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Abstract
PROteolysis-TArgeting Chimeras (PROTACs), which
are comprised of two protein-binding domains con-
nected via a linker, are a novel class of small molecules
that enable the degradation of disease-relevant proteins.
The design and optimization of the linker portion is
challenging due to geometric and chemical constraints
given by its interactions, and the need to maximize
drug-likeness. To tackle these challenges, we introduce
ShapeLinker, a method for de novo design of linkers
that performs fragment-linking using reinforcement
learning on an autoregressive SMILES generator. The
method optimizes for a composite score combining rel-
evant physicochemical properties and a novel, attention-
based point cloud alignment score, which allows cap-
turing a desired geometry to link the anchor and war-
head. This method successfully generates linkers that
satisfy 2D and 3D requirements, achieving state-of-the-
art results in linker design for more efficient PROTAC
optimization. Code and data are available at https:
//github.com/aivant/ShapeLinker.

1. Introduction
Most small-molecule drugs act by interfering with a disease-
causing protein of interest (POI) through inhibition or ac-
tivation of its function via a functional binding site. How-
ever, approximately 80% of the human proteome lacks
such a binding site. (Crews, 2010) Proteolysis-targeting
chimeras (PROTACs) are an alternative drug modality that
can act on these ”undruggable” targets. (Sakamoto et al.,
2001) PROTACs exhibit their mode of action by binding
two proteins – an E3 ligase and the POI. This induced prox-
imity enables the ubiquitination of the POI by the E3 ligase,
which marks the POI for degradation. (Lai & Crews, 2017)
PROTACs are hetero-bifunctional small molecules consist-
ing of an anchor fragment binding the E3 ligase, a warhead
targeting the POI, and a linker resulting in relatively large
molecules, which poses additional challenges related to e.g.
lipophilicity or metabolic stability. (An & Fu, 2018) During
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PROTAC discovery campaigns, the linker is a key lever for
optimization and frequently iterated to optimize both chemi-
cal properties such as hydrophobicity, solubility, and overall
degradation efficiency. (Bemis et al., 2021)

The inherent complexity of the ternary complex, where the
linker does not occupy a traditional pocket, makes rational
design of PROTAC linkers particularly challenging. Ma-
chine learning (ML)-based linker generation methods enable
rational design of novel linkers with a significantly lower
computational cost than traditional physics-based simula-
tions. Existing generative models for fragment-linking have
limited practical utility as they have either been based on
solely 2D representations, or do not allow for explicit, mod-
ular optimization towards desired linker chemical spaces
(e.g., rigidity, physicochemical properties, limiting branch-
ing). (Bemis et al., 2021). Accumulating evidence suggests
that the stability and spatial arrangement of the ternary com-
plex are critical for potent degradation. (Gadd et al., 2017;
Law et al., 2021) Since there is less room to modify the
individual cognate ligands, designing linkers that can effec-
tively stabilize desired ternary complex conformations is
crucial. (Nowak et al., 2018; Chamberlain & Hamann, 2019;
Lv et al., 2021) A productive linker shape is often obtained
with an alkyl or PEG-linker varied to obtain the optimal
linker length and lead optimization aims at reducing degrees
of freedom (fewer rotational bonds, less branching), which
was shown to result in more effective degraders. (Bemis
et al., 2021)

This work aims to address these challenges by introducing
a novel 3D shape-conditioned linker generation method,
ShapeLinker, which allows multi-parameter-optimization
using reinforcement learning (RL) to steer the design efforts
in the desired chemical space. We combine advantages of
previous 2D methods (modular optimization) and introduce
a novel, fast attention-based point cloud alignment method
for conditioning the generation on geometric features. This
new shape alignment method allows us to optimize to a ref-
erence linker shape known to stabilize a productive ternary
complex. Our efforts mainly contribute to the linker design
for the drug modality of PROTACs and their specific require-
ments. This method thus enables efficient lead optimization
against predicted or known structures of E3-POI interfaces.
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2. Related Work
De novo linker design through generative models has primar-
ily been addressed in the context of fragment-based drug
design (FBDD). (Sheng & Zhang, 2013) However, such
methods may not be suited to the linker design for large
structures such as PROTACs, as they aim at connecting
substantially smaller fragments.

Various fragment-linking methods operate purely in 2D.
SyntaLinker (Yang et al., 2020) is a FBDD method that
can be conditioned on physicochemical properties. Feng
et al. (2022) introduced SyntaLinker-Hybrid improving
target-specificity through transfer learning and PROTAC-
RL (Zheng et al., 2022) adapts SyntaLinker to specifically
design linkers for PROTACs. Link-INVENT (Guo et al.,
2022) is an RNN-based method that uses SMILES (Simpli-
fied molecular-input line-entry system) (Weininger, 1988)
and performs multi-parameter optimization through RL. We
base our work on Link-INVENT. While all previous meth-
ods used SMILES, GraphINVENT (Nori et al., 2022) uses
graphs for the design of PROTACs and optimizes for degra-
dation. However, since this approach attempts to design
the whole PROTAC it is more suitable to hit finding where
anchor and warhead are unknown.

None of the aforementioned methods consider geometry,
which is thought to contribute substantially to the efficacy
of a drug. (Ramı́rez, 2016; Chamberlain & Hamann, 2019)
This is addressed by DeLinker (Imrie et al., 2020), which in-
puts simple geometric constraints. DEVELOP (Imrie et al.,
2021) extends DeLinker to include pharmacophore infor-
mation and Fleck et al. (2022) attempted at improving the
robustness of the predicted coordinates. Huang et al. (2022)
proposed 3DLinker, which utilizes more explicit geometry
information. However, in our experience both DeLinker and
3DLinker often do not produce chemically sensible linkers,
especially for longer linkers. Adams & Coley (2022) in-
troduced SQUID, which leverages shape-conditioning by
generating molecules similar to a query in shape but diverse
in 2D chemistry. However, this FBDD method is not suit-
able to PROTAC linker generation. Joining the recent surge
in diffusion models, Igashov et al. (2022) proposed Diff-
Linker, which predicts atom types and coordinates while
enabling protein pocket-conditioning. The method achieves
state-of-the art performance on 3D metrics, albeit with a rel-
atively high inference time. REINVENT for small molecule
design was shown to allow for geometry conditioning using
ROCS (roc), suggesting the same may also work for linker
design. (Papadopoulos et al., 2021). ROCS requires an
OpenEye license and is not fast enough to scale to our RL
needs, which is also the case for the widely used RANSAC
method. (Zhou et al., 2018) We developed a novel approach
to perform alignment on dense surface point clouds with
a multi-head attention architecture. This scalable aligner

Figure 1. Schematic overview of ShapeLinker. The surface point
clouds of generated molecules are aligned and scored using a
trained multi-head attention alignment model.

takes advantage of GPUs, takes 230 ms per small molecule
pair, and improves over global RANSAC alignment.

3. Methods
3.1. Shape alignment

Point clouds have been successfully used as input to
attention- and transformer-based architectures for molecule
generation. (Zhao et al., 2021; Qi et al., 2017) We build on
these ideas to perform global point cloud alignment.

