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Figure 1: (a) Overview of our RGB-only supervised camera parameter optimization. (b) Front
view of the 3D Gaussian field reconstructed by our camera estimates at time ¢. (c) 2D renderings
(RGB and depth) at time ¢ with quantitative metrics. Our optimization is not only significantly more
efficient and accurate, but also avoids overfitting the reconstruction to specific viewpoints. Record3D
is a mobile app that factory-calibrates the intrinsic and uses LiDAR sensors to collect metric depth
for camera pose estimates, thus does not have valid runtime.

Abstract

Although COLMAP has long remained the predominant method for camera pa-
rameter optimization in static scenes, it is constrained by its lengthy runtime and
reliance on ground truth (GT) motion masks for application to dynamic scenes.
Many efforts attempted to improve it by incorporating more priors as supervision
such as GT focal length, motion masks, 3D point clouds, camera poses, and metric
depth, which, however, are typically unavailable in casually captured RGB videos.
In this paper, we propose a novel method for more accurate and efficient camera
parameter optimization in dynamic scenes solely supervised by a single RGB video,
dubbed ROS-Cam. Our method consists of three key components: (1) Patch-wise
Tracking Filters, to establish robust and maximally sparse hinge-like relations
across the RGB video. (2) Outlier-aware Joint Optimization, for efficient camera
parameter optimization by adaptive down-weighting of moving outliers, without
reliance on motion priors. (3) A Two-stage Optimization Strategy, to enhance sta-
bility and optimization speed by a trade-off between the Softplus limits and convex
minima in losses. We visually and numerically evaluate our camera estimates. To
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further validate accuracy, we feed the camera estimates into a 4D reconstruction
method and assess the resulting 3D scenes, and rendered 2D RGB and depth maps.
We perform experiments on 4 real-world datasets (NeRF-DS, DAVIS, iPhone,
and TUM-dynamics) and 1 synthetic dataset (MPI-Sintel), demonstrating that our
method estimates camera parameters more efficiently and accurately with a single
RGB video as the only supervision.

1 Introduction

Despite recent progress in visual odometry, efficiently and accurately optimizing camera parameter{]
(focal length + rotation&translation) from casually collected RGB dynamic-scene videos remains a
big challenge. Although the most predominant COLMAP [32] methocﬂ is RGB-only supervised, it
suffers from its lengthy runtime and requisite of GT motion masks to mask out the outlier moving
stuff. In Tablem most recent approaches [0} 145 13} 1421 159,146/ 56, 144] attempted to improve through
being supervised by additional GT priors such as focal length, metric depth, 3D point clouds, camera
poses, and motion masks, which are typically unavailable in casually collected videos. We cannot
help but ask a natural question: Is it possible to accurately and efficiently estimate camera parameters
in dynamic scenes in an RGB-only supervised manner - the most minimal form of supervision?

Existing RGB-only supervised methods [42, 45, 20, 159, 3] make obvious improvements, but they
mostly rely on multiple pre-trained dense prediction models [38| [13] [31] to compensate for the
inaccuracies of individual pseudo-supervision sources, resulting in performance degradation if any
of them fails. They also cannot adaptively exclude moving outliers without GT motion supervision.
Besides, their high computational latency always leads to lengthy runtimes. Further discussion of
related work is provided in Section 2}

Table 1: Categorization of supervision of current methods. Ours, casualSAM [38]], and Robust-
CVD [[16] are RGB-only supervised, while our performance is the best as shown in section 4]

Supervision Static Scene Dynamic Scene
GT 3D Point Cloud & Camera Pose | Dust3r [46], Fast3r [52], Mast3r [18], Spann3r [40], VGGT [41 Monst3r [56], Cut3r [44], Stereo4D [L11, Easi3r [4
GT Focal Length CF-3DGS [6], Nope-NeRF [11, LocalNeRF [22]
+ Metric Depth DROID-SLAM [39
+ GT Motion Priors GFlow [45], LEAP-VO [3
GT Motion Priors RoDynRF [20], COL" ™=k [37], ParticleSfM [59
RGB-Only VGGSM [42], FlowMap [35], InstantSplat [5], COL"/© mask 1321 | Robust-CVD 161, casualSAM [38], Ours (ROS-Cam)

Based on these insights, we propose ROS-Cam, an RGB-only supervised, accurate, and efficient
camera parameter optimization method, with a brief performance overview in Figure[I] Specifically,
to minimize reliance on pre-trained dense prediction models while still establishing robust and
maximally sparse hinge-like relations across the video as accurate pseudo-supervision (bottom right
corner in Figure[2), we propose the novel patch-wise tracking filters built solely on a pre-trained point
tracking (PT) model. This formulation effectively avoids inaccurate tracking trajectories extracted
across frames and computational latency induced by the noisy dense prediction as pseudo-supervision.

However, the extracted pseudo-supervision includes a portion of trajectories belonging to moving
outliers. To eliminate the influence of such outliers, we introduce a learnable uncertainty associ-
ated with each calibration point, where each is a learnable 3D position in the world coordinates,
corresponding to one extracted tracking trajectory. We model such uncertainty parameters with the
Cauchy distribution, which can deal with heavy tails better than, e.g., the Gaussian distribution, and
propose the novel Average Cumulative Projection error and Cauchy loss for the outlier-aware joint
optimization of the calibration points, focal length, rotation, translation, and uncertainty parameters.
Unlike casualSAM and LEAP-VO, which assign uncertainty parameters to 2D pixels, our approach
associates uncertainties with sparse 3D calibration points, resulting in significantly fewer learnable
parameters and reduced runtime, as shown in Table E}

Such joint optimization is prone to getting trapped in local minima. To address this, we analyze the
asymptotic behavior of the Softplus function and the analytical minima of the inner convex term in

'Like all existing methods in table we also assume a pinhole camera.
>We denote the COLMAP using motion masks as COL™ ™ and the one w/o motion masks as COL™° ™,



losses to propose a two-stage optimization strategy to accelerate and stabilize the optimization. We
evaluate the performance of our method through extensive experiments on 5 popular public datasets -
NeRF-DS [50], DAVIS [28]], iPhone [7], MPI-Sintel [2], and TUM-dynamics [36], demonstrating
our superior performance. Our contributions can be summarized as follows.

* We propose the first RGB-only supervised, accurate, and efficient camera parameter opti-
mization method in dynamic scenes with three key components: (1) patch-wise tracking
filters; (2) outlier-aware joint optimization; and (3) a two-stage optimization strategy.

* We present exhaustive quantitative and qualitative experiments and extensive ablation studies
that demonstrate the superior performance of our proposed method and the contribution of
each component.

