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Abstract
In bandit multiple hypothesis testing, each arm corresponds to a different null
hypothesis that we wish to test, and the goal is to design adaptive algorithms
that correctly identify large set of interesting arms (true discoveries), while
only mistakenly identifying a few uninteresting ones (false discoveries). One
common metric in non-bandit multiple testing is the false discovery rate (FDR). We
propose a unified, modular framework for bandit FDR control that emphasizes the
decoupling of exploration and summarization of evidence. We utilize the powerful
martingale-based concept of “e-processes” to ensure FDR control for arbitrary
composite nulls, exploration rules and stopping times in generic problem settings.
In particular, valid FDR control holds even if the reward distributions of the arms
could be dependent, multiple arms may be queried simultaneously, and multiple
(cooperating or competing) agents may be querying arms, covering combinatorial
semi-bandit type settings as well. Prior work has considered in great detail the
setting where each arm’s reward distribution is independent and sub-Gaussian, and
a single arm is queried at each step. Our framework recovers matching sample
complexity guarantees in this special case, and performs comparably or better in
practice. For other settings, sample complexities will depend on the finer details of
the problem (composite nulls being tested, exploration algorithm, data dependence
structure, stopping rule) and we do not explore these; our contribution is to show
that the FDR guarantee is clean and entirely agnostic to these details.

1 Introduction to bandit multiple hypothesis testing
Scientific experimentation is often a sequential process. To test a single null hypothesis — with “null”
capturing the setting of no scientific interest, and the alternative being scientifically interesting — sci-
entists typically collect an increasing amount of experimental data in order to gather sufficient evidence
such that they can potentially reject the null hypothesis (i.e. make a scientific discovery) with a high de-
gree of statistical confidence. As long as the collected evidence remains thin, they do not reject the null
hypothesis and do not proclaim a discovery. Since executing each additional unit of data (stemming from
an experiment or trial) has an associated cost (in the form of time, money, resources), the scientist would
like to stop as soon as possible. This becomes increasingly prevalent when the scientist is testing multi-
ple hypotheses at the same time, and investing resources into testing one means divesting it from another.

For example, consider the case of a scientist at a pharmaceutical company who wants to discover
which of several drug candidates under consideration are truly effective (i.e. testing a hypothesis of
whether each candidate has greater than baseline effect) through an adaptive sequential assignment
of drug candidates to participants. Performing follow up studies on each discovery is expensive, so
the scientist does not want to make many “false discoveries” i.e. drugs that did not have an actual
effect, but were proclaimed to have one by the scientist. To achieve these goals, one could imagine
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the scientist collecting more data for candidates whose efficacy is unclear but appear promising (e.g.
drugs with nontrivial but inconclusive evidence), and stop sampling candidates that have relatively
clear results already (e.g. drugs that have a clear and large effect, or seemingly no effect).

Past work. This problem combines the challenges of multiple hypothesis testing with multi-arm
bandits (MABs). In a “doubly-sequential” version of the problem studied by Yang et al. [46], one
encounters a sequence of MAB problems over time. Each MAB was used to test a single special placebo
arm against several treatment arms, and if at least one treatment dominated the placebo, then they
aimed to return the best treatment. Thus each MAB was itself a single adaptive sequential hypothesis
test, and the authors aimed not to make too many false discoveries over the sequence of MAB instances.

This paper instead considers the formulation of Jamieson and Jain [19], henceforth called JJ, but
our techniques apply equally well to the above setup. To avoid confusions, note that our setup is
very different from the active classification work of the same authors [17]. To recap, JJ consider
a single MAB instance without a placebo arm (or rather, leaving it implicit), and try to identify as
many treatments that work better than chance as possible, without too many false identifications. To
clarify, we associate each arm with one (potentially composite) null hypothesis — for example, the
hypothesis that corresponding drug has no (significant) effect. A single observed reward when pulling
an arm corresponds to a statistic that summarizes the results of one experiment with the corresponding
drug, and the average reward across many experiments could correspond to an estimate of the average
treatment effect, which would be (at most) zero for null arms and positive for non-nulls. Thus, a
strategy for quickly finding the arms with positive means corresponds to a strategy for allocating trial
patients to drug candidates that allows the scientists to rapidly find the effective drugs.

However, the above corresponds to only the simplest problem setting. In more complex settings, it
may be possible to pull multiple arms in each round, and observe correlated rewards. Further, the
arms may have some combinatorial structure that allows only certain subsets of arms to be pulled.
There could be multiple agents (eg: hospitals) pulling the same set of arms and seeing independent
rewards (eg: different patients) or dependent rewards (eg: patient overlap or interference). Further,
if some set of experiments by one scientist yielded suggestive but inconclusive evidence, another may
want to follow up, but not start from scratch, instead picking up from where the first left off. Last,
the MAB may be stopped for a variety of reasons that may or may not be in the control of the scientist
(eg: a faster usage of funding than expected, or additional funding is secured). We dive in the details
of these scenarios in Appendix D.3.

Our contribution. We introduce a modular meta-algorithm for bandit multiple testing with provable
FDR control that utilizes “e-values” — or, more appropriately, their sequential analog, “e-processes”
— a recently introduced alternative to p-values (or p-processes) by Ramdas et al. [32] for various testing
problems, that are inherently related to martingales, gambling and betting [33, 14, 15, 44]. This work
is the first to carefully study e-processes in general MAB settings, building on prior work that studied a
special case [44]. We also are the first to extend the bandit multiple testing problem to the combinatorial
bandit setting — JJ had previously only analyzed the problem in the single-arm, independent reward
setting. Utilizing e-processes provide our meta-algorithm with several benefits. (a) For composite nulls,
it is typically easier to construct e-processes than p-processes; the same holds when data from a single
source is dependent. When combining evidence from disparate (independent or dependent) sources, it is
also more straightforward to combine e-values than p-values (see Appendix D.3). (b) The same multiple
testing step applies in all bandit multiple testing problems, regardless of all the various details of the
problem setup mentioned in the previous paragraph. Consequently, FDR control in our meta-algorithm
is agnostic to much of problem setup and can be proved in a vast array of settings. This is not true when
working for p-values. In particular, the techniques for proving FDR control in JJ are highly reliant
on the specific bandit setup in their paper. (c) The exploration step can be — but does not have to be
— decoupled from the multiple testing (combining evidence) step. This results in a modular procedure
that can be easily ported to new problem settings to yield transparent guarantees on FDR control.