Our shape alignment approach takes pairs of surface point
clouds of molecules as input, one query and one target.
Surface point clouds are generated using the KeOps li-
brary (Feydy et al., 2020), which was used by previous
molecular modeling tasks such as dMaSIF (Sverrisson et al.,
2021). This process is described in more detail in Ap-
pendix A. We then train a deep learning model composed
of a multi-head self-attention layer which acts individually
on each point cloud, and a multi-head cross-attention layer
which acts on the query-target pair. This allows a global
alignment with context from the entire molecule. Many
alignment methods are based on prediction of optimal pair-
ing and registration of reference and query points. One such
example is Equidock, which first predicts key pairs as an-
chor points between two protein interfaces and subsequently
aligns them using a differentiable Kabsch algorithm (Ganea
et al., 2022; Stärk et al., 2022). Here, we take a novel ap-
proach and predict a pseudo-coordinate pair for each query
point. This allows us to superpose the original query coor-
dinates on the pseudo-coordinates using Kabsch algorithm
and obtain an aligned pose. We formulate the training task
as the minimization of global distance between the reference
points and the aligned query points by using a normalized
L2 version of the Chamfer distance loss (Fan et al., 2017)
between the two point clouds. The model was trained for
50 epochs, achieving an improvement over the RANSAC
distance of over one on the validation set. (Zhou et al., 2018)
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3.2. ShapeLinker: Geometry-conditioned linker design

ShapeLinker, our geometry-conditioned method for generat-
ing SMILES linking two input fragments, is based on Link-
INVENT by Guo et al. (2022). We follow Link-INVENT’s
policy-based RL, where the initial agent with parameters
equal to the prior is iteratively updated based on the newly
sampled linkers. The composite scoring function defines
the key objectives for the parameter optimization:

1. Shape alignment: Chamfer distance between sam-
ple x and the reference crystal structure pose.

2. Ratio of rotatable bonds: number of rotatable bonds
divided by the total number of bonds in the linker. This
score corresponds to the linker rigidity.

3. Linker length ratio: number of bonds between at-
tachment atoms divided by the number of bonds in the
longest graph path. This score controls for branching.

Lastly, the scoring is also affected by a diversity filter as
implemented in REINVENT, which allows penalization of
recurring scaffolds in order to explore a new chemical space.
(Blaschke et al., 2020) 5,000 molecules for subsequent eval-
uation were sampled from each last agent, applying a tem-
perature scaling (T = 1.5) of the logits to lower the model’s
confidence and in turn increase uniqueness.

3.3. Data

Two datasets were used: PROTAC-DB (Weng et al., 2023),
which contains a large collection of publicly available data
on PROTACs, and ten hand-selected crystal structures of
ternary complexes extracted from the Protein Data Bank
(PDB) (Berman et al., 2000). The data processing is detailed
in Appendix C.1 and C.2, respectively.

PROTAC-DB is used for both training the shape alignment
method, by taking a random selection, and in its entirety
(3,182 after filtering) as a reference for assessing novelty
metrics. In order to reduce the computation cost, the align-
ment is done using only the respective linker with small
fragments extending into both ligands, rather than the full
structure (cf. Figure C.2). The ten ternary complexes (PDB
IDs: 5T35, 7ZNT, 6BN7, 6BOY, 6HAY, 6HAX, 7S4E, 7JTP,
7Q2J, 7JTO) all have binding PROTACs that were optimized
in individual structure-based drug studies. We include these
in the training of the shape alignment model as queries.
Subsequently, we train an RL agent for each structure as a
benchmark of (conditional) linker design methods.

3.4. Evaluation

3.4.1. CONSTRAINED EMBEDDING

A constrained embedding algorithm was applied to the
unique SMILES strings generated by all three meth-

ods - ShapeLinker, DiffLinker and Link-INVENT. Only
molecules passing the 2D filters (cf. Appendix F), a syn-
thetic accessibility (SA) score (Ertl & Schuffenhauer, 2009)
for the linker fragment of less than 4 and those with no
formal charges were considered. The constrained embed-
ding process attempts to create conformers of the PROTAC
molecule given fixed atom coordinates for the non-linker
parts as constraints. These coordinates are extracted directly
from the crystal structure based on substructure. Using coor-
dinate constraints can lead to highly strained conformations,
requiring refinement by minimizing the strain energy. The
process is described in more detail in Appendix D.

3.4.2. BASELINES

Link-INVENT serves as geometry-unconditioned baseline.
The agent was adapted through RL for every examined
system by only including the ratio of rotatable bonds and
linker length ratio in the scoring function. Additionally,
we compare to the pocket-conditioned version of Diff-
Linker (Igashov et al., 2022). The method requires speci-
fying the number of atoms in the new linker, which in our
experiments corresponds to the number found in each ref-
erence linker. DiffLinker is evaluated in two separate ways
regarding the geometry: using the predicted coordinates
while allowing replicates of the same 2D structure and per-
forming constrained embedding using unique SMILES. The
same filters were applied for evaluating the generated poses
as those used for submitting to constrained embedding.

4. Results and Discussion
4.1. Shape alignment

The performance of the shape alignment model is assessed
by aligning queries to various conformers of themselves
and the identical crystal structure pose. ShapeLinker can
achieve satisfactory results in most instances, though there
is variability in performance across the different systems
examined (cf. Figure A.4). This variability can be largely
attributed to imperfections in conformer generation, which
is also reflected in the RMSD values, with a higher RMSD
indicating a larger discrepancy between the generated and
the target conformer (cf. Figure A.2). The performance

Table 1. Chamfer distances between the surface aligned generated
extended linkers and the respective crystal structure pose averaged
over all systems.

Chamfer distance

Method avg ↓ < 3.5 [%] ↑ < 1.0 [%] ↑
Link-INVENT 4.44 35.83 0.18
ShapeLinker 2.19 88.81 2.9
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Figure 2. Selected ShapeLinker samples (blue) compared to the
respective crystal structure PROTAC (orange). Upper row: 2D
structures with highlighted linker. Middle row: aligned surfaces
of the reference (orange) and generated PROTAC (blue). Lower
row: 3D structures binding the E3 ligase (pink) and the POI (cyan).
From left to right: 5T35, 7ZNT, 7Q2J, 6HAY.

could potentially be enhanced by sampling more conform-
ers, and training on only one reference linker per model.
However, both of these approaches can significantly add to
computational cost.

4.2. Shape conditioning with RL

In order to assess the ability of the ShapeLinker models to
optimize for shape, samples from trained ShapeLinker were
compared to samples taken from Link-INVENT. Table 1
clearly demonstrates this ability as the Chamfer distance be-
tween the valid generated samples and the respective crystal
structure are lower compared to the geometry-naive model.
It should be noted that one could also use the point clouds of
pockets instead of the known linker pose for reference-free
linker generation. We expect this approach to be most benefi-
cial for cases where the solvent accessible volume available
for the linker is restricted by the binding protein(s), leaving
a narrow channel that limits potential linker designs. We
leave this for further exploration in future studies.

4.3. Linker generation

6BN7 and 6BOY were excluded from the final analysis as
none of the methods performed well on them, which can be
expected given the challenging nature of their structure. The
reference linkers of these two PROTACs are, together with
7JTO, the longest of the examined systems and also exhibit
challenging poses due to the angle between anchor and war-
head. The respective metrics are listed in Appendix G.3. We
argue that this is unlikely limiting practical use significantly
since in a typical drug discovery context one would optimize
less strained and shorter linkers.

