 2009) as our training data, which contains
1.28M images. Compared to the original training process

of CLIP, the incremental alignment step is quite lightweight
and can be performed on image-only datasets.

Training Schemes. The kernel we use is the normal-
ized polynomial kernel of degree 3, which has been com-
monly adopted by several well-known studies in the litera-
ture (Stein et al., 2023; Kang et al., 2023). We also explore
different kernel choices in the ablation studies. For DINOv2,
we set the hyper-parameter of kernel to γ = 1/dimemb and
c = 1, while for CLIP, they are set as trainable. More
detailed settings for each experiment can be found in the
Appendix B.1. With two 4090 GPUs, the alignment of ViT-
L-14 takes around 30 hours, which is efficient and hardware-
friendly compared to the pre-training phase of CLIP.

4.2. Improvements on Vision-centric Tasks

We begin with vision-centric tasks, which can be done by
CLIP alone, to verify whether alignment with DINOv2 em-
beddings can enhance the visual representation of CLIP.

Zero-shot Object Recognition. We first test the zero-shot
accuracy of the aligned CLIP model on standard object
recognition benchmarks. We experiments on a diverse
benchmarks composed of 12 datasets, including (1) com-
mon objects: ImageNet (Deng et al., 2009), CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei
et al., 2004); (2) fine-grained objects: OxfordPets (Parkhi
et al., 2012), DTD (Cimpoi et al., 2014), FER2013 (Good-
fellow et al., 2013); (3) domain-specific applications:
PCAM (Veeling et al., 2018), RESISC45 (Cheng et al.,
2017), EuroSAT (Helber et al., 2018); and (4) out-of-
distribution benchmarks: ImageNet-O (Hendrycks et al.,
2021), ImageNet-Sketch (Wang et al., 2019). We adopt
the standard CLIP-Benchmark (LAION-AI, 2022) as the
pipeline for evaluation. The results are presented in Table 1.
For zero-shot object recognition, performance depends on
both perceptual ability and compatibility with the text en-
coder. After aligning with DINOv2 representations, we
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Table 4. Results on probing benchmark. We report macro-
averaged recall for both local probing and global probing.

Vision Encoder local global

ViT-B-16 w/o align 44.63 52.61
w/ align 45.25 52.94

ViT-L-14 w/o align 46.40 54.51
w/ align 47.44 55.33

ViT-14-336 w/o align 46.05 55.13
w/ align 46.65 56.09

observe improvements across most datasets. Specifically,
the average zero-shot accuracy increases by 0.82%, 1.28%,
and 1.03% with alignment for ViT-B, ViT-L, and ViT-L-336,
respectively. This indicates that our proposed alignment
enhances visual representation while maintaining compat-
ibility with the CLIP text encoder. The improvements are
particularly notable for images with low resolution (e.g.,
CIFAR) or tiny objects (e.g., EuroSAT), highlighting en-
hanced fine-grained perception capabilities. Through exper-
iments with different CLIP backbones, we find that these
improvements are architecture-agnostic, consistently boost-
ing classification accuracy. Furthermore, the enhancements
hold for both the ImageNet dataset and zero-shot datasets,
demonstrating that alignment does not compromise the gen-
eralizability of CLIP. Even when fine-tuned on relatively
small training data, the model still exhibits strong zero-shot
performance on out-of-distribution datasets.

To demonstrate the superiority of the proposed kernel-based
alignment, we compare our method with two straightfor-
ward baselines: (1) a linear projector trained to map the
DINOv2 representation into the CLIP representation space,
and (2) replacing kernel-based alignment with feature-based
alignment (details available in Appendix B.2). However,
we observe limited improvements or even significant drops
in zero-shot accuracy. The representation spaces of DI-
NOv2 and CLIP can vary significantly, making it challeng-
ing to directly align them while preserving compatibility
with the text embeddings. In contrast, our kernel-based
alignment focuses on aligning the relative relationships
among samples, which helps maintain the macro-structure
of the feature space. We also compare our approach with
DIVA (Wang et al., 2025), and the results indicate that our
method achieves better zero-shot performance. Furthermore,
DIVA and our proposed alignment are orthogonal, they can
be combined for complementary benefits.

In Appendix C.2, we extend our framework to three addi-
tional models that incorporate an intermediate embedding
layer linking modalities, albeit with implementations dif-
fering from CLIP: SigLIP (Zhai et al., 2023), DFN (Fang
et al., 2023), and MetaCLIP (Xu et al., 2024). We also
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Figure 2. Visualization of CLIP encoder’s attention maps. At-
tention maps can show more fine-grained details after alignment.

explore replacing DINOv2 with other vision models, such
as MLCD (An et al., 2024). The results show improved
zero-shot accuracy for all these pairs, demonstrating the
generalizability of the proposed framework.

