RGB-Only Supervised Camera Parameter Optimization in Dynamic Scenes

Fang Li

University of Illinois at Urbana-Champaign Champaign, IL 61820 fangli3@illinois.edu

Hao Zhang

University of Illinois at Urbana-Champaign Champaign, IL 61820 haoz19@illinois.edu

Narendra Ahuja

University of Illinois at Urbana-Champaign Champaign, IL 61820 n-ahuja@illinois.edu

Figure 1: (a) Overview of our RGB-only supervised camera parameter optimization. (b) Front view of the **3D Gaussian field** reconstructed by our camera estimates at time t. (c) **2D renderings** (RGB and depth) at time t with quantitative metrics. Our optimization is not only significantly more efficient and accurate, but also avoids overfitting the reconstruction to specific viewpoints. Record3D is a mobile app that factory-calibrates the intrinsic and uses LiDAR sensors to collect metric depth for camera pose estimates, thus does not have valid runtime.

Abstract

Although COLMAP has long remained the predominant method for camera parameter optimization in static scenes, it is constrained by its lengthy runtime and reliance on ground truth (GT) motion masks for application to dynamic scenes. Many efforts attempted to improve it by incorporating more priors as supervision such as GT focal length, motion masks, 3D point clouds, camera poses, and metric depth, which, however, are typically unavailable in casually captured RGB videos. In this paper, we propose a novel method for more accurate and efficient camera parameter optimization in dynamic scenes solely supervised by a single RGB video, dubbed *ROS-Cam*. Our method consists of three key components: (1) Patch-wise Tracking Filters, to establish robust and maximally sparse hinge-like relations across the RGB video. (2) Outlier-aware Joint Optimization, for efficient camera parameter optimization by adaptive down-weighting of moving outliers, without reliance on motion priors. (3) A Two-stage Optimization Strategy, to enhance stability and optimization speed by a trade-off between the Softplus limits and convex minima in losses. We visually and numerically evaluate our camera estimates. To

further validate accuracy, we feed the camera estimates into a 4D reconstruction method and assess the resulting 3D scenes, and rendered 2D RGB and depth maps. We perform experiments on 4 real-world datasets (NeRF-DS, DAVIS, iPhone, and TUM-dynamics) and 1 synthetic dataset (MPI-Sintel), demonstrating that our method estimates camera parameters more efficiently and accurately with a single RGB video as the only supervision.

1 Introduction

Despite recent progress in visual odometry, efficiently and accurately optimizing camera parameters¹ (focal length + rotation&translation) from casually collected RGB dynamic-scene videos remains a big challenge. Although the most predominant COLMAP [32] method² is RGB-only supervised, it suffers from its lengthy runtime and requisite of GT motion masks to mask out the outlier moving stuff. In Table 1, most recent approaches [6, 45, 3, 42, 59, 46, 56, 44] attempted to improve through being supervised by additional GT priors such as focal length, metric depth, 3D point clouds, camera poses, and motion masks, which are typically unavailable in casually collected videos. We cannot help but ask a natural question: *Is it possible to accurately and efficiently estimate camera parameters in dynamic scenes in an RGB-only supervised manner - the most minimal form of supervision?*

Existing RGB-only supervised methods [42, 45, 20, 59, 3] make obvious improvements, but they mostly rely on multiple pre-trained dense prediction models [38, 13, 31] to compensate for the inaccuracies of individual pseudo-supervision sources, resulting in performance degradation if any of them fails. They also cannot adaptively exclude moving outliers without GT motion supervision. Besides, their high computational latency always leads to lengthy runtimes. Further discussion of related work is provided in Section 2.

Table 1: **Categorization of supervision of current methods.** Ours, casualSAM [58], and Robust-CVD [16] are RGB-only supervised, while our performance is the best as shown in section 4.

Supervision	Static Scene	Dynamic Scene			
GT 3D Point Cloud & Camera Pose	Dust3r [46], Fast3r [52], Mast3r [18], Spann3r [40], VGGT [41]	Monst3r [56], Cut3r [44], Stereo4D [11], Easi3r [4]			
GT Focal Length + Metric Depth + GT Motion Priors	CF-3DGS [6], Nope-NeRF [1], LocalNeRF [22]	DROID-SLAM [39] GFlow [45], LEAP-VO [3]			
GT Motion Priors		RoDynRF [20], COL ^{w/ mask} [32], ParticleSfM [59]			
RGB-Only	VGGSfM [42], FlowMap [35], InstantSplat [5], COL ^{w/o mask} [32]	Robust-CVD [16], casualSAM [58], Ours (ROS-Cam)			

Based on these insights, we propose *ROS-Cam*, an RGB-only supervised, accurate, and efficient camera parameter optimization method, with a brief performance overview in Figure 1. Specifically, to minimize reliance on pre-trained dense prediction models while still establishing robust and maximally sparse hinge-like relations across the video as accurate pseudo-supervision (bottom right corner in Figure 2), we propose the novel patch-wise tracking filters built solely on a pre-trained point tracking (PT) model. This formulation effectively avoids inaccurate tracking trajectories extracted across frames and computational latency induced by the noisy dense prediction as pseudo-supervision.

However, the extracted pseudo-supervision includes a portion of trajectories belonging to moving outliers. To eliminate the influence of such outliers, we introduce a learnable uncertainty associated with each calibration point, where each is a learnable 3D position in the world coordinates, corresponding to one extracted tracking trajectory. We model such uncertainty parameters with the Cauchy distribution, which can deal with heavy tails better than, e.g., the Gaussian distribution, and propose the novel Average Cumulative Projection error and Cauchy loss for the outlier-aware joint optimization of the calibration points, focal length, rotation, translation, and uncertainty parameters. Unlike casualSAM and LEAP-VO, which assign uncertainty parameters to 2D pixels, our approach associates uncertainties with sparse 3D calibration points, resulting in significantly fewer learnable parameters and reduced runtime, as shown in Table 3.

Such joint optimization is prone to getting trapped in local minima. To address this, we analyze the asymptotic behavior of the Softplus function and the analytical minima of the inner convex term in

¹Like all existing methods in table 1, we also assume a pinhole camera.

²We denote the COLMAP using motion masks as COL^{w/mask} and the one w/o motion masks as COL^{w/o mask}.

losses to propose a two-stage optimization strategy to accelerate and stabilize the optimization. We evaluate the performance of our method through extensive experiments on 5 popular public datasets - NeRF-DS [50], DAVIS [28], iPhone [7], MPI-Sintel [2], and TUM-dynamics [36], demonstrating our superior performance. Our contributions can be summarized as follows.

- We propose the first RGB-only supervised, accurate, and efficient camera parameter optimization method in dynamic scenes with three key components: (1) *patch-wise tracking filters*; (2) *outlier-aware joint optimization*; and (3) a *two-stage optimization strategy*.
- We present exhaustive quantitative and qualitative experiments and extensive ablation studies
 that demonstrate the superior performance of our proposed method and the contribution of
 each component.

2 Related Works

Dynamic Scene Reconstruction/Novel View Synthesis (NVS). Existing methods for reconstructing objects and scenes use a variety of 3D representations, including planar [8, 9], mesh [51, 55], point cloud [48, 57], neural field [23, 50, 37, 29, 21], and the recently introduced Gaussian explicit representations [49, 14, 10, 47, 53]. NeRF [23] enables high-fidelity NVS. Some methods [25, 26, 29, 50, 15, 24] also extend NeRF to dynamic scenes, while others [51, 55, 54, 43, 37] build on them to extract high-quality meshes. However, NeRF-based methods have the limitation of a long training time. Recently, 3DGS [14] effectively addressed this issue by using 3D Gaussian-based representations and presented Differential-Gaussian-Rasterization in CUDA. 3DGS optimizes 3D Gaussian ellipsoids as dynamic scene representations associated with attributes such as position, orientation, opacity, scale, and color. Several studies [47, 53] also have used 3DGS for dynamic scenes, achieving near real-time dynamic scene novel view synthesis. However, both NeRF-based and 3DGS-based methods heavily rely on COL^{w/ mask} to estimate camera parameters.