ShapeLinker and Link-INVENT outperform DiffLinker in
terms of generative abilities such as validity and unique-
ness (cf. Table G.3). However, providing a range of

Table 2. Metrics evaluating the ability to generate linkers that lead
to molecules with similar shape to the reference but new chemistry
(SN), relatedly only in terms of shape similarity (Chamfer distance
(CD)) as well as a good geometry in relation to energetics (torsion
energy). Fail reports the fraction that failed constrained embedding.
DiffLinkerCE: constrained embedding conformers (deduplicated
based on SMILES); DiffLinkerori: generated poses with unique
conformations but replicate SMILES.

Method Fail [%] ↓ SN ↑ CD ↓ Etor [ kcal
mol ] ↓

Link-INVENT 27.88 0.82 5.02 69.19
DiffLinkerCE 3.63 0.87 1.96 58.24
DiffLinkerori 0.00 0.67 1.44 60.34

ShapeLinker 21.45 0.9 2.64 65.62

linker sizes would likely improve uniqueness for DiffLinker.
ShapeLinker further succeeds in generating very diverse
sets of linkers and, once trained, sampling is very cheap.

Table 2 demonstrates the superiority of ShapeLinker com-
pared to Link-INVENT, particularly in terms of Chamfer
distance. While DiffLinker still exhibits lower Chamfer
distances, excitingly, our method makes significant progress
towards achieving similar values. This is achieved despite
not explicitly sampling 3D coordinates and while outper-
forming DiffLinker in achieving strong properties required
for PROTAC-design such as producing linkers with lower
number of rotatable bonds, less branching and higher ring
count. Notably, also, DiffLinker is limited to a fixed number
of atoms, which increases the likelihood of generating viable
poses but in turn reduces diversity. Constrained embedding
failed for a considerable number of cases for ShapeLinker
and Link-INVENT, but not for DiffLinker, where the geo-

Figure 3. ShapeLinker-generated linker (pink) forming a T-shaped
π-stacking between a thiophene moiety and His437 (cyan) of
BRD4BD2 (blue) in 5T35. The reference linker MZ1 is shown in
grey.
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Table 3. Performance metrics assessing the chemical suitability
specifically to the class of PROTAC drugs: number of rotational
bonds (#ROT), fraction of branched linkers and number of rings.
All metrics focus on the linker fragment only.

Method # ROT ↓ Branched [%] ↓ # Rings ↑
Link-INVENT 3.27 12.06 1.98
DiffLinker 2.60 9.66 0.32

ShapeLinker 1.67 8.64 0.91

metric constraints are already taken into consideration dur-
ing generation. The goal of generating chemically diverse
linkers that are also geometrically similar is embodied in
the custom shape novelty (SN) metric, which is clearly ac-
complished by ShapeLinker. Torsion energies are in general
higher than the respective crystal structures (see Table C.1)
for all methods. On one hand, this might be a consequence
of attempting to accommodate relatively fixed anchor and
warhead poses during constrained embedding, even with
subsequent energy minimization. On the other hand, more
rigid linkers naturally result in molecules with higher tor-
sional energy compared to reference structures, which pre-
dominantly have alkyl chain linkers. The inclusion of the
shape-score seems to improve the conformational stability
when comparing to Link-INVENT. The trade-off between
good energetics (low strain) and improvement of the en-
tropic contribution is done in the hopes of obtaining more
effective degraders. However, the investigation of this hy-
pothesis requires case-specific experimental validation. It is
also worth mentioning that there is great potential in com-
bining the method with tools for ternary complex modelling,
alleviating some of the aforementioned uncertainties regard-
ing strained conformations. One could more easily analyse
how the new structure might impact the ternary complex
but more importantly one could target structures for which
there is no crystal structure available.

Overall, having the 3D context and the rapid ternary screen-
ing ability is powerful. For example, one linker gener-
ated for 5T35 demonstrated reduced the number of rotat-
able bonds while introducing a potential new T-shaped π-
stacking interaction (cf. Figure 3). The heterocycle in the
ShapeLinker-generated linker also significantly rigidifies
the structure compared to the PEG-based linker in the refer-
ence. Figure 2 demonstrates the ability to generate linkers
adhering to a certain shape but also showcase remaining
challenges regarding synthesizability and stability.

In addition to generating novel designs with a certain shape,
ShapeLinker should produce linkers that fit certain 2D
criteria for the PROTAC class. Table 3 illustrates that
ShapeLinker was able to yield linkers with fewer rotatable
bonds and little branching. These results, together with the

challenging task of matching the query shape, were achieved
at the cost of QED and SA (cf. Table G.1). A more permis-
sive choice of diversity filter could help, as there would be
less incentive to steer away from the prior distribution. The
combined results demonstrate the inability of Link-INVENT
to generate linkers fitting a desired shape while DiffLinker
lacks diversity. ShapeLinker addresses these limitations and
combines favorable aspects of both.

5. Conclusion
This work introduces a novel method, ShapeLinker, for
generating valid, novel PROTAC linkers adhering to a tar-
get shape. It introduces a highly modular Reinforcement
Learning-framework to specifically address limitations of
existing works in the optimization of PROTAC-linkers. The
generative model is able to optimize for shape alignment to a
reference pose, while also achieving desirable 2D chemical
properties. Additionally, the inference time of the autore-
gressive models is reduced compared to diffusion models
such as DiffLinker. A future endeavor should be the in-
clusion of biopharmaceutically relevant scores such as pre-
dictors for solubility or degradation. Lastly, the use of the
pocket shape for alignment instead of a reference conformer
could open new avenues to explore.
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A. Shape alignment

Figure A.1. Multi-head attention model for global point cloud alignment.

A.1. Point cloud generation

We employ the surface point cloud generation procedure delineated in dMaSIF, which samples the molecular surface of a
protein as a level set of the smooth distance function to atom centers. The sampling algorithm first generates a point cloud in
the neighborhood of a protein and then lets the random sample converge towards the target level set via gradient descent.
Subsequently, points trapped inside the protein are removed, ensuring uniform density by averaging samples within cubic
bins of side length 1 Å. However, this procedure is designed for protein surfaces, which is not the focus of our use case.

To adapt the procedure for small molecule surfaces, we modify the method by reducing the radius to 0.9 Å and decreasing
the resolution to 0.9 Å, thereby achieving a higher density of points on the surface. Additionally, we introduce an ”other”
atom type to encompass all types that are not defined in dMaSIF (C, H, O, N, S, Se). For this ”other” atom type, we use
the radius of a carbon atom. These alterations accommodate the smaller size and distinct characteristics of small molecule
surfaces compared to protein surfaces.

A.2. Architecture details

In this section, we outline the process by which both query surface points (n 3-dimensional coordinates) and reference surface
points (m points) are transformed using attention layers to generate pseudo-coordinates and, ultimately, aligned-coordinates
of the query molecule. Refer to Figure A.1 for a visual representation.

A.2.1. SELF-ATTENTION ENCODER

Initially, the reference (R) and query (Q) points are centered such that their centroids are at the origin. They are then passed
through a fully connected linear layer (Linear) to scale them to the attention embedding dimension da of 16:

Qscaled = Linear(Q, da), Rscaled = Linear(R, da) (1)

The scaled query and reference points are subsequently processed through the same self-attention network (SelfAttention),
characterized by an attention dimension of 16 and an attention head size h of 8. For both the query and reference, the query
(q), key (k), and value (v) are the scaled inputs (Qscaled and Rscaled).

