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Tracing Training Progress: Dynamic Influence Based Selection for
Active Learning
Anonymous Authors

ABSTRACT
Active learning (AL) aims to select highly informative data points
from an unlabeled dataset for annotation, mitigating the need for
extensive human labeling effort. However, classical AL methods
heavily rely on human expertise to design the sampling strategy,
inducing limited scalability and generalizability. Many efforts have
sought to address this limitation by directly connecting sample
selection with model performance improvement, typically through
influence function. Nevertheless, these approaches often ignore the
dynamic nature of model behavior during training optimization,
despite empirical evidence highlights the importance of dynamic
influence to track the sample contribution. This oversight can lead
to suboptimal selection, hindering the generalizability of model. In
this study, we explore the dynamic influence based data selection
strategy by tracing the impact of unlabeled instances on model
performance throughout the training process. Our theoretical anal-
yses suggest that selecting samples with higher projected gradients
along the accumulated optimization direction at each checkpoint
leads to improved performance. Furthermore, to capture a wider
range of training dynamics without incurring excessive computa-
tional or memory costs, we introduce an additional dynamic loss
term designed to encapsulate more generalized training progress
information. These insights are integrated into a universal and
task-agnostic AL framework termed Dynamic Influence Scoring
for Active Learning (DISAL). Comprehensive experiments across
various tasks have demonstrated that DISAL significantly surpasses
existing state-of-the-art AL methods, demonstrating its ability to
facilitate more efficient and effective learning in different domains.

CCS CONCEPTS
•Computingmethodologies→ Learning paradigms;Machine
learning approaches.

KEYWORDS
Active Learning, Dynamic Influence Estimation, Training Dynamics

1 INTRODUCTION
Active learning (AL) is a machine learning paradigm that focuses on
selecting more informative data points from an unlabeled dataset
for annotation [24]. By identifying an efficient training data subset,
AL has demonstrated to be an effective method for alleviating the
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Figure 1: The red and blue points represent the data samples
selected at Epoch 10 and 100, while employing the same
AL method with 10% selecting rate. Subsets selected from
different checkpoints tend to exhibit significant fluctuation.

bottleneck challenge of data annotation [1, 20], enabling faster iter-
ation in model development. Since current deep learning models are
data-hungry [18], particularly in the context of large foundation
models, where the quality of labeled data also significantly im-
pacts model performance [3, 40], actively selecting data has gained
increasing attention in recent years [33].

Existing AL approaches can be generally divided into two main
categories: uncertainty-based [9, 31] and feature distribution-based
[2, 27]. The former utilizes uncertainty estimation to identify hard-
to-learn samples, while the latter aims to understand the underlying
feature distribution and identify representative and diverse sam-
ples. Additionally, a variety of hybrid strategies have been proposed
to combine the above these two criteria for AL [4, 36, 39]. While
they define the state-of-the-art baselines, the design of these AL
strategies are mainly based on human experience, lacking inter-
pretability. Moreover, they are often tailored for specific tasks or
labeling budget [4, 11].

To better explain how each selected instance impacts the model
performance, gradient-based influence function [16] has been in-
troduced in AL to directly make a direct quantitative evaluation
[21, 35]. For example, Liu et al. [21] estimate its expected gradi-
ent to calculate unlabeled samples’ impact on model performance.
Similarly, Wang et al. [35] employ two alternative schemes to cal-
culate the gradient norm, leading to a lower upper-bound of the
test loss. Despite of the significant progresses, existing approaches
only consider one checkpoint into influence estimation, neglect-
ing the evolving dynamics of training, which has been shown to
provide important clues for scoring each data influence [12, 23].
Specifically, the model behavior on each instance may vary during
the progress of training via stochastic gradient descent, resulting
in the importance scores of each sample to fluctuate throughout
the optimization path of the deep networks. As illustrated in Figure
1, the subsets selected at different training checkpoints clearly con-
tain various samples. Therefore, relying on static information from
a single checkpoint for sample selection can lead to suboptimal
subset construction and potential overfitting.

To address aforementioned problems, this work focuses on ex-
ploring a dynamic influence based data selection strategy. To do

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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so, we leverage the gradient-based dynamic influence estimation
[23] to trace per-sample contribution across the model training
procedure. Our theoretical analysis reveals that, for each check-
point, selecting instance of higher projected gradient along the
accumulated optimization direction leads to a better test perfor-
mance. Specifically, given the unavailability of ground truth la-
bels in AL, we rely on Kullback-Leibler (KL) divergence given by
model outputs between checkpoints to measure gradient projection,
eliminating the introduction of biased predicted label. Moreover,
to extend our theoretical findings to a broader range of training
progress, a straightforward approach is to save checkpoints and
then calculate the gradient at each checkpoint [23]. Since expensive
cost required for tracing massive unlabeled data in the AL setting,
we propose to introduce an additional loss term to integrate the
dynamics throughout the training progress, thus enhancing selec-
tion generalization. By incorporating these designs, we propose an
universal AL framework, named Dynamic Influence Scoring for
Active Learning DISAL, illustrated in Figure 2.