Image-to-text and Text-to-image Retrievals. To further
demonstrate that the proposed alignment framework does
not compromise the image-text alignment or the general-
izability of CLIP, we present zero-shot image-to-text and
text-to-image retrieval performance in Table 2. These ex-
periments were conducted on both the Flicker30K (Young
et al., 2014) and MSCOCO (Chen et al., 2015) datasets. The
results indicate that CLIP maintains strong performance in
both retrieval tasks even after alignment. This reinforces
our assertion that the image-text alignment is effectively
preserved, despite the improvements in visual capability.

Counting, Spatial Reasoning, and Caption Recognition.
As highlighted in the literature (Tong et al., 2024), the CLIP
encoder often struggles with specific tasks, including count-
ing, spatial relationship inference, and caption recognition,
which serves as a major motivation for our work. To in-
vestigate how alignment with DINOv2 can alleviate these
issues, we conduct experiments on four related benchmarks:
(1) SVHN (Netzer et al., 2011), which composed of natural
scene images with digits and numbers; (2) GTSRB (Stal-
lkamp et al., 2012), a datasets for recognition of German
traffic sign; (3) CLEVR Distance (Johnson et al., 2017),
which composed of images with multiple objects and the
task is to determine the distance between the closest ob-
jects; and (4) CLEVR Counts, a benchmark that requires the
model to count the number of objects within the images. We
again follow the evaluation protocol of CLIP-Benchmark,
which formulates all four benchmarks as classification tasks.
We assess the improvements through both zero-shot classifi-
cation and linear probing. The results, presented in Table 3,
indicate that alignment significantly enhances CLIP’s perfor-
mance on text or spatial-related tasks, particularly after lin-
ear probing. For example, when using ViT-L-14, alignment
improves the average accuracy by 1.58% for zero-shot classi-
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Table 5. Evaluation of LLaVA on vision-language benchmarks. The performance can be improved by using the CLIP after alignment
as the visual encoder, and it can be further improved through parameter-efficient fine-tuning (peft) of the LLM.
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Average

V
iT

-L

baseline 52.91 55.37 41.16 84.64 60.39 51.47 13.89 12.73 15.16 75.07 44.13 75.07 48.50
+align 53.66 55.70 41.53 84.92 60.39 51.50 14.15 12.89 15.37 75.10 44.67 76.60 48.87
+peft 53.63 54.54 41.82 84.35 57.19 53.93 56.06 52.74 61.27 74.71 44.30 64.84 58.28
+both 54.79 55.03 42.13 84.37 59.87 58.02 56.47 52.82 62.25 74.87 43.70 65.33 59.14

V
iT

-L
-3

36 baseline 53.27 57.82 48.63 85.45 61.45 51.47 55.19 51.97 60.49 76.40 42.97 75.60 60.06
+align 52.95 57.94 48.53 85.57 61.25 51.47 55.66 52.78 60.54 76.34 48.40 79.07 60.88
+peft 52.69 57.79 48.50 85.41 61.91 54.14 56.76 53.81 61.98 75.88 44.13 69.13 60.18
+both 52.78 58.18 48.87 85.70 62.21 56.22 57.68 55.74 63.37 75.93 44.90 78.83 61.70

fication and 5.51% for linear probing. Compared to common
object recognition, tasks like caption recognition, counting,
and spatial reasoning rely more heavily on the quality of the
visual representation. This is where vision-centric models
such as DINOv2 significantly outperform CLIP. After align-
ment, the CLIP representation demonstrates enhanced visual
capabilities, resulting in better performance on these tasks.
Additionally, we include results from MMVP-VLM (Tong
et al., 2024) in Appendix C.4, which provides insights from
a more diverse but relatively smaller benchmark.

Localization Ability. We further evaluate the localization
ability of CLIP visual encoders w/wo alignment. Specif-
ically, we utilize the probing benchmark introduced by
Covert et al. (2025). This evaluation involves freezing the
visual encoder and training a classification head to predict
the union of labels for each patch (local probing) or the
entire image (global probing) using a binary cross-entropy
loss. The experiments are conducted on the MSCOCO
dataset (Lin et al., 2014). Following the original setup, we
report the macro-averaged recall to account for class imbal-
ances. The results, shown in Table 4, reveal that after align-
ment with DINOv2, the CLIP visual encoder demonstrates
improved localization ability, achieving higher recall for
both local and global probing. This enhancement can be at-
tributed to the strong perceptual capabilities of the DINOv2
encoder, which are transferred to CLIP encoder via align-
ment. Furthermore, the improvements are consistent across
different CLIP encoder architectures. While the gains may
not be as significant compared to those reported by Covert
et al. (2025), their approach disrupts the connection with
text representations, leading to a loss of CLIP’s zero-shot
capability. In contrast, our method enhances performance
without compromising the textual alignment.