Qself attention = SelfAttention(qQ, kQ, vQ, da, h) (2)

Rself attention = SelfAttention(qR, kR, vR, da, h) (3)

A.2.2. CROSS-ATTENTION DECODER

Afterwards, the output from the query self-attention serves as the query, while the reference output is used as both keys and
values in the cross-attention network (CrossAttention), which shares the same attention and head size as the self-attention
network:
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Qcross attention = CrossAttention(qQ, kR, vR, da, h) (4)

Consequently, the output from the cross-attention network is scaled using a dense linear layer to a dimension do of 3,
representing the pseudo-coordinates:

Qpseudo = Linear(Qcross attention, do) (5)

Finally, the Kabsch algorithm is applied to superimpose the original query input onto the pseudo-coordinates, resulting in
the aligned-coordinates of the query. The aligned-coordinates, along with the reference coordinates, are subjected to the L2
normalized chamfer loss (defined in Section 3.1):

Qaligned = Kabsch(Qpseudo,R) (6)

A.2.3. ALIGNMENT INFERENCE

In the alignment inference, there are two modes:

1. The first mode involves returning the surface point clouds of the query, accompanied by the chamfer distance to the
reference point cloud, which can be fed into the RL-training process.

2. Since the alignment process yields the rotation and translation matrices, these can be utilized post-training to transform
the original atom coordinates of a given query.

We define the Chamfer distance CD between two point sets A and B as:

CDAB =

∑
i minj(∥ai − bj∥22) +

∑
j mini(∥ai − bj∥22)

|A|+ |B|
(7)

A.3. Caveats

Using only the extended linker fragment can result in relatively linear fragments to align, which may cause the model
to align the poses in a flipped orientation. To avoid this, the shape alignment is repeated for those with high RMSD of
substructure matches. During RL, resampling is performed until 90% of the samples have an RMSD matching the lower
distribution, or for a maximum of 5 iterations. The shape alignment carried out during post-processing is done exhaustively,
ensuring that all samples have a fitting alignment.

A.4. Performance

The Chamfer distance resulting from the alignments are correlated with the number of rotational bonds (Pearson’s r of
0.55) and RMSD (Pearson’s r of 0.88) (see Figures A.3 and A.2), which further supports the notion that the main source
of variability in the performance of the shape alignment model is the conformer generation rather than the alignment
process itself. A good alignment for a specific pose is determined by the upper to lower bounds of the Chamfer distance, as
demonstrated in Figure A.4. The impact of a high number of degrees of freedom on performance is counterbalanced in the
design of ShapeLinker’s multi-parameter optimization, where the model is trained to generate linkers with fewer rotational
bonds, resulting in more rigid structures.
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Figure A.2. Correlation of Chamfer distance to RMSD obtained by the shape alignment model. The randomly generated conformers are
compared to the pose found in the corresponding crystal structure.
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Figure A.3. Correlation of the average chamfer distance (n = 32) obtained by the shape alignment model to the number of rotational
bonds. The randomly generated conformers are compared to the pose found in the corresponding crystal structure.
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Figure A.4. Distribution of Chamfer distances per structure obtained by aligning each extended linker (cf. Figure C.2) to the pose found
in the crystal structure (32 distances obtained by aligning 16 conformers each). The red dot corresponds to the Chamfer distance obtained
when comparing the surfaces of the identical poses. Good alignment is expected in the range of each Chamfer distance distribution for the
respective system while the red dot corresponds to the best score possible.

B. Training of the Link-INVENT based methods
The following sections detail the training approach and present some results for the reinforcement learning (RL) of both the
baseline Link-INVENT and our new method. Both Link-INVENT and ShapeLinker were trained (RL) for 1000 epochs with
a batch size of 32 and a learning rate of 1e-4. The loss J(θ) is defined as the difference between augmented and posterior
likelihoods (DAP) (Fialková et al., 2022). The augmented log likelihood is defined as follows, with π representing the
probability of sampling a token based on the already present token sequence, S(x) the scoring function and a scalar factor σ
of 120:

log πaugmented = log πprior + σS(x) (8)

The augmented log likelihood is then subtracted by the log likelihood of the current agent as follows:

J(θ) = (log πaugmented − log πagent)
2 (9)

Both methods are trained using a diversity filter as implemented in Link-INVENT. All sampled molecules during RL are
collected in ”buckets” sharing the same Murcko scaffold. If the bucket reaches 25 samples, all subsequently generated
molecules with the same scaffold will be penalized with a score of zero – thereby urging the model to explore a new chemical
space. The models were trained using one GPU (NVIDIA T4) and eight CPU cores (Intel Broadwell) on the Google Cloud
Platform.

B.1. ShapeLinker: Geometry-conditioned Link-INVENT

The composite scoring function used in ShapeLinker consists of three scores, which are combined in a weighted mean:

1. Shape alignment (weight: 3): Chamfer distance between sample x and the reference crystal structure pose. The raw
Chamfer distance is transformed using a reverse sigmoid with a upper bound of 3.5 (low score), a lower bound of 0
(high score) and a steepness of 0.25.

2. Ratio of rotatable bonds (weight: 1): number of rotatable bonds divided by the total number of bonds in the linker.
This score corresponds to the linker rigidity and a score of 1 is awarded if sample x achieved a value in [0, 30] (high
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rigidity) else 0.

3. Linker length ratio (weight: 1): number of bonds between attachment atoms divided by the number of bonds in the
longest graph path. This score controls for branching and a score of 1 is awarded if sample x had a ratio of 100 (no
branching) else 0.

The alignment during RL is carried out on the level of the extended linker with 16 conformers generated for each linker and
the smallest distance of those corresponds to the raw score for sample x. All models were intended to train for 1,000 epochs
each, but 7ZNT (720 epochs), 7JTP (920 epochs), and 7Q2J (960 epochs) were interrupted early due to unknown reasons.
Since all three models had already converged for all objectives, the last logged agent was used for subsequent sampling. The
learning curves for the shape alignment (see Figure B.1) are quite noisy. In addition to the challenging task of learning a 3D
objective while generating SMILES, this is likely due to the shape alignment model’s inability to correctly process charged
structures. In such cases, scores of zero are automatically returned. Both the baseline Link-INVENT and ShapeLinker could
converge towards low number of rotatable bonds and low linker length ratio early during training.

Given the early convergence for most systems, one could likely sample from earlier epochs (where the average score has
already converged) and expect a different chemical space as a result of the diversity filter steering the generation towards
novel chemistry.

(a) Average score. (b) Transformed linker length ratio.

(c) Transformed ratio of rotatable bonds. (d) Transformed chamfer distance.

Figure B.5. Learning curves for all ShapeLinker RL runs. The average score combines the linker length ratio, ratio of rotatable bonds,
shape alignment score and factors in the penalty by the diversity filter.
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B.2. Baseline Link-INVENT

(a) Average score. (b) Transformed linker length ratio.

(c) Transformed ratio of rotatable bonds.

Figure B.6. Learning curves for all baseline Link-INVENT RL runs. The average score combines the linker length ratio, ratio of rotatable
bonds and factors in the penalty by the diversity filter.