Extensive experiments on different tasks proves the validity and
task-agnostic nature of our framework, including balanced and
imbalanced image classification, semantic segmentation. We prove
that our AL framework shows superior performances in compari-
son with other state-of-the-art baselines. Notably, our framework
DISAL, utilizing 40% annotation budget on Caltech101 dataset [7],
reaches a 93.58% accuracy, exceeding the model training based on
the full training set at 92.59%.

We summarize our main contributions:
• We present a theoretical analysis demonstrating that the pro-
jected gradients on the accumulated optimization direction
contribute to a valid influence scoring of unlabeled samples,
which naturally leads to a criterion for data selection.
• Based on the theory, we introduce the DISAL to dynamically
evaluate sample influence and includes effective dynamic
loss term to trace model training progress for mitigating
large-scale computation and memory cost.
• Comprehensive experiments show that DISAL significantly
outperforms existing AL methods in a wide range of tasks
and settings.
• Additionally, DISAL doesn’t introduce any domain-specific
design or extra learnable models, it is interpretable, flexible,
and easy to implement.

2 RELATEDWORK
2.1 Active Learning
The key objective of AL is to construct a data subset through de-
signing an effective AL strategies, including mainstream feature
distribution-based approaches and model uncertainty-based ap-
proaches.

As to the former, numerous studies have introduced k-means
clustering and its variants to overcome data redundancy [2, 11].
Moreover, CoreSet [27] focuses on selecting a subset from an un-
labeled data set that represents the whole set well. DAL [10] con-
ceptualizes AL as a binary classification problem, labeling undistin-
guishable examples. VAAL [29] introduces an adversarial network
to discriminate between labeled and unlabeled samples within the
latent space encoded by the VAE [15].

As for uncertainty-based AL approaches, uncertainty has been
widely used in AL to estimate samples’ importance. Contrast to
traditional uncertainty-based methods directly using the posterior
probability [22, 22, 28, 34], DBAL [9] leverages Bayesian deep learn-
ing within AL, using Dropout for computing model uncertainty.
Tran et al. [31] calculate the gradient with respect to the final layer
of the deep network, prioritizing the annotation of diverse unla-
beled samples with higher gradient norms. LL4AL [37] offers a
more direct strategy by integrating an additional network to pre-
cisely predict each sample’s loss. Furthermore, generative methods
[6, 31, 41] have also been adopted in AL to generate samples with
high uncertainty.

While existing two main categories of AL methods define the
state-of-the-art baselines, they do not directly show how selected
data impacts model performance. Several influence estimation-
based methods aims to address this problem Liu et al. [21], Wang
et al. [35]. Specifically, Liu et al. [21] prioritize the selection of unla-
beled samples that can provide more positive influence, calculated
by estimating its expected gradient. Similarly, drawing inspiration
from Koh and Liang [16], Wang et al. [35] explore such an impact
by offering theoretical evidence that the selection of unlabeled data
with a higher gradient norm result in better test performance.

2.2 Influence Estimation Methods
Influence estimation is designed to assess the impact of specific
training instances on a model’s prediction for a given input. For
models trained with gradient descent, the influence of training data
is exerted solely through training gradients. Static gradient-based
influence estimators determine influence by referencing only the
final model parameters. A notable example is the influence func-
tion presented in [16], which define influence as the change in test
loss caused by a minor perturbation to a training instance loss’s
weight. [25] extend this application of the influence function to
assess unlabeled samples in semi-supervised learning scenarios.
These static gradient-based influence estimation methods, however,
only consider a single point in the procedure of training to estimate
training instance’s possible effect. Dynamic methods, however, pro-
vide a more comprehensive view by capturing the entire “story” of
an instance’s influence. TracIn [23] calculates influence by “trac-
ing” gradient descent, aggregating changes in test loss each time
training instance’s gradient updates parameters.

Despite these advancements, the context of influence estimation
in the setting of AL is entirely distinct. As far as we know, we
are the first to introduce dynamic influence estimation to select
unlabeled samples.

3 METHODOLOGY
Despite influence function-based methods establish a connection
between sample contribution and model training loss, the single
checkpoint-based selection hinders the construction of a subset
with strong generalization. In this section, inspired by [23], we pro-
pose the Dynamic Influence Scoring for Active Learning (DISAL)
framework as shown in Figure 2. In Section 3.1, We begin with
the problem preliminary of AL. Following this, in Section 3.2, we
provide a detailed theoretical derivation to evaluate the unlabeled
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sample at checkpoints by projecting gradient on accumulated opti-
mization direction. Section 3.3 extends the contribution evaluation
to the entire training procedure, so as to provide a more compre-
hensive dynamic influence scoring. Finally, in Section 3.4, we show
our proposed AL framework, DISAL.