We visualize the attention maps from the penultimate layer
of the CLIP visual encoder for several examples in Fig 2.

The attention maps are generally similar w/wo alignment,
as the regularization term prevents significant changes in
the model’s weights. However, we still observe that the
attention maps after alignment are sharper and highlight
more fine-grained features. This indicates that the aligned
model is better at capturing details from the input image,
resulting in improved localization ability.

4.3. Improvements on MLLMs

We then show that the enhancements in visual representation
can be transferred to downstream tasks. Specifically, we re-
place the vision encoder of several MLLMs with the aligned
CLIP encoder and evaluate improvements on relevant bench-
marks. The LLM component can either be entirely frozen
or fine-tuned. Importantly, our alignment maintains the
similarity of visual representations before and after the pro-
cess, eliminating the need for an additional vision-language
alignment step. As a result, fine-tuning can be conducted
efficiently using techniques such as LoRA (Hu et al., 2022).

Evaluation on LLaVA. We first conduct experiments on
LLaVA-1.5-7B (Liu et al., 2024). We utilize diverse bench-
marks which comprises of multiple tasks including (1) open-
ended visual question answering: VQAv2 (Goyal et al.,
2017) and TextVQA (Singh et al., 2019); (2) localiza-
tion: RefCOCO, RefCOCO+, RefCOCOg (Kazemzadeh
et al., 2014; Yu et al., 2016); and (3) closed-set prediction:
VSR (Liu et al., 2023), TallyQA (Acharya et al., 2019),
POPE (Li et al., 2023b), and AI2D (Kembhavi et al., 2016).
We also perform GPT-aided evaluation, LLaVA-bench (Liu
et al., 2024). We replace the visual encoder with our aligned
version and experiment with both ViT-L-14 and ViT-L-14-
336 versions of CLIP encoder. To better illustrate the en-
hancements, we further fine-tune the LLM component of the
models. We skip the feature alignment step and conduct only
visual instruction tuning using LoRA. For the training data,
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Figure 3. Ablation studies. Average zero-shot accuracy across 11 datasets are reported as evaluation metrics: (a) Effects of training
epochs; (b) Effects of the regularization term; (c) Effects of the coefficients of alignment; (d) Effects of different kernel functions.

Table 6. Evaluation results on OpenFlamingo across seven vision-language datasets using 0, 4, and 16 in-context examples. The
performance can be improved by using the CLIP visual encoder after alignment as the visual encoder, without fine-tuning the LLM part.
We report CIDEr for COCO and Flicker-30K, ROC AUC for HatefulMemes, and VQA accuracy for the rest.

Shots Vision Encoder COCO Flickr-30K VQAv2 OK-VQA TextVQA VizWiz HatefulMemes Average

0 CLIP 74.40 54.15 43.54 28.72 25.42 17.80 51.03 42.15
+align 76.01 54.42 43.71 29.04 25.92 17.91 52.86 42.84

4 CLIP 82.56 58.72 45.40 31.81 29.03 23.05 48.24 45.54
+align 83.95 60.03 45.57 31.82 29.43 23.12 49.22 46.16

16 CLIP 90.42 62.68 45.59 32.12 29.83 35.22 50.62 49.45
+align 90.89 63.85 45.73 32.43 30.33 35.74 48.85 49.69

we utilize the LLaVA-1.5 data mixture (Liu et al., 2024),
which contains 665k examples and is the tuning dataset for
the original LLaVA. We also report metrics from performing
the same fine-tuning on the original model to control for the
effects of fine-tuning. The results, shown in Table 5, indi-
cate improvements even when the vision encoder is simply
replaced with our aligned version, without fine-tuning the
LLM component. This suggests that the alignment lead to
improvement while preserving the compatibility of CLIP
with the LLM component. The improvements are further
amplified when we fine-tune the LLM component, resulting
in an average score increase of 1.66%, for model with ViT-
L-14-336 as the visual encoder. This is particularly evident
in the localization benchmarks, with 3.05% improvement on
average. Furthermore, the enhancements cannot be solely at-
tributed to LLM fine-tuning, as fine-tuning LLM alone does
not yield such great gains. These experiments demonstrate
that our proposed alignment enhances visual capabilities,
especially fine-grained perception, and these improvements
can be effectively transferred to downstream applications.