C. Data
C.1. PROTAC-DB

A total of 3,270 SMILES for PROTAC, anchor, and warhead each were extracted from PROTAC-DB. (Weng et al., 2023)
Forty-seven faulty entries, which had no substructure match for either the warhead or anchor to the PROTAC, were removed.
Additionally, 41 instances were excluded due to unsuccessful extraction of the extended linker fragment, which contains the
linker as well as fragments extending beyond the exit vector. The extraction of the extended linkers was carried out in such
a way as to preserve the geometry of the bonds between the linker and the respective POI and E3 ligands, the extended
linker is extracted at least two hops from the attachment point, while ensuring that no rings are broken and bond order is
not changed. The extension of the linker to the individual fragments is critical, as the optimal geometry of the linker will
be dictated by the degrees of freedom of the fully-constructed PROTAC molecule, rather than the linker in isolation. The
removed PROTAC-DB IDs are as follows:

67, 90, 164, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 1001, 1032, 1047, 1049, 1060, 1153, 1198, 1302, 1303, 1535,
1536, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961, 1962, 1963, 1964, 1965, 1966, 1967,
1968, 1969, 2110, 2196, 2237, 2238, 2239, 2240, 2241, 2242, 2243, 2244, 2245, 2246, 2276, 2381, 2382, 2383, 2384, 2385,
2386, 2387, 2388, 2389, 2390, 2442, 2443, 2529, 2545, 2876, 2959, 2962, 2966, 2967, 2968, 3129, 3213, 3214, 3215, 3216,
3217, 3218, 3219, 3220, 3221

For the training of the shape alignment model, the extended linker poses of all 10 investigated crystal structures (vide infra)
were used as queries. The training set consisted of 50 conformations of each query structure to learn self alignment and
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50 extended linkers each randomly selected from the processed PROTAC-DB dataset (vide supra) to learn alignment to
other structures. The validation set consisted of 10 extended linkers from the PROTAC-DB dataset. All conformations were
generated using RDKit with random coordinates.

C.2. Crystal structures of the investigated ternary complexes

The crystal structures were prepared by extracting one asymmetric sub-unit of the ternary complex and removing any
solvents or crystallization artifacts. The selected PROTACs cover a diverse range of shapes and lengths. The linker fragment
was selected in accordance with the authors of the structures, with the constraint of keeping the flanking amide bonds intact
(either belonging to the linker or the anchor/warhead). This approach was taken in hopes of reducing the risk of generating
synthetically challenging termini. The chosen fragmentation for all investigated systems can be seen in Figure C.2.

Figure C.7. Chemical structures of all reference PROTACs binding the investigated crystal structures. Highlighted in dark blue is the
linker, which was cut out for generation of new linkers and highlighted in light blue are the additional fragments for the extended linkers,
which were used for the shape alignment.

D. Constrained embedding
The constrained embedding pipeline, including post-processing, is as follows:

1. Constrained embedding with crystal structures of anchor and warhead as constraints with subsequent energy minimiza-
tion of the linker using RDKit (rdk)

2. Geometry optimization and energy minimization of the whole molecule with the MMFF94s force field using a
steepest-descent algorithm implemented in OpenBabel (O’Boyle et al., 2011).

3. Smina minimization (Koes et al., 2013), to take the (rigid) protein into consideration.

4. Selection of the best conformer per molecule based on the combination of normalized (min-max scaling) vinardo score
and RMSD.
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Table C.1. Chosen systems with the respective targeted protein of interest (POI) and E3 ligase, the PDB ID for the crystal structure of the
ternary complex and lastly the name of the reference PROTAC. Calculated torsion energy and number of clashes for each conformation of
the PROTAC are listed.

POI E3 PDB ID PROTAC Etor [ kcal
mol ] ↓ # Clashes ↓

BRD4BD2 VHL
5T35 (Gadd et al., 2017) MZ1 63.86 10

7ZNT (Hanzl et al., 2022) AT7 41.74 10

BRD4BD1 CRBN
6BN7 (Nowak et al., 2018) dBET23 33.67 20

6BOY (Nowak et al., 2018) dBET6 25.56 10

SMARCA2 VHL

6HAY (Farnaby et al., 2019) PROTAC 1 50.20 11

6HAX (Farnaby et al., 2019) PROTAC 2 43.58 6

7S4E (Farnaby et al., 2019) ACBI1 37.86 15

WDR5 VHL

7JTP (Yu et al., 2021) MS67 56.07 16

7Q2J (Kraemer et al., 2021) - 55.53 21

7JTO (Yu et al., 2021) MS33 42 18

The preparation of samples for constrained embedding from both Link-INVENT-based methods required annotation of
stereocenters, including chiral centers and cis/trans bonds. This was achieved by shape aligning all samples to the crystal
structure pose. To capture potential stereocenters at the exit vector (the bond between the attachment atoms of the linker and
anchor/warhead), the extended linker and the same shape alignment model used during RL were used. The stereocenters for
DiffLinker could be directly annotated from the generated pose. In case RDKit fails to annotate some stereocenters (e.g.
some bridge heads), the isomers will be enumerated and all submitted to the constrained embedding. The same fragments
for anchor and warhead were used as constraints during the embedding with the exception of BRD4-binding warheads
(5T35, 7ZNT, 6BN7, 6BOY), where there were no productive poses found for the Link-INVENT based methods. The
warhead fragment used to constrain the embedding was reduced by removing the flexible chain that includes the exit atom
and is attached to the core ring (see Figure D.8). This alteration should not introduce bias, since the chain is flexible and can
move during minimization, and 3D evaluation is ultimately done on the whole warhead. Despite the modification, 6BN7 and
6BOY still did not result in any productive poses and their challenging nature was discussed in the main text.

Initially, the generation of 10 conformers each with constrained embedding was attempted using RDKit (rdk), allowing a
maximum of 10 attempts. For SMILES that did not result in a productive pose, this process was repeated by increasing
the maximum attempts up to 10,000 while decreasing the number of generated conformers to 5. RDKit minimization of
the linker fragment after embedding was carried out with the Universal force field (UFF) (Rappe et al., 1992) with a force
convergence criterion of 1e-4 and a energy convergence criterion of 1e-5. Subsequently, the full conformer is minimized
using OpenBabel (O’Boyle et al., 2011) and the molecular mechanics force field 94 (MMFF94) (Tosco et al., 2014) over
500 steps. The steepest descent algorithm is used for minimization. Lastly, each conformer was submitted to Smina
minimization (Koes et al., 2013), which takes the proteins (E3 ligase and POI) into account so as to improve affinity by

Figure D.8. Structure of the BRD4 warheads showing the modification that was required for constrained embedding. Left: Complete
warhead used for generation. Right: Reduced warhead used for constrained embedding.
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optimizing the vinardo score and hence also reduce clashing. The best conformer was selected by min-max scaling both the
Vinardo score and the RMSD obtained by Smina, and then choosing the best combined score, which was calculated by
multiplying the two properties with equal weights. If multiple isomers were enumerated, this approach was applied across
all conformers of all isomers.

E. Deployment of DiffLinker
5,000 samples were generated using DiffLinker for every investigated system. Since the method does not predict edges,
OpenBabel is used to infer bonds as implemented by the method. The original connectivity is kept in the input fragments. In
order to circumvent memory issues faced when performing inference on certain systems (5T35, 7JTO, 7JTP, 7Q2J), the
input fragments were truncated to smaller substructures containing their respective attachment atoms and atoms or cycles up
to 4 hops away from the attachment atoms.