Camera Parameter Optimization. Many efforts have been made to overcome the shortcomings of COLMAP, particularly for dynamic scenes. But each suffers from some constraints. In Table 1, we present a categorization of supervision of current SOTA methods. Supervised by additional GT focal length, CF-3DGS [6], Nope-NeRF [1], and LocalNeRF [22] leverage a pre-trained monocular depth estimation model [31] to estimate camera poses and the static scene jointly. The most representative SLAM-based method - DROID-SLAM [39], leverages both GT focal length and metric depth as supervision. GFlow and LEAP-VO [45, 3] extend it to dynamic scenes with both GT focal length and motion priors as supervision. Although VGGSfM, FlowMap, InstantSplat, COL w/o mask [42, 35, 5, 32] eliminate the GT focal length requirement by leveraging pre-trained PT models [38, 13], they cannot handle the moving objects in dynamic scenes. RoDynRF [20], COL^{w/ mask} [32], and ParticleSfM [59] simply tackle such a problem by incorporating GT motion supervision like GFlow. Recently, DUSt3Rbased methods [46, 52, 18, 40, 41] and their dynamic-scene counterparts [56, 44, 11, 4] explored feed-forward camera parameter prediction by training on large-scale static and dynamic scene datasets, respectively, in a fully supervised manner - that is, using GT 3D point clouds and camera poses as supervision, requiring several days' training on high-end GPUs. However, unlike LLMs that benefit from abundant language data, such metric 3D supervision is relatively scarce in the vision area, leading to frequent domain gaps when these models are applied to unseen data. In contrast, Robust-CVD [16], casualSAM [58] and our method conduct camera parameter optimization for dynamic scenes in a more general RGB-only supervised way. However, as shown in Section 4, their performance is significantly worse than ours.

3 Method

Under RGB-only supervision, RGB frames $F_i, i \in [0, N-1]$ (N is frame count) are given. Our proposed patch-wise tracking filters (Section 3.1) extract H robust and maximally sparse hinge-like tracking trajectories as pseudo-supervision, where each corresponds to one calibration point $\mathbf{P}_h^{cali} \in \mathbb{R}^3, h \in [0, H]$ in the world coordinates. Under such pseudo-supervision and our newly proposed ACP error and Cauchy loss, the calibration points \mathbf{P}^{cali} , focal length $f \in \mathbb{R}$, quaternion matrix $\mathbf{Q} \in \mathbb{R}^{N \times 4}$, translation $\mathbf{t} \in \mathbb{R}^{N \times 3}$, and motion-caused uncertainty parameters $\mathbf{\Gamma} \in \mathbb{R}^H_{>0}$ are jointly optimized (Section 3.2). $\mathbf{\Gamma}$ is the scale parameter of the Cauchy distribution which is used to model such uncertainty parameters, associated with each calibration point, to reduce the erroneous

influence of moving outliers. By analyzing the Softplus limits and convex minima in losses, we propose a simple but effective two-stage optimization strategy (Section 3.3) to enhance the stability and optimization speed.

3.1 Patch-wise Tracking Filters

Built on a pre-trained PT model, we observe that its attention mechanism assigns higher attention weights to pixels with more accurate tracking results which are always texture-rich pixels with large gradient norms. Inspired by it, as shown in Figure 2, we propose the patch-wise texture filter to identify the high-texture patches within F_t and the patch-wise gradient filter to select the pixel with the highest gradient norm within each identified patch. While tracking such identified points, the visibility filter keeps removing trajectories that become invisible and the patch-wise distribution filter keeps the one with the largest gradient norm when multiple moving points enter the same patch. As shown in appendix E.2.1 (fig. 10), our method only retains the robust and accurate trajectories as pseudo-supervision.

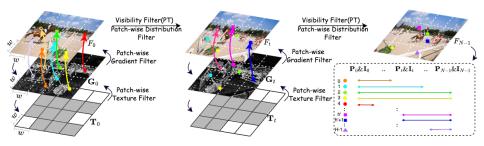


Figure 2: **Patch-wise tracking filters.** (1) Partitioning F_0 into patches of size $w \times w$, the patch-wise texture filter computes the texture map \mathbf{T}_0 and marks the high-texture patches in gray; (2) Within each high-texture patch, the patch-wise gradient filter selects one potential tracking point with the highest gradient norm. (3) The visibility filter removes the entire trajectory of a point if it becomes invisible at any time $(\bullet, \blacksquare, \blacktriangle \to \text{kept trajectories}; \circ, \Box, \triangle \to \text{removed trajectories});$ (4) The patch-wise distribution filter only keeps the one with the largest gradient norm when multiple trajectories fall into the same patch. \mathbf{P} and \mathbf{I} are the location and index of trajectory, and \leftrightarrow is the trajectory range.

Patch-wise Texture Filter. Highly distinguishable points, that can be tracked reliably, belong to highly nonuniform (textured) neighborhoods. To identify such neighborhoods, our patch-wise texture filter computes a texture map $\mathbf{T}_i \in \mathbb{1}^{\mathbb{H}/w \times \mathbb{W}/w}$, giving a measure of texture level for each $w \times w$ patch where \mathbb{H} and \mathbb{W} denote the height & width of F_i . We represent the texture level of a patch by

$$\mathbf{T}_{i}[m,n] = \mathbb{1}\left\{\Sigma_{i}[m,n] > \tau_{var} \cdot \sigma^{*}\right\} \tag{1}$$

, where $\Sigma_i \in \mathbb{R}^{\mathbb{H}/w \times \mathbb{W}/w}$ is the intensity variance, $\sigma^* = \max(\Sigma_i)$, τ_{var} is the percentage threshold of minimum variance for the patch to be selected, and $m, n \in [0, \mathbb{H}/w-1], [0, \mathbb{W}/w-1]$. The texture levels of a patch are represented by 1 for the selected patches and 0 for the others.

Patch-wise Gradient Filter. Within the identified patches, our patch-wise gradient filter computes the intensity gradient norm map $G_i \in \mathbb{R}^{\mathbb{H} \times \mathbb{W}}$ of F_i , and selects the point with the largest gradient norm within each patch. This yields the pool of potentially distinguishable points, forming potential trajectories, namely,

$$\mathbf{P}_{m,n}^{potential} = \arg\max_{n} (\mathbf{G}_{i}[mw:mw+w,nw:nw+w]), \ \mathbf{p} \to \text{pixel locations}$$
 (2)

Visibility Filter. We find that current PT models [13, 12, 30] still tend to suffer from reduced tracking accuracy when a point becomes occluded and later reappears, due to the disruption of temporal feature continuity. Thus, if any $\tilde{\mathbf{P}}$ in any F_i becomes invisible, our visibility filter deletes it by the dot product $\tilde{\mathbf{P}} \cdot \mathbf{V}$, $\mathbf{V} \in \{0,1\} \sim \tilde{\mathbf{P}}$, where $\mathbf{V} = 0$ if a point is invisible.

Patch-wise Distribution Filter. This filter enforces a more even point distribution within each frame, preventing them from clustering into a small region as the viewpoint changes. It also helps reduce susceptibility to loss of resolution which might result in triangulation errors. We keep the highest-gradient tracking point $\tilde{\mathbf{P}}^*$ in each patch $Pat_{m,n}$ of F_i , as follows:

$$\tilde{\mathbf{P}}^* = \arg\max_{\tilde{\mathbf{p}}} \mathbf{G}_i[\tilde{\mathbf{P}} \in Pat_{m,n}], \text{ if } \sum \mathbb{1}(\tilde{\mathbf{P}} \in Pat_{m,n}) > 1$$
(3)

As shown in Figure 2, locations and indices of $\tilde{\mathbf{P}}^*$ are stored in $\mathbf{P}_i \in \mathbb{R}^{B \times 2}$ and $\mathbf{I}_i \in \mathbb{R}^B$, $i \in [0, H-1]$, acting as pseudo-supervision in the outlier-aware joint optimization. Each iteration starts at F_t , $t = \arg\min_t (-1 \in \mathbf{I}_t)$, and ends *until* each frame contains exactly B tracked points.