Evaluation on OpenFlamingo. We extend the evalua-
tion to another popular MLLM, OpenFlamingo (Awadalla
et al., 2023). We follow the evaluation pipeline of the
original paper, which test the in-context-learning ability
of the MLLMs in several VQA benchmarks, including
COCO (Chen et al., 2015), Flicker-30K (Young et al., 2014),
VQAv2 (Goyal et al., 2017), OK-VQA (Marino et al., 2019),
TextVQA (Singh et al., 2019), VizWiz (Gurari et al., 2018),

and HatefulMemes (Kiela et al., 2020). For each dataset, we
sample a few in-context demonstrations from the training
split uniformly at random, and prompt the model to give
answers to the test samples. We use the OpenFlamingo-3B
(Instruct) version of the model. The results are shown in
Table 6. For all experiments, we replace the visual encoder
to our aligned version, without fine-tuning the LLM part.
We discover the alignment improves most of the metrics,
showing the generalization of our proposed framework.

4.4. Ablation Studies

We study the impact of various design choices through ab-
lation studies, focusing on factors such as training epochs,
loss function design, and the kernel functions utilized. Zero-
shot object recognition accuracy serves as our evaluation
metric, with results illustrated in Fig.3. Key takeaways in-
clude: (1) the method demonstrates optimal performance
with a very short training duration; (2) the regularization
term is crucial for preserving visual-language alignment; (3)
the performance remains stable regardless of the coefficient
w; and (4) different kernels all contribute positively, with
the polynomial kernel yielding the best results. A more
comprehensive analysis can be found in Appendix C.7.

5. Limitations & Conclusion
In this study, we introduce a novel kernel-based embedding
alignment strategy designed to align two sets of embeddings.
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Our evaluations on vision-centric tasks and MLLM bench-
marks demonstrate that this alignment enhances the visual
capabilities of CLIP, with benefits that inherit to downstream
applications. Unlike most existing research which enhances
the visual encoder but requires re-tuning of the LLM, our
approach opens up a new research avenue to facilitate im-
provements through lightweight adaptation, making these
advancements more accessible to a broader community.

Due to the lack of computational resources, we align the
embedding on a relatively small-scale dataset, and only
evaluate the performance on small MLLMs. It can be left
as a future work to conduct the fine-tuning on a larger
scale datasets (Gadre et al., 2024) and verify the effects
on MLLMs with larger size (e.g., 70B). Another limitation
is that this work focuses on the alignment between CLIP
and DINOv2. There are MLLMs that utilize vision en-
coders other than CLIP (Chen et al., 2024), and other of
vision-centric models (Bao et al., 2022) available. We would
extend the current pipeline to help align other embeddings
pairs and bring improvements to more MLLMs.
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A. Proofs of Propositions
A.1. Proof of Proposition 3.1.

This is a conclusion derived from Vector Bernstein Inequality (Gross, 2011; Kohler & Lucchi, 2017), which shows that if
X1, · · · , XM are independent vector-valued random variables with common dimension d and that each one is centered,
uniformly bounded and also the variance is bounded above:

E[xm] = 0 and ∥Xm∥2 ≤ µ as well as E[∥Xm∥2] ≤ σ2. (7)

Let

Z =
1

M

M∑
m=1

Xm, (8)

then we have for 0 < ϵ < σ2/µ,

P (∥Z∥2 ≥ ϵ) ≤ exp

(
−Mϵ2

8σ2
+

1

4

)
. (9)

By plugging in Xm with t(θ; Im1
, Im2

)− E[t(θ)], we have

E
Im1

,Im2
∼Ddata

[t(θ; Im1
, Im2

)]− E[t(θ)] = 0, (10)

∥t(θ; Im1 , Im2)− E[t(θ)]∥2 ≤ 8L, (11)

E[∥t(θ; Im1
, Im2

)− E[t(θ)]∥22] ≤ 64L2. (12)

Therefore, we have:

P

(∥∥∥∥ 1

M

M∑
m=1

t(θ; Im1 , Im2)− E[t(θ)]
∥∥∥∥
2

≥ ϵ

)
≤ exp(− Mϵ2

512L2
+

1

4
). (13)

A.2. Proof of Proposition 3.2.