F. Metrics
An array of various evaluation metrics are reported. First, measures assessing the generative properties of the methods are
calculated according to GuacaMol. (Brown et al., 2019) These include validity, uniqueness and novelty (with PROTAC-DB
as reference), where the latter two do not take stereochemistry into consideration. The highest Tanimoto score to the query
PROTAC is listed.

Several metrics evaluating the 3D geometry are reported: the average Chamfer distance (CD) to the reference crystal
structure linker, average root-mean-square deviation (RMSD) for the anchor and warhead fragments for all constrained
embedded conformers (it is zero for the DiffLinker output by design) and the similarity score SCRDKit (Landrum et al.,
2006) to the crystal structure PROTAC assessing topological and chemical similarity. The average CD is of importance as it
demonstrates the ability to design linkers of a given shape while the RMSD is hugely impacted by the choice of method
for the constrained embedding and thus less insightful. Additionally, a custom shape novelty (SN) score is introduced, for
which the Chamfer distance to the crystal structure linker (inverse min-max scaled) is multiplied by the Tanimoto diversity
(1-similarity) score. The average SN captures our main goal of generating topologically similar, but chemically diverse
linkers. The torsion energy (Etor) determined with OpenBabel (O’Boyle et al., 2011) for the whole molecule and the
number of clashes with the protein are reported. In accordance with DiffLinker, the ligand clashes with the protein if the
distance between a given pair of heavy atoms is bigger than their combined Van der Waals radius.

In addition, properties of particular relevance to the PROTAC drug modality are reported. These include average number
of rings, average number of rotational bonds and fraction of branched linkers. The latter two are properties directly
optimized for with ShapeLinker and Link-INVENT and these metrics thus further reflect the optimization capability. To
assess chemical plausibility of the linker fragment in the context of drug discovery, the average quantitative estimate of
drug-likeness (QED) (Bickerton et al., 2012), the average SA score (Ertl & Schuffenhauer, 2009) and the fraction passing
the 2D filters described in Igashov et al. (2022) are computed. These include the pan assay interference compounds (PAINS)
filter (Baell & Holloway, 2010) and a ring aromaticity (RA) filter that ensures rings are either fully aliphatic or aromatic.
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G. Additional results
G.1. In-depth evaluation

This section includes all calculated metrics (cf. Appendix F) both averaged over all examined structures as well as
individually.

Table G.2. Chamfer distances between the surface-aligned generated extended linkers and the respective crystal structure pose. To find the
best pose, 50 conformers were generated for each linker using RDKit. These results demonstrate the ability of the model to optimize for
shape alignment during RL, which was only applied to the new method but not to the baseline Link-INVENT version.

Chamfer distance

Method avg ↓ < 3.5 [%] ↑ < 2.0 [%] ↑ < 1.0 [%] ↑

all Link-INVENT 4.44 35.83 8.41 0.18
ShapeLinker 2.19 88.81 53.93 2.9

5T35 Link-INVENT 2.16 97.67 41.14 1.25
ShapeLinker 1.43 99.53 90.33 13.92

7ZNT Link-INVENT 5.29 23.19 3.16 0.02
ShapeLinker 1.47 99.57 87.76 12.18

6HAY Link-INVENT 5.74 15.71 0.92 0.00
ShapeLinker 2.16 98.16 40.84 0.00

6HAX Link-INVENT 3.91 39.67 5.59 0.00
ShapeLinker 1.79 99.73 76.44 0.08

7S4E Link-INVENT 4.44 30.38 2.77 0.02
ShapeLinker 1.58 99.66 90.14 1.14

6BN7 Link-INVENT 5.08 2.93 0.00 0.00
ShapeLinker 5.12 1.78 0.00 0.00

6BOY Link-INVENT 6.16 9.46 0.34 0.00
ShapeLinker 2.51 97.03 10.11 0.00

7JTP Link-INVENT 5.45 7.13 0.07 0.00
ShapeLinker 2.10 94.30 46.36 0.13

7Q2J Link-INVENT 2.99 69.02 23.71 0.48
ShapeLinker 1.79 99.11 72.20 1.66

7JTO Link-INVENT 3.56 57.12 4.23 0.00
ShapeLinker 2.24 99.24 24.69 0.00
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Table G.3. Performance metrics evaluating the generative properties of the various methods. Novelty references PROTAC-DB (Weng
et al., 2023) while maximum Tanimoto similarity (max Tanimoto) observed relates to the reference linker found in the crystal structure.
The first group of rows corresponds to the metrics assessed across all investigated systems.

Method Validity [%] Uniqueness [%] Novelty [%] max Tanimoto ↑
al

l Link-INVENT 91.65 97.39 99.94 1.00
DiffLinker 70.81 37.85 99.94 1.00

ShapeLinker 93.10 95.47 99.94 0.91

5T
35

Link-INVENT 94.46 95.74 100.00 0.19
DiffLinker 47.40 79.24 100.00 1.00

ShapeLinker 92.68 92.97 100.00 0.38

7Z
N

T Link-INVENT 92.54 98.14 100.00 0.14
DiffLinker 76.84 7.11 100.00 1.00

ShapeLinker 93.12 88.38 100.00 0.25

6H
A

Y Link-INVENT 84.52 96.99 100.00 0.15
DiffLinker 86.38 28.13 99.90 1.00

ShapeLinker 94.62 95.46 99.98 0.33

6H
A

X Link-INVENT 95.14 94.64 99.93 1.00
DiffLinker 86.46 70.62 99.96 1.00

ShapeLinker 95.34 95.91 100.00 0.42

7S
4E

Link-INVENT 95.86 98.5 100.00 0.67
DiffLinker 77.96 64.83 99.91 1.00

ShapeLinker 93.14 98.37 100.00 0.91

7J
T

P Link-INVENT 89.52 97.97 100.00 0.08
DiffLinker 98.02 3.92 99.44 1.00

ShapeLinker 91.98 95.93 100.00 0.56

7Q
2J

Link-INVENT 91.28 97.83 100.00 0.41
DiffLinker 93.32 33.82 99.93 1.00

ShapeLinker 94.04 98.6 100.00 0.51

7J
TO

Link-INVENT 89.88 99.53 100.00 0.33
DiffLinker 0.06 100.00 100.00 0.63

ShapeLinker 89.90 98.64 100.00 0.5
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Torsion energies are in general higher than the respective crystal structures (see Table C.1) for all methods. On one hand,
this might be attributed to poses with high strain as a consequence of attempting to accommodate fixed ligand poses during
constrained embedding. On the other hand, more rigid linkers naturally result in molecules with higher torsional energy
compared to reference structures, which predominantly have alkyl chain linkers.