By virtue of being a meta-algorithm, we do not (and cannot) provide “generic” sample complexity
guarantees: these will depend on all of the finer problem details mentioned above, on the exploration
algorithm employed, on which e-processes are constructed. Our emphasis is on the flexibility with
which FDR control can be guaranteed in a vast variety of problem setups. Further research can pick
up one problem at a time and design sensible exploration strategies and stopping rules, developing
sampling complexity bounds for each, and these bounds will be inherited by the meta-algorithm.
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However, we do formulate some generic exploration algorithms in Appendix C based on best arm
identification algorithms [1, 22, 11, 18, 23, 10, 20].

When instantiated to the particular problem setup studied by JJ (independent, sub-Gaussian rewards,
one arm in each round, etc.), we get a slightly different algorithm from them — the exploration
strategy can be inherited to stay the same, but the multiple testing part differs. JJ use p-processes for
each arm to determine whether that arm should be added to the rejection set, and correct for testing
multiple hypotheses by using the BH procedure [6] to ensure that the false discovery rate (FDR), i.e.
the proportion of rejections that are false discoveries in expectation, is controlled at some fixed level
𝛿. Adaptive sampling induces a peculiar form of dependence amongst the p-values, for which the
BH procedure provides error control at an inflated level; in other words, one has to use BH at a more
stringent level of approximately 𝛿/log(16/𝛿) to ensure that the FDR is less than 𝛿. On the other hand,
we use the e-BH procedure [44], an analogous procedure for e-values, which can ensure the FDR is less
than 𝛿 without any inflation, regardless of the dependence structure between the e-values of each arm.
Our algorithm has improved sample efficiency in simulations and the same sample complexity in theory.

Formal problem setup. We define the bandit as having 𝑘 arms, and 𝜈𝑖 as the (unknown) reward
distribution for arm 𝑖 ∈ [𝑘] = {1,...,𝑘}. Every arm 𝑖 is associated with a null hypothesis, which is
represented by a known, prespecified set of distributions 𝒫𝑖. If |𝒫𝑖|=1, it is a ‘point null hypothesis’,
and otherwise it is a ‘composite null hypothesis’. Examples of the latter include “all [0,1]-bounded
distributions with mean≤0.5” or “all 1-sub-Gaussian distributions with mean≤0” or “all distributions
that are symmetric around 0” or “all distributions with median ≤ 0”. While we assume by default
that all rewards from an arm are i.i.d., we also formulate tests for hypotheses on reward distributions
that may violate this assumption in Appendix G. If 𝜈𝑖∈𝒫𝑖, then we say that the 𝑖-th null hypothesis
is true and we call 𝑖 a null arm; else, we say 𝑖-th null hypothesis is false and we call it a non-null arm.
Thus, the set of arms are partitioned into two disjoint sets: nulls ℋ0⊆ [𝑘] and non-nulls ℋ1 :=[𝑘]∖ℋ0.

Let 𝒦 ⊆ 2[𝑘] denote the subsets of arms that can be jointly queried in each round. At each time
𝑡, the algorithm chooses a subset of arms ℐ𝑡 ∈ 𝒦 to sample jointly from. The special choice of
𝒦 = {{1},{2}, ... ,{𝑘}} recovers the standard bandit setup, but otherwise this setting is known as
combinatorial bandits with semi-bandit feedback [12]. We also consider the special case of full-bandit
feedback (the algorithm sees all rewards at each time step) in Appendix D.1. We denote the reward
sampled at time 𝑡 from arm 𝑖∈ℐ𝑡 as 𝑋𝑖,𝑡. Let 𝑇𝑖(𝑡) denote the number of times arm 𝑖 has been sampled
by time 𝑡, and 𝑡𝑖(𝑗) be the time of the 𝑗th sample from arm 𝑖.

We now define a canonical “filtration” for our bandit problem. A filtration (ℱ𝑡)𝑡≥0 is a series of nested
sigma-algebras that encapsulates what information is known at time 𝑡. (We drop the subscript and
just write (ℱ𝑡) for brevity, and drop the parentheses when just referring to a single sigma-algebra at
time 𝑡.) Define the canonical filtration as follows for 𝑡∈N: ℱ𝑡 :=𝜎(𝑈∪{(𝑖,𝑠,𝑋𝑖,𝑗) :𝑠≤ 𝑡,𝑖∈ℐ𝑠}) and
we let ℱ0 :=𝜎(𝑈) where 𝑈 is uniformly distributed on [0,1] and its bits capture all private randomness
used by the bandit algorithm that are independent of all observed rewards. Let (𝜆𝑡) be a sequence
of random variables indexed by 𝑡∈N. (𝜆𝑡) is said to be predictable w.r.t. (ℱ𝑡) if 𝜆𝑡 is measurable
w.r.t. ℱ𝑡−1 i.e. 𝜆𝑡 is fully specified given the information in ℱ𝑡−1. An N-valued random variable 𝜏
is a stopping time (or stopping rule) w.r.t. to (ℱ𝑡) if {𝜏 = 𝑡}∈ℱ𝑡 — in other words, at each time 𝑡, we
know whether or not to stop collecting data. Let 𝒯 denote the set of all possible stopping times/rules
w.r.t. (ℱ𝑡), potentially infinite. Technically, the algorithm must not just specify a strategy to select ℐ𝑡,
but also specify when sampling will stop. This is denoted by the stopping rule or stopping time 𝜏*∈𝒯 .

Once the algorithm halts at some time 𝜏 , it produces a rejection set 𝒮𝜏 ⊆ [𝑘]. We consider two metrics
w.r.t. 𝒮: the FDR as discussed prior, and true positive rate (TPR), which is the proportion of non-nulls
that are discovered in expectation. These two metrics are defined as follows:

FDR(𝒮𝜏 ) := E
[︁
|ℋ0∩𝒮𝜏 |
|𝒮𝜏 |∨1

]︁
, TPR(𝒮𝜏 ) := E

[︁
|ℋ1∩𝒮𝜏 |

|ℋ1|

]︁
.