3.1 Problem Preliminary
We define the AL procedure within the framework of standard
supervised learning as follows: consider X to represent the input,
and Y denote the corresponding output. Let 𝐷 = {X,Y} be the
large pool of unlabeled data. A labeled training dataset is denoted
as 𝐷𝐿 = {(𝑥1,1 ), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}. We denote 𝐷𝑈 ⊆ 𝐷 as the
subset of unlabeled datasets. Throughout the AL procedure, a fixed
number of samples are iteratively chosen from the unlabeled pool
according to the acquisition strategy until reaching the sampling
budget. In our method, we leverage the dynamic influence scoring
as the criterion to select the most impactful instances on model
performance. After adding the newly-annotated samples to labeled
set, the optimization goal of neural network is to find the parameters
𝜃 that minimizes the training loss. Here we take the cross-entropy
(CE) loss applied to image classification as an example, our goal
is to train a label-efficient deep model 𝑓 (·;𝜃 ) where 𝜃 represents
the parameters of the deep model to be optimized. Here the loss
function is:

L𝑚𝑎𝑖𝑛 (𝜃 ) =
1
𝑛

𝑛∑︁
𝑖=1

CE [𝑓𝜃 (𝑥𝑖 ), 𝑦𝑖 ] . (1)

The ultimate objective of AL is to identify and annotate the most
informative data, thereby enhancing the performance of the model.

3.2 Influence Scoring via Checkpoints by
Projected Gradient

To calculate the dynamic influence score, we firstly explore how
the unlabeled instance impact the model performance at check-
points and propose a detailed theoretical derivation to evaluate the
reduction in test loss.

We firstly assume that the model is updated via vanilla stochastic
gradient descent, based on an idealized definition. Each training
minibatch, denoted as 𝐵(𝑡), consists of a single instance, and gradi-
ent updates occur without momentum [26]. We first evaluate the
influence of incorporating a single sample 𝑥𝑛 to the training set
on the change in test training loss. Each iteration 𝑡 affects only the
model parameters, updating the parameter vector from 𝜃𝑡 to 𝜃𝑡+1
using the training example 𝑥𝑛 . In this context, the idealized influ-
ence of the training example 𝑥𝑛 on the test example 𝑥 ′ is denoted
as the total reduction in loss:

𝐼𝑖𝑑𝑒𝑎𝑙
(
𝑥𝑛, 𝑥

′) = ℓ
(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
− ℓ

(
𝑓𝜃𝑡+1

(
𝑥 ′
)
, 𝑦′

)
. (2)

Although the definition of ideal influence has a strong theoretical
motivation, it relies on single-instance batch setting and vanilla
stochastic gradient descent, failing to work in practical scenarios.
In fact, models are trained on batches containing hundreds or more
of instances to ensure feasible training times. According to [23], to
handle minibatches of size𝑏 ≥ 1, a first-order Taylor approximation
is used to approximate the impact of each training instance within
a minibatch 𝐵(𝑡).

Given the typically small step sizes in parameter updates during
training, the loss change for a test example within a given iteration
can be estimated using a simple first-order Taylor expansion:

ℓ
(
𝑓𝜃𝑡+1

(
𝑥 ′
)
, 𝑦′

)
= ℓ

(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
+ ∇ℓ

(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
· (𝜃𝑡+1 − 𝜃𝑡 )

+𝑂
(
∥𝜃𝑡+1 − 𝜃𝑡 ∥2

)
. (3)

Here, the gradient ∇ℓ
(
𝑓𝜃𝑡 (𝑥 ′), 𝑦′

)
is calculated with respect the

model parameters 𝜃𝑡 . While stochastic gradient descent is utilized
in training the model from 𝜃𝑡 to 𝜃𝑡+1, the formula for the change
in model parameters is given by

𝜃𝑡+1 − 𝜃𝑡 = −
1
𝑏

∑︁
𝑥𝑛∈𝐵𝑡

𝜂𝑡∇ℓ
(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
(4)

where 𝜂𝑡 represents the step size at iteration t. Ignoring the higher-
order term, which is on the order of 𝑂 (𝜂2𝑡 ), we derive a first-order
approximation for the change in loss:

ℓ
(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
− ℓ

(
𝑓𝜃𝑡+1

(
𝑥 ′
)
, 𝑦′

)
≈ 1
𝑏

∑︁
𝑥𝑛∈𝐵𝑡

𝜂𝑡∇ℓ
(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
) · ∇ℓ

(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
.

(5)

Consequently, for each training data 𝑥𝑛 within the minibatch 𝐵𝑡 ,
we attribute the influence of 𝑥𝑛 on the test point 𝑥 ′ as the portion
1
𝑏
𝜂𝑡∇ℓ

(
𝑓𝜃𝑡 (𝑥 ′), 𝑦′

)
) · ∇ℓ

(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
, effectively quantifying the

contribution of each training instance with a first-order approxi-
mation.