Table G.4. Performance metrics evaluating the ability to generate linkers that lead to molecules with a close geometry to the reference
(Chamfer distance (CD), RMSD and SCRDKit) as well as a good geometry in relation to the protein (# Clashes) and energetics (torsion
energy). The shape novelty (SN) score captures the ability to generate linkers with similar shape but new chemistry. The first metric
(Fail) reports the fraction that failed constrained embedding resulting n unique samples for which the rest of the metrics were calculated.
DiffLinkerCE refers to conformers obtained by constrained embedding (deduplicated based on SMILES) while DiffLinkerori refers to the
generated poses with unique conformations but replicate SMILES. The first group of rows corresponds to the metrics assessed across all
investigated systems.(anc = anchor, wrh = warhead)

RMSD ↓

Method Failed [%] ↓ n SN ↑ CD ↓ anc wrh SCRDKit ↑ # Clashes ↓ Etor [ kcal
mol ] ↓

al
l

Link-INVENT 27.88 20,967 0.82 5.02 0.56 0.68 0.71 14 69.19
DiffLinkerCE 3.63 7,936 0.87 1.96 0.37 0.53 0.82 11 58.24
DiffLinkerori 0.00 25,151 0.67 1.44 - - 0.94 13 60.34

ShapeLinker 21.45 14,769 0.9 2.64 0.47 0.65 0.77 12 65.62

5T
35

Link-INVENT 13.79 1,550 0.89 3.78 1.29 0.98 0.63 14 76.74
DiffLinkerCE 1.43 1,585 0.86 1.69 0.46 0.51 0.80 10 59.93
DiffLinkerori 0.00 2,095 0.86 1.57 - - 0.94 11 61.31

ShapeLinker 4.80 3,448 0.90 3.18 0.69 0.93 0.71 11 69.95

7Z
N

T

Link-INVENT 54.15 1,944 0.81 7.40 0.47 0.83 0.69 10 73.45
DiffLinkerCE 1.97 199 0.71 4.18 0.47 0.49 0.81 9 60.72
DiffLinkerori 0.00 3,579 0.36 1.91 - - 0.94 10 51.52

ShapeLinker 17.00 942 0.89 3.61 0.43 0.86 0.75 9 75.82

6H
A

Y

Link-INVENT 0.81 3,432 0.84 6.11 0.31 0.42 0.77 12 80.97
DiffLinkerCE 2.28 1,028 0.87 1.53 0.30 0.41 0.86 10 56.12
DiffLinkerori 0.00 4,131 0.83 1.53 - - 0.95 11 50.77

ShapeLinker 6.56 3,917 0.94 1.73 0.31 0.43 0.84 11 59.2

6H
A

X

Link-INVENT 0.54 4,051 0.77 5.05 0.34 0.62 0.74 10 61.91
DiffLinkerCE 2.78 1,927 0.89 2.74 0.33 0.51 0.81 9 58.03
DiffLinkerori 0.00 3,116 0.87 2.31 - - 0.91 6 55.79

ShapeLinker 7.17 1,889 0.89 3 0.33 0.51 0.81 9 56.44

7S
4E

Link-INVENT 0.24 3,792 0.74 6.21 0.36 0.61 0.73 12 56.59
DiffLinkerCE 2.23 1,884 0.91 1.85 0.35 0.69 0.8 11 53.31
DiffLinkerori 0.00 3,197 0.88 1.48 - - 0.94 15 48.22

ShapeLinker 38.45 586 0.87 2.17 0.35 0.59 0.81 11 56.88

7J
T

P

Link-INVENT 98.8 49 0.85 5.77 1 0.67 0.68 37 89.17
DiffLinkerCE 59.12 65 0.91 0.86 0.45 0.48 0.83 19 90.75
DiffLinkerori 0.00 4,741 0.4 0.59 - - 0.98 16 85.90

ShapeLinker 96.44 34 0.89 2.35 0.76 0.5 0.76 23 100.89

7Q
2J

Link-INVENT 7.44 3,558 0.88 3.87 0.91 0.92 0.65 23 68.52
DiffLinkerCE 4.30 1,245 0.79 1.32 0.39 0.42 0.84 13 63.54
DiffLinkerori 0.00 4,289 0.70 1.17 - - 0.94 22 60.56

ShapeLinker 20.60 1,950 0.88 1.57 0.55 0.52 0.77 17 68.84

7J
TO

Link-INVENT 31.44 2,591 0.89 2.34 0.63 0.62 0.70 17 76.25
DiffLinkerCE 0.00 3 0.66 2.31 0.41 0.5 0.77 12 66.51
DiffLinkerori 0.00 3 0.66 2.22 - - 0.88 20 66.39

ShapeLinker 42.03 2,003 0.84 3.84 0.52 0.74 0.74 14 73.33
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Table G.5. Performance metrics assessing the drug-likeness of the generated molecules and the chemical suitability specifically to the
class of PROTAC drugs. All metrics focus on the linker fragment only, except for the 2D PAINS filter, which refers to the full PROTAC
in order to identify potentially problematic new connections. The first group of rows corresponds to the metrics assessed across all
investigated systems.

Method n QED ↑ SA ↓ 2D Filters [%] ↑ # Rings ↑ # ROT ↓ Branched [%] ↓

al
l Link-INVENT 36,660 0.66 2.98 92.83 1.98 3.27 12.06

DiffLinker 28,322 0.5 2.55 94.32 0.32 2.60 9.66

ShapeLinker 37,241 0.51 3.74 76.51 0.91 1.67 8.64

5T
35

Link-INVENT 4,723 0.52 4.12 96.99 1.64 1.68 19.65
DiffLinker 2,370 0.53 2.69 94.56 0.31 4.47 15.74

ShapeLinker 4,634 0.57 3.13 93.7 1.03 2.56 1.77

7Z
N

T Link-INVENT 4,627 0.71 2.46 95.35 1.79 4.70 2.46
DiffLinker 3,842 0.47 1.68 93.49 0.03 2.76 3.62

ShapeLinker 4,656 0.44 4.15 55.84 0.99 1.07 1.91

6H
A

Y Link-INVENT 4,226 0.73 3.06 89.99 3.03 3.53 7.76
DiffLinker 4,319 0.52 2.31 98.43 0.15 3.79 7.73

ShapeLinker 4,731 0.62 2.92 98.69 1.04 2.14 10.80

6H
A

X Link-INVENT 4,757 0.73 2.22 93.17 2.08 2.68 8.62
DiffLinker 4,323 0.52 3.06 84.50 0.94 1.74 16.59

ShapeLinker 4,767 0.52 3.85 77.43 1.08 0.75 4.64

7S
4E

Link-INVENT 4,793 0.71 3.00 87.54 2.08 3.99 6.36
DiffLinker 3,898 0.56 2.77 89.66 0.65 3.54 11.54

ShapeLinker 4,657 0.49 4.17 39.96 0.88 1.12 7.00

7J
T

P Link-INVENT 4,476 0.73 2.77 96.49 1.98 2.72 28.42
DiffLinker 4,901 0.41 2.79 99.9 0.02 0.83 6.16

ShapeLinker 4,599 0.40 4.54 68.82 0.44 1.59 9.98

7Q
2J

Link-INVENT 4,564 0.64 3.27 93.16 1.48 2.73 11.77
DiffLinker 4,666 0.5 2.54 98.18 0.19 2.32 9.00

ShapeLinker 4,702 0.50 3.84 88.88 0.61 1.91 27.86

7J
TO

Link-INVENT 4,494 0.53 2.93 89.79 1.84 4.18 11.77
DiffLinker 3 0.46 2.50 100.00 0.33 8.00 33.33

ShapeLinker 4,495 0.57 3.3 88.68 1.18 2.25 4.85
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To assess the differences in the poses directly obtained from the method and the constrained embedded poses, the Chamfer
distances between each pair was calculated and a summary is listed in Table G.6. Overall, the poses generated with
DiffLinker and the shape-aligned poses from ShapeLinker are equally comparable to the constrained embedded poses, while
Link-INVENT results in substantially larger Chamfer distances.

