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ABSTRACT

Molecular modeling at the quantum level requires choosing a parameteriza-
tion of the wavefunction that both respects the required particle symmetries,
and is scalable to systems of many particles. For the simulation of fermions,
valid parameterizations must be antisymmetric with respect to the exchange
of particles. Typically, antisymmetry is enforced by leveraging the anti-
symmetry of determinants with respect to the exchange of matrix rows,
but this involves computing a full determinant each time the wavefunc-
tion is evaluated. Instead, we introduce a new antisymmetrization layer
derived from sorting, the sortlet, which scales as O(N log N) with regards
to the number of particles — in contrast to O(N?) for the determinant. We
show numerically that applying this anti-symmeterization layer on top of
an attention based neural-network backbone yields a flexible wavefunction
parameterization capable of reaching chemical accuracy when approximating
the ground state of first-row atoms and small molecules.

1 INTRODUCTION

1.1 OVERVIEW

Quantum Monte Carlo (QMC) methods are a class of algorithm that aim to model the
wavefunction for a system of quantum particles, typically an atom or molecule. In its simplest
form, Variational Quantum Monte Carlo (VQMC) is a QMC method that aims to estimate
the lowest-energy state of a system via the variational principle. This is done by minimizing
the Rayleigh quotient of the system’s Hamiltonian over a parametric family of wavefunctions
— commonly referred to as the wavefunction ansatz. Variational principles from functional
analysis yield that under mild assumptions, the minimizer approaches the true ground state
wavefunction as the parametric family increases in expressiveness.

The first method resembling modern VQMC was proposed by London and Heilter in the
late 1920s [9], where they attempted to calculate the ground state of the diatomic hydrogen
molecule. Fermi and then later Kalos [21] converted the problem into a Monte Carlo Sampling
one. The advent of the practical Slater determinant ansatz in the 1950s and the growth
in available computational power since has allowed QMC algorithms to become one of the
benchmark frameworks for deriving the properties of chemical systems in silico. Often, QMC
is used to benchmark other non-sampling methods, such as Coupled Cluster methods [2] and
Density Functional Theory (DFT).

Advances in automatic differentiation complemented by empirical ML experience have
recently produced new types of wavefunction ansatz, assembled around deep neural network
backbones. Neural networks are particularly attractive in this setting, due to their favourable
scalability as dimension increases. Electron configuration space, R3Y, grows exponentially
in the number of electrons IV, rendering this ability critical. Hybrid methods, seeking to
combine Slater determinants with neural orbitals or Jastrow factors, have recently shown
promise on systems comprised of a large number of particles — even when relatively few Slater
determinants are employed [34]. Their performance is especially notable when contrasted
against existing Hartree-Fock implementations with an equivalent number of determinants.

Despite these recent successes, there is a good reason to look beyond Slater determinants
when designing ansatz — determinants are relatively computationally expensive. Evaluating a
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determinant-based ansatz scales O(N?) in the number of electrons, devolving to O(N*) when
evaluating the local energy (due to the Laplacian). Estimating the energy is required at every
step of nearly every QMC algorithm (variational or otherwise), so this quickly becomes a
bottleneck if we look to scale QMC beyond small molecules to problems of practical interest,
where N could be on the order of thousands or even tens of thousands of electrons.

1.2 OUur CONTRIBUTION

Seeking to reduce this complexity, we intro-
duce a novel antisymmetrization operation, The Sortlet Ansatz
the sortlet, and apply it within the VQMC -l
framework to model ground states of var- P S
ious atoms and molecules. Crucially, our 4 - N
operation enjoys an improved O(N log N) / 7 N \
complexity, which comes from replacing the ! / ) \
determinant with a cheaper alternative: sort- ® . O | \
ing. Sorting is known to be universal for sys- | . / r
tems of 1d electrons [40; 20], and has been \ O @
alluded to previously as a method for de- ' .- /
Lo

signing ansatz (see Appendix B of [34] and
[24]). Our contribution is twofold — we show -
both that a natural extension of sorting for o @
electrons in 3d space exists, as well as that
this ansatz can achieve chemical accuracy, at
least on small systems, when paired with a i

@ o

sufficiently flexible functional backbone such
as a modern attention based neural network.

Prior work [31; 1] explored the usage of Van- | \ /
dermonde determinants which scale O(N?), To T
but both were unable to achieve the high ~L

degree of accuracy required for applications

@ o @
in quantum chemistry. In Section 5.2 we
present a topological obstruction to a sin- /
gle continuous Vandermonde determinant
learning the exact ground state, based on /
- O @ @

the known geometry of the wavefunction’s
nodal surface.