2 Related Works

Dynamic Scene Reconstruction/Novel View Synthesis (NVS). Existing methods for reconstructing
objects and scenes use a variety of 3D representations, including planar [8 9], mesh [51} 55,
point cloud [48}157]], neural field [23}150L 37, 29} 21]], and the recently introduced Gaussian explicit
representations [49] 141110, 47, 53]]. NeRF [23] enables high-fidelity NVS. Some methods [25] 26|
29, 150, [15) 24]] also extend NeRF to dynamic scenes, while others [51} 155 154} 43| 137 build on
them to extract high-quality meshes. However, NeRF-based methods have the limitation of a long
training time. Recently, 3DGS [14] effectively addressed this issue by using 3D Gaussian-based
representations and presented Differential-Gaussian-Rasterization in CUDA. 3DGS optimizes 3D
Gaussian ellipsoids as dynamic scene representations associated with attributes such as position,
orientation, opacity, scale, and color. Several studies [47, 53] also have used 3DGS for dynamic
scenes, achieving near real-time dynamic scene novel view synthesis. However, both NeRF-based
and 3DGS-based methods heavily rely on COLY ™3 to estimate camera parameters.

Camera Parameter Optimization. Many efforts have been made to overcome the shortcomings of
COLMAP, particularly for dynamic scenes. But each suffers from some constraints. In Table[I] we
present a categorization of supervision of current SOTA methods. Supervised by additional GT focal
length, CF-3DGS [6], Nope-NeRF [1]], and LocalNeRF [22] leverage a pre-trained monocular depth
estimation model [31] to estimate camera poses and the static scene jointly. The most representative
SLAM-based method - DROID-SLAM [39], leverages both GT focal length and metric depth as
supervision. GFlow and LEAP-VO [45! ]3] extend it to dynamic scenes with both GT focal length and
motion priors as supervision. Although VGGSfM, FlowMap, InstantSplat, coLwe mask [i42] [35] [5] 32]
eliminate the GT focal length requirement by leveraging pre-trained PT models [38, [13], they cannot
handle the moving objects in dynamic scenes. RoDynRF [20], coLY mask [37]] and ParticleSfM [59]
simply tackle such a problem by incorporating GT motion supervision like GFlow. Recently, DUSt3R-
based methods [46} 52| [18] 40, 41]] and their dynamic-scene counterparts [56, 44} [11} 4] explored
feed-forward camera parameter prediction by training on large-scale static and dynamic scene datasets,
respectively, in a fully supervised manner - that is, using GT 3D point clouds and camera poses
as supervision, requiring several days’ training on high-end GPUs. However, unlike LLMs that
benefit from abundant language data, such metric 3D supervision is relatively scarce in the vision
area, leading to frequent domain gaps when these models are applied to unseen data. In contrast,
Robust-CVD [16], casualSAM [58]] and our method conduct camera parameter optimization for
dynamic scenes in a more general RGB-only supervised way. However, as shown in Section 4]
their performance is significantly worse than ours.

3 Method

Under RGB-only supervision, RGB frames F;,i € [0, N — 1] (V is frame count) are given. Our
proposed patch-wise tracking filters (Section [3.1)) extract H robust and maximally sparse hinge-
like tracking trajectories as pseudo-supervision, where each corresponds to one calibration point
Pfﬂ“ € R3,h € [0, H] in the world coordinates. Under such pseudo-supervision and our newly
proposed ACP error and Cauchy loss, the calibration points P°?, focal length f € R, quaternion
matrix Q € RV*4, translation t € RV>*3, and motion-caused uncertainty parameters I' € R are
jointly optimized (Section[3.2). T is the scale parameter of the Cauchy distribution which is used to
model such uncertainty parameters, associated with each calibration point, to reduce the erroneous



influence of moving outliers. By analyzing the Softplus limits and convex minima in losses, we
propose a simple but effective two-stage optimization strategy (Section[3.3) to enhance the stability
and optimization speed.

3.1 Patch-wise Tracking Filters

Built on a pre-trained PT model, we observe that its attention mechanism assigns higher attention
weights to pixels with more accurate tracking results which are always texture-rich pixels with large
gradient norms. Inspired by it, as shown in Figure [2] we propose the patch-wise texture filter to
identify the high-texture patches within F} and the patch-wise gradient filter to select the pixel with
the highest gradient norm within each identified patch. While tracking such identified points, the
visibility filter keeps removing trajectories that become invisible and the patch-wise distribution filter
keeps the one with the largest gradient norm when multiple moving points enter the same patch. As
shown in appendix [E:21| (fig. [T0), our method only retains the robust and accurate trajectories as
pseudo-supervision.

Visibility Filter(PT) -
atch-wise Distribution Patch-wise Disfributizn 3
Filter Filter V2 e
A W Py

Visibility Filter(PT) e, e
.
A

Patch-wise
Gradient Filter

Patch-wise
Gradient Filter

. "1
Patch-wise ! 2
exture Filter! 3

4e

Patch-wise
exture Filter

inm
n+m

Figure 2: Patch-wise tracking filters. (1) Partitioning Fj into patches of size w X w, the patch-wise
texture filter computes the texture map Ty and marks the high-texture patches in gray; (2) Within each
high-texture patch, the patch-wise gradient filter selects one potential tracking point with the highest
gradient norm. (3) The visibility filter removes the entire trajectory of a point if it becomes invisible
at any time (o, ll, A — Kept trajectories; o, [J, A — removed trajectories); (4) The patch-wise
distribution filter only keeps the one with the largest gradient norm when multiple trajectories fall
into the same patch. P and I are the location and index of trajectory, and <« is the trajectory range.

Patch-wise Texture Filter. Highly distinguishable points, that can be tracked reliably, belong to
highly nonuniform (textured) neighborhoods. To identify such neighborhoods, our patch-wise texture
filter computes a texture map T; € 1%/“*W/v oiving a measure of texture level for each w x w
patch where H and W denote the height & width of F;. We represent the texture level of a patch by

Tz[man] = ﬂ{zz[ma n] > Tyar U*} (1)

, where ¥; € RE/wxW/w g the intensity variance, o* = max(X;), Tyqr is the percentage threshold
of minimum variance for the patch to be selected, and m,n € [0,H/w — 1],[0, W/w — 1]. The
texture levels of a patch are represented by 1 for the selected patches and O for the others.

Patch-wise Gradient Filter. Within the identified patches, our patch-wise gradient filter computes

the intensity gradient norm map G; € R¥*W of [, and selects the point with the largest gradient
norm within each patch. This yields the pool of potentially distinguishable points, forming potential
trajectories, namely,

POl — arg max(Gy[mw : mw + w,nw : nw + wl), p — pixel locations (2)
p

Visibility Filter. We find that current PT models [13}[12}130] still tend to suffer from reduced tracking
accuracy when a point becomes occluded and later reappears, due to the disruption of temporal

feature continuity. Thus, if any Pin any F; becomes invisible, our visibility filter deletes it by the dot
product P -V, V € {0,1} ~ P, where V = 0 if a point is invisible.