We consider algorithms that always satisfy FDR(𝒮𝜏 )≤𝛿 for any number and configuration of nulls
ℋ0 and any choice of null and non-null distributions. In fact, our algorithm will produce a sequence
of candidate rejection sets (𝒮𝑡) that satisfies sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿. This is a much stronger guarantee
than the typical setting considered in the multiple testing literature. On the other hand, TPR is
a measurement of the power of the algorithm i.e. how many of the non-null hypotheses does the
algorithm discover. Our implicit goal in the multiple testing problem is to maximize the number of
true discoveries while not making too many mistakes i.e. keep the FDR controlled.
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In hypothesis testing, the set of null distributions 𝒫𝑖 for each arm 𝑖 is known, because the user defines
the null hypothesis they are interested in testing. When the null hypothesis is false, the non-null
distribution can be arbitrary. Consequently, we can prove results about FDR, but we cannot prove
guarantees about TPR without several further assumptions on the non-null distributions, dependence
across arms, etc. For a particular setting where we make such a set of assumptions, we demonstrate
in Section 4 that we can prove TPR guarantees for algorithms within our framework. Hence, our FDR
controlling framework is not vacuous as it includes powerful algorithms i.e. algorithms which make
many true discoveries. However, our focus is primarily to show that the FDR control of our framework
is robust to a wide range of conditions.

Finally, note that in bandit multiple testing, one does not care about regret. The problem is more akin to
pure exploration, where we aim to find a 𝒮 with FDR(𝒮𝜏*)≤𝛿 and large TPR as quickly as possible.

Now that we have specified the problem we are interested in, we can introduce our main technical
tools for ensuring FDR control at stopping times: e-processes and p-processes.

2 Technical preliminaries
2.1 E-processes versus p-processes

An e-variable, 𝐸, is a nonnegative random variable where E[𝐸]≤1 when the null hypothesis is true.
In contrast, the more commonly used p-variable, 𝑃 , is defined to have support on (0,1) and satisfy
P(𝑃 ≤𝛼) ≤ 𝛼 for all 𝛼 ∈ (0,1) when the null hypothesis is true. To clearly delineate when we are
discussing solely the properties of a random variable, we also use the terms “e-value” 𝑒 and “p-value”
𝑝 to refer to the realized values of a e-variable 𝐸 and a p-variable 𝑃 (their instantiations on a particular
set of data). E-variables and p-variables are connected through Markov’s inequality, which implies
that 1/𝐸 is a p-variable (but 1/𝑃 is not in general an e-variable). Rejecting a null hypothesis is usually
based on observing a small p-value or a large e-value. For example, to control the false positive rate
at 0.05 for a single hypothesis test, we reject the null when 𝑝≤0.05 or when 𝑒≥20.

Since bandit algorithms operate over time, we define sequential versions of p-variables and e-variables.
A p-process, denoted (𝑃𝑡)𝑡≥1, is a sequence of random variables such that sup𝜏∈𝒯 P(𝑃𝜏 ≤𝛼) ≤ 𝛼
for any 𝛼 ∈ (0, 1). In contrast, an e-process (𝐸𝑡)𝑡≥1 must satisfy sup𝜏∈𝒯 E[𝐸𝜏 ] ≤ 1 (let
𝐸∞ := limsup𝑡∈N𝐸𝑡 and 𝑃∞ := liminf𝑡∈N𝑃𝑡). These sequentially valid forms of p-variables and
e-variables are crucial since we allow the bandit algorithm to stop and output a rejection set in a
data-dependent manner. Thus, we must ensure the respective properties of p-variables and e-variables
hold over all stopping times.

These concepts are intimately tied to sequential testing and sequential estimation using confidence
sequences [31], but most importantly, nonnegative (super)martingales play a central role in the construc-
tion of efficient e-processes. To summarize, (a) for point nulls, all admissible e-processes are simply
nonnegative martingales, and the safety property follows from the optional stopping theorem, (b) for
composite nulls, admissible e-processes are either nonnegative martingales, or nonnegative super-
martingales, or the infimum (over the distributions in the null) of nonnegative martingales. Associated
connections to betting [45] are also important for the development of sample efficient algorithms and we
discuss how we use betting ideas in Appendix F. We also discuss some useful equivalence properties of p-
processes in Appendix A.1, while Appendix A.2 introduces supermartingales for the unfamiliar reader.

Why use e-processes over p-processes? Wang and Ramdas [44] describe a multitude of advantages
outside of the bandit setting; these advantages also apply to the bandit setting but we do not redescribe
them here for brevity. However, we will describe multiple ways in which using e-variables instead
of p-variables as a measure of evidence in the bandit setting allows for both better flexibility and
sample complexity of the algorithm. While this question has been the focus of a recent line of work
for hypothesis tests in general [33, 41, 14, 44], we will explore how the properties of e-variables allow
us to consider novel bandit setups and algorithms. In particular, e-variables allow us to be robust
to arbitrary dependencies between statistics computed for each arm without additional correction.
Further, we explore how e-processes can be merged under different conditions in Appendix D.3 to
facilitate incorporation of existing evidence and cooperation between multiple agents and present
concrete ways to construct e-processes in Appendices B.3 and F.

Since any non-trivial bandit algorithm will base its sampling choice on the rewards attained so far for
every arm, average rewards of each arm are biased and dependent on each other in complex ways even
if the algorithm is stopped at a fixed time [27, 35, 36, 37]. Even under a non-adaptive uniform sampling
rule, an adaptive stopping rule can induce complex dependencies between reward statistics of each
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arm. When using both adaptive sampling and stopping, the dependence effects are only compounded.
Nevertheless, e-variable based algorithms enable us to prove FDR guarantees without assumptions
on the sampling method. In contrast, procedures involving p-variables, such as the ones used in JJ,
require the test level of 𝛼 to be corrected by a factor of at least log(1/𝛼) when rewards are independent
across arms, and a factor of log𝑘 otherwise. We expand on this in Section 2.2.

2.2 Multiple testing procedures with FDR control

We now introduce two multiple testing procedures that output a rejection set with provable FDR
control. We will first describe the guarantees provided by the BH procedure [6], a classic multiple
testing procedure that operates on p-variables. Then, we will describe e-BH, the e-variable analog of
BH. Our key message in this section is that classical BH will have looser or tighter control of the FDR
based upon the dependence structure of the p-variables it is operating on. On the other hand, e-BH
provides a consistent guarantee on the FDR even when the e-variables are arbitrarily dependent. Both
procedures take an input parameter 𝛼∈(0,1) that controls the degree of FDR guarantee (i.e. test level).