The construction of a universal, sub-cubic-

time continuous representation of ground-

state wavefunctions remains an open prob-

lem. However, we show that, like the van-

dermonde determinant, our sortlet can rep- U = o(ma) (._ O) (O_ .) (._ .)
resent the ground state exactly if we allow

discontinuous parameterizationg, We also Figure 1: Geometric illustration of the Sort-
highlight a key benefit of the lower scaling let ansatz construction given in Equation (5).
complexity of the sortlet — allowing more Here 7, is the permutation that sorts the out-
terms in the wavefunction ansatz with the put of a(r).

same (asymptotic) computational budget.

Classical QMC techniques have relied on

larger expansions to help mitigate topological inconsistencies between the parametric ansatz
and the true ground state [3; 5]. In the context of VQMC, this might partially explain why
our method is able to achieve higher accuracy than previous Vandermonde constructions
[31; 1].

Numerically, we demonstrate that combining our sortlet antisymmetrization layer with the
PsiFormer [41] attention backbone is sufficient to achieve chemical accuracy on a handful
of atoms and small molecules, as well as reproduce the potential energy surface of Hy
rectangles as one bond length is scanned. While wavefunction ansatz built from alternatives
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to determinants have existed in the QMC literature for some time, to the best of our
knowledge, this is the first work to demonstrate chemical accuracy with something other
than a determinant — even if only on small molecular systems at the current stage. Flexibility
of the attention neural network backbone of [41] offers another partial explanation for why
our ansatz has proven more accurate than other full determinant alternatives in the past.
That said, at the current state our results are far from competitive with those of neural
network ansatz with full determinants [34; 38; 41]. In fairness to our approach, the results
presented in that body of work are the outcome of a long series of incremental improvements
— far beyond the scope of the initial proof-of-concept described in this paper. Our accuracy
on small systems, we believe, is a evidence that the sortlet ansatz is a promising direction
for further study, and that with similar investments in software engineering, our method
could become competitive on more difficult benchmarks.

1.3 'WHERE DID THE DETERMINANTS COME FROM ANYWAY 7

Determinants appear in nearly all QMC ansatz as a simple mathematical way to satisfy
the generalized Pauli Exclusion Principle: any valid wavefunction must be antisymmetric
under exchange (transposition) of any two electrons with the same spin. Intuitively, this
follows from the idea that quantum particles such as electrons are indistinguishable, so
changing their order (which has no physical meaning) cannot change the state of the system.
Explaining the appearance of the -1 factor is more involved — representing the fundamental
difference between Fermions and Bosons (see [17]) — but for our purposes, we just assume
any valid wavefunction for Fermions needs to respect the antisymmetry equation:

w(rl, - 77«}477«%’... 77"3"" ,rj.,---) = —U(r], . 77,}477,%,... ,rj,~~- 77’37"‘) (AS)
Alternation of the determinant under the exchange of any two rows or columns has been
conventionally employed to satisfy this property. Originally, the Slater determinants typically
consisted of parameterizing a matrix function ® : R3V — RV¥*N via a collection of N
single electron orbitals ®;; = ¢;(r;), each of which was only a function of a single ;. Upon
interchanging the electron positions, the resulting matrix <I>§j is exactly ®;; with two rows
swapped, flipping the sign of ¥ := det[®;,].

Though this approach is undeniably tidy, it suffers limited expressive power due to its inability
to accurately model electronic correlation, which involves the interactions of all N-particles at
a time rather than treating particles as mean-field orbitals. Common remedies include either
the addition of parametric Jastrow factors which are multiplicative against the determinant,
i.e U= e/ det[®;;(r)], or backflow transformations [10], which makes each orbital ¢;(q;)
dependent on all electron positions through so called pseudo-coordinates q; = r; + glr;.
Modern neural network approaches such as FermiNet, PsiFormer or PauliNet can be seen as
a more flexible generalization of backflow, since they opt to parameterize the matrix ®;; as
the output of a deep neural network, but in a way that the ®;; depend symmetrically on
all electron positions except for r;, which is allowed non-symmetric influence. Filling out
®,; this way preserves the antisymmetry of the Slater determinant, and provides sufficient
flexibility to capture electronic correlation. Large neural networks and powerful parallel
accelerators have allowed this approach to scale to systems of around 40 electrons with
state-of-the-art results [41].