Patch-wise Distribution Filter. This filter enforces a more even point distribution within each
frame, preventing them from clustering into a small region as the viewpoint changes. It also helps
reduce susceptibility to loss of resolution which might result in triangulation errors. We keep the
highest-gradient tracking point P* in each patch Pat,, ,, of I}, as follows:



P* = argmax G;[P € Paty ., ifz 1(P € Patp,n) > 1 3)
P

As shown in Figure [2| locations and indices of P* are stored in P, e RBX2and I, € RB,j ¢
[0, H — 1], acting as pseudo-supervision in the outlier-aware joint optimization. Each iteration starts
at Fy,t = argmin;(—1 € 1), and ends until each frame contains exactly B tracked points.

3.2 Outlier-aware Joint Optimization

Outlier-aware Joint Optimization Mechanism. Under the. obtained pseudo-supervision, P ,;,
/. Q. t and T are jointly optimized. We first project Pe*/i=home e RH >4 (the homogeneous
coordinates of P°®" obtained by concatenating 1) onto each frame by

T
Pg;'roj*homo _ Pcu.lifhomou:i} . Rz t; X KT (4)
0 1
Pproj _ Pprojfhomo[:7: 2]/Py'r0j7homo[:7 3] (5)

, where i € [0, N — 1] and PP"97 ¢ RNxBx2_ pproj—homo ¢ RNxBX4 denotes the homogeneous
2D location of the projection PP/, The perspective projection matrix K € R**% is derived from f,
and the world-to-camera transformation matrix consists of rotation R; and translation t;. We assume
constant f like SOTA [59] 58, [20]. Notably, we learn the quaternion matrix Q; instead of optimizing
the R,; and additional constraints. This optimization approach circumvents the difficult-to-enforce
orthogonality and £1 determinant constraints required for rotation matrices during optimization.
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Figure 3: Outlier-aware Joint Optimization. e Number of Frames

represents P, and P/ on each frame. The static
samples p’°* and p”’°® can establish concrete
triangulation relations with their corresponding
P;, P, and cameras, resulting in lower 4" and
4". In contrast, the dynamic sample p/"’°** e

X -

Figure 4: Runtime Trends. As the frame count
increases, our runtime grows almost linearly,
whereas COL™/°™@5F scales exponentially. The
runtime of casualSAM is too large to fit in this

figure. The complete runtime is in Table|3| and
hibits the opposite behavior. .

appendix (table [0} table[T0} table

However, the extracted pseudo-supervision always contains moving outliers. To mitigate its

impact, without any GT motion priors, we identify such outliers by modeling the uncertainty

their presence may cause in the observed distributions of the inlier points. We introduce the

uncertainty I' € R associated with P°®* ¢ R and incorporate the Cauchy distribution

flz;20,T) = m, T > 0 to model the uncertainty parameter I since this distribution
r

can better handle the heavy tails than, e.g., the Gaussian distribution. As depicted in Figure [3] during
optimization, inliers are expected to have low uncertainty, while outliers have high uncertainty. Since
the scale parameter I in f(x; 20, T") is required to be strictly positive, we introduce a new parameter
I which we obtain T from using the Softplus function T' = log(1 + eI "), T"*® ¢ R This
effectively ensures I' € RI;'O is differentiable and has smooth gradients.

Losses. To down-weight outliers by learned I', we replace the commonly used projection error
[EProi = ||PP°J — P||3 with our proposed Average Cumulative Projection (ACP) error, defined as:
_ Y lu=n o |[P —P|3

ACP
Ehelo, -1 = S lpon (6)




, where EACP € R and o denotes the element-wise matrix multiplication. For each P§%, we
accumulate the errors between its corresponding projection and tracking locations across the video,
then take the average as ]E,?g[(i 4 1)- Furthermore, we propose the novel Cauchy 10ss Lcquchy in

terms of the negative-log-likelihood log (T + @) of f(z;xo,T") where we replace  — o with

EACP as eq. . Our total 10ss L,tq; in Equation (8) consists of Lqythy and a depth regularization
term R gepen to encourage positive depth. With the estimated camera parameters, we use 4DGS [47/]
for scene reconstruction. Reconstruction and loss derivation details are in appendix [A]and appendix B]

1 H (EACP)2
ﬁcauchy = ﬁ Z log (F + #) (7)
h=0
1 & ,
Liotal = [fcauthy + Rdepth, Rdepth - N Z _ReLU(PfT‘0]7h07,w[:, 3}) (8)
=0

3.3 Two-stage Optimization Strategy

To avoid convergence to local minima, we propose this strategy based on an analysis of the asymptotic
behavior of the Softplus function and the analytical minima of the inner convex term in Lequthy-
Stage 1 focuses on rapid convergence, while Stage 2 aims for stable convergence by initializing I'"*"
to the ACP error after Stage 1. The effectiveness of it is concretely demonstrated in Table

Stage 1. In the Softplus function, T' = log(1 + €™ ") &~ T, as T"** — 4-00. So in Stage 1, we
fix %" = 1 and optimize only P°*, f, Q, and t for quick convergence. The loss will converge to
a certain value beyond the global minimum, as there is no proper I' to down-weight outliers.

Stage 2. The inner term ® = x + %, O > 0 of Leguchy 1s convex. Assuming a constant O € Rt

and solving for min,, ®(z), we have z* = v/O. Similarly, in Stage 2, if T"*" is randomly initialized

to values largely different from EZST, (the ACP error from Stage 1), convergence will be highly

unstable. Therefore, we initialize T'"*" = Efg;l, and optimize Ppeali f>Q, t,and I'"*" jointly.

4 Experiments

To demonstrate the superiority of our method, we show extensive quantitative and qualitative results in
this section. For NeRF-DS [50], DAVIS [28]], and iPhone [7] datasets without GT camera parameters,
we feed the camera parameters from different methods to 4DGS [47], while keeping all other
factors the same, and evaluate each NVS performance (PSNR, SSIM, and LPIPS). Regarding the
MPI-Sintel [2] and TUM-dynamics [36] datasets with GT camera parameters, we directly evaluate
methods by ATE, RPE trans, and RPE rot metrics. In all tables, the best and second-best results are
bold and underline. More about datasets, and evaluation metrics are in appendix [Cland appendix [D}

4.1 Implementation Details

The optimization is conducted on 1 NVIDIA A10040GB GPU with Adam [27]] optimizer and learning
rates [q = 0.01, Iy = 0.01, [; = 1.0, Ipcar: = 0.01, and Iprew = 0.01. We also choose to build our
patch-wise tracking filters on CoTracker [13] and load its pre-training weights. The hyperparameters
of our patch-wise tracking filters are set at 7,4, = 0.1, B = 100, WNeRF-DS, DAVIS, MPI-Sintel = 12, and
Wiphone, TUM = 24. Notably, w is only related to the frame size. Besides, throughout our experiments,
we have 200 and 50 iterations in Stage, and Stage, respectively.