3.2 Outlier-aware Joint Optimization

Outlier-aware Joint Optimization Mechanism. Under the obtained pseudo-supervision, P_{cali} , f, Q, t and Γ are jointly optimized. We first project $P^{cali-homo} \in \mathbb{R}^{H \times 4}$ (the homogeneous coordinates of P^{cali} obtained by concatenating 1) onto each frame by

$$\mathbf{P}_{i}^{proj-homo} = \mathbf{P}^{cali-homo}[\mathbf{I}_{i}] \cdot \begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{0} & 1 \end{bmatrix}^{T} \cdot \mathbf{K}^{T}$$
(4)

$$\mathbf{P}_{i}^{proj} = \mathbf{P}_{i}^{proj-homo}[:,:2]/\mathbf{P}_{i}^{proj-homo}[:,3]$$
(5)

, where $i \in [0, N-1]$ and $\mathbf{P}^{proj} \in \mathbb{R}^{N \times B \times 2}$. $\mathbf{P}^{proj-homo} \in \mathbb{R}^{N \times B \times 4}$ denotes the homogeneous 2D location of the projection \mathbf{P}^{proj} . The perspective projection matrix $\mathbf{K} \in \mathbb{R}^{4 \times 4}$ is derived from f, and the world-to-camera transformation matrix consists of rotation \mathbf{R}_i and translation \mathbf{t}_i . We assume constant f like SOTA [59, 58, 20]. Notably, we learn the quaternion matrix \mathbf{Q}_i instead of optimizing the \mathbf{R}_i and additional constraints. This optimization approach circumvents the difficult-to-enforce orthogonality and ± 1 determinant constraints required for rotation matrices during optimization.

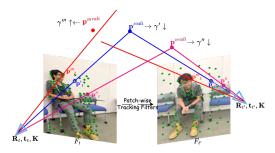


Figure 3: Outlier-aware Joint Optimization. • represents P_t and $P_{t'}$ on each frame. The static samples p'^{cali} and p''^{cali} can establish concrete triangulation relations with their corresponding P_t , $P_{t'}$, and cameras, resulting in lower γ' and γ'' . In contrast, the dynamic sample p'''^{cali} exhibits the opposite behavior.

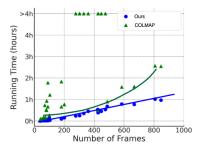


Figure 4: **Runtime Trends.** As the frame count increases, our runtime grows almost linearly, whereas $COL^{w/omask}$ scales exponentially. The runtime of casualSAM is too large to fit in this figure. The complete runtime is in Table 3, and appendix E.1.1 (table 9, table 10, table 11).

However, the extracted pseudo-supervision always contains moving outliers. To mitigate its impact, without any GT motion priors, we identify such outliers by modeling the uncertainty their presence may cause in the observed distributions of the inlier points. We introduce the uncertainty $\Gamma \in \mathbb{R}^H$ associated with $\mathbf{P}^{cali} \in \mathbb{R}^H$ and incorporate the Cauchy distribution $f(x;x_0,\Gamma) = \frac{1}{\pi\Gamma[1+(\frac{x-x_0}{\Gamma})^2]}, \quad \Gamma>0$ to model the uncertainty parameter Γ since this distribution can better handle the heavy tails than, e.g., the Gaussian distribution. As depicted in Figure 3, during optimization, inliers are expected to have low uncertainty, while outliers have high uncertainty. Since the scale parameter Γ in $f(x;x_0,\Gamma)$ is required to be strictly positive, we introduce a new parameter Γ^{raw} which we obtain Γ from using the Softplus function $\Gamma = \log(1+e^{\Gamma^{raw}})$, $\Gamma^{raw} \in \mathbb{R}^H$. This effectively ensures $\Gamma \in \mathbb{R}^H_{>0}$ is differentiable and has smooth gradients.

Losses. To down-weight outliers by learned Γ , we replace the commonly used projection error $\mathbb{E}^{proj} = \|\mathbf{P}^{proj} - \mathbf{P}\|_2^2$ with our proposed **Average Cumulative Projection** (ACP) error, defined as:

$$\mathbb{E}_{h\in[0,H-1]}^{ACP} = \frac{\sum \mathbb{1}_{\{\mathbf{I}=h\}} \circ \|\mathbf{P}^{proj} - \mathbf{P}\|_{2}^{2}}{\sum \mathbb{1}_{\{\mathbf{I}=h\}}}$$
(6)

, where $\mathbb{E}^{ACP}\in\mathbb{R}^H$ and \circ denotes the element-wise matrix multiplication. For each \mathbf{P}_h^{cali} , we accumulate the errors between its corresponding projection and tracking locations across the video, then take the average as $\mathbb{E}_{h\in[0,H-1]}^{ACP}$. Furthermore, we propose the novel Cauchy loss \mathcal{L}_{cauchy} in terms of the negative-log-likelihood $\log\left(\Gamma+\frac{(x-x_0)^2}{\Gamma}\right)$ of $f(x;x_0,\Gamma)$ where we replace $x-x_0$ with \mathbb{E}^{ACP} as eq. (7). Our total loss \mathcal{L}_{total} in Equation (8) consists of \mathcal{L}_{cauthy} and a depth regularization term \mathcal{R}_{depth} to encourage positive depth. With the estimated camera parameters, we use 4DGS [47] for scene reconstruction. Reconstruction and loss derivation details are in appendix A and appendix B.

$$\mathcal{L}_{cauchy} = \frac{1}{H} \sum_{h=0}^{H} \log \left(\Gamma + \frac{(\mathbb{E}^{ACP})^2}{\Gamma} \right)$$
 (7)

$$\mathcal{L}_{total} = \mathcal{L}_{cauthy} + \mathcal{R}_{depth}, \ \mathcal{R}_{depth} = \frac{1}{N} \sum_{i=0}^{N} -\text{ReLU}(\mathbf{P}_{i}^{proj-homo}[:,3])$$
(8)

3.3 Two-stage Optimization Strategy

To avoid convergence to local minima, we propose this strategy based on an analysis of the asymptotic behavior of the Softplus function and the analytical minima of the inner convex term in \mathcal{L}_{cauthy} . Stage 1 focuses on rapid convergence, while Stage 2 aims for stable convergence by initializing Γ^{raw} to the ACP error after Stage 1. The effectiveness of it is concretely demonstrated in Table 7.

Stage 1. In the Softplus function, $\Gamma = \log(1 + e^{\Gamma^{raw}}) \approx \Gamma^{raw}$, as $\Gamma^{raw} \to +\infty$. So in Stage 1, we fix $\Gamma^{raw} = 1$ and optimize only \mathbf{P}^{cali} , f, \mathbf{Q} , and \mathbf{t} for quick convergence. The loss will converge to a certain value beyond the global minimum, as there is no proper Γ to down-weight outliers.

Stage 2. The inner term $\Phi = x + \frac{\mathbf{O}}{x}$, $\mathbf{O} > 0$ of \mathcal{L}_{cauchy} is convex. Assuming a constant $\mathbf{O} \in \mathbb{R}^+$ and solving for $\min_x \Phi(x)$, we have $x^* = \sqrt{\mathbf{O}}$. Similarly, in Stage 2, if $\mathbf{\Gamma}^{raw}$ is randomly initialized to values largely different from $\mathbb{E}^{ACP}_{stage1}$ (the ACP error from Stage 1), convergence will be highly unstable. Therefore, we initialize $\mathbf{\Gamma}^{raw} = \mathbb{E}^{ACP}_{stage1}$, and optimize \mathbf{P}^{cali} , f, \mathbf{Q} , \mathbf{t} , and $\mathbf{\Gamma}^{raw}$ jointly.