Benjamini-Hochberg (BH) requires corrections for dependence and self-consistency. A set 𝒮 of
p-values is called p-self-consistent [9] at level 𝛼 iff:

max
𝑖∈𝒮

𝑝𝑖≤ |𝒮|𝛼
𝑘 . (1)

The BH procedure with input 𝑝1,...,𝑝𝑘 outputs the largest p-self-consistent set w.r.t. the input, which
we denote BH[𝛼](𝑝1,...,𝑝𝑘). We must also define a condition on the joint distribution of 𝑃1,...,𝑃𝑘,
which is called positive regression dependence on subset (PRDS). A formal definition is provided
in Benjamini and Yekutieli [7], and it is sufficient for our purposes to think of this condition as positive
dependence between 𝑃1,...,𝑃𝑘, with independence being a special case. Now, we describe the FDR
control of the BH procedure.

Fact 1 (BH FDR control. Benjamini and Hochberg [6], Benjamini and Yekutieli [7]). Let
𝒮 = BH[𝛼](𝑝1,...,𝑝𝑘). If 𝑃1,...𝑃𝑘 are PRDS, then FDR(𝒮)≤𝛼. Otherwise, under arbitrary depen-
dence amongst 𝑃1,...𝑃𝑘, the BH procedure ensures FDR(𝒮)≤𝛼ℓ𝑘, where ℓ𝑘≡

∑︀𝑘
𝑖=11/𝑘≈ log𝑘.

Thus, in the case of arbitrary dependence, the FDR control of BH is larger by a factor of ℓ𝑘 ≈ log𝑘.
A larger FDR guarantee is provided for arbitrary p-self-consistent sets.

Fact 2 (P-self-consistent FDR control. Su [38], Blanchard and Roquain [9], Wang and Ramdas [44]).
If 𝒮 is p-self-consistent at level 𝛼 and 𝑃1,...,𝑃𝑘 satisfy PRDS, 1 then FDR(𝒮) ≤ 𝛼(1+ log(1/𝛼)).
Otherwise, when there is arbitrary dependence among 𝑃1,...,𝑃𝑘, FDR(𝒮)≤𝛼ℓ𝑘 (consequence of
Proposition 2.7 from Blanchard and Roquain [9] and Proposition 5.2 from Wang and Ramdas [44]).

These two facts do not imply each other; the BH procedure outputs the largest self-consistent set
and has a stronger or equivalent error guarantee under either type of dependence. While it may seem
like we should always use BH and the guarantee from Fact 1 to form a rejection set, we elaborate in
Section 3.1 on how we can use Fact 2 to provide FDR control for BH when the p-variables are not
necessarily PRDS, and in settings where we may not directly use BH.

e-BH needs no correction for dependence or self-consistency. The e-BH procedure created by
Wang and Ramdas [44] uses e-variables instead of p-variables and proceeds similarly to the BH
procedure. In this case, let 𝑒1,...,𝑒𝑘 be the realized e-values for a set of e-variables𝐸1,...,𝐸𝑘. Define 𝑒[𝑖]
to be the 𝑖th largest e-value for 𝑖∈ [𝑘]. A set 𝒮 is e-self-consistent at level 𝛼 iff 𝒮 satisfies the following:

min
𝑖∈𝒮

𝑒𝑖≥ 𝑘
𝛼|𝒮| . (2)

The e-BH procedure outputs the largest e-self-consistent set, which we denote by eBH[𝛼](𝑒1,...,𝑒𝑘). For
e-variables, the same guarantee applies for all e-self-consistent sets and under all dependence structures.

Fact 3 (E-variable self-consistency FDR control. Wang and Ramdas [44]). If 𝒮 is e-self-consistent
at level 𝛼, then FDR(𝒮)≤𝛼 regardless of the dependence structure.

All FDR bounds discussed in Facts 1 to 3 are optimal, in the sense that there exist e-variable/p-variable
distributions with an FDR that is arbitrarily close or equivalent to the stated bound. Consequently,
e-variables are more advantageous, since their FDR control does not change under different types of

1Su [38] technically employs a slightly weaker condition which implies PRDS, and refers to self-consistency
as “compliance” (or, better said, compliance is a special case of self-consistency).
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dependence as opposed to the factor of 1+log(1/𝛼) or log𝑘 p-variables pay on the FDR for different
settings.

In the case where p-variables can only be constructed as 𝑃 = 1/𝐸, where 𝐸 is an e-variable, the
rejection sets output by BH and e-BH are identical. However, the e-self-consistency guarantee in
Fact 3 provides identical or tighter FDR control than the BH procedure guarantee in Fact 1 or p-self-
consistency guarantee in Fact 2. Thus, e-variables and e-BH offer a degree of robustness against arbitrary
dependence, since any algorithm using e-BH does not have to adjust 𝛼 to guarantee the same level of
FDR(𝒮)≤𝛿 for a fixed 𝛿 under different dependence structures. We now provide a meta-algorithm
that utilizes p-self-consistency and e-self-consistency to guarantee FDR control in the bandit setting.

3 Decoupling exploration and evidence: a unified framework
We propose a framework for bandit algorithms that separates each algorithm into an exploration
component and an evidence component; Algorithm 1 specifies a meta-algorithm combining the two.

Algorithm 1: A meta-algorithm for bandit multiple testing that decouples exploration and evidence.
The evidence component can track p-processes or e-processes for each arm and use BH or e-BH.
Input: Exploration component (𝒜𝑡), stopping rule 𝜏*, Let (𝑝1,𝑡),...,(𝑝𝑘,𝑡) and (𝑒1,𝑡),...,(𝑒𝑘,𝑡)

denote the realized values of p-processes and e-processes, respectively. Let the desired
level of FDR control be 𝛿∈(0,1). Let 𝛿′ be the correction of 𝛿 for BH based upon the
dependencies of 𝑋1,𝑡,...,𝑋𝑘,𝑡. Set 𝐷0 =∅.

for 𝑡 in 1... do
ℐ𝑡 :=𝒜𝑡(𝐷𝑡−1)⊆ [𝑘]
Obtain rewards for each 𝑖∈ℐ𝑡, and update data 𝐷𝑡 :=𝐷𝑡−1∪{(𝑖,𝑡,𝑋𝑖,𝑡) : 𝑖∈ℐ𝑡}.
Update e-process or p-process for each queried arm (summarizing evidence against each null).