Table 5: Camera Pose Evaluation on MPI-Sintel [2]. (ATE|/RPE trans|/RPE rot|) We achieve
better results than casualSAM [58] and exclude COLY?° ™ask due to its failure.

Method alley_1 alley_2 ambush_4 ambush_5 ambush_6 market_2 market_6
casualSAM [58]  0.028/0.006/0.057  0.003/0.003/0.392  0.040/0.058/0.321  0.053/0.040/0.211  0.302/0.088/2.362  0.010/0.010/0.041  0.239/0.207/0.544
Ours 0.002/0.003/0.038  0.009/0.002/0.047  0.119/0.049/1.367  0.065/0.039/1.192  0.080/0.129/2.191  0.003/0.010/0.110  0.009/0.006/0.301
Method shaman_3 sleeping_1 sleeping_2 temple_2 mountain_1 bamboo_1 bamboo_2
casualSAM [58]  0.008/0.009/0.050  0.017/0.016/0.173  0.013/0.025/0.170  0.005/0.004/0.380  0.003/0.004/0.182  0.033/0.009/0.056  0.005/0.003/0.035
Ours 0.003/0.001/0.085  0.008/0.001/0.074  0.002/0.001/0.034  0.017/0.003/0.142  0.007/0.004/0.060  0.003/0.003/0.033  0.004/0.003/0.033




Table 2: NVS Evaluation on

NeRF-DS [50] and DAVIS [28]. Table 4: Camera Pose Evaluation on TUM-
(PSNR1/SSIM1/LPIPS|) * is super- dynamics [36]. Other results are from Cut3r [44]
vised by additional GT priors. Ours is and Monst3r [56]. Performance of DROID-SLAM [39]

the best among these two datasets. is from casualSAM [58]]. Our method achieves the best
overall performance among all RGB-only supervised
Method NeRF-DS DAVIS methods, and even better than the ones supervised by
RoDynRF[20]*  23.033/0.749/0.385 - s :
coL™/ mask~ 32.174/0.923/0.147 - additional GT priors.
copo sk 29.348/0.875/0.224  9.196/0.236/0.435
casualSAM[SS]  21.230/0.686/0.463  19.032/0.486/0.482 —
Ours 33.552/0.938/0.118  22.292/0.709/0.279 ~ Supervision Method ATE| RPE trans; RPE rot}
Monst3r 0098 0019 0.935
GT 3D Point Cloud ~ Dust3r 0083 0017 3.567
Table 3: Runtime Evaluation on NeRF- & CameraPose W f] 0.038 0012 Qais
DS [50], DAVIS [28]], and iPhone [7], el e B
. 4 1]
covering frame count from 50 to 900. 070, . LEAP-VO (3] 0.046  0.027 0.385
* is supervised by additional GT priors. G’T’F;C;ll;n’gt; ””””””””””””””””””
Our method is the most efficient. "+ Mewric Depth PROID-SLAME] 0043 - T
Method NeRF-DS DAVIS iPhone GT Motion Priors ParticleSfTM - - -
RoDynRF [20]* 29.6h 27 4h 28.5h Robust-CVD 0.153 0.026 3.528
coLW maskx 1.5h B B RGB-Only casualSAM 0.071 0.010 1.712
— Ours 0.065  0.010 0.987
corLYomsk 1.8h 0.51h  9.53h
casualSAM [58] 10.5h 0.28h 4.07h
Ours 0.83h 0.03h 0.33h

4.2 Time Efficiency Evaluation

In Table[3] we present the average runtime evaluations. Our average runtime on NeRF-DS, DAVIS,
and iPhone is 55%, 11%, and 8% of that of the second-fastest methods, while keeping the best
performance as shown in table 2] We attribute it to three main reasons: (1) Our method only
leverages the maximally sparse pseudo-supervision extracted by our proposed patch-wise tracking
filters under the RGB-only supervision. (2) Our uncertainty parameters are associated with the
3D calibration points rather than 2D uncertainty maps [58]], significantly reducing the number of
learnable parameters. For Plate video (424 frames) in NeRF-DS, casualSAM has (424 x270x480)
uncertainties, whereas our method only has 440 uncertainties, one per P/, 3) The two-stage
optimization strategy highly accelerates the optimization speed. As seen from Table[7] omitting the
two-stage strategy leads to a dramatic performance drop after the same iterations, indicating more
iterations, and thus time, are needed to achieve the same performance.

ATE: 0017, ATE: 0.009 ATE: 0,003 ATE: 0.002
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Figure 5: Qualitative NVS Results on Figure 6: Qualitative Results of Camera Pose
DAVIS [28]. Our performance is the best because on MPI-Sintel [2]. — represents our camera esti-
of our accurate camera estimates. More are in ap- mates; — represents the GT. Our estimated camera

pendix [E2.2](fig.[T4] fig.[T5] fig.[T6] and fig.[T7). trajectories almost perfectly align with the GT.

Besides, in Figure ] we see that our method exhibits a linear growth (at the rate of about 1/800
hours per frame) vs COL™/ ™% whose runtime growth is roughly exponential. This difference will
be increasingly significant as the video length increases, which can also demonstrate the superior



Table 6: NVS Evaluation on iPhone [7]. (PSNR1/SSIM1/LPIPS|) Record3D is a paid mobile app
obtaining camera results by LiDAR sensors, where are provided by [7]. Ours is the best among
RGB-only supervised methods and surpasses LiDAR-based Record3D sometimes.

Method Apple Paper-..mill Space-out Backpack Block Creeper Teddy

Record3D 26.35/0.77/0.33  23.91/0.73/0.24  27.12/0.77/0.33  20.79/0.56/0.40  23.72/0.71/0.38  21.80/0.63/0.27  19.72/0.59/0.41
cop /e mask 22.45/0.69/0.41  22.74/0.72/0.28  24.33/0.74/0.38  18.58/0.39/0.54  18.49/0.60/0.49  18.13/0.43/0.48  16.56/0.50/0.50
casualSAM[58]  19.03/0.58/0.57  18.85/0.39/0.54  22.09/0.67/0.47  18.41/0.36/0.55  19.10/0.59/0.52  16.40/0.29/0.62  15.69/0.42/0.58
Ours 25.96/0.74/0.37  24.09/0.74/0.22  28.42/0.79/0.31  21.22/0.64/0.32  23.28/0.69/0.38  21.67/0.63/0.28  20.78/0.60/0.41
Method Handwavy Haru-sit Mochi-..five Spin Sriracha Pillow Wheel

Record3D 27.80/0.86/0.24  29.86/0.87/0.22  34.34/0.91/0.24  24.85/0.69/0.38  31.15/0.87/0.25  20.86/0.63/0.41  20.78/0.60/0.41
cop/e mask 15.69/0.61/0.55  25.58/0.80/0.30  22.47/0.77/0.38 ~ 19.27/0.55/0.49  28.41/0.86/0.28  14.75/0.46/0.57  20.78/0.60/0.41
casualSAM[S58]  20.87/0.68/0.46  19.88/0.69/0.41  26.34/0.84/0.35  19.33/0.45/0.57  23.20/0.73/0.42  16.95/0.51/0.55  14.69/0.47/0.57
Ours 28.02/0.86/0.22  28.31/0.85/0.24  34.56/0.92/0.22 24.81/0.67/0.39  32.49/0.89/0.25 20.63/0.61/0.44  20.42/0.67/0.37

time efficiency of our method compared with other RGB-only supervised methods. We exclude the
casualSAM here since its runtime is too large to fit here.