4 Experiments

To demonstrate the superiority of our method, we show extensive quantitative and qualitative results in this section. For NeRF-DS [50], DAVIS [28], and iPhone [7] datasets without GT camera parameters, we feed the camera parameters from different methods to 4DGS [47], while keeping all other factors the same, and evaluate each NVS performance (PSNR, SSIM, and LPIPS). Regarding the MPI-Sintel [2] and TUM-dynamics [36] datasets with GT camera parameters, we directly evaluate methods by ATE, RPE trans, and RPE rot metrics. *In all tables, the best and second-best results are bold and underline.* More about datasets, and evaluation metrics are in appendix C and appendix D.

4.1 Implementation Details

The optimization is conducted on 1 NVIDIA A100 40GB GPU with Adam [27] optimizer and learning rates $l_{\mathbf{Q}}=0.01,\, l_{\mathbf{t}}=0.01,\, l_{\mathbf{f}}=1.0,\, l_{\mathbf{P}^{cali}}=0.01,\, \text{and}\,\, l_{\mathbf{\Gamma}^{raw}}=0.01.$ We also choose to build our patch-wise tracking filters on CoTracker [13] and load its pre-training weights. The hyperparameters of our patch-wise tracking filters are set at $\tau_{var}=0.1,\, B=100,\, w_{\text{NeRF-DS, DAVIS, MPI-Sintel}}=12,\, \text{and}\,\, w_{\text{iPhone, TUM}}=24.$ Notably, w is only related to the frame size. Besides, throughout our experiments, we have 200 and 50 iterations in Stage $_1$ and Stage $_2$ respectively.

Table 5: Camera Pose Evaluation on MPI-Sintel [2]. (ATE↓/RPE trans↓/RPE rot↓) We achieve better results than casualSAM [58] and exclude COL^{w/o mask} due to its failure.

Method	alley_1	alley_2	ambush_4	ambush_5	ambush_6	market_2	market_6
casualSAM [58] Ours	0.028/0.006/0.057 0.002/0.003/0.038	0.003 /0.003/0.392 0.009/ 0.002/0.047	0.040 /0.058/ 0.321 0.119/ 0.049 /1.367	0.053 /0.040/ 0.211 0.065/ 0.039 /1.192	0.302/ 0.088 /2.362 0.080 /0.129/ 2.191	0.010/0.010/ 0.041 0.003/0.010 /0.110	0.239/0.207/0.544 0.009/0.006/0.301
Method	shaman_3	sleeping_1	sleeping_2	temple_2	mountain_1	bamboo_1	bamboo_2
casualSAM [58] Ours	0.008/0.009/ 0.050 0.003/0.001 /0.085	0.017/0.016/0.173 0.008/0.001/0.074	0.013/0.025/0.170 0.002/0.001/0.034	0.005/0.004/0.380 0.017/0.003/0.142	0.003/0.004/0.182 0.007/0.004/0.060	0.033/0.009/0.056 0.003/0.003/0.033	0.005/0.003/0.035 0.004/0.003/0.033

Table 2: **NVS** Evaluation on NeRF-DS [50] and DAVIS [28]. Table 4: (PSNR↑/SSIM↑/LPIPS↓) * is super- dynamics [36]. the best among these two datasets.

Method	NeRF-DS	DAVIS		
RoDynRF[20]*	23.033/0.749/0.385	-		
COL ^{w/ mask *}	32.174/0.923/0.147	-		
COL ^{w/o mask}	29.348/0.875/0.224	9.196/0.236/0.435		
casualSAM[58]	21.230/0.686/0.463	19.032/0.486/0.482		
Ours	33.552/0.938/0.118	22.292/0.709/0.279		

Table 3: Runtime Evaluation on NeRF-DS [50], DAVIS [28], and iPhone [7], covering frame count from 50 to 900. * is supervised by additional GT priors. Our method is the most efficient.

Method	NeRF-DS	DAVIS	iPhone
RoDynRF [20]*	29.6h	27.4h	28.5h
COL ^{w/ mask} *	<u>1.5h</u>	-	-
COL ^{w/o mask}	1.8h	0.51h	9.53h
casualSAM [58]	10.5h	0.28h	4.07h
Ours	0.83h	0.03h	0.33h

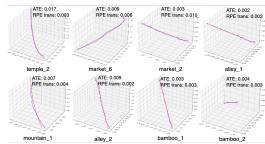
Camera Pose Evaluation on TUM-Other results are from Cut3r [44] vised by additional GT priors. Ours is and Monst3r [56]. Performance of DROID-SLAM [39] is from casualSAM [58]. Our method achieves the best overall performance among all RGB-only supervised methods, and even better than the ones supervised by additional GT priors.

Supervision	Method	ATE↓	RPE trans↓	RPE rot↓
	Monst3r [56]	0.098	0.019	0.935
GT 3D Point Cloud	Dust3r [46]	0.083	0.017	3.567
& Camera Pose	Mast3r [18]	0.038	0.012	0.448
	Cut3r [44]	0.046	0.015	0.473
GT Focal Length + GT Motion Prior	LEAP-VO [3]	0.046	0.027	0.385
GT Focal Length + Metric Depth	DROID-SLAM [39]	0.043	-	-
GT Motion Priors	ParticleSfM [59]	-	-	-
RGB-Only	Robust-CVD [16] casualSAM [58]	0.153 0.071	0.026 0.010	3.528 1.712
KGB-Ollly	Ours	0.065	0.010	0.987

Time Efficiency Evaluation

In Table 3, we present the average runtime evaluations. Our average runtime on NeRF-DS, DAVIS, and iPhone is 55%, 11%, and 8% of that of the second-fastest methods, while keeping the best performance as shown in table 2. We attribute it to three main reasons: (1) Our method only leverages the maximally sparse pseudo-supervision extracted by our proposed patch-wise tracking filters under the RGB-only supervision. (2) Our uncertainty parameters are associated with the 3D calibration points rather than 2D uncertainty maps [58], significantly reducing the number of learnable parameters. For Plate video (424 frames) in NeRF-DS, casualSAM has (424×270×480) uncertainties, whereas our method only has 440 uncertainties, one per \mathbf{P}^{cali} . 3) The two-stage optimization strategy highly accelerates the optimization speed. As seen from Table 7, omitting the two-stage strategy leads to a dramatic performance drop after the same iterations, indicating more iterations, and thus time, are needed to achieve the same performance.

pendix E.2.2 (fig. 14, fig. 15, fig. 16, and fig. 17). trajectories almost perfectly align with the GT.



Qualitative NVS Results on Figure 6: Qualitative Results of Camera Pose DAVIS [28]. Our performance is the best because on MPI-Sintel [2]. – represents our camera estiof our accurate camera estimates. More are in apmates; - represents the GT. Our estimated camera

Besides, in Figure 4, we see that our method exhibits a linear growth (at the rate of about 1/800 hours per frame) vs $COL^{w/omask}$ whose runtime growth is roughly exponential. This difference will be increasingly significant as the video length increases, which can also demonstrate the superior

Table 6: **NVS Evaluation on iPhone** [7]. (PSNR↑/SSIM↑/LPIPS↓) Record3D is *a paid mobile app* obtaining camera results by LiDAR sensors, where are provided by [7]. Ours is the best among RGB-only supervised methods and surpasses LiDAR-based Record3D sometimes.