However, the inherent randomness in training processes can neg-
atively affect the above inference of sample influence. For instance,
although intuitively identical training samples should receive the
same influence score, their inconsistent appearance in the same
minibatch can result in varying scores. We overcome it by evaluat-
ing the influence of each instance across the entire training data,
not limiting the analysis to only the batches. In our context, dur-
ing each iteration 𝑡 ∈ 𝑇 , all training instances are visited exactly
once, updating the model parameter from 𝜃𝑡 to 𝜃𝑡+1. We assume a
consistent step size 𝜂𝑡 between iterations. [23] provide a practical
heuristic influence estimation at each iteration 𝑡 :

𝐼 (𝑥𝑛, 𝑥 ′) = 𝜂𝑡∇ℓ
(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
· ∇ℓ

(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
. (6)

We assess example influence scoring on all the test sets. In AL
settings, we assume the test set is 𝐷𝑡𝑒𝑠𝑡 . For any instance 𝑥𝑛 in-
volved in model training at iteration 𝑡 , the influence on the test loss
𝐼 (𝑥𝑛, 𝐷𝑡𝑒𝑠𝑡 ) can be computed as:

𝐼 (𝑥𝑛, 𝐷𝑡𝑒𝑠𝑡 ) = 𝜂𝑡∇ℓ
(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
·

∑︁
𝑥 ′∈𝐷𝑡𝑒𝑠𝑡

∇ℓ
(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
. (7)

The influence score 𝐼 (𝑥𝑛, 𝐷𝑡𝑒𝑠𝑡 ) indicates each training sample’s
potential to change test model performance. A higher positive
influence score suggests a greater ability to reduce test loss. In
contrast, the examples with a negative influence score are likely
to be discarded as they contribute to an increase in test loss. It’s
notable that the test instance in question does not necessarily need
to be in the test set but refers to any example whose prediction is
being explained [23]. Given that the test set 𝐷𝑡𝑒𝑠𝑡 is unavailable at
training phase, we use all labeled samples to act as an alternative,
representing the data distribution of current tasks. Consequently,



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: The pipeline of our proposed DISAL framework. We first track prediction results throughout the training progress at
each iteration. To integrate the dynamic information, the predictions 𝑓 (𝑡 ) (𝑥𝑛) are maintained and updated to augment the
model training at each iteration. At the last iteration, the sample-wise gradient projection computing procedure follows to
select samples with larger dynamic influence scoring and we utilize them to retrain the model.

we define a practical scheme for influence estimation at iteration 𝑡

as follows:

𝐼 (𝑥𝑛, 𝐷𝐿) = 𝜂𝑡∇ℓ
(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
·

∑︁
𝑥 ′∈𝐷𝐿

∇ℓ
(
𝑓𝜃𝑡

(
𝑥 ′
)
, 𝑦′

)
. (8)

Equation 8 indicates that per-sample contribution can be esti-
mated by projecting its gradients onto the accumulated optimiza-
tion gradient. Thus, we propose to utilize projected gradient to
score sample influence at checkpoints. Compared with existing
static gradient-based AL methods [35], which overlook optimiza-
tion context, we contribute to a more valid contribution evaluation,
which has been proved in the experiments in subsection 4.5.1.

However, Equation 8 involves calculating per-sample gradients
over all training samples, which is not feasible due to computa-
tion and memory constraints. According to model optimization
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡

∑
𝑥 ′∈𝐷𝐿 ∇ℓ

(
𝑓𝜃𝑡 (𝑥 ′), 𝑦′

)
at iteration 𝑡 , the accumu-

lated gradient is equal to 1
𝜂𝑡
(𝜃𝑡 − 𝜃𝑡+1). Thus the influence de-

scribed in Equation 8 is further reformulated in terms of the loss
difference as follows:

𝐼 (𝑥𝑛, 𝐷𝐿) =
1
𝜂𝑡
(𝜃𝑡 − 𝜃𝑡+1) 𝜂𝑡∇ℓ

(
𝑓𝜃𝑡 (𝑥𝑛), 𝑦𝑛

)
≈ ℓ

(
𝑓𝜃𝑡+1 (𝑥𝑛) , 𝑦𝑛

)
− ℓ

(
𝑓𝜃𝑡 (𝑥𝑛) , 𝑦𝑛

)
, (9)

which can be derived from the first-order Taylor expansion. Then
the contribution of each sample to model performance can be as-
sessed through changes in its loss. While ℓ is commonly represented
by CE loss in the context of classification, the loss divergence can
be defined as:

ℓ
(
𝑓𝜃𝑡+1 (𝑥𝑛) , 𝑦𝑛

)
− ℓ

(
𝑓𝜃𝑡 (𝑥𝑛) , 𝑦𝑛

)
= 𝑦⊤𝑛 · log

𝑓𝜃𝑡+1 (𝑥𝑛)
𝑓𝜃𝑡 (𝑥𝑛)