4.3 Camera Pose Evaluation

We follow the same evaluation setup of Cut3r [44] and Monst3r [S6] on TUM-dynamics [36] and
evaluate all videos of the synthetic MPI-Sintel [2]] dataset.

Quantitative Evaluation. In Table [5] and Table ] our method has the best performance among
all RGB-only supervised approaches. Our method also achieves comparable or even better results
than others that require additional GT priors as supervision. We attribute it to our accurate and
robust pseudo-supervision, derived from RGB-only input, enabling effective outlier-aware joint
optimization. Besides, our uncertainty modeling and loss design effectively down-weight the impact
of moving outliers. Since COLY M3k and COLY° ™2k always fail on MPI-Sintel [2], as observed by
us and [20)}, 156], we exclude comparisons with them here. However, RGB-only supervised methods
including ours perform not very well in some special cases, which is discussed in the limitations.

Qualitative Evaluation. In Figure[6] we show our estimated camera trajectories alongside the GT on
MPI-Sintel [2]]. Our estimated camera trajectories can perfectly overlap with the GT, which provides
qualitative support to the higher accuracies seen in the quantitative results in Table 5]

4.4 NYVS Evaluation

Since NeRF-DS [50], DAVIS [28]], and iPhone [7] datasets do not provide GT camera parameters,
we follow [6} 20} 45, [19] by inputting camera estimates of different methods into the same 4D
reconstruction pipeline - 4DGS [47], and evaluate the NVS performance. Such NVS performance
reveals the quality of the camera parameter estimation.

Quantitative Evaluation. In Table |2} our method is the best on NeRF-DS [50] (long videos w/
little blur, textureless regions, and specular moving objects) and DAVIS [28]] (short videos w/ low
parallax and rapid object movement), demonstrating our more accurate camera estimates. We skip
COLY mask and RoDynRF on DAVIS [28]] because they are not RGB-only supervised methods and
require supervision beyond RGB frames, and have already underperformed compared to ours on
NeRF-DS [50]. Besides, our pseudo-supervision extraction built on the PT models [[13} [12]] performs
better on low-parallax videos, which remains challenging for the pre-trained depth model [31].

Regarding the iPhone [7] dataset (videos w/ irregular camera movement and object movement),
it provides so-called ’GT’ camera parameters obtained by Record3D which is a paid mobile app
obtaining camera results by LiDAR sensors. However, we observe that such so-called ’GT’ camera
parameters are occasionally unreliable. As shown in Table [6]and fig.[7} besides being the best among
all RGB-only supervised methods, our method can occasionally beat Record3D.

Qualitative Evaluation. We evaluate the quality of the rendered RGB images and depth maps in
Figure[7] Figure[8] and Figure[5] Beyond superior RGB renderings, our camera estimates yield the
highest-quality depth maps, offering more convincing evidence of accurate scene geometry than
RGB renderings. It indicates that our estimated camera parameters enable the model to learn the
correct dynamic scene representations rather than overfitting to training views. In the first row of
Figure[7] ours performs the best (surpassing even Record3D), especially in rendered depth; whereas
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Figure 7: Qualitative NVS Results on iPhone [7]]. Our method outperforms other SOTA RGB-only
supervised approaches and even surpasses LiDAR-based Record3D when the movement in scenes

with large motion (top row). More are in appendix [E.2.2] (fig. [T} fig.[12] and fig. [T3).

""""""""" - T Table 7: Ablation Study on NeRF-DS [50] -
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Figure 8: Qualitative NVS results on NeRF-
DS [50]. Our renderings are the most plausible.

More are in appendix [E:2.2] (fig. [T8).

in the second row, our method does not match Record3D, but is still better than other RGB-only
supervised works. This is because Record3D is not originally designed for dynamic scenes, so when
a scene contains larger irregular movements, its performance will be worse (such observations are
also supported by the numerical results in Table[§). In contrast, our method is more robust in various
scenarios, consistently maintaining high standards.

Ablation Study. In Table[7] the loss of any
filter results in less robust relations across
video, leading to poor camera estimates and

Table 8: Ablation Study on NeRF-DS - Part 2.
We conducted ablation studies on different PT models.

NVS perforglarlljce. Further, the removal of  geene Camera Optimization PSNRT SSIM! LPIPS,
any of T', EACP or the two-stage strategy ~ Optimization (PT model choice)

?Vlu harm the results due to outher_s. This Orzsum o CoTracker 3355 09381 01182
indicates that w/o such a strategy, increas- 4DGS @7l *

ing training iterations is a necessary but not + built on CoTracker3 (121~ 3332 09384 0.1180

sufficient condition for comparable results.

We also overcome the limitations of COLMAP [32] by improving the performance of different
scene optimization models [53} [47]] with our camera estimates. As reported in CoTracker3 [12],
CoTracker [13] performs worse than CoTracker3. However, in table [8] the performance of our
proposed method is nearly independent of building on the particular PT model. This further sup-
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Figure 9: Failure cases of ours and casualSAM on MPI-Sintel [2].

ports our claim that our patch-wise tracking filters effectively exact only the accurate trajectories as
pseudo-supervision.

5 Conclusion and Limitation

We proposed a new RGB-only supervised, accurate, and efficient camera parameter optimization
method in casually collected dynamic-scene videos. Our method effectively tackles the challenge
of precisely and efficiently estimating per-frame camera parameters under the situation of having
no additional GT supervision (e.g. GT motion masks, focal length, 3D point clouds, metric depth,
and camera poses) other than RGB videos, which is the most common scenario in real-world and
consumer-grade reconstructions. Our method may serve as a step towards high-fidelity dynamic
scene reconstruction from casually captured videos.