Method	Apple	Papermill	Space-out	Backpack	Block	Creeper	Teddy
Record3D	26.35/0.77/0.33	23.91/0.73/0.24	27.12/0.77/0.33	20.79/0.56/0.40	23.72/0.71/0.38	21.80/0.63/0.27	19.72/0.59/0.41
COL ^{w/o mask}	22.45/0.69/0.41	22.74/0.72/0.28	24.33/0.74/0.38	18.58/0.39/0.54	18.49/0.60/0.49	18.13/0.43/0.48	16.56/0.50/0.50
casualSAM[58]	19.03/0.58/0.57	18.85/0.39/0.54	22.09/0.67/0.47	18.41/0.36/0.55	19.10/0.59/0.52	16.40/0.29/0.62	15.69/0.42/0.58
Ours	25.96/0.74/0.37	24.09/0.74/0.22	28.42/0.79/0.31	21.22/0.64/0.32	23.28/0.69/0.38	21.67/0.63/0.28	20.78/0.60/0.41
Method	Handwavy	Haru-sit	Mochifive	Spin	Sriracha	Pillow	Wheel
Record3D	27.80/0.86/0.24	29.86/0.87/0.22	34.34/0.91/0.24	24.85/0.69/0.38	31.15/0.87/0.25	20.86/0.63/0.41	20.78/0.60/0.41
COL ^{w/o mask}	15.69/0.61/0.55	25.58/0.80/0.30	22.47/0.77/0.38	19.27/0.55/0.49	28.41/0.86/0.28	14.75/0.46/0.57	20.78/0.60/0.41
casualSAM[58]	20.87/0.68/0.46	19.88/0.69/0.41	26.34/0.84/0.35	19.33/0.45/0.57	23.20/0.73/0.42	16.95/0.51/0.55	14.69/0.47/0.57
Ours	28.02/0.86/0.22	28.31/0.85/0.24	34.56/0.92/0.22	24.81/0.67/0.39	32.49/0.89/0.25	20.63/0.61/0.44	20.42/0.67/0.37

time efficiency of our method compared with other RGB-only supervised methods. We exclude the casualSAM here since its runtime is too large to fit here.

4.3 Camera Pose Evaluation

We follow the same evaluation setup of Cut3r [44] and Monst3r [56] on TUM-dynamics [36] and evaluate all videos of the synthetic MPI-Sintel [2] dataset.

Quantitative Evaluation. In Table 5 and Table 4, our method has the best performance among all RGB-only supervised approaches. Our method also achieves comparable or even better results than others that require additional GT priors as supervision. We attribute it to our accurate and robust pseudo-supervision, derived from RGB-only input, enabling effective outlier-aware joint optimization. Besides, our uncertainty modeling and loss design effectively down-weight the impact of moving outliers. Since COL^{w/mask} and COL^{w/o mask} always fail on MPI-Sintel [2], as observed by us and [20, 56], we exclude comparisons with them here. However, RGB-only supervised methods including ours perform not very well in some special cases, which is discussed in the limitations.

Qualitative Evaluation. In Figure 6, we show our estimated camera trajectories alongside the GT on MPI-Sintel [2]. Our estimated camera trajectories can perfectly overlap with the GT, which provides qualitative support to the higher accuracies seen in the quantitative results in Table 5.

4.4 NVS Evaluation

Since NeRF-DS [50], DAVIS [28], and iPhone [7] datasets do not provide GT camera parameters, we follow [6, 20, 45, 19] by inputting camera estimates of different methods into the same 4D reconstruction pipeline - 4DGS [47], and evaluate the NVS performance. Such NVS performance reveals the quality of the camera parameter estimation.

Quantitative Evaluation. In Table 2, our method is the best on NeRF-DS [50] (long videos w/ little blur, textureless regions, and specular moving objects) and DAVIS [28] (short videos w/ low parallax and rapid object movement), demonstrating our more accurate camera estimates. We skip COL^{w/ mask} and RoDynRF on DAVIS [28] because they are not RGB-only supervised methods and require supervision beyond RGB frames, and have already underperformed compared to ours on NeRF-DS [50]. Besides, our pseudo-supervision extraction built on the PT models [13, 12] performs better on low-parallax videos, which remains challenging for the pre-trained depth model [31].

Regarding the iPhone [7] dataset (videos w/ irregular camera movement and object movement), it provides so-called 'GT' camera parameters obtained by Record3D which is a paid mobile app obtaining camera results by LiDAR sensors. However, we observe that such so-called 'GT' camera parameters are occasionally unreliable. As shown in Table 6 and fig. 7, besides being the best among all RGB-only supervised methods, our method can occasionally beat Record3D.

Qualitative Evaluation. We evaluate the quality of the rendered RGB images and depth maps in Figure 7, Figure 8, and Figure 5. Beyond superior RGB renderings, our camera estimates yield the highest-quality depth maps, offering more convincing evidence of accurate scene geometry than RGB renderings. It indicates that our estimated camera parameters enable the model to learn the correct dynamic scene representations rather than overfitting to training views. In the first row of Figure 7, ours performs the best (surpassing even Record3D), especially in rendered depth; whereas

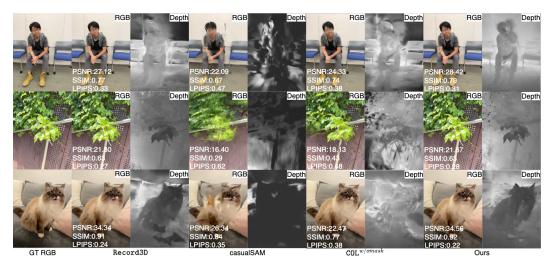


Figure 7: **Qualitative NVS Results on iPhone [7].** Our method outperforms other SOTA RGB-only supervised approaches and even surpasses LiDAR-based Record3D when the movement in scenes with large motion (top row). More are in appendix E.2.2 (fig. 11, fig. 12, and fig. 13).

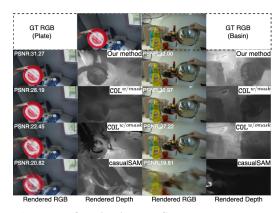


Figure 8: **Qualitative NVS results on NeRF-DS [50].** Our renderings are the most plausible. More are in appendix E.2.2 (fig. 18).

Table 7: **Ablation Study on NeRF-DS [50] - Part 1.** We conduct ablation studies on different scene optimization strategies and individual components of our proposed model.

Scene Optimization	Camera Optimization	PSNR↑	SSIM↑	LPIPS↓
D-3DGS [53]	COL ^{w/o mask}	31.14 32.45	0.9192 0.9336	0.1609 0.1312
	Ours (full) COL WO mask Ours (full)	29.35 33.55 25.95	0.8748 0.9381 0.8100	0.2240 0.1182 0.2668
4DGS [47]	+ w/o two-stage + w/o Γ + w/o E ^{ACP} + w/o texture filt. + w/o gradient filt.	25.95 26.44 23.56 25.99 26.04	0.8100 0.8667 0.7203 0.8356 0.8393	0.2327 0.3139 0.2536 0.2404
	+ w/o graaieni jiii. + w/o distrib. filt.	26.04	0.8393	0.2404

in the second row, our method does not match Record3D, but is still better than other RGB-only supervised works. This is because Record3D is not originally designed for dynamic scenes, so when a scene contains larger irregular movements, its performance will be worse (such observations are also supported by the numerical results in Table 6). In contrast, our method is more robust in various scenarios, consistently maintaining high standards.

Ablation Study. In Table 7, the loss of any filter results in less robust relations across video, leading to poor camera estimates and NVS performance. Further, the removal of any of Γ , \mathbb{E}^{ACP} , or the two-stage strategy will harm the results due to outliers. This indicates that w/o such a strategy, increasing training iterations is a necessary but not sufficient condition for comparable results.

Table 8: **Ablation Study on NeRF-DS [50] - Part 2.** We conducted ablation studies on different PT models.