𝒮𝑡 :=

{︂
BH[𝛿′](𝑝1,𝑡,...,𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

Exploration component. This is a sequence of functions (𝒜𝑡), where 𝒜𝑡 : ℱ𝑡−1 ↦→ 𝒦 specifies
the queried arms ℐ𝑡 := 𝒜𝑡(𝐷𝑡−1), and 𝐷𝑡 := {(𝑖,𝑗,𝑋𝑖,𝑗) : 𝑗 ≤ 𝑡,𝑖∈ ℐ𝑗} is the observed data. 𝒜𝑡 is
“non-adaptive” if it does not depend on the data, but only on some external randomness 𝑈 . Regardless
of how the exploration component (𝒜𝑡) is constructed, our framework guarantees that FDR(𝒮)≤𝛿
for a fixed 𝛿. Similarly, 𝜏* is adaptive if it depends on the data, and is not determined purely by 𝑈 .

Evidence component. The FDR control provided by Algorithm 1 is solely due to the formulation
of the candidate rejection set, 𝒮𝑡⊆ [𝑘], at each time 𝑡∈N in the evidence component. This construction
is completely separate from (𝒜𝑡). Critically, (𝒮𝑡) satisfies FDR(𝒮𝜏 )≤𝛿 for any stopping time 𝜏 ∈𝒯 .
This is accomplished by applying BH or e-BH to p-processes or e-processes, respectively. At stopping
time 𝜏 , 𝑃𝑖,𝜏 is a p-variable when (𝑃𝑖,𝑡) is a p-process, and similarly 𝐸𝑖,𝜏 is an e-variable when (𝐸𝑖,𝑡)
is an e-process. Thus, 𝒮𝜏 is the result of applying BH to p-variables or e-BH to e-variables.

Consequently, the aforementioned framework allows us to guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 in a
way that is agnostic to the exploration component. For completeness, we do discuss some generic
exploration strategies in Appendix C. In the next section, we will formalize these guarantees and discuss
the benefits afforded by using e-variables and e-BH in this framework instead of p-variables and BH.

3.1 FDR control under different dependence structures

In the general combinatorial bandit setting, different dependence structures affect the choice of 𝛿′
that ensures FDR control at 𝛿 in the p-variable and BH case. Table 1 summarizes the guarantees
and choices of 𝛿′ for each type of dependence. Prior work on hypothesis testing in the bandit setting
by JJ has only considered the non-combinatorial bandit case where 𝑋1,𝑡,...,𝑋𝑘,𝑡 are independent.
Critically, JJ employ BH and p-variables in their algorithm, and the FDR guarantee of BH changes
based on the dependencies between reward distributions. On the other hand, choosing 𝛼=𝛿 for e-BH
is sufficient to guarantee FDR control at level 𝛿 for any type of dependence between e-variables, but
only sufficient for BH in the non-adaptive, PRDS 𝑋1,𝑡,...,𝑋𝑘,𝑡 setting. We show that there is a wide
range of dependence structures that require different degrees of correction for BH. Specifically, we
will set an appropriate choice of 𝛿′ in each of these situations such that Algorithm 1 with p-variables
can ensure FDR control level 𝛿. We include proofs of all results in this section in Appendix B.1.
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Table 1: FDR control for BH, and the 𝛿′ to ensure 𝛿 control of FDR in Algorithm 1 under different
dependence structures and adaptivity of (𝒜𝑡). Adaptivity and arbitrary dependence both require extra
correction for BH, but any e-self-consistent procedure provides FDR(𝒮)≤𝛼 in all settings in the table.

Dependence of 𝑋1,𝑡,...,𝑋𝑘,𝑡

Adaptivity of (𝒜𝑡) and 𝜏* independent arbitrarily dependent

non-adaptive FDR(𝒮)≤𝛼
𝛿′ =𝛿 FDR(𝒮)≤𝛼log𝑘

adaptive FDR(𝒮)≤𝛼((1+log(1/𝛼))∧log𝑘) 𝛿′ =𝛿/log𝑘 (Prop. 2)
𝛿′ =𝑐𝛿∨(𝛿/log𝑘) (Prop. 1)

Any e-self-consistent procedure ensures FDR(𝒮)≤𝛼 in all settings and sets 𝛼=𝛿.

Adaptive (𝒜𝑡) and independent 𝑋1,𝑡,...,𝑋𝑘,𝑡. JJ consider this case in the non-combinatorial bandit
setting, but their insights and techniques also can be extended to the combinatorial setting. We
give a sketch of their proof here, and produce the full proof in Appendix B.1. In the language of
self-consistency (not explicitly used in JJ), JJ make the key insight that running BH on the p-variables
for each arm produces a rejection set that is actually p-self-consistent with a different set of independent
p-variables. Define 𝑃 *

1 ,...,𝑃
*
𝑘 , where 𝑃 *

𝑖 = inf𝑡∈N𝑃𝑖,𝑡 for each 𝑖∈ [𝑘] i.e. each arm’s p-variable in
the infinite sample limit. Since (𝑃𝑖,𝑡) is a p-process for each arm 𝑖∈ [𝑘], the corresponding 𝑃 *

𝑖 is a
p-variable (Proposition 6 in Appendix A.1). Further, 𝑃 *

1 ,...,𝑃
*
𝑘 are independent because 𝑋1,𝑡,...,𝑋𝑘,𝑡

are independent. By definition of 𝑃 *
1 ,...,𝑃

*
𝑘 , 𝑝*𝑖 ≤ 𝑝𝑖,𝑡 for any 𝑖 ∈ [𝑘] and any 𝑡 ∈ N. Thus, 𝒮𝜏* is

p-self-consistent w.r.t. 𝑝*1,...,𝑝
*
𝑘, and has its FDR bounded by 𝛼(1+log(1/𝛼)) due to Fact 2. At the

same time, the arbitrary dependence guarantee from Fact 1 still applies. Combining these facts, we
achieve the following guarantee:
Proposition 1. When (𝒜𝑡) is adaptive and 𝑋1,𝑡, ... , 𝑋𝑘,𝑡 are independent, Algorithm 1 with
p-processes and an arbitrary p-self-consistent set guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿 if 𝛿′≤𝑐𝛿∨𝛿/ℓ𝑘,
where for any 𝛿∈(0,1), define 𝑐𝛿≤𝛿 as the solution to 𝑐𝛿(1+log(1/𝑐𝛿))=𝛿.