. (10)

Unfortunately, as discussed earlier, the one-hot encoding 𝑦𝑛 is
unavailable for unlabeled data in the setting of AL. We overcome
the challenge by replacing 𝑦𝑛 with predicted probability 𝑓𝜃𝑡 (𝑥𝑛).
So KL divergence is employed to capture a more comprehensive
sample contribution information:

𝐼 (𝑥𝑛, 𝐷𝐿) ≈ 𝑓𝜃𝑡 (𝑥𝑛)
⊤ · log

𝑓𝜃𝑡+1 (𝑥𝑛)
𝑓𝜃𝑡 (𝑥𝑛)

. (11)

In our experiments (refer to 4.5.2), we have observed that KL
divergence outperforms the CE loss difference. We hypothesize that
this superiority stems from the fact that the one-hot encoding of
𝑦𝑛 neglects non-target probabilities, thereby causing a substantial
loss of information.

3.3 Dynamic Influence Scoring by Dynamic Loss
Since that exploring long-range training progress contributes to a
more comprehensive sample evaluation, in this section, we simply
extend our proposed influence scoring for each checkpoint in Sec-
tion 3.2 to a dynamic influence scoring by introducing an additional
loss. By capturing the entire "story" of influence, well-generalized
samples are more likely to be identified.

To scale to long training processes, [23] replay the procedure by
storing checkpoints at regular intervals, and sums up the influence
throughout the model optimization. However, applying this ap-
proach to large-scale unlabeled data is computationally impractical,
as it requires model inference on all the unlabeled data at each
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checkpoint. To address this, we devise an efficient method by di-
rectly plugging the dynamic information into model training. Thus
by the end of model training, more comprehensive sample-wise
gradient projection would be obtained to select samples at the last
iteration, via incorporating the entire of training progress.

Specifically, we develop a dynamic loss term, trained with dy-
namic prediction probabilities of labeled data, which is available
during the training process. For simplicity, we construct the dy-
namic predicted probabilities 𝑓 (𝑡 ) (𝑥𝑛) by averaging the predicted
outputs during 𝑡 iterations [30]. Then the dynamic predictions is
updated at 𝑡 iteration as follows:

𝑓 (𝑡 ) (𝑥𝑛) =
𝑡∑︁
𝑖=1

𝑓𝜃𝑖 (𝑥𝑛) /𝑡

= 𝑓 (𝑡−1) (𝑥𝑛) ·
𝑡 − 1
𝑡
+ 𝑓𝜃𝑖 (𝑥𝑛) ·

1
𝑡
. (12)

To learn the dynamic information effectively, the dynamic loss
term is optimized by minimizing the KL divergence loss between
the actual prediction 𝑓𝜃𝑡 (𝑥𝑛) and the dynamic predicted probability
𝑓 (𝑡 ) (𝑥𝑛) at iteration 𝑡 :

Ldynamic = LKL
(
𝑓 (𝑡 ) (𝑥𝑛) ∥ 𝑓𝜃𝑡 (𝑥𝑛)

)
(13)

By integrating the main task loss in Equation 1 and dynamic
loss, we minimize an overall objective function as follows:

Loverall (𝜃 ) = L𝑚𝑎𝑖𝑛 (𝜃 ) + 𝜆 · L𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝜃 ), (14)

where 𝜆 is a trade-off weight to control the effect of dynamic loss
terms. The setting of 𝜆 is examined in Section 4.5.3.

Finally, after model training, a more generalized dynamic influ-
ence scoring of each sample can be obtained at the final iteration𝑇 ,
by which point the entirety of the training dynamics are considered
for sample selection.

𝐼 (𝑥𝑛) = 𝑓𝜃𝑇 −1 (𝑥𝑛)
⊤ · log

𝑓𝜃𝑇 (𝑥𝑛)
𝑓𝜃𝑇 −1 (𝑥𝑛)

(15)

3.4 Proposed AL Framework
Based on theoretical insights, we have formulated a universal AL
framework integrating the dynamic influence scoring discussed in
the preceding section. The framework begins with the selection
of randomly annotated data to initiate training of the task model.
Subsequently, after each training cycle, dynamic influence scoring
is applied to select and annotate unlabeled data, which are used for
retraining the task model. Notably, our framework introduces only
minimal adjustments to the conventional AL workflow, ensuring
its straightforward applicability across diverse scenarios. For a
comprehensive understanding of our framework, please refer to
Algorithm 1 and the Figure 2.