2 VARIATIONAL QUANTUM MONTE CARLO

The following is a brief summary of the core aspects VQMC, but it is by no means exhaustive.
Those experienced with the framework will likely find it redundant, and those completely
new will probably find it incomplete. For the latter group, we recommend either [4] or [25],
which provide much more exhaustive treatments of the relevant background.

2.1 THE BORN-OPPENHEIMER HAMILTONIAN

While our wavefunction ansatz is general enough to describe any system of Fermions, in
this paper we will focus on quantum chemical systems comprised of electrons. Similar to
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[34; 38] we will work in the Born-Oppenheimer approximation, where the molecular nuclei
are treated as fixed, and the Hamiltonian governing the forces acting on the electrons is
given by

r;: electron positions

- AYA, . o
H = R;: nuclei positions
Z\H—G\ ;|7‘—RI| Z|RI—RJ|

I>J Zr: nuclear charges

(BO)

The terms inside the square brackets are often written simply as V(r), since they represent
the potential energy of the electrons. Analogously, —V? is the kinetic energy operator, and
interpreted as the squared momentum operator p = iV, since V2 = div(V) = (iV,iV). The
ground state ¥, for a given system H,is nothing more than the eigenfunction corresponding
to the smallest eigenvalue E; of H.

2.2 THE VARIATIONAL PRINCIPLE

The variational aspect of VQMC comes from the following proposition:

Proposition 1. Variational Principle

Let Uy be minimum eigenvector of the Hermitian operator FI, that is, the eigenfunction
associated to the smallest eigenvalue Ey. Then

(wifw)

O (VAR)

¥, = argmin
o

The term inside argmin is often called the Rayleigh quotient and so denoted by R(¥). Proving
this proposition amounts to hardly more than a little bookkeeping, see Appendix A.1 The
variational principle comes in very handy, providing a straightforward technique to solve
for the ground state ¥; — simply minimize the Rayleigh R quotient over all admissible W.
Practically, however, there are a few complications, which we’ll discuss next.

2.3 THE LOCAL ENERGY AND ITS VANISHING VARIANCE

The variational energy E = R(WUy), for any parameteric configuration of 6 can in principle
be computed from the inner product in (VAR). Since we are limited to approximating the
energy with a finite average in practice, this is suboptimal — the variance will be prohibitive,
and we will need a tremendous number of samples to achieve a reasonable estimate. A much
better approach is to instead define the local energy (at any point z € R3V )

(W] (x)

ElOC(\IIG)(m) = \Ifg(fﬂ)

(1)
it is easy to then see that
Eacrv\I/g[EIOC(x)] =L

where z ~ U2 is taken to mean that the z are drawn from the normalized distribution,
vy

(Wo|We) "

quotient has two immediate advantages

Reformulating the energy approximation in terms of Ej,. instead of the Rayleigh

1. Since we are sampling from W3, we avoid regions of low importance, significantly
reducing the variance of our estimator.

2. The local energy is invariant to rescaling by any constant, so normalizing the wave-
function ¥y is unnecessary. Combined with the ability of MCMC to (asymptotically)
draw samples from the un-normalized density ¥%, we can avoid estimating the
partition constant altogether.

VQMC also benefits from a third seemingly magical property: as we update 6 to minimize
E, the variance vanishes. To see why, consider the following:
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Proposition 1. Let ¥y be the eigenfunction associated to the ground state energy Eq (as
before), then

Eloe(¥)(z) = B,  VzeR3W (2)
i.e the local energy is constant at optimality. Assuming that Yo — W1 as we optimize 0,

the variance of (1) decreases, meaning our estimates of the energy and its gradients improve
as U approaches the ground state.

Proof. Equation (2) is a direct consequence of the variational principle; ¥y is an eigenvector
of H, thus HV, = F1V, which yields

_HU(z) By (2)

Eloc(\:[/l)(l')* 1111(.23) - \I’l(.’II) :El

2.4 DERIVATIVES OF THE ENERGY FUNCTIONAL

Performing any sort of first order optimization over the parameters of our ansatz Wy to
minimize its energy, denoted E(6), will also require its gradients. Following the preceding
section, we will estimate F(#) via the following Monte-Carlo estimate

N

Any MCMC method (such as Random-Walk Metropolis Hastings for example) can be used
to draw the x;, which we will detail further in the next section. Approximating the energy
via (3), while superior for the reasons laid out above, comes at the price of making the
computation of its gradients more involved than naively applying automatic differentiation
to each term in the finite sum. Differentiating %—g correctly requires also accounting for the
influence of the parameters on the distribution U2 which the x; are drawn from. Like in
many other other works [34; 41; 4; 1; 38; 13], we use the gradient estimator

n

VE() =2 Zn: Froc(x;)V log Wg(z;) — 2 (711 > [Eloc(xi)]> Vlog Wy (;) (4)

3=

where z; ~ ¥% are drawn using MHMC, but we offer a full derivation in Appendix A.2.
Notably, this can be seen as an instance of the REINFORCE estimator widely used in
reinforcement learning [16].