Note that Proposition 1 is valid for any p-self-consistent set since p-self-consistency is the only property
required of the output set to prove the result. JJ prove a similar bound to Proposition 1. However, they
used a larger FDR bound for p-self-consistent sets with worse constants (which was subsequently
improved by Su [38] as presented earlier), and they only considered the non-combinatorial case.
Proposition 1 uses an optimal bound on p-self-consistent sets from Fact 2, and is valid in our
combinatorial bandit setup.

Adaptive (𝒜𝑡) and arbitrarily dependent 𝑋1,𝑡,...,𝑋𝑘,𝑡. In the general combinatorial bandit setting,
where the algorithm chooses a subset of arms or “superarm” at each time to jointly sample from,
we will have multiple samples from multiple arms in the same time step, and 𝑋1,𝑡,...,𝑋𝑘,𝑡 can be
arbitrarily dependent. Consequently, the p-variables corresponding to each arm can also be arbitrarily
dependent. For example, a superarm could consist of all arms, and the sampling rule could be to
just sample this superarm that encompasses all arms. Then, the p-variable distribution would directly
depend on the reward distribution of the arms. Thus, we can provide the following guarantee by Fact 1
when using p-variables as a result of Fact 3.
Proposition 2. When (𝒜𝑡) is adaptive and 𝑋1,𝑡,...,𝑋𝑘,𝑡 are dependent, Algorithm 1 with p-variables
and BH guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿 if 𝛿′≤𝛿/ℓ𝑘.
Finally, consider a setting structured setting where we cannot output the rejection set of BH. Such a con-
straint often occurs in directed acyclic graph (DAG) settings where there is a hierarchy among hypothe-
ses that restricts which rejection sets are allowed [30, 25]. Instead, we would like to output the largest
self-consistent set that respects the structural constraints. By Fact 2, we get the following FDR control.
Proposition 3. If (𝒜𝑡) is adaptive and 𝑋1,𝑡,...,𝑋𝑘,𝑡 are dependent, Algorithm 1 with p-variables that
outputs an arbitrary p-self-consistent 𝒮𝑡 guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿 if 𝛿′≤𝑐𝛿/ℓ𝑘.

We explore the structured setting with greater depth in Appendix D.2. Unlike p-variables, e-variables
do not need correction in any of the aforementioned settings.
Proposition 4. When (𝒜𝑡) is adaptive and 𝑋1,𝑡,...,𝑋𝑘,𝑡 are dependent, Algorithm 1 with e-variables,
which runs e-BH at level 𝛿 or outputs a e-self-consistent set at level 𝛿, guarantees sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿.

Thus, running e-BH (or any e-self-consistent procedure) at level 𝛿 is valid for any choice of (𝒜𝑡) and
type of dependence. Now, we give an example where 𝑋1,𝑡,...,𝑋𝑘,𝑡 might be arbitrarily dependent.
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3.2 Illustrative examples to demonstrate flexibility of the framework

Below, we briefly describe a set of nontrivial illustrative examples to showcase the flexibility of our
framework. In most of the cases below, a p-process approach would have to correct for dependence
and/or self-consistency in different case-specific ways, rendering it more conservative and requiring
careful arguments to justify FDR control. However, working with our unified framework is easy,
handling both self-consistency and dependence issues in the same breath and without any changes
to the algorithm or analysis. The data scientist can focus on designing powerful e-processes for each
arm separately and let the modular framework correct for the multiplicity aspect.

Example: sampling nodes on a graph. A scenario where 𝑋1,𝑡, ... , 𝑋𝑘,𝑡 may naturally have
dependence is when each arm corresponds to a node on a graph. The superarms in this situation
could be defined w.r.t. to a graph constraint e.g. “two nodes connected by an edge” or “a node and
its neighbors”. Graph bandits has been studied in the regret setting [26] and have many real world
applications [39]. We could imagine a scenario where low power sensors in a sensor network can only
communicate locally. A centralized algorithm is tasked with querying the sensors to find those with
high activity. A sensor may only provide activity information about itself and nearby sensors, and this
data can be arbitrarily dependent across the sensors. Figure 1 illustrates a superarm in this situation.

Figure 1: A superarm consists
of a node and all its neighbors.
The dotted line captures ℐ𝑡, the
superarm around node 1.

In such a setting, if Proposition 2 is used to guarantee FDR(𝒮)≤ 𝛿
with p-variables, it pays a log𝑘 correction, while Proposition 4 can
guarantee e-variables need no correction. We simulate this setting in
Appendix E.2, and show these differences empirically. We also discuss
some other examples in the appendix that we will summarize here.

• Multiple agents (Appendix D.3): Consider the setting where multi-
ple agents are operating on the same bandit, and we want to aggregate
the evidence for rejection across agents. For e-processes, we present
an algorithm for merging e-values that maintains FDR control.

• Structured rejection sets (Appendix D.2): We illustrate the dif-
ference between self-consistency guarantees for p-variables and
e-variables when a DAG hierarchy is imposed upon the hypotheses.

• Multi-arm hypotheses (Appendix D.4) A hypothesis may concern
the reward distributions of multiple arms e.g. are the means of two
different arms equivalent? We provide FDR guarantees even when
hypotheses and arms are not matched one-to-one.

• Streaming data setting (Appendix D.1) Our methods also naturally
extend to the streaming setting when the algorithm views the rewards
of every at each time step.

Now that we have shown FDR is controlled using e-variables in a way that is robust to the underlying
dependence structure, we analyze the sample complexity of achieving a high TPR using e-variables
when the rewards are independent and sub-Gaussian.