Table G.6. Aligned chamfer distances between the linker conformation resulting from either method and the respective poses obtained by
constrained embedding. The structure used for chamfer distance calculation refers to the surface aligned linker for our work, while for
DiffLinker, the predicted pose is used.

Chamfer distance

Method avg ↓ < 3.5 [%] ↑ < 2.0 [%] ↑ < 1.0 [%] ↑

all
Link-INVENT 2.25 85.48 51.57 11.6
DiffLinker 1.23 97.35 92.20 50.56

ShapeLinker 1.30 97.08 88.16 42.56

5T35
Link-INVENT 1.78 92.25 69.72 22.98
DiffLinker 2.04 87.07 71.8 22.21

ShapeLinker 2.03 87.71 60.64 15.71

7ZNT
Link-INVENT 2.06 86.99 59.62 19.03
DiffLinker 0.78 100.00 100.00 88.94

ShapeLinker 0.87 100.00 99.36 73.14

6HAY
Link-INVENT 2.79 74.30 32.40 7.52
DiffLinker 1.02 100.00 98.83 53.6

ShapeLinker 1.10 99.97 96.43 48.86

6HAX
Link-INVENT 2.09 89.26 56.3 12.94
DiffLinker 0.94 99.84 98.34 65.75

ShapeLinker 0.95 100.00 98.78 65.17

7S4E
Link-INVENT 2.56 81.22 39.71 5.15
DiffLinker 1.23 100.00 93.42 37.26

ShapeLinker 1.05 100.00 97.95 53.24

7JTP
Link-INVENT 1.54 100.00 81.25 22.92
DiffLinker 0.42 100.00 100.00 100.00

ShapeLinker 0.99 100.00 100.00 61.76

7Q2J
Link-INVENT 1.85 93.07 67.32 14.08
DiffLinker 0.92 100.00 100.00 72.29

ShapeLinker 1.14 100.00 97.37 38.85

7JTO
Link-INVENT 2.35 84.78 47.89 8.30
DiffLinker 3.85 33.33 0.00 0.00

ShapeLinker 1.22 99.65 92.01 40.79
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G.2. Visualization of selected generated examples

Figure G.9. Selected examples of samples generated by ShapeLinker (dark blue) compared to their respective crystal structure PROTAC
(orange). The upper images show the 2D structures with highlighted linker fragment the middle row shows the aligned surfaces of the
reference (orange) and generated PROTAC (blue) and the lower images show the 3D structures binding the E3 ligase (pink) and the POI
(light blue). Examples from left to right: 6HAX, 7S4E, 7JTO, 7JTP.

Samples generated by Link-INVENT (cf. Figure G.10) comparable to those shown for ShapeLinker do not coincide as well
with the reference shape (e.g. example for 7S4E) or clash noticeably with the protein (example for 7JTP). On the other hand,
comparable structures produced by DiffLinker (cf. Figure G.11) exhibit similar shape but contain a high number of rotatable
bonds. Both samples by Link-INVENT and DiffLinker also exhibit challenges with regard to synthesizability, stability and
reactivity.



ShapeLinker: Geometry-conditioned linker design

Figure G.10. Selected examples of samples generated by Link-INVENT (green) compared to their respective crystal structure PROTAC
(orange). The upper images show the 2D structures with highlighted linker fragment the middle row shows the aligned surfaces of the
reference (orange) and generated PROTAC (blue) and the lower images show the 3D structures binding the E3 ligase (pink) and the POI
(light blue). Examples from left to right: upper row: 5T35, 7S4E, 7JTO, 7JTP, lower row: 6HAX, 7S4E, 7JTO, 7JTP.
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Figure G.11. Selected examples of samples generated by DiffLinker (pink) compared to their respective crystal structure PROTAC
(orange). The upper images show the 2D structures with highlighted linker fragment the middle row shows the aligned surfaces of the
reference (orange) and generated PROTAC (blue) and the lower images show the 3D structures binding the E3 ligase (pink) and the POI
(light blue). Examples from left to right: upper row: 5T35, 7S4E, 7JTO, 7JTP, lower row: 6HAX, 7S4E, 7JTO, 7JTP.
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G.3. Results for 6BOY and 6BN7

6BN7 and 6BOY were excluded from the final analysis as none of the methods performed well on them. The reference
linkers of these two PROTACs are, together with 7JTO, the longest of the selected systems and also exhibit challenging
poses as the anchor and warhead are in such an angle to each other that a suitable linker is required to form a bend.
DiffLinker achieved a mere 0.1% validity for 6BN7 and 0% for 6BOY, while both autoregressive methods did not result in
any productive poses for these two systems with constrained embedding (the three valid DiffLinker samples for 6BN7 did
yield productive poses).

Table G.7. Performance metrics evaluating the generative properties of the various methods. Novelty references PROTAC-DB, while
recovery and maximum Tanimoto score (max Tanimoto) observed relates to the reference linker found in the crystal structure. (Weng
et al., 2023)

Method Validity [%] Uniqueness [%] Novelty [%] max Tanimoto ↑

6B
N

7 Link-INVENT 90.86 84.55 100.00 0.34
DiffLinker 0.06 100.00 100.00 0.28

ShapeLinker 93.36 93.32 100.00 0.43

6B
O

Y Link-INVENT 83.28 99.93 100.00 0.18
DiffLinker 0.00 - - -

ShapeLinker 94.98 96.88 100.00 0.93

Table G.8. Performance metrics assessing the drug-likeness of the generated molecules and the chemical suitability specifically to the
class of PROTAC drugs. All metrics reference the linker fragment only, except for the PAINS filter within the 2D Filters, which is used to
identify problematic new connections.

Method n QED ↑ SA ↓ 2D Filters [%] ↑ # Rings ↑ # ROT ↓ Branched [%] ↓

6B
N

7 Link-INVENT 4,543 0.67 2.05 96.65 1.52 2.73 18.51
DiffLinker 3 0.66 3.1 80.00 0.80 6.20 20.00

ShapeLinker 4,668 0.56 3.17 98.37 1.18 1.82 15.55

6B
O

Y Link-INVENT 4,164 0.4 2.83 92.12 2.84 7.40 19.6
DiffLinker 0 - - - - - -

ShapeLinker 4,749 0.67 2.75 94.55 1.25 3 5.18

Table G.9. Performance metrics evaluating the ability to generate linkers that lead to molecules with a geometry close to the reference
(RMSD, chamfer distance (CD) and SCRDKit) as well as a good geometry in relation to the protein (# Clashes) and energetics (torsion
energy). The shape novelty (SN) score captures the ability to generate linkers with similar shape but new chemistry. The first metric (Fail)
reports the fraction that failed constrained embedding, resulting in n unique samples for which the rest of the metrics were calculated.
DiffLinkerCE refers to conformers obtained by constrained embedding (deduplicated based on SMILES), while DiffLinkerori refers to the
generated poses with unique conformations but replicate SMILES. (anc = anchor, wrh = warhead)

RMSD ↓

Method Fail [%] ↓ n anc wrh CD ↓ SCRDKit ↑ # Clashes ↓ Etor [ kcal
mol ] ↓ SN ↑

6B
N

7

Link-INVENT 100.00 0 - - - - - - -
DiffLinkerCE 0.00 3 0.57 1.06 2.4 0.61 11 58.13 0.79
DiffLinkerori 0.00 3 - - 1.99 0.82 24 33.13 0.81

ShapeLinker 100.00 0 - - - - - - -