Although our proposed method is currently the most state-of-the-art RGB-only supervised, accurate,
and efficient camera parameter optimization method in dynamic scenes, there are still several
limitations. We assume a constant focal length throughout the video. While this assumption is
reasonable and currently common to SOTA, the task of accurate and efficient camera parameter
optimization for dynamic scene videos with zooming effects under RGB-only supervision remains
an open problem. Another common challenge for RGB-only supervised methods, not addressed
in this paper, is maintaining robustness in scenes dominated by large moving objects. As shown
in fig. [0 the screen space is occupied by the moving human and dragon. It is challenging for our
method to establish robust and maximally sparse hinge-like relations as accurate pseudo-supervision
because most of the extracted trajectories belong to outliers. CasualSAM [58] struggles due to the
rapid changes in depth maps from frame to frame, making 3D space alignment difficult. We plan to
maintain consistency in our input setup and address these challenges as part of future research.
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dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

15



(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release the code upon the acceptance of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show all these details in the implementation details section in the main
paper and the datasets section in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We present these in the experiment section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We present this in the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research conducted in the paper conforms in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss them in the first paragraph of the main paper and the conclusion
section of the main paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited every paper and work once we mentioned them.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We use and cite the existing public datasets in this work. Other assets including
related code/model will be released upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: This paper does not include the things mentioned in the question.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Due to the space limit, we show more discussions, results, and details here.

A Dynamic Scene Optimization

Preliminary. As an alternative to NeRF [23]], which has a lengthy runtime, 3DGS [14]] recently
introduced a new way to learn static scene representations in terms of explicit 3D Gaussian ellipsoids.
Unlike the implicit representations of NeRF stored as the weights in the Convolutional Neural
Network (CNN), 3DGS [[14] uses explicit representations in 3D world coordinates and performs
differential Gaussian rasterization on GPUs using CUDA which significantly speeds up computational
efficiency. Each 3D Gaussian ellipsoid G (x) is parameterized by its (1) Gaussian center X € R?;
(2) quaternion factor r € R*; (3) opacity o € R; (4) scaling factor s € R3; and (5) color C € RF (k
denotes degrees of freedom), and represented by:

G(x) = 6—1/2($—M)T271($—u) 9)

Y =JWEIWTIT, ¥ = rssTr? (10)

where ¥ is the 3D covariance matrix in the world space, W and J are the view transformation
matrix and the Jacobian matrix of the affine transformation parts, respectively, of the projective
transformation, and Y’ is the covariance matrix in the camera coordinates. The color is rendered by:

C(p) = Y cxorTH (1 — o) (11)

kEK
where ¢ and oy, represent the spherical harmonic (SH) coefficient and the density at this point.

4D GS. To take advantage of its optimization efficiency, we use 4DGS [47] to learn dynamic scene
representations. With different camera estimates and the same scene optimization method [47]], we
use NVS performance to evaluate the accuracy of camera parameter estimates. In 4DGS[47]], the NVS
performance depends on how well the canonical representations and deformation representations are
optimized. The canonical (refers to 'mean’ as in the previous work [14 /53] [47])) representations G
are learned by a canonical Gaussian field to optimize the mean (canonical) position X € R?, color
C € RF, opacity a € R, quaternion factor r € R4, scaling factor s € R3, and the deformation
representations JF are optimized using a deformation field [47] to learn the offsets AG, supervised by
an L1 loss between images and renderings. Since the color and opacity of the Gaussian ellipsoids do
not change over time, the deformed attributes consist of (X', 7', s') = (X + AX,r + Ar,s + As).
More details can be found in 4DGS [47]].

B Derivation of Cauchy Negative-log-likelihood

The Cauchy loss function is derived from Equation (I2) to Equation (T4). Since we use the Cauchy
probability density function (PDF) to model the uncertainty of calibration points P21, we want to
maximize the likelihood of the Cauchy PDF:

flas20,T) = — 10 (12)

a1+ (5572)?]

Equivalently, we minimize the negative-log-likelihood of f(z; zg, T'), to define the loss function::

NLL(z;zo,I') = —log(f(z;z0,T))
— log(nT) + log(1 + (2=22)2)

(x —x0)? (13)

)

2

(z — o)
— )

= log[r - (T +

= log 7 + log(T" +
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where log 7 and x( denote a constant term and the ground truth which can be omitted. Thus, our
objective is as follows:

_ 2
mirn NLL(x;z0,T) = milp log(T" + w) (14)

C Datasets

To demonstrate our performance on a broader range of scenarios, we have conducted extensive
experiments across five public datasets - NeRF-DS [50], DAVIS [28]], iPhone [7], MPI-Sintel [2]], and
TUM-dynamics [36]. These videos contain different camera and object motion patterns, and different
texture levels. The lengths of the videos range from about 50 to 900. Regarding the train/test split of
the NVS evaluation, for every 2 adjacent frames, we take the first frame for training and the second
frame for testing. For the setup of camera pose evaluation, we follow Cut3r [44] and Monst3r [56] in
the experiments on TUM-dynamics and evaluate all videos in MPI-Sintel [2].

NeRF-DS. NeRF-DS [50] dataset includes seven long monocular videos (400-800 frames) of different
dynamic, real-world indoor scenarios with little blur. Each video has at least one specular moving
object against a mix of low-texture and high-texture backgrounds. NeRF-DS [50] exhibits large
scene and camera movements, so the frames have some blur. The GT motion masks provided are
human-labeled and the camera parameters are estimated by COL" ™k T ike previous works [50, 53],
we take the highest resolution images available (480 x 270) as the RGB input in all experiments.

DAVIS. DAVIS (28] dataset contains 40 short monocular videos that capture different dynamic scenes
in the wild. Each video has 50-100 frames, including at least one dynamic object. The GT motion
masks are also provided as in NeRF-DS [50]. However, like [20} 145} 158, 159]], we exclude some
videos using fixed cameras, changeable focal lengths, etc. Different from others [20} 45 58} 3] which
only show experiments of about 10 videos in DAVIS [28]], we conduct experiments on 21 videos
containing large camera and object movements. We utilize the RGB frames with the resolution of
854 x 480 as input.

iPhone. The iPhone [[7] dataset is an extremely challenging dataset (180-475 frames) with significant
camera rotations and translations, and rapid movements of objects. There are 14 monocular videos
including indoor and outdoor scenes and no GT motion mask is provided. It would also be difficult
to insert motion masks for this dataset because there is no clear boundary between the moving
and stable regions within any frame. They represent real-world casually recorded videos. We
conduct experiments on all of them. The frame size is 720 x 960. These videos are recorded by
the Record3D [33]] app on iPhone which uses LiDAR sensors to obtain metric depth for camera
estimation. In our comparisons with the camera estimates provided by Record3D, we also take the
Record3D app as one of the baselines and compare with it.