4 E-process sample complexity guarantees for sub-Gaussian arms
We provide sample complexity guarantees for the sub-Gaussian setting that has been the focus of
existing methodology by JJ in bandit multiple testing. We explicitly define e-processes and an
exploration component (𝒜𝑡) that will have sample complexity bounds matching those of the algorithm
in JJ, which uses p-variables. Specifically, we will consider the standard bandit setting where |ℐ𝑡|=1
and 𝜈𝑖 is 1-sub-Gaussian for each 𝑖 ∈ [𝑘]. Denote the means of each arm 𝑖 ∈ [𝑘] as 𝜇𝑖 = E[𝑋𝑖,𝑡]
for all 𝑡 ∈ N. The goal is to find many arms where 𝜇𝑖 > 𝜇0, where we set 𝜇0 = 0 to be the mean
of a reward distribution under the null hypothesis. Thus, we define ℋ0 = {𝑖 ∈ [𝑘] : 𝜇𝑖 ≤ 𝜇0}
and ℋ1 = {𝑖 ∈ [𝑘] : 𝜇𝑖 > 𝜇0}. Our framework ensures that FDR(𝒮) ≤ 𝛿, and we also want to
achieve TPR(𝒮)≥1−𝛿 with small sample complexity. Proofs of the results from this section are in
Appendices B.2 and B.3. As an aside, we also discuss what hypotheses we can test when the reward
distribution is not necessarily independent across 𝑡∈N, but the conditional distribution of the rewards
still satisfy certain sub-Gaussian guarantees in Appendix G.

Our e-process of choice is the discrete mixture e-process from Howard et al. [16]:
Proposition 5. 𝐸DM

𝑖,𝑡 is an e-process when 𝜈𝑖 is 1-sub-Gaussian and 𝑖∈ℋ0.

8



𝐸DM
𝑖,𝑡 (𝜇0) :=

∞∑︁
ℓ=0

𝑤ℓexp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)−𝜆2
ℓ/2

⎞⎠, (3a)

where 𝜆ℓ := 1
𝑒ℓ+5/2 and 𝑤ℓ := 2(𝑒−1)

𝑒(ℓ+2)2 for ℓ∈N0. (3b)

Denote ∆𝑖≡𝜇𝑖−𝜇0 for 𝑖∈ℋ1 and
∆≡min𝑖∈ℋ1∆𝑖. When 𝑖∈ℋ0, let
∆𝑖≡min𝑗∈ℋ1𝜇𝑖−𝜇0 =∆+(𝜇𝑖−
𝜇0). First, we recall a time-uniform
bound on the sample mean ̂︀𝜇𝑡.
Fact 4 (JJ, Kaufmann et al. [23],
Howard et al. [16]). Let 𝑋1, 𝑋2, ... be i.i.d. draws from a 1-sub-Gaussian distribution with
mean 𝜇. Consider the boundaries defined in (4). Let 𝜙 be one of these boundaries. Then,
P(∃𝑡∈N : |̂︀𝜇𝑡−𝜇|>𝜙(𝑡,𝛿))≤𝛿 for any 𝛿∈(0,1) if 𝜙∈{𝜙0,𝜙IS} and any 𝛿∈(0,0.1] if 𝜙=𝜙JJ.

𝜙0(𝑡,𝛿) :=

√︁
4log(log2(2𝑡)/𝛿)

𝑡 , (4a)

𝜙JJ(𝑡,𝛿) :=

√︁
2log(1/𝛿)+6loglog(1/𝛿)+3log(log(𝑒𝑡/2))

𝑡 , (4b)

𝜙IS(𝑡,𝛿) :=

√︂
2.89loglog(2.041𝑡)+2.065log( 4.983

𝛿 )
𝑡 . (4c)

We will use 𝜙 to refer to an arbi-
trary boundary from Fact 4. All
of the𝜙 are time-uniform bound-
aries that yield confidence se-
quences for the mean. Note that
𝜙0 is generally larger than the
other boundaries, so we use 𝜙0

as the default boundary in our
proofs, and we explore how different choices of 𝜙 affect empirical performance in Appendix E.1. Now,
we can define the algorithm from JJ in (5), which consists of an exploration policy based on an upper
confidence bound (UCB) of the mean reward (specified by a singleton set ℐ𝑡 ={𝐼𝑡}) and a p-variable
derived from Fact 4.

In (5a), we denote the sample mean at time 𝑡 of each arm 𝑖 ∈ [𝑘] by ̂︀𝜇𝑖,𝑡. Let 𝑓 . 𝑔 denote 𝑓
asymptotically dominates 𝑔 i.e. there exist 𝑐>0 that is independent of the problem parameters such
that 𝑓≤𝑐𝑔. JJ prove the following sample complexity guarantee for their algorithm.
Fact 5 (From JJ). Let (𝒜𝑡) output ℐ𝑡 ={𝐼𝑡}, and let 𝐼𝑡 and𝑃𝑖,𝑡 be specified by Alg. 5 with𝜙=𝜙0. Then,
Algorithm 1 will always guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿. With at least 1−𝛿 probability, there will exist

𝑇 .
(︁∑︀𝑘

𝑖=1∆−2
𝑖 loglog∆−2

𝑖 +∆−2
𝑖 log(𝑘/𝛿)

)︁
∧𝑘∆−2log(log(∆−2)/𝛿) such that TPR(𝒮𝑡)≥1−𝛿

for all 𝑡≥𝑇 .

𝐼𝑡 =argmax𝑖∈[𝑘]∖𝒮𝑡−1
̂︀𝜇𝑖,𝑡−1+𝜙(𝑇𝑖(𝑡−1),𝛿), (5a)

𝑃𝑖,𝑡≡ inf{𝜌∈ [0,1] : |̂︀𝜇𝑖,𝑡−𝜇0|>𝜙(𝑡,𝜌)}. (5b)

We show that we can match the sample com-
plexity bounds of Fact 5 with e-variables.
Theorem 1. Let 𝜈𝑖 be 1-sub-Gaussian for 𝑖∈
[𝑘]. Set (𝒜𝑡) so 𝒜𝑡 outputs {𝐼𝑡} from (5a)
for all 𝑡 ∈N and 𝐸𝑖,𝑡 to 𝐸DM

𝑖,𝑡 . Algorithm 1 ensures sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 and, with at least 1− 𝛿

probability, there exists 𝑇 .
(︁∑︀𝑘

𝑖=1∆−2
𝑖 loglog∆−2

𝑖 +∆−2
𝑖 log(𝑘/𝛿)

)︁
∧𝑘∆−2log(log(∆−2)/𝛿) such

that TPR(𝒮𝑡)≥1−𝛿 for all 𝑡≥𝑇 .