Scene Optimization	Camera Optimization (PT model choice)	PSNR↑	SSIM↑	LPIPS↓
45.00.1471	Ours + built on CoTracker [13]	33.55	0.9381	0.1182
4DGS [47]	Ours + built on CoTracker3 [12]	33.52	0.9384	0.1180

We also overcome the limitations of COLMAP [32] by improving the performance of different scene optimization models [53, 47] with our camera estimates. As reported in CoTracker3 [12], CoTracker [13] performs worse than CoTracker3. However, in table 8, the performance of our proposed method is nearly independent of building on the particular PT model. This further sup-

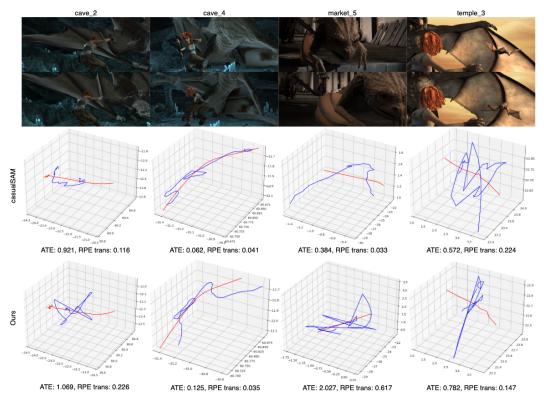


Figure 9: Failure cases of ours and casualSAM on MPI-Sintel [2].

ports our claim that our patch-wise tracking filters effectively exact only the accurate trajectories as pseudo-supervision.

5 Conclusion and Limitation

We proposed a new RGB-only supervised, accurate, and efficient camera parameter optimization method in casually collected dynamic-scene videos. Our method effectively tackles the challenge of precisely and efficiently estimating per-frame camera parameters under the situation of having no additional GT supervision (e.g. GT motion masks, focal length, 3D point clouds, metric depth, and camera poses) other than RGB videos, which is the most common scenario in real-world and consumer-grade reconstructions. Our method may serve as a step towards high-fidelity dynamic scene reconstruction from casually captured videos.

Although our proposed method is currently the most state-of-the-art RGB-only supervised, accurate, and efficient camera parameter optimization method in dynamic scenes, there are still several limitations. We assume a constant focal length throughout the video. While this assumption is reasonable and currently common to SOTA, the task of accurate and efficient camera parameter optimization for dynamic scene videos with zooming effects under RGB-only supervision remains an open problem. Another common challenge for RGB-only supervised methods, not addressed in this paper, is maintaining robustness in scenes dominated by large moving objects. As shown in fig. 9, the screen space is occupied by the moving human and dragon. It is challenging for our method to establish robust and maximally sparse hinge-like relations as accurate pseudo-supervision because most of the extracted trajectories belong to outliers. CasualSAM [58] struggles due to the rapid changes in depth maps from frame to frame, making 3D space alignment difficult. We plan to maintain consistency in our input setup and address these challenges as part of future research.

Acknowledgements

The support of the Office of Naval Research under grant N00014-20-1-2444 and of USDA National Institute of Food and Agriculture under grant 2020-67021-32799/1024178 are gratefully acknowledged. This research used the Delta system at NCSA through allocation CIS240124 from the ACCESS program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

References

- [1] Wenjing Bian, Zirui Wang, Kejie Li, Jia-Wang Bian, and Victor Adrian Prisacariu. Nope-nerf: Optimising neural radiance field with no pose prior. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4160–4169, 2023.
- [2] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source movie for optical flow evaluation. In Computer Vision—ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12, pages 611–625. Springer, 2012.
- [3] Weirong Chen, Le Chen, Rui Wang, and Marc Pollefeys. Leap-vo: Long-term effective any point tracking for visual odometry. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19844–19853, 2024.
- [4] Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, and Anpei Chen. Easi3r: Estimating disentangled motion from dust3r without training. *arXiv* preprint arXiv:2503.24391, 2025.
- [5] Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic, Marco Pavone, Georgios Pavlakos, et al. Instantsplat: Unbounded sparse-view pose-free gaussian splatting in 40 seconds. arXiv preprint arXiv:2403.20309, 2024.
- [6] Yang Fu, Sifei Liu, Amey Kulkarni, Jan Kautz, Alexei A. Efros, and Xiaolong Wang. Colmap-free 3d gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 20796–20805, June 2024.
- [7] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dynamic view synthesis: A reality check. Advances in Neural Information Processing Systems, 35:33768–33780, 2022.
- [8] Derek Hoiem, Alexei A Efros, and Martial Hebert. Automatic photo pop-up. In ACM SIGGRAPH 2005 Papers, pages 577–584. 2005.
- [9] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. Tour into the picture: using a spidery mesh interface to make animation from a single image. In *Proceedings of the 24th annual conference on Computer graphics and interactive techniques*, pages 225–232, 1997.
- [10] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for geometrically accurate radiance fields. In *ACM SIGGRAPH 2024 Conference Papers*, pages 1–11, 2024.
- [11] Linyi Jin, Richard Tucker, Zhengqi Li, David Fouhey, Noah Snavely, and Aleksander Holynski. Stereo4d: Learning how things move in 3d from internet stereo videos. *arXiv preprint arXiv:2412.09621*, 2024.
- [12] Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. *arXiv preprint arXiv:2410.11831*, 2024.
- [13] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht. Cotracker: It is better to track together. *arXiv preprint arXiv:2307.07635*, 2023.
- [14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.
- [15] Mijeong Kim, Seonguk Seo, and Bohyung Han. Infonerf: Ray entropy minimization for few-shot neural volume rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12912–12921, 2022.
- [16] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1611–1621, 2021.

- [17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- [18] Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with mast3r. In *European Conference on Computer Vision*, pages 71–91. Springer, 2024.
- [19] Fang Li, Hao Zhang, and Narendra Ahuja. Self-calibrating 4d novel view synthesis from monocular videos using gaussian splatting. *arXiv preprint arXiv:2406.01042*, 2024.
- [20] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13–23, 2023.
- [21] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7210–7219, 2021.
- [22] Andreas Meuleman, Yu-Lun Liu, Chen Gao, Jia-Bin Huang, Changil Kim, Min H Kim, and Johannes Kopf. Progressively optimized local radiance fields for robust view synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16539–16548, 2023.
- [23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
- [24] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5480–5490, 2022.
- [25] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 5865–5874, 2021.
- [26] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021.
- [27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
- [28] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017.
- [29] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance fields for dynamic scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10318–10327, 2021.
- [30] Frano Rajič, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher Yu. Segment anything meets point tracking. arXiv preprint arXiv:2307.01197, 2023.
- [31] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE transactions on* pattern analysis and machine intelligence, 44(3):1623–1637, 2020.
- [32] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4104–4113, 2016.
- [33] Marek Simonik. Record3d point cloud animation and streaming, 2019.
- [34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [35] Cameron Smith, David Charatan, Ayush Tewari, and Vincent Sitzmann. Flowmap: High-quality camera poses, intrinsics, and depth via gradient descent. arXiv preprint arXiv:2404.15259, 2024.
- [36] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 573–580. IEEE, 2012.