The proposition and the proof are adapted from (Schlarmann et al., 2024). We have

| cos(fθ0(I), g(T ))− cos(fθ(I), g(T ))| =
∣∣∣∣⟨ g(T )

∥g(T )∥2
,

fθ0(I)

∥fθ0(I)∥2
− fθ(I)

∥fθ(I)∥2
⟩
∣∣∣∣ ≤ ∥∥∥∥ fθ0(I)

∥fθ0(I)∥2
− fθ(I)

∥fθ(I)∥2

∥∥∥∥
2

.

For which we can get the two upper bounds:∥∥∥∥ fθ0(I)

∥fθ0(I)∥2
− fθ(I)

∥fθ(I)∥2

∥∥∥∥
2

≤ 1

∥fθ(I)∥2
[|∥fθ(I)∥2 − ∥fθ0(I)∥2|+ ∥fθ0(I)− fθ(I)∥2] , (14)∥∥∥∥ fθ0(I)

∥fθ0(I)∥2
− fθ(I)

∥fθ(I)∥2

∥∥∥∥
2

≤ 1

∥fθ0(I)∥2
[|∥fθ(I)∥2 − ∥fθ0(I)∥2|+ ∥fθ0(I)− fθ(I)∥2] . (15)

According the triangle inequality:

|∥fθ0(I)∥2 − ∥fθ(I)∥2| ≤ ∥fθ0(I)− fθ(I)∥2, (16)

therefore, the upper bound holds:

| cos(fθ0(I), g(T ))− cos(fθ(I), g(T ))| ≤ min

(
2

∥fθ(I)∥2
,

2

∥fθ0(I)∥2

)
∥fθ0(I)− fθ(I)∥2. (17)

Remarks. This proposition demonstrates that minimizing the L2 distance between the visual representations before and
after the alignment fine-tuning help directly preserve the visual-text alignment. This is different from previous work such
as Xuhong et al. (2018); Li et al. (2020), which penalizes the L2-norm of parameter changes during the fine-tuning phase.
While their method effectively prevents overfitting to the target domain in transfer learning, our direct feature-based penalty
measure aims to maintain zero-shot compatibility while enhancing fine-grained visual capabilities.
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B. More Implementation Details
B.1. Hyper-parameters Setup.

Here we provide more information on the implementation details. Specifically, the hyper-parameters used for the alignment
fine-tuning is listed in Table 7. All the experiments are conducted on NVIDIA GeForce RTX 4090 GPUs.

Table 7. Detailed hyper-parameter setups.

Hyper-parameters ViT-B-16 ViT-L-14 ViT-L-14-336

coefficient w 0.5 0.5 1.0
number of GPUs 2 2 4

batch size 128 64 32
training epochs 2 2 4

optimizer AdamW (Loshchilov, 2017)
weight decay 1e-4

β (0.9, 0.999)
learning rate 1e-5

scheduler CosineAnnealingLR
warm-up steps 1400 2800 5600

B.2. Illustration on Feature-based Alignment.

A vanilla way to align the CLIP embedding fθ(Ii) with the embedding of the target model g(Ii) is to minimize the L2

distance between fθ(Ii) and g(Ii) subject to a linear transformation R ∈ Rd×d′
:

min
θ,R

E
Ii∼Dtrain

[w∥fθ(Ii)−Rg(Ii)∥22 + ∥fθ(Ii)− fθ0(Ii)∥22]. (18)

We call this method feature-based embedding alignment. This approach also make sense and lead to certain improvements
compared with the original visual embeddings of CLIP. However, the representation space of CLIP and the target model
often vary significantly, which can hardly be adjusted via linear transformation. As a result, it is an sub-optimal solution.
On the contrary, our kernel-based embedding alignment provide a more flexible solution. Firstly, comparing with absolute
position within the feature space, the relative position among samples is more important. We would like the embeddings of
two samples with similar visual characteristics to be close to each other. Using kernel function as supervision can directive
promote this effects. Secondly, kernel function measures the similarity in the high-dimensional kernel space. Alignment
of embeddings within the kernel space will not lead to drastic changes of the embeddings in the original feature space,
making the image embeddings after alignment still compatible with text encoder and downstream modules. Moreover,
our kernel-based alignment can actually be interpreted as aligning the representations in the kernel space. The feature
transformation ϕ for common kernels are usually non-linear. It renders more flexibility compared to the feature-based
alignment which only use linear transformation.

B.3. Implementation Details for LLM’s Fine-tuning.