3 THE SORTLET ANSATZ

3.1 THE SORTLET ANSATZ

We are ready to define what we coin the Sortlet Ansatz. First, let’s define what we call a
sortlet, denoted by ¥,:
N
Vo (r) = o(ma) [ ] (@ira(r) — cu(r)) (5)
i=1
where
o a: RV*3 5 R¥ permutation equivariant, and reindexed such that a; < a1 :
1<i< N -—1,and ayt; = ap. This is the neural network backbone.

e 7, is the permutation on N letters which re-indexes (sorts) the tuple a(r)

e o(m,) is the parity, equivalently number of transpositions in 7, mod 2.
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Analogously to other VQMC ansatz, we will employ an expansion of sortlets to serve as our
sortlet ansatz in VQMC. Specifically, our W is expanded as

K
U = exp[—Jg] Z Ve, Zefﬁ 225 |rj—Ril (6)

=1 I

where just as in [38; 41], (with p; returning the spin of electron ) the simple Jastrow factor
that we decided to employ is:

ERDY

1<j,pi=p;j

Pa

B n—rl "

|
N | =

b1

1<j,pi7#pP;

As we will show in Section 3.2, with discontinuous a we can exactly represent the ground
state wavefunction with a single sortlet.

Complexity: The sortlet for a given « can be computed in time O(N log N). Taking
K = O(N) and with the assumption a(r) can be evaluated in time O(N?), we have that ¥
can be evaluated in time O(N?log N), significantly faster than a determinant.

3.2 PROPERTIES OF THE SORTLET ANSATZ

Proposition 2. The Sortlet Ansatz satisfies the generalized Pauli exclusion principle — it is
anti-symmetric to the exchange of electrons with the same spin.

Proof. The product Hfil [avir1 — ;] is invariant by design since the terms are always sorted
before taking the pairwise difference, negating any permutation. o(m, ) flips sign upon each
odd permutation, since ¢ is multiplicative, and undoing the permutation then sorting the
original array is equivalent to sorting the permutated array, i.e if 7 is any transposition of
two electrons with the same spin, WQ(T)T_l = Ta(rr) and so

0(Ta(r) = 0(Ta)o(r71) = —0(a) (8)

since any transposition has parity —1. O

Note that to avoid over-constraining the ansatz by also making it anti-symmetric to transpo-
sition of opposite spin electrons — something the true wavefunction is not required to satisfy
— we use the same trick as in [41], attaching a spin +1 term to each input electron coordinate
r; as (r;, 1), which breaks equivariance of the output «(r) for those pairs.

O(N?) Ansatz O(N3) Ansatz
Exp. Sortlet Vandermonde Non-learned . -
Molecule Energy (Ours) [31] QMCJ33; 39] FermiNet [34]
Li -7.4780 -7.477(8) -7.4782 -7.4780 -7.4779
LiH -8.0705 -8.070(3) - -8.070 -8.7050
Be -14.6673 | -14.667(1) -14.6673 -14.6671 -14.6673
Li2 -14.9947 | -14.994(5) - -14.9555 -14.9947
B -24.6539 | -24.652(7) 24.5602 -24.6533 -24.6537
C -37.8450 -37.83(1) -37.3531 -37.8437 -37.8447
N -54.5892 -54.01(8) -53.1855 -54.5873 -54.5888
CH4 - -40.20(1) - -40.4416 -40.5140

Figure 2: Results from applying the Sortlet ansatz to a selection of atoms and small molecules.
Energy values are all given in Hartree (Ha) atomic units. Chemical accuracy is defined to be
within 1.5 mHa of the experimental values, green denotes values within this tolerance, red
outside. Uncertainty is included in the parenthesis around the last digit — see Appendix B.
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Proposition 3. FEach ¥, is continuously once-differentiable on R3Y, meaning %%’j 18

continuous for all i.

We defer the full proof to Appendix A.3.