- [37] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A modular framework for neural radiance field development. In ACM SIGGRAPH 2023 Conference Proceedings, pages 1–12, 2023.
- [38] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16*, pages 402–419. Springer, 2020.
- [39] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras. *Advances in neural information processing systems*, 34:16558–16569, 2021.
- [40] Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. *arXiv preprint* arXiv:2408.16061, 2024.
- [41] Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny. Vggt: Visual geometry grounded transformer. *arXiv preprint arXiv:2503.11651*, 2025.
- [42] Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry grounded deep structure from motion. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 21686–21697, 2024.
- [43] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv preprint arXiv:2106.10689*, 2021.
- [44] Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Continuous 3d perception model with persistent state. *arXiv preprint arXiv:2501.12387*, 2025.
- [45] Shizun Wang, Xingyi Yang, Qiuhong Shen, Zhenxiang Jiang, and Xinchao Wang. Gflow: Recovering 4d world from monocular video. arXiv preprint arXiv:2405.18426, 2024.
- [46] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20697–20709, 2024.
- [47] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20310–20320, 2024.
- [48] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-based neural radiance fields. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5438–5448, 2022.
- [49] Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, and Xuelong Li. Gs-slam: Dense visual slam with 3d gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19595–19604, 2024.
- [50] Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural radiance fields for dynamic specular objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8285–8295, 2023.
- [51] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building animatable 3d neural models from many casual videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2863–2873, 2022.
- [52] Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai, Franziska Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one forward pass. arXiv preprint arXiv:2501.13928, 2025.
- [53] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20331–20341, 2024.
- [54] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces. *Advances in Neural Information Processing Systems*, 34:4805–4815, 2021.
- [55] Hao Zhang, Fang Li, Samyak Rawlekar, and Narendra Ahuja. Learning implicit representation for reconstructing articulated objects. arXiv preprint arXiv:2401.08809, 2024.

- [56] Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion. arXiv preprint arXiv:2410.03825, 2024.
- [57] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. Differentiable point-based radiance fields for efficient view synthesis. In SIGGRAPH Asia 2022 Conference Papers, pages 1–12, 2022.
- [58] Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Rubinstein, Noah Snavely, and William T Freeman. Structure and motion from casual videos. In *European Conference on Computer Vision*, pages 20–37. Springer, 2022.
- [59] Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, and Yong-Jin Liu. Particlesfm: Exploiting dense point trajectories for localizing moving cameras in the wild. In *European Conference on Computer Vision*, pages 523–542. Springer, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We used bold text to highlight the main claims made in the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Due to the space limit, We put the limitation in the Appendix and set up a reference to it in the conclusion and limitation section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.

- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We put the loss in the method section and show the derivation of Cauchy negative-log-likelihood in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all experiment setup and implementation details in the main paper, and put the datasets and evaluation metrics in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example

- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will release the code upon the acceptance of the paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We show all these details in the implementation details section in the main paper and the datasets section in the Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present these in the experiment section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We present this in the implementation details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conforms in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss them in the first paragraph of the main paper and the conclusion section of the main paper.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cited every paper and work once we mentioned them.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We use and cite the existing public datasets in this work. Other assets including related code/model will be released upon acceptance.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments and research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Ouestion: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not include the things mentioned in the question.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

Due to the space limit, we show more discussions, results, and details here.

A Dynamic Scene Optimization

Preliminary. As an alternative to NeRF [23], which has a lengthy runtime, 3DGS [14] recently introduced a new way to learn static scene representations in terms of explicit 3D Gaussian ellipsoids. Unlike the implicit representations of NeRF stored as the weights in the Convolutional Neural Network (CNN), 3DGS [14] uses explicit representations in 3D world coordinates and performs differential Gaussian rasterization on GPUs using CUDA which significantly speeds up computational efficiency. Each 3D Gaussian ellipsoid \mathcal{G} (x) is parameterized by its (1) Gaussian center $\mathcal{X} \in \mathbb{R}^3$; (2) quaternion factor $\mathbf{r} \in \mathbb{R}^4$; (3) opacity $\alpha \in \mathbb{R}$; (4) scaling factor $\mathbf{s} \in \mathbb{R}^3$; and (5) color $\mathcal{C} \in \mathbb{R}^k$ (k denotes degrees of freedom), and represented by:

$$\mathcal{G}(x) = e^{-1/2(x-\mu)^T \Sigma^{-1}(x-\mu)}$$
(9)

$$\Sigma' = \mathbf{J} \mathbf{W} \Sigma \mathbf{W}^T \mathbf{J}^T, \quad \Sigma = \mathbf{r} \mathbf{s} \mathbf{s}^T \mathbf{r}^T$$
 (10)

where Σ is the 3D covariance matrix in the world space, **W** and **J** are the view transformation matrix and the Jacobian matrix of the affine transformation parts, respectively, of the projective transformation, and Σ' is the covariance matrix in the camera coordinates. The color is rendered by:

$$C(p) = \sum_{k \in K} c_k \alpha_k \Pi_k^{j-1} (1 - \alpha_k)$$
(11)

where c_k and α_k represent the spherical harmonic (SH) coefficient and the density at this point.

4D GS. To take advantage of its optimization efficiency, we use 4DGS [47] to learn dynamic scene representations. With different camera estimates and the same scene optimization method [47], we use NVS performance to evaluate the accuracy of camera parameter estimates. In 4DGS[47], the NVS performance depends on how well the canonical representations and deformation representations are optimized. The canonical (refers to 'mean' as in the previous work [14, 53, 47]) representations \mathcal{G} are learned by a canonical Gaussian field to optimize the mean (canonical) position $\mathcal{X} \in \mathbb{R}^3$, color $\mathcal{C} \in \mathbb{R}^k$, opacity $\alpha \in \mathbb{R}$, quaternion factor $r \in \mathbb{R}^4$, scaling factor $s \in \mathbb{R}^3$, and the deformation representations \mathcal{F} are optimized using a deformation field [47] to learn the offsets $\Delta \mathcal{G}$, supervised by an L1 loss between images and renderings. Since the color and opacity of the Gaussian ellipsoids do not change over time, the deformed attributes consist of $(\mathcal{X}', r', s') = (\mathcal{X} + \Delta \mathcal{X}, r + \Delta r, s + \Delta s)$. More details can be found in 4DGS [47].

B Derivation of Cauchy Negative-log-likelihood

The Cauchy loss function is derived from Equation (12) to Equation (14). Since we use the Cauchy probability density function (PDF) to model the uncertainty of calibration points $\mathbf{P^{cali}}$, we want to maximize the likelihood of the Cauchy PDF:

$$f(x;x_0,\mathbf{\Gamma}) = \frac{1}{\pi \mathbf{\Gamma}[1 + (\frac{x - x_0}{\mathbf{\Gamma}})^2]}, \quad \mathbf{\Gamma} > 0$$
(12)

Equivalently, we minimize the negative-log-likelihood of $f(x; x_0, \Gamma)$, to define the loss function:

$$NLL(x; x_0, \mathbf{\Gamma}) = -\log(f(x; x_0, \mathbf{\Gamma}))$$

$$= \log(\pi \mathbf{\Gamma}) + \log(1 + (\frac{x - x_0}{\mathbf{\Gamma}})^2)$$

$$= \log[\pi \cdot (\mathbf{\Gamma} + \frac{(x - x_0)^2}{\mathbf{\Gamma}})]$$

$$= \log \pi + \log(\mathbf{\Gamma} + \frac{(x - x_0)^2}{\mathbf{\Gamma}})$$
(13)

where $\log \pi$ and x_0 denote a constant term and the ground truth which can be omitted. Thus, our objective is as follows:

$$\min_{x,\Gamma} \text{NLL}(x; x_0, \Gamma) = \min_{x,\Gamma} \log(\Gamma + \frac{(x - x_0)^2}{\Gamma})$$
(14)

C Datasets

To demonstrate our performance on a broader range of scenarios, we have conducted extensive experiments across five public datasets - NeRF-DS [50], DAVIS [28], iPhone [7], MPI-Sintel [2], and TUM-dynamics [36]. These videos contain different camera and object motion patterns, and different texture levels. The lengths of the videos range from about 50 to 900. Regarding the train/test split of the NVS evaluation, for every 2 adjacent frames, we take the first frame for training and the second frame for testing. For the setup of camera pose evaluation, we follow Cut3r [44] and Monst3r [56] in the experiments on TUM-dynamics and evaluate all videos in MPI-Sintel [2].