In this section, we elaborate on the implementation details of the LLM fine-tuning of LLaVA, which we used to further
demonstrate the enhancement of the vision encoder with alignment. We employ the official implementation from LLaVA for
LoRA fine-tuning. The training is conducted on a mixture of LLaVA-1.5 data for one epoch, using the following LoRA
configuration: r = 128 and α = 256. The training is executed in bf16 format across four NVIDIA GeForce RTX 4090
GPUs, with a batch size of 1 per device. To address the small batch size, we apply a gradient accumulation step of 32. The
optimizer used is AdamW (Loshchilov, 2017), set with a learning rate of 2e-4 and a weight decay of 0.
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C. Additional Experimental Results
C.1. Loss Curve for the Alignment Term.

We visualize the alignment loss (with moving average smoothing) during the fine-tuning phase in Fig. 4. We discover the
loss term is stably decreasing during the fine-tuning phase, showing that the alignment term is indeed effectively optimized
to improve the similarity between CLIP and DINOv2 representations.

Figure 4. Visualization of the alignment loss curve. The alignment loss is stably decreasing during the alignment fine-tuning phase.

C.2. Results for VLMs other than CLIP.

To evaluate the generalization of our proposed framework, we conducted experiments on three additional models that feature
an intermediate embedding layer connecting modalities, but with implementations distinct from CLIP: SigLIP (Zhai et al.,
2023), DFN (Fang et al., 2023), and MetaCLIP (Xu et al., 2024). For all the VLMs, we utilized the ViT-L-14 version,
maintaining the same implementation details as those for CLIP ViT-L-14. We assessed zero-shot accuracy across 12 datasets
as our evaluation metric, with results presented in Table 8. The findings indicate that our alignment fine-tuning enhances
zero-shot performance for all three models, yielding average increases of 0.45%, 0.48%, and 0.87% respectively. These
results highlight the generalizability of our framework, demonstrating that the alignment is applicable to VLMs beyond
CLIP. Despite ongoing advancements in CLIP research, our proposed alignment remains adaptable and beneficial for these
more advanced VLMs.

Table 8. Accuracy evaluation on zero-shot image classification benchmarks of vision-language models w/wo alignment. We
experiments with ViT-L-14 version of SigLIP (Zhai et al., 2023), DFN (Fang et al., 2023), and MetaCLIP (Xu et al., 2024).
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SigLip 82.02 96.87 84.27 86.01 49.90 95.31 71.06 72.59 62.65 50.55 74.02 29.60 70.26
+align 82.18 96.88 84.89 86.11 49.16 95.42 71.06 72.84 65.54 50.11 73.92 31.90 70.71

DFN 81.50 98.32 88.15 85.57 42.70 95.58 66.06 73.25 64.94 63.18 68.33 39.30 71.40
+align 81.28 98.12 87.82 85.49 44.27 95.39 66.70 73.76 65.44 62.90 68.40 42.35 71.88

MetaCLIP 75.58 95.67 77.72 85.74 37.96 93.81 62.34 68.52 60.41 70.35 65.05 28.90 67.86
+align 76.60 96.42 80.11 85.49 40.39 93.68 62.82 69.25 60.35 69.76 65.12 32.65 68.73
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C.3. Results for Other Target Models.

We also investigate the potential of replacing DINOv2 with alternative vision encoders to demonstrate the flexibility of our
proposed framework. Specifically, we employed MLCD (An et al., 2024) as the target model, with results displayed in
Table 9. The findings suggest that switching the target model from DINOv2 to other vision encoders can lead to significant
improvements, highlighting the generalizability of our framework. As vision-centric self-supervised learning progresses and
larger image datasets are developed, we expect to see the emergence of even more powerful vision encoders in the future.
Our research establishes a foundation for utilizing these advanced encoders to enhance the performance of vision-language
models and potentially benefit downstream MLLMs.

Table 9. Accuracy evaluation on zero-shot image classification benchmarks of CLIP models w/wo alignment. We use MLCD instead
of DINOv2 as the target model for alignment. The results show the alignment still show improvement when using different target model.
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ViT-L-14 74.90 95.20 71.08 83.30 50.00 93.21 55.21 63.35 62.65 52.00 59.59 32.25 65.26
+align 75.32 96.03 74.90 83.86 49.67 93.43 55.59 64.62 63.44 52.28 59.99 34.70 66.26

ViT-L-14-336 75.82 94.49 71.11 83.42 49.04 93.70 55.64 63.73 61.46 60.68 61.03 32.75 66.10
+align 76.18 95.90 76.70 83.53 49.00 94.06 56.60 63.90 61.54 60.66 61.57 36.30 67.25

C.4. Results on MMVP-VLM benchmarks.