4 EXPERIMENTS
Considering the sensitivity of AL sampling algorithms to task-
specific scenarios, we experimentally verify the effectiveness of our
framework on two widely recognized visual tasks: image classifica-
tion and semantic segmentation, demonstrating its broad applicabil-
ity. Additionally, we explored its performance in class-imbalanced
settings by using modified versions of the Cifar10 dataset. These

Algorithm 1 DISAL
Input: Initial labeled dataset 𝐷𝐿 ; Unlabeled dataset 𝐷𝑈 ; AL cycles 𝐾 ; Iterations𝑇 ;

Dynamic influence scoring 𝐼 ( ·) .
1: for 𝑘 = 1, · · · , 𝐾 do
2: for 𝑡 = 1, · · · ,𝑇 do
3: Record predicted probabilities 𝑓𝜃𝑡 (𝑥𝑛 ) , 𝑥𝑛 ∈ 𝐷𝐿

4: Update dynamic predicted probabilities 𝑓 (𝑡 ) (𝑥𝑛 )
5: ⊲ Defined in Equation 12
6: Train model integrating main task loss with dynamic loss
7: ⊲ Defined in Equation 14
8: if 𝑡 = 𝑇 then
9: Calculate dynamic influence scores 𝐼 (𝑥𝑛 )
10: ⊲ Defined in Equation 15
11: end if
12: end for
13: Q𝑡 ←Sample queries𝑄𝑡 by scores
14: Q𝑡 ←Label queries𝑄𝑡 by annotator
15: 𝐷𝐿 ← 𝐷𝐿 ∪ Q𝑡

16: 𝐷𝑈 ← 𝐷𝑈 ∪ Q𝑡

17: end for

experiment results are reported across three trials, each employing
different initial network weights and labeled data pool. Finally, the
ablation study is conducted to provide deeper insights.

4.1 Image Classification
Dataset. In our experiments, we employ four image classification
datasets: Cifar10 [17], Cifar100 [17], SVHN [22] and Caltech101 [7],
with varying size and number of categories. Cifar10 and Cifar100
include 50,000 training and 10,000 testing images across 10 and
100 categories, respectively, with a resolution of 32 × 32 pixels.
SVHN, similar in class count to Cifar10, includes 73,257 training
and 26,032 testing images, without utilizing additional training
data for fair comparison with other methods. Caltech101 comprises
9,146 images (300× 200 pixels) across 101 semantic categories, split
into 8,046 for training and 1,098 for testing.

Baselines and implementation details.We compare DISAL
with state-of-the-art AL baselines, including Dropout [8], Learning
Loss [37], CoreSet [27], VAAL [29], CoreGCN [37], Boosting [35],
TOD [14] and TiDAL [19]. In addition, the baseline methods also
include the random sampling (“Random”) and the model training
based on the full training set (“Full Training”).

Following conventional practices in AL [29], we employ ResNet-
18 [13] as the backbone network for the primary task learner. Ninety
percent of the images are allocated for training, while the remaining
ten percent are reserved for testing purposes. The model is trained
using the SGD optimizer, incorporating a momentum of 0.9 and
a weight decay of 5 × 10−4. For Cifar10 and Cifar100, the models
undergo 200 epochs of training with a batch size of 128 and an
initial learning rate of 0.1. Conversely, Caltech101 is trained for
50 epochs with a batch size of 64 and an initial learning rate of
0.01. Input images are standardized to dimensions of 224 × 224
pixels, accompanied by preprocessing techniques including random
resizing, cropping, and horizontal flipping. For further elaboration,
please refer to the supplementary material.

Active learning setting. For fair comparison, We follow the
same AL setting and practice with baseline methods [29, 35]. In all
tasks, we conduct 7 cycles of data annotation, expanding from 10%
to 40% in 5% increments to cover various annotation budgets. In the
initial cycle, we populate the labeled pool𝐷𝐿0 by randomly selecting
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Figure 3: Mean accuracy of different AL approaches on Cifar10, Cifar100, SVHN, Caltech101.

10% instances for annotation from the unlabeled dataset to train
an initial task learner. In each subsequent AL cycle, 5% of the data
is selected from the unlabeled data pool 𝐷𝑈 for model retraining,
according to the specific sampling strategy of each method. This
process is repeated until the labeled portion of the dataset reaches
40%.

Results. Figure 3 illustrates the performance in terms of average
test accuracies across different AL methods. Our approach, DISAL
consistently outperforms baseline methods on all the datasets with
a significant margin. Additionally, we make several observations
that highlight the effectiveness of our proposed DISAL. First, DISAL
achieves higher classification accuracies compared to other meth-
ods at various cycles, indicating that given different annotation
budget such as 20%, our proposed DISAL still works best. Second,
DISAL stands out in handling complex datasets like Cifar100 and
Caltech101, which present greater challenges due to their larger
number of classes. The superior performance and smoother curves
in our method demonstrate its robustness. Remarkably, with 20,000
labeled instances, DISAL reaches a 69.64% accuracy in the final iter-
ation, exceeding the next at 68.49%. Third, our model, when trained
on 40% of the data using DISAL, outperform the “Full Training”
on datasets including Cifar10, SVHN and Caltech101, e.g., 94.79%
vs. 93.12% on Cifar10. It’s also worth noticing that DISAL is the
only method to achieve higher test accuracy than “Full Training”
results on challenging Caltech101 benchmark, despite using only
40% labeled training data. Last, we also compare DISAL with semi-
supervised method, TOD, which introduces a semi-supervised loss

to learn from unlabeled pool. Surprisingly, our proposed DISAL sur-
passes TOD in all datasets, even though TOD leverages additional
unlabeled information and more training resources.