4 NUMERICAL EXPERIMENTS

4.1 EVALUATION ON FIRST ROW ATOMS AND SMALL MOLECULES

Section 3.1 collects the results of running QMC with our Sortlet ansatz on the ground state
for a small collection of first row atoms and small molecules. We see that up to and including
Boron, we are able to recover the ground state experimental energy to chemical accuracy.
For Carbon and beyond, while we no longer achieve chemical accuracy, our method still
outperforms the previous O(N?) method of [31].

4.2 PERFORMANCE AS A FUNCTION OF SORTLETS ON BORON

In Figure 3a, we show an ablation study comparing performance in terms of absolute
difference to the empirical ground state values after 50,000 optimization steps, against the
number of sortlets on Boron. While all except one of the runs terminate at less than 20 mHa
to the ground state, we see that those with K > 16 reach a slightly lower error on average,
but achieve that value significantly faster than those with K < 16. Size of the network is
kept constant for all runs (with the exception of the linear output layer), the only variable
explored in this study is the number of terms K.

4.3 REPRODUCTION OF H, POTENTIAL ENERGY CURVE

In Figure 3b we reproduced the Hy experiment from [34], where the geometry of the Hy
rectangle was linearly adjusted by varying the bond length of the bottom two hydrogen atoms.
In agreement with FermiNet, we were able to reproduce the curve showing a maximum at
O = 90 deg, not a minimum like the benchmark Coupled Cluster calculations.

4.4 DIRECT COMPARISON TO VANDERMONDE ANSATZ

In Section 4.4 we directly compare training curves of vandermonde ansatz vs those of the
Sortlet ansatz with the same number of terms in their expansion. We see that even with
effectively more computational resources (since each term is O(N?)), the Vandermonde
ansatz is still unable to outperform the Sortlet.

LU R e | S s N (=1L B ——
—2.016 T ~
. _ - - - . -
0.08 N 25 —2018
- \\ 2,020
20.06 — 2 :
L"J 5202
<0.04 15 £ 2021
Eq A
0 —2.026 ® ©
0.02 —2.028 ) T
- o M CCSD(T) CBS.
9 86 ES 90 i3 9

10000 20000 30000 40000 © (degrees)
Training lteration

(a) Comparing the number of Sortlets K (color) against  (b) Reproduction of Hy potential en-
the error to the empirical ground state energy. ergy surface from the FermiNet pa-
per.

Figure 3: Boron Sortlet Ablation and Hy rectangle.
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Figure 4: Comparison of Vandermonde and Sortlet Ansatz

5 COMPARISON WITH OTHER PAIRWISE CONSTRUCTIONS AND
UNIVERSALITY

In this section, we show a weak form of universality of the sortlet and that of the Vandermonde
construction put forward in [1; 31]. We show that a slight modification of Theorem 2 in [31]
also yields universality for the sortlet, but similar to the argument in the Appendix of [34],
requires discontinuous functions. Theoretical universality so remains an open question, but
we finish by discussing the implications of the nodal structure on experimental results.

5.1 NON-SMOOTH UNIVERSALITY

A nearly identical construction to Theorem 2 in [31] recovers a similar type of universality
for the sortlet:

Proposition 4. For a given ground state wavefunction V¥, if we allow o to be discontinuous,
setting
(Y [ ()Y
oy =7 (r,j) ((N—l) (9)

yields that ¥, = W . Here 7*(r) is the permutation on N letters that maps r € R3N back to
the fundamental domain (see [7]), n*(r,j) € [1, N] is the index the jth electron maps to.

Proof. The proof is immediate from the definition of ¥,, in Equation (5)

¥ = o(x") [[[oess — ] = (") <NH ] W) -1 [ 35| Y

i=1 i=1
(10)
O

5.2 COMPARISON WITH THE VANDERMONDE ANSATZ

In [18; 1] and later [31], a similar type of pairwise antisymmetric ansatz was proposed, which

takes the form

Upair(r) = [ [ [05(ris {r}) = ¢5(rj. {})] (11)

i<j

where the second argument to ¢p is denoted as such to indicate the function is invariant to
permutations of the electron positions, except for r; (as our « has been assumed all along).
This expression is also equivalent to a Vandermonde matrix determinant (see Equation 1
[31]), which is why we refer to it simply as the Vandermonde Ansatz. Pang et al claim to
have proved this form is universal for ground states, but unfortunately a simple argument
shows this is not quite accurate. Ground states for small atoms (Li, Be) have been proven
to possess exactly two nodal domains [26] — open sets N' C R*Y where the wavefunction is
non-zero. So to represent them exactly, the ansatz must also have two nodal domains. Below
we prove that for ¢/ . this is not the case — regardless of the parameterization of ¢g, 1

/
pair
always has at least 4 nodal domains.
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Proposition 5. @[J'pair, as defined in (11) has N+ N*¥!, nodal domains. The ground state

is proven to have only 2 for Li, Be (see [5]) so this implies one Vandermonde determinant is
insufficient to accurately represent the ground state.