MPI-Sintel. MPI-Sintel [2] is a synthetic dataset provided GT camera parameters. It has 18 short
videos (about 50 frames) in total containing large object movement. In some cases, the moving
objects cover most of the screen. Most of the existing works [20} 1561 3] select 14 videos for evaluation,
but in this paper, we evaluate the methods among all the videos. The synthetic MPI-Sintel dataset
exhibits domain gaps compared to real-world scenarios, which is considered to be one of the reasons
why some existing methods [58, |59]] perform well on MPI-Sintel, but do not work efficiently on other
real-world datasets. In experiments, we take the frames with default sizes as the input the our method,
while keeping the default resizing setup of the other methods.

TUM-dynamics. TUM-dynamics [36] dataset contains 8 long real-world blurry videos recording the
dynamic indoor scenes provided with GT camera parameters. However, although the videos in this
dataset are indoor scenes, each video features a significant depth of field. TUM-dynamics dataset
also contains large camera movement and rapid object movement. We follow the experimental setup
of MonST3R [56] on this dataset, which is sampling the first 90 frames with the temporal stride of 3
to save compute.

D Evaluation Metrics

As discussed in section[d] of the main paper, we directly conduct camera pose evaluation against the
GT on MPI-Sintel[2] and TUM-dynamics [36], using the standard metrics: ATE, RPE trans, and RPE
rot. Besides, regarding NeRF-DS [50]], DAVIS [28]], and iPhone [7]] datasets which are not provided
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with GT camera parameters, we conduct NVS evaluation with standard metrics: PSNR, SSIM, and
LPIPS. We also employ time evaluation to demonstrate the superior time efficiency of our method.

D.1 PSNR & SSIM & LPIPS

PSNR. PSNR is a measure of the ratio between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of its representation. PSNR is commonly used to
compare the qualities of the original and the rendered images, and is obtained from the Mean Square
Error (MSE) between the original and the rendered images:

15s)

2
PNSR = 10 - log,, ( MAX )

MSE(Imageg, gereq> IMagegr)

, where MAX is the maximum pixel value of the image.

SSIM. SSIM measures the similarity between two images based on structural information. Its
evaluation involves luminance, contrast, and structure. Compared to PSNR, SSIM is intended to
match human perception more closely. The SSIM values range from -1 to 1, where 1 denotes perfect.
It is given as:

(2Nrﬂy + cl)(2‘7ry + 62)

SSIM =
(12 + 12 + 1) (02 + 02 + ¢2)

(16)

where z and y are two images, i, /i, and 02, af} are the corresponding averages and variances of
and y, o, represents the covariance of x and y, and c; and ¢ denote the regularization terms.

LPIPS. LPIPS measures perceptual similarity in terms of features of deep neural networks, such as
pre-trained VGG [34] or AlexNet [[17]. It compares feature activations of image patches. Like [14,
53,147, 119], we here use the VGG-based networks.

D.2 ATE & RPE trans & RPE rot

ATE. ATE quantifies the difference between the actual trajectory and the estimated trajectory of a
robot or camera over time, offering a global measure of error along the entire path. It is calculated by
aligning the estimated trajectory with the ground truth and then measuring the Euclidean distance
between each corresponding point on the two trajectories.

RPE trans. RPE trans quantifies the error in the translational component between consecutive poses
or over a fixed time/distance interval. Unlike ATE, which assesses the overall trajectory, RPE Trans
emphasizes the local accuracy of the motion estimation by evaluating how well the system preserves
the relative motion between two points in time or space.

RPE rot. RPE rot quantifies the error in the orientation component between the estimated poses
and the ground truth. This metric is computed by measuring the difference in orientation over short
sequences, and it is typically expressed in angular units, such as degrees or radians.

E More Results

E.1 Quantitative Results
E.1.1 Runtime

We report the detailed runtime comparisons on the NeRF-DS [50]], DAVIS [28]], and iPhone [7]]
datasets, each containing over 50 frames, where runtime differences become more pronounced.
Specifically, in Table [9] and Table the runtime of our method is the shortest. In addition, in
Table on the NeRF-DS [50] dataset, the runtime of COLY ™2k and coLW° mask op Plate video is
shorter than of ours. This is because COLY ™* and COL"° ™ fail on this video, leading to a quick
convergence to the local minima. Such a conclusion can also supported by qualitative results of fig. [§]
in the main paper.
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Table 9: Quantitative Runtime Results on DAVIS [28]. Cam — camera optimization time;
Cam+Scene — overall (camera+scene) optimization time; h — hour; m — minute. We mark
the shortest time in bold. Our method is the most efficient without any failure.

Method Ours coLv/oe mask casualSAM
Cam Cam+Scene ‘ Cam Cam+Scene ‘ Cam Cam+Scene
Camel 1.57m 25.28m 40m 7lm 24m 46m
Bear 3.15m 1.08h 56m 88m 20m 39m
Breakdance-flare  1.73m 0.92h FAIL - 15m 34m
Car-roundabout 4.97m 21.95m 10m 41m 18m 46m
Car-shadow 0.93m 17.88m S5m 31m 10m 36m
Car-turn 2.97m 17.35m FAIL - 27m 49m
Cows 2.85m 22.50m 73m 84m 26m 48m
Dog 1.60m 11.70m 10m 53m 12m 31m
Dog-agility 0.67m 26.63m FAIL - Sm 31m
Goat 2.10m 18.95m 107m 124m 22m 44m
Hike 4.20m 31.83m FAIL - 20m 42m
Horsejump-high  1.97m 21.20m Sm 33m 10m 31m
Lucia 1.97m 22.75m 44m 65m 16m 36m
Motorbike 2.08m 18.77m 6m 3Im 9m 32m
Parkour 9.07m 26.65m 16m 37m 27m 48m
Rollerblade 1.25m 17.08m FAIL - 8m 27m
Tennis 3.47m 17.03m 9m 30m 17m 38m
Train 1.90m 18.22m 32m 57m 19m 44m
Mean 2.68m 21.02m 31m 56m 17m 39m

Table 10: Quantitative Runtime Results on iPhone [7]. Cam — camera optimization time;
Cam+Scene — overall (camera+scene) optimization time; h — hour; m — minute. We mark
the shortest time in bold. Our method is the most efficient.