4.2 Semantic Segmentation
Dataset and active learning setting. To prove the effectiveness of
AL methods in complex, large-scale environment, we evaluate our
method on the widely recognized semantic segmentation bench-
mark dataset, Cityscapes [5]. Semantic segmentation task involves
pixel-level classification, thus incurring significantly higher anno-
tation costs. The Cityscapes dataset is a large-scale driving video
dataset, consisting of video sequences of urban street scenes from
50 cities. The dataset includes 2,975 training and 500 validation im-
ages. For fair comparison, only the standard training and validation
sets are utilized. In each AL iteration, 10% images are selectively
sampled for the labeled training set until reaching the budget of
40%.

Baselines and implementation details. We choose the state-
of-the-art AL methods for this experiment: Dropout [8], Learning
Loss [37], CoreSet [27], VAAL [29], CoreGCN [37], Boosting [35]
and TiDAL [19]. Following the widely used settings in [29], we
adopt the 22-layer dilated residual network (DRN-D-22) [38] as the
task model. The performance of each method was evaluated using
the mean Intersection-over-Union (mIoU) metric. We crop the input
images to a resolution of 688 × 688 pixels without the application
of data augmentation. The dataset contains 19 categories. Detailed
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Table 1: Time (seconds) required for one AL cycle using an NVIDIA GTX 3090Ti GPU.

DISAL(Ours) Random TIDAL Learning Loss VAAL CoreGCN Coreset Boosting
Cifar10 359.0 299.0 369.5 340.8 3737.4 457.6 445.5 376.5
Cifar100 362.2 307.1 373.8 345.9 3683.7 451.2 421.9 387.2

Figure 4: Mean accuracy of different AL approaches on
Cityscapes.

information regarding other hyper-parameters is available in the
supplementary material.

Results. The superior results in Figure 4 demonstrates the com-
petence of DISAL in the challenging semantic segmentation task
measured by mIoU. It is important to note that Cityscapes images
are significantly larger than those used in classification benchmarks
and require pixel-level classification, which indicates our method’s
robustness to complex data. Furthermore, DISAL’s independence
from task-specific knowledge eliminates the need for adjusting the
training framework with changes in tasks, making it universally
applicable. However, we observe that DISAL exhibits slightly lower
performance than other premier methods in the first data selec-
tion. This discrepancy is likely due to the inherent instability of
model training on challenging tasks with extremely limited data,
where learning the dynamic information could potentially impact
the model training.

4.3 Image Classification on an Imbalanced
Dataset

Dataset and Implementation Details. To evaluate DISAL’s per-
formance in a more class-imbalanced context, we use the imbalance
ratio (IR) of 10 to recompose the Cifar10 dataset. The distribution
of images per class is as follows: airplane-500, automobile-1,000,
bird-1,500, cat-2,000, deer-2,500, dog-3,000, frog-3,500, horse-4,000,
ship-4,500 and truck-5,000. The experiments are conducted over
the same seven AL cycles, varying from 2𝑘 of the labeled pool to
8𝑘 . All additional experimental details are consistent with those for
the balanced Cifar10, described in Section 4.1.

Results. Figure 5 shows the performances between DISAL and
other baselines on the synthetically imbalanced Cifar10. Under the
imbalanced settings, our proposed DISAL still clearly outperform all
the baselines. Additionally, our findings reveal intriguing insights:
Contrary to results from experiments on balanced Cifar10 and
Cifar100 datasets, data distribution-based AL methods, such as

Figure 5: Mean accuracy of different AL approaches on im-
balanced Cifar10.

CoreGCN, perform less effectively than uncertainty-based methods,
like Learning Loss in imbalanced settings. These findings suggest
that distribution-based strategies suffer more in class-imbalanced
settings compared to uncertainty-based approaches. Despite these
challenges, DISAL shows consistent superiority across both class-
imbalanced and balanced scenarios, demonstrating its versatility.

4.4 Computational Overheads
As described in Section 3.3, the extra computation for DISAL, apart
from the task model training with an additional loss, is calculating
the KL divergence of models outputs between checkpoints at the
last iteration for selecting data. To compare computational over-
heads fairly, we assess one cycle duration of AL, which contains
model training and a single-pass data selection, on Cifar10 and Ci-
far100 using various methods. As illustrated in Table 1, while DISAL
incurs no additional memory costs such as saved checkpoints for
dynamic influence estimation, its computational overheads are also
comparable to those of other approaches under the same experimen-
tal settings. We attribute this advantage to its simple design, which
relies solely on KL loss, without the requirement for additional
model [19, 29] or costly clustering [27, 37].