Proof. Let » € R3*N be an arbitrary configuration, and let 7 € S(NT) U S(N*) be a
permutation on either the spin up or spin down electrons. We claim then that r and =nr
must always lie in separate nodal domains. To see this, let (4,j) be any indices of two
electrons with the same spin who are transposed by m. Note that the product comprising
Yl i CONtains a pairwise term [¢p(ri, {7}) — ¢p(r;, {r})]. Without loss of generality, asume
¢p(ri,{r}) > ¢p(rj,{r}). But for # = mr we must have

[¢5(ri, {r}) — ¢B(rj, {r})] = —[oB(7:, {F}) — oB(7;,{7})] (12)
(because 7; = r; and 7; = r;, and ¢p is otherwise invariant to 7r). Applying the intermediate
value theorem (since ¢p is assumed continuous), it then follows for any path

V&) [0,1] —R¥Y  y(0)=r A(1)=7 (13)
connecting 7, # must satisfy [¢p(v(t)i, {v(t')}) — é(y({t');, {¥({t')})] = 0 for some ¢’ € (0,1).
Since Y = i< [9B(ri, {r}) — ¢B(rj,{r})], zero in any ¢p(ri, {r}) — ¢p(r;, {r}) zeros V.
Since 7 € S(NT) U S(N*+) was arbitrary, so there are exactly NT! + N+! nodal domains.

Remark: Since m was arbitrary, this also prohibits the sort of triple exchanges which in
the exact ground state, connect same sign regions and collapse the number of nodal cells
to 2 [27]. Additionally, although Beryllium is the largest system for which the two nodal
domain conjecture is proven, it’s frequently conjectured through the literature to be true
universally, again see [7; 27; 5]. It’s also known that 7* is not constant across nodal domains
as claimed in [31] — regions were 7* is constant are referred to as permutation domains, and
each nodal domain contains multiple permutation cells (see Figure 3 in [15]).

5.3 ADVANTAGES OF THE SORTLET ANSATZ AGAINST THE VANDERMONDE ANSATZ

To be clear, a single sortlet suffers from the same issue of too many nodal domains proven for
the Vandermonde determinant in Proposition 5. Nonetheless, a key advantage of the Sortlet
is that, due to the O(N log N) scaling of each term, we can use an expansion with a linear
number of sortlets, K = O(N), while retaining log-quadratic complexity O(N?log N). To
achieve the same scaling, a Vandermonde ansatz, would be limited to a logarithmic number
of terms. What does this mean practically? Increasing the number of terms is known to
be crucial in classical QMC methods, where thousands or even millions of terms can be
employed to refine the energy [3]. For Hartree-Fock wavefunctions, increasing the number of
terms is essential to reducing the number of nodal domains [27; 26; 5].

Learned neural QMC ansatz such as [34; 38] have mostly bucked this trend, opting to fix the
number of terms to a relatively small constant (K = 16), but increase network size instead.
While we are not able to match the flexibility of the determinant PsiFormer, which is likely
universal with a constant number of determinants, as seen in Figure 3a, mitigating the nodal
inaccuracy of our sortlet by increasing K does seem to increase the speed of convergence.

6 RELATED WORK

Neural Networks as representations for wavefunctions were applied to discrete quantum
systems in [6; 8; 28; 30; 24] and to continuous bosonic systems in [35]. However, the first
models considering fermionic continuous-space systems were DeepWF [18], Ferminet [34],
and Paulinet [19]. These approaches were furthered with the introduction of the Psiformer
model [42] and works that pushed the framework forward by fine-tuning the techniques and
devising new specialized architectures [13; 22; 23; 32] and training procedures [29]. Other
directions tried to construct architectures that are easy to sample [40; 43] by leveraging
normalizing flows, and meta-learning approaches where the wavefunction is conditioned on
the Hamiltonian to transfer to different systems [12; 36; 37; 11]. Sorting as a method of
guaranteeing antisymmetry was recently proposed in [40], but limited to the setting where
electron positions are restricted to one-dimension.
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