We conduct experiments on the MMVP-VLM benchmarks (Tong et al., 2024). The benchmark consists of “CLIP-blind
pair” images, which the CLIP vision encoder recognizes as similar, despite notable visual differences. It is designed to test
whether the CLIP model can differentiate between these pairs. The pairs encompass a range of visual patterns, including
orientation and direction, the presence of specific features, state and condition, quantity and count, positional and relational
context, color and appearance, structural and physical characteristics, text, and viewpoint and perspective. The results are
detailed in Table 10. Findings indicate that the proposed alignment improves accuracy by 2.97%, 2.96%, and 2.22% for
three variants of CLIP models. These results demonstrate that aligning with DINOv2 helps address the limitations of CLIP
in these challenging cases.

Table 10. Performance of CLIP on various visual patterns of MMVP-VLM benchmark. Alignment with DINOv2 embeddings greatly
overcomes CLIP’s original shortcomings in terms of perceiving visual details. Symbols for visual patterns as (Tong et al., 2024) are
inherited: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional
and Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and Perspective.

Vision Encoder ☼ Û L � , h Ô k � Average

ViT-B-16 w/o align 6.67 0.00 26.67 13.33 13.3 20.00 13.33 0.00 20.00 12.59
w/ align 6.67 0.00 20.00 13.33 20.00 26.67 26.67 0.00 26.67 15.56

ViT-L-14 w/o align 6.67 13.33 20.00 13.33 6.67 53.33 26.67 6.67 13.33 17.78
w/ align 13.33 20.00 20.00 20.00 6.67 53.33 33.33 13.33 20.00 20.74

ViT-L-14-336 w/o align 0.00 20.00 40.00 20.00 6.67 20.00 33.33 0.00 33.33 19.26
w/ align 6.67 26.67 40.00 13.33 6.67 40.00 26.67 13.33 20.00 21.48

C.5. Results on MMVP benchmarks.

We also conducted experiments on the MMVP benchmarks (Tong et al., 2024), which are similar to the MMVP-VLM
benchmark but evaluate through VQA on MLLMs. For this experiment, we used LLaVA-1.5-7B with CLIP ViT-L-14-336
as the visual encoder. The results are shown in Table 11. We found that the proposed alignment framework significantly
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enhances the performance of LLaVA, leading to a marked reduction in error rates for these challenging cases. Improvements
were observed simply by replacing the vision encoder with the aligned version, and the gains were even more pronounced
when we fine-tuned the LLM component as well. These results further confirm that the enhanced visual capabilities of CLIP
can be effectively transferred to downstream MLLMs.

Table 11. Performance of LLaVA on MMVP benchmark. The performance improves when we replace the visual encoder with the
aligned version. This indicates that alignment enhances visual capabilities, and this effect can be carried over to downstream tasks.

Vision Encoder CLIP CLIP+align CLIP+align+peft

Accuracy (%) 23.33 24.67 34.00

C.6. Additional Baselines

In this section, we compare our method with two additional baselines, which also entail integrating knowledge from multiple
experts to build a stronger visual encoder.

Comparison with AM-RADIO (Ranzinger et al., 2024). AM-RADIO distills knowledge from multiple teacher models
into a student model, delivering strong performance across various downstream tasks. However, the original AM-RADIO
model is trained on DataComp-1B, a dataset consisting of 13 billion samples. This training process requires computational
resources comparable to the pre-training of CLIP, making it highly resource-intensive. In contrast, our proposed kernel-based
alignment method achieves strong accuracy and generalizability through fine-tuning on relatively small datasets, such as
ImageNet-1k, over just a few epochs. To provide a clearer comparison, we follow the AM-RADIO training protocol and
train a model on ImageNet-1k using CLIP and DINOv2 as teacher models (both employing ViT-L-14 backbones), with
another ViT-L-14 as the student model. We then evaluate its zero-shot classification performance, as shown in Table 12.
The results reveal that AM-RADIO struggles to generalize to out-of-distribution datasets under this setup. In contrast, our
alignment method achieves both strong performance and superior generalizability, even with limited data and computational
resources.

Table 12. Comparison between our alignment fine-tuning and AM-RADIO. Our method represent better performance when the
training data is limited.
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AM-RADIO 75.38 95.04 71.48 78.47 25.66 83.62 45.37 38.48 31.35 50.02 51.34 69.45 58.21
Ours 75.52 96.27 77.04 84.32 50.31 93.40 55.74 63.83 63.83 52.68 59.67 34.90 66.54