Method Ours coLY/e mask casualSAM
Cam Cam+Scene ‘ Cam Cam+Scene ‘ Cam Cam+Scene

Apple 33m 47m 10.95h 11.25h 6.80h 7.32h
Paper-windmill ~ 15m 27m 8.18h 8.70h 3.50h 3.97h
Space-out 23m 69m 4.42h 4.72h 5.87h 6.30h
Backpack 7m 25m 1.83h 2.12h 1.58h 2h

Block 27m 42m 10h 10.45h 6h 6.50h
Creeper 27m 45m 16.03h 16.45h 4.38h 4.82h
Handwavy 15m 30m 4.62h 5.1h 3.30h 3.72h
Haru-sit 10m 25m 0.77h 1.18h 1.25h 1.72h
Mochi-high-five =~ 6m 18m 0.67h 1.03h 1.53h 1.93h
Pillow 21m 36m 19.18h 19.70h 3.70h 4.20h
Spin 30m 44m 20h 20.58h 5.50h 6h

Sriracha-tree 15m 27m 4.58h 4.88h 3.22h 3.68h
Teddy 31m 46m 1%h 19.71h 6.78h 7.28h
Wheel 27m 46m 6m 13.80h 3.67h 4.17h
Mean 20m 38m 9.53h 9.97h 4.07h 4.53h
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Table 11: Quantitative runtime results on NeRF-DS [50]. Cam — camera optimization time;
Cam+Scene — overall (camera+scene) optimization time; h — hour; m — minute. We mark the
shortest time in bold. we show only Cam+Scene of RoDynRF [20]] due to its joint optimization of the
camera and scene. * is supervised by additional GT priors. COL™/™%k and COL™/°™%5k are faster
than us on Plate because they fail on this video, leading to a quick convergence to the local minima,
which can be supported by qualitative results of fig. [§]in the main paper. Among all, our method is
the most efficient.

Method Ours coL" mask= coLW/omask casualSAM RoDynRF*
Cam Cam+Scene ‘ Cam Cam+Scene ‘ Cam Cam+Scene ‘ Cam Cam+Scene ‘ Cam+Scene
Bell 1.05h 1.20h 2.50h 2.72h 3.00h 3.25h 16.5h 16.8h 28.6h
As 0.95h 1.08h 2.00h 2.17h 2.55h 2.72h 14.87h 15.08h 33.6h
Basin 0.75h 0.92h 1.42h 1.62h 1.60h 1.85h 9.88h 10.67h 33.8h
Plate 0.53h 0.68h 0.42h 0.60h 0.50h 0.87h 4.67h 4.98h 25.6h
Press 0.68h 0.82h 0.85h 1.05h 0.90h 1.08h 6.28h 6.60h 28.5h
Cup 1.02h 1.15h 2.37h 2.58h 2.57h 2.73h 13.50h 13.78h 28.8h
Sieve 0.78h 0.92h 1.15h 1.35h 1.58h 1.77h 7.83h 8.13h 28.3h
Mean 0.83h 0.97h 1.52h 1.73h 1.82h 2.03h 10.50h 10.80h 29.6h

E.2 Qualitative Results
E.2.1 Trajectories from Patch-wise Tracking Filters as Pseudo-supervision

In Figure [I0] we show the trajectory comparisons on the NeRF-DS [50] dataset as samples. As
discussed in the 3rd paragraph in section[I] and section [3.1]of the main paper, our patch-wise tracking
filters can establish robust and maximally sparse hinge-like relations as accurate pseudo-supervision,
avoiding noisy and inaccurate tracking trajectories. In Figure[I0] it is easy to see our proposed method
avoids the inaccurate ones in the low-texture regions (walls), and meanwhile, adaptively adds new
reliable trajectories when the number of left trajectories on each frame is less than B.

E.2.2 NVS

We show more RGB and depth rendering results on NeRF-DS [50], DAVIS [28]], and iPhone [[7]
dataset in Figure[TT] Figure[T2] Figure[I3] Figure[I4] Figure[T5] Figure[16] Figure[I7] and Figure[T§]
It is easy to see that the RGB and depth rendering results of our method are better than other RGB-only
supervised approaches. In addition, the performance of our method is also comparable with that of
the LIDAR-based Record3D app.

E.2.3 Optimized 3D Gaussian Fields

Since the iPhone [[7] dataset is the most challenging dataset with large camera and object movements,
we show more visualizations of optimized 3D Gaussian fields in Figure 20} Figure[21] and Figure
Such comparisons demonstrate that our camera estimates enable superior reconstruction of 3D
Gaussian fields compared to other RGB-only supervised approaches. Moreover, the reconstructed
fields using our estimates are comparable to, or even surpass, those obtained with the LiDAR-based
Record3D [33] app, particularly in scenes with significant motion.
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Figure 10: Trajectory Comparisons on the NeRF-DS [50] Dataset. In each scenario, top row —
Fy; bottom row — Fyy7; w/o patch-wise filters — raw CoTracker [13]); w/ patch-wise filters — Ours.
It is easy to see our proposed method avoids the inaccurate trajectories in the low-texture regions,
whereas the trajectories of the points in the low-texture regions tracked by raw CoTracker are
extremely unreliable.
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Figure 11: More Qualitative NVS Results on iPhone [7] - Part 1. Our renderings exhibit higher
fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our
performance is comparable with, or even better than, the ones of the LIDAR-based Record3D app.
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Figure 12: More Qualitative NVS Results on iPhone [7] - Part 2. Our renderings exhibit higher
fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our
performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.
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Figure 13: More Qualitative NVS Results on iPhone [7] - Part 3. Our renderings exhibit higher
fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our

performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.
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Figure 14: More Qualitative NVS Results on DAVIS - Part 1. Our renderings exhibit higher
fidelity compared to other RGB-only supervised methods.
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Figure 15: More Qualitative NVS Results on DAVIS [28] - Part 2. Our renderings exhibit higher
fidelity compared to other RGB-only supervised methods.
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Figure 16: More Qualitative NVS Results on DAVIS [28] - Part 3. Our renderings exhibit higher
fidelity compared to other RGB-only supervised methods.
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Figure 17: More Qualitative NVS Results on DAVIS [28] - Part 4. Our renderings exhibit higher
fidelity compared to other RGB-only supervised methods.
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Figure 18: More Qualitative NVS Results on NeRF-DS [50]. Our renderings exhibit higher fidelity
compared to other RGB-only supervised methods.
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(a) RGB Frame {b) Ours (c) Record3D (d) cOoL™/omask (e) casualSAM

Figure 19: Optimized 3D Gaussian Fields on iPhone [7] - Part 1. Our reconstructed 3D Gaussian
Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods,
which demonstrates our camera estimates are more accurate. Besides, our performance is comparable
with, or even better than, the ones of the LIDAR-based Record3D app.
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(a) RGB Frame (b) Ours (c) Record3D (d) coLw/omask (e) casualSAM

Figure 20: Optimized 3D Gaussian Fields on iPhone [7] - Part 2. Our reconstructed 3D Gaussian
Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods,
which demonstrates our camera estimates are more accurate. Besides, our performance is comparable
with, or even better than, the ones of the LiDAR-based Record3D app.
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(a) RGB Frame (b) Ours (c) Record3D (d) CoL™/omask (e) casualSAM

Figure 21: Optimized 3D Gaussian Fields on iPhone [7] - Part 3. Our reconstructed 3D Gaussian
Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods,
which demonstrates our camera estimates are more accurate. Besides, our performance is comparable
with, or even better than, the ones of the LiDAR-based Record3D app.
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