In addition to matching theoretical guarantees, we show in the following section that e-variables and
e-BH perform empirically as well or better than p-variables and BH through numerical simulations.

5 Numerical simulations
We perform simulations for the sub-Gaussian setting discussed in Section 4 to demonstrate that our
version of Algorithm 1 using e-variables is empirically as efficient as the algorithm of JJ, which uses
p-variables (code available here) . However, unlike JJ, our algorithm does not use a corrected level 𝛿′
based upon the dependence assumptions among 𝑋1,𝑡,...,𝑋𝑘,𝑡 to guarantee FDR is controlled at level 𝛿.
We explore additional simulations of combinatorial semi-bandit settings with dependent 𝑋1,𝑡,...,𝑋𝑘,𝑡

in Appendix E that show the benefit of using e-variables over p-variables in our framework.

Simulation setup Let 𝜈𝑖 =𝒩 (𝜇𝑖,1) where 𝜇𝑖 =𝜇0 =0 if 𝑖∈ℋ0 and 𝜇𝑖 =1/2 if 𝑖∈ℋ1. We consider 3
setups, where we set the number of non-null hypotheses to be |ℋ1|=2,log𝑘, and

√
𝑘, to see the effect of

different magnitudes of non-null hypotheses on the sample complexity of each method. We set 𝛿=0.05
and compare 4 different methods. We compare the same two different exploration components for both
e-variables and p-variables. The first exploration component we consider is simply uniform sampling
across each arm (Uni). The second is the UCB sampling strategy described in (5a). When using BH, our
formulation for p-variables is (5b), which is the same as JJ. Like JJ, we set 𝜙=𝜙JJ in our simulations.
When using e-BH, we set our e-variables to 𝐸PM-H

𝑖,𝑡 :=
∏︀𝑇𝑖(𝑡)

𝑗=1 exp(𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)−𝜆2
𝑖,𝑡𝑖(𝑗)

/2)
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with 𝜆𝑖,𝑡 =
√︁

2log(2/𝛼)
𝑇𝑖(𝑡)log(𝑇𝑖(𝑡)+1) , which is the default choice of 𝜆𝑖,𝑡 suggested in Waudby-Smith and

Ramdas [45]. We show that this is a valid e-process in Appendix F and maintains FDR control.

Results We plot the relative performance of each method to e-BH with UCB sampling in Figure 2.
For uniform sampling, e-BH and e-variables seem to outperform BH and p-variables, although by a
decreasing margin for more arms, especially in the case where |ℋ1|=⌊

√
𝑘⌋. For the UCB sampling

algorithm, we see that e-variables and p-variables have relatively similar performance, with the gap
narrowing as the number of arms increase as well. Thus, e-variables and e-BH empirically perform on
par or better than p-variables with regards to sample complexity. This shows that using e-variables does
not require any sacrifice in performance in simple cases where p-variables also work well. Further, e-
variables do not require the same log𝑘 correction that p-variables need for situations where𝑋1,𝑡,...,𝑋𝑘,𝑡

are arbitrarily dependent to guarantee FDR control at the same level. Thus, e-variables are preferable
to p-variables as they are more flexible w.r.t. assumptions.

(a) |ℋ1|=2 (b) |ℋ1|=⌊log𝑘⌋ (c) |ℋ1|=⌊
√
𝑘⌋

Figure 2: Relative comparison of time 𝑡 to obtain a rejection set, 𝒮𝑡, that has a TPR(𝒮𝑡)≥1−𝛿 and
FDR(𝒮𝑡) ≤ 𝛿 where 𝛿 = 0.05. This plot compares e-BH vs. BH for both uniform (Uni) and UCB
sampling over different numbers of arms (choices of 𝑘) and densities of non-null hypotheses (sizes of
ℋ1). Time is reported as a ratio to the time taken by UCB e-BH method. Note that the methods using
e-variables perform on par or better than methods using p-variables for both sampling strategies.

6 Conclusion, limitations and broader impact
In this paper, we developed a unified framework for bandit multiple hypothesis testing. We demonstrated
that applying the e-BH procedure to stopped e-processes guarantees FDR control without assumptions
on the the dependency between 𝑋1,𝑡,...,𝑋𝑘,𝑡, exploration strategy, stopping time of the algorithm,
ability to query multiple arms, etc. In contrast, existing algorithms using BH and p-variables have
FDR guarantees that vary with the problem setting and dependence structure among the p-variables.
We argued that control of the FDR with p-variables can blow up by a factor of log𝑘, and any p-self-
consistent algorithm must decrease its threshold for discovery correspondingly to maintain FDR control
at the desired level. We provide more detailed explanations of these observations in Appendix D.2.
In addition to demonstrating the generality of our meta-algorithm, we showed that in the standard
sub-Gaussian reward setting, the instantiated algorithm matches the sample complexity bounds of the
p-variable algorithm by JJ for achieving high TPR, and has better practical performance than JJ’s
algorithm, despite the fact that we improve JJ’s guarantees by invoking the self-consistency results
of Su [38].

The appendices have additional examples of problem settings and simulations that show the utility of
e-processes and our general framework. In fact, we can address an even more general setting where
the null hypotheses do not have a one-to-one correspondence with the arms; in other words, despite
the queries being at the arm-level, the hypotheses being tested could combine arms (for example,
comparing different arms). We also discuss the multi-agent setting where there could be multiple
agents that operate the same bandit. We avoided these scenarios in the main paper for simplicity of
exposition, since there were enough generalizations to describe in the simpler setup already.

The main limitation of the work is that it does not develop instance optimal sampling algorithms for
multiple testing problem in the described settings with more complicated dependence structures; we
believe this is a difficult open problem, requiring specialized techniques in each example. We do
not foresee any negative societal impact of this work; it is aimed at reducing costs and improving
reproducibility in scientific experimentation by controlling false discoveries in adaptive testing.
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