4.5 Ablation Study
4.5.1 Analysis on sampling strategy and dynamic loss. To further
understand the remarkable performance of DISAL, ablation studies
are conducted to evaluate the contribution of its two main designs,
influence scoring via checkpoints and dynamic loss.

As can be seen from the Table 2, our components notably enhance
performance and robustness. For “DISAL w/o D”, a variant that
operates without dynamic loss, achieves comparable performance
compared with other baselines, demonstrating the high effective-
ness of influence scoring via checkpoints. And it’s worth noting that
on all the datasets, “DISAL w/o D” achieve consistent better per-
formance than Boosting. Since Boosting doesn’t take accumulated
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Table 2: Performance comparison with different AL approaches. “DISAL w/o S”: DISAL without sampling strategy. “DISAL w/o
D”: DISAL without dynamic loss (Red: Best).

Datasets VAAL TIDAL Core-set Boosting LL4AL Random DISAL-wo-S DISAL-wo-D DISAL(Ours)
Cifar10 91.9 94.5 93.5 92.4 92.8 92.1 92.2 94.3 94.8
Cifar100 66.8 68.2 65.0 66.7 66.2 63.0 68.1 66.9 69.4

Caltech101 88.2 92.2 87.5 92.2 90.0 86.2 89.8 92.5 93.6

(a)

(b)

Figure 6: T-SNE visualization of the Cifar10 dataset using (a)
DISAL and (b) DISAL-wo-D (without dynamic loss). The red
markers represent the data selected in the first cycle.

optimization direction into consideration while calculate gradients,
indicating that employing projected gradient could contribute to a
more valid single samples influence contribution.

Despite comparable results, integrated with the dynamic loss, the
accuracy of DISAL increases by 2.5% and 1.1% respectively against
“DISALw/o D” on Cifar100 and Caltech101. This highlights the need
for the dynamic loss to trace training dynamics and evaluate more
generalized sample contribution. To deepen our comprehension of
dynamic influence scoring, we also show t-SNE [32] embeddings
of the Cifar10 data, using DISAL and “DISAL w/o D”. We use the
model trained on these AL strategies to compute the representation
of all unlabeled samples and those selected in the first AL cycle.
Observations from Figure 6 reveal that both DISAL and “DISAL w/o
D” strategies select samples that cover the entire data distribution of
each class. However, selected samples from DISAL exhibit a broader
distribution, particularly at class boundaries. As those samples on
class boundaries are more uncertain with respect to the task model,
they can significantly boost model training in the subsequent cycle.
It is the reason why a substantial performance improvement has
been observed while introducing the dynamic loss.

4.5.2 Ablation on KL divergence loss. As discussed in Section 3.2,
we utilize the KL divergence loss to provide a more comprehensive
assessment while the label of unlabeled data are unavailable. To

Figure 7: KL and CE represent the data selection based on KL
loss and CE loss difference, respectively.

evaluate its effectiveness in characterizing sample contribution,
we compare KL divergence loss with CE loss difference, which
temporarily “observes” its label. As illustrated in Figure 7, although
CE loss difference is blessed with labels which is unreasonable in
AL, KL loss still exhibits an absolute advantage at all the cycles on
Cifar10 and Cifar100, proving the effectiveness of our KL divergence
loss.

Table 3: Ablation studies on the performance of trade-off
weight.

𝜆
Number of Cifar100 Images

10% 15% 20% 25% 30% 35% 40%
1 38.24 48.96 55.92 61.51 64.24 67.2 69.64
0.5 38.06 48.64 56.44 61.24 64.12 66.47 68.86
0.1 38.14 48.43 55.2 60.5 64.51 65.63 67.86

4.5.3 Ablation on the effect of trade-off weight 𝜆 . Further, we an-
alyze the effect of trade-off weight 𝜆 in Equation 15, with which
we combine main task loss and dynamic loss for model training.
The results are presented in Table 3. Notably, when 𝜆 is equal to
1, our AL framework DISAL attains optimal results across various
annotations.

5 CONCLUSION
This paper first presents a theoretical analysis demonstrating that
selecting samples with higher projected gradients on the accu-
mulated optimization direction throughout training can lead to
enhanced performance. By integrating dynamic model training,
we propose a task-agnostic framework called Dynamic Influence
Scoring for Active Learning (DISAL), evaluating per-sample contri-
bution throught the training procedure. Our extensive experiments
across diverse tasks confirm the validity of our theoretical findings
and showcase the effectiveness of the proposed framework. Look-
ing ahead, our future work will delve into incorporating a learnable
trade-off weight to more adeptly capture dynamic information,
thereby advancing the field of AL even further.
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