Comparison with Additive-MoF (Tong et al., 2024). We also compare our method with Additive-MoF, a straightforward
approach to combining visual representations from different visual encoders for MLLM applications. This comparison is
conducted on vision-language benchmarks using the LLaVA implementation, with the results presented in Table 13. While
Additive-MoF achieves better performance in certain tasks, such as object detection, it performs suboptimally in others, such
as open-ended visual question answering. As highlighted in the original paper (Tong et al., 2024), simply combining CLIP
and DINOv2 features involves an inherent trade-off between visual grounding accuracy and instruction-following capability.
In contrast, our alignment fine-tuning approach enhances visual capabilities while maintaining strong alignment with the
textual embedding space. Additionally, our framework does not require full re-tuning of the LLM component, making it
particularly beneficial in resource-limited settings.
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Table 13. Comparison between Additive-MoF and ours on vision-language benchmarks. Our alignment fine-tuning approach achieves
enhanced visual capabilities without compromising alignment to the textual embedding space
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Additive-MoF 51.36 45.93 18.66 86.58 63.18 51.47 68.44 65.34 69.69 75.12 41.54 74.50 59.32
Ours 53.95 58.89 50.51 86.05 62.14 52.55 58.68 57.74 65.79 76.97 52.20 78.90 62.86

C.7. Analysis of Ablation Studies

We conduct several ablation studies to examine the effects of several design choices in our framework. The experiments are
performed with CLIP ViT-L-14, and average zero-shot accuracy across 11 datasets are used as evaluation metrics.

Figure 5. Ablation studies. Average zero-shot accuracy across 11 datasets are reported as evaluation metrics: (a) Effects of training
epochs; (b) Effects of the regularization term; (c) Effects of the coefficients of alignment; (d) Effects of different kernel functions.

Effects of Training Epochs. We experiments with fine-tuning for more epochs to see how it affects the performance. The
results are shown in Fig. 5 (a). We find that the performance stabilizes after training for 2 epochs. Further training leads to
no improvements. This finding highlights the effectiveness of our proposed method, which achieves strong performance
with a minimal training time.

Effects of Regularization. We also conducted an ablation study on the regularization term in Eq. 6, specifically fine-tuning
the CLIP model using only the kernel alignment term. The results are shown in Fig. 5 (b). Without this regularization term,
we observe a significant drop in performance, with zero-shot accuracy even worse than that of the original CLIP model.
This indicates that the regularization is crucial for maintaining alignment with the text embeddings. Only when both terms
are utilized does the alignment phase achieve an effective balance between fine-grained visual capability and compatibility
with text semantics.

Effects of Coefficients. We then tested various coefficients w for the alignment term in Eq. 6, experimenting with values of
0.1, 0.5, 1.0, 5.0, and 10.0. The results are presented in Fig. 5 (c). We found that performance remains relatively stable
across these coefficient changes. In our experiments, a coefficient of 1.0 yielded the best performance, effectively balancing
alignment with the DINOv2 representation and compatibility with the text encoder.

Selection of Kernel Function. For the main experiment, we employed a normalized polynomial kernel for alignment and
also tested the Gaussian kernel and cosine kernel, with results shown in Fig. 5 (d). Our findings indicate that all three kernels
lead to performance improvements, with the polynomial kernel achieving the best results. The Gaussian kernel encounters
gradient vanishing issues, complicating the optimization process, while the cosine kernel lacks additional parameters to
flexibly address differences in feature dimensions and structures, making them sub-optimal compared to the polynomial
kernel. One potential avenue for future improvement is to explore more diverse kernel functions or to combine multiple
kernel functions as a compositional kernel for alignment.

Effects of the dataset size. We investigate how the size of the fine-tuning dataset impacts model performance. To this end,
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we perform ablation studies using 25% and 50% of the ImageNet dataset for fine-tuning. The results, presented in Table 14,
indicate that our alignment fine-tuning consistently enhances model performance, even when only 25% of the samples are
used, demonstrating the method’s efficiency. Furthermore, the performance improvement grows as the amount of fine-tuning
data increases, highlighting the potential for further gains when larger datasets are utilized.

Table 14. Ablation study in terms of fine-tuning data size. We conduct the alignment fine-tuning with different proportions of ImageNet
data. The model demonstrates consistent performance gain, and the performance improves as more data is incorporated.
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0% 74.90 95.20 71.08 83.30 50.00 93.21 55.21 63.35 62.65 52.00 59.59 32.25 65.26
25% 75.08 95.84 74.13 83.89 50.59 93.40 55.32 64.33 61.54 52.02 59.96 35.30 66.03
50% 75.34 95.87 76.05 83.91 50.29 93.59 55.90 64.41 64.00 52.53 59.98 34.75 66.48
100% 75.52 96.27 77.04 84.32 50.31 93.40 55.74 63.83 63.83 52.68 59.67 34.90 66.54
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