NeRF-DS. NeRF-DS [50] dataset includes seven long monocular videos (400-800 frames) of different dynamic, real-world indoor scenarios with little blur. Each video has at least one specular moving object against a mix of low-texture and high-texture backgrounds. NeRF-DS [50] exhibits large scene and camera movements, so the frames have some blur. The GT motion masks provided are human-labeled and the camera parameters are estimated by $COL^{w/mask}$. Like previous works [50, 53], we take the highest resolution images available (480 × 270) as the RGB input in all experiments.

DAVIS. DAVIS [28] dataset contains 40 short monocular videos that capture different dynamic scenes in the wild. Each video has 50-100 frames, including at least one dynamic object. The GT motion masks are also provided as in NeRF-DS [50]. However, like [20, 45, 58, 59], we exclude some videos using fixed cameras, changeable focal lengths, etc. Different from others [20, 45, 58, 3] which only show experiments of about 10 videos in DAVIS [28], we conduct experiments on 21 videos containing large camera and object movements. We utilize the RGB frames with the resolution of 854×480 as input.

iPhone. The iPhone [7] dataset is an extremely challenging dataset (180-475 frames) with significant camera rotations and translations, and rapid movements of objects. There are 14 monocular videos including indoor and outdoor scenes and no GT motion mask is provided. It would also be difficult to insert motion masks for this dataset because there is no clear boundary between the moving and stable regions within any frame. They represent real-world casually recorded videos. We conduct experiments on all of them. The frame size is 720×960 . These videos are recorded by the Record3D [33] app on iPhone which uses LiDAR sensors to obtain metric depth for camera estimation. In our comparisons with the camera estimates provided by Record3D, we also take the Record3D app as one of the baselines and compare with it.

MPI-Sintel. MPI-Sintel [2] is a synthetic dataset provided GT camera parameters. It has 18 short videos (about 50 frames) in total containing large object movement. In some cases, the moving objects cover most of the screen. Most of the existing works [20, 56, 3] select 14 videos for evaluation, but in this paper, we evaluate the methods among all the videos. The synthetic MPI-Sintel dataset exhibits domain gaps compared to real-world scenarios, which is considered to be one of the reasons why some existing methods [58, 59] perform well on MPI-Sintel, but do not work efficiently on other real-world datasets. In experiments, we take the frames with default sizes as the input the our method, while keeping the default resizing setup of the other methods.

TUM-dynamics. TUM-dynamics [36] dataset contains 8 long real-world blurry videos recording the dynamic indoor scenes provided with GT camera parameters. However, although the videos in this dataset are indoor scenes, each video features a significant depth of field. TUM-dynamics dataset also contains large camera movement and rapid object movement. We follow the experimental setup of MonST3R [56] on this dataset, which is sampling the first 90 frames with the temporal stride of 3 to save compute.

D Evaluation Metrics

As discussed in section 4 of the main paper, we directly conduct camera pose evaluation against the GT on MPI-Sintel[2] and TUM-dynamics [36], using the standard metrics: ATE, RPE trans, and RPE rot. Besides, regarding NeRF-DS [50], DAVIS [28], and iPhone [7] datasets which are not provided

with GT camera parameters, we conduct NVS evaluation with standard metrics: PSNR, SSIM, and LPIPS. We also employ time evaluation to demonstrate the superior time efficiency of our method.

D.1 PSNR & SSIM & LPIPS

PSNR. PSNR is a measure of the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. PSNR is commonly used to compare the qualities of the original and the rendered images, and is obtained from the Mean Square Error (MSE) between the original and the rendered images:

$$PNSR = 10 \cdot \log_{10} \left(\frac{MAX^2}{MSE(Image_{Rendered}, Image_{GT})} \right)$$
 (15)

, where MAX is the maximum pixel value of the image.

SSIM. SSIM measures the similarity between two images based on structural information. Its evaluation involves luminance, contrast, and structure. Compared to PSNR, SSIM is intended to match human perception more closely. The SSIM values range from -1 to 1, where 1 denotes perfect. It is given as:

SSIM =
$$\frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
 (16)

where x and y are two images, μ_x , μ_y and σ_x^2 , σ_y^2 are the corresponding averages and variances of x and y, σ_{xy} represents the covariance of x and y, and c_1 and c_2 denote the regularization terms.

LPIPS. LPIPS measures perceptual similarity in terms of features of deep neural networks, such as pre-trained VGG [34] or AlexNet [17]. It compares feature activations of image patches. Like [14, 53, 47, 19], we here use the VGG-based networks.

D.2 ATE & RPE trans & RPE rot

ATE. ATE quantifies the difference between the actual trajectory and the estimated trajectory of a robot or camera over time, offering a global measure of error along the entire path. It is calculated by aligning the estimated trajectory with the ground truth and then measuring the Euclidean distance between each corresponding point on the two trajectories.

RPE trans. RPE trans quantifies the error in the translational component between consecutive poses or over a fixed time/distance interval. Unlike ATE, which assesses the overall trajectory, RPE Trans emphasizes the local accuracy of the motion estimation by evaluating how well the system preserves the relative motion between two points in time or space.

RPE rot. RPE rot quantifies the error in the orientation component between the estimated poses and the ground truth. This metric is computed by measuring the difference in orientation over short sequences, and it is typically expressed in angular units, such as degrees or radians.

E More Results

E.1 Quantitative Results

E.1.1 Runtime

We report the detailed runtime comparisons on the NeRF-DS [50], DAVIS [28], and iPhone [7] datasets, each containing over 50 frames, where runtime differences become more pronounced. Specifically, in Table 9 and Table 10, the runtime of our method is the shortest. In addition, in Table 11, on the NeRF-DS [50] dataset, the runtime of COL^{w/ mask} and COL^{w/o mask} on Plate video is shorter than of ours. This is because COL^{w/ mask} and COL^{w/o mask} fail on this video, leading to a quick convergence to the local minima. Such a conclusion can also supported by qualitative results of fig. 8 in the main paper.

Table 9: Quantitative Runtime Results on DAVIS [28]. Cam \rightarrow camera optimization time; Cam+Scene \rightarrow overall (camera+scene) optimization time; h \rightarrow hour; m \rightarrow minute. We mark the shortest time in **bold**. Our method is the most efficient without any failure.

Method		Ours	CC	DL ^{w/o mask}	casualSAM	
Method	Cam	Cam+Scene	Cam	Cam+Scene	\mathtt{Cam}	Cam+Scene
Camel	1.57m	25.28m	40m	71m	24m	46m
Bear	3.15m	1.08h	56m	88m	20m	39m
Breakdance-flare	1.73m	0.92h	FAIL	-	15m	34m
Car-roundabout	4.97m	21.95m	10m	41m	18m	46m
Car-shadow	0.93m	17.88m	5m	31m	10m	36m
Car-turn	2.97m	17.35m	FAIL	-	27m	49m
Cows	2.85m	22.50m	73m	84m	26m	48m
Dog	1.60m	11.70m	10m	53m	12m	31m
Dog-agility	0.67m	26.63m	FAIL	-	5m	31m
Goat	2.10m	18.95m	107m	124m	22m	44m
Hike	4.20m	31.83m	FAIL	-	20m	42m
Horsejump-high	1.97m	21.20m	5m	33m	10m	31m
Lucia	1.97m	22.75m	44m	65m	16m	36m
Motorbike	2.08m	18.77m	6m	31m	9m	32m
Parkour	9.07m	26.65m	16m	37m	27m	48m
Rollerblade	1.25m	17.08m	FAIL	-	8m	27m
Tennis	3.47m	17.03m	9m	30m	17m	38m
Train	1.90m	18.22m	32m	57m	19m	44m
Mean	2.68m	21.02m	31m	56m	17m	39m

Table 10: Quantitative Runtime Results on iPhone [7]. Cam \rightarrow camera optimization time; Cam+Scene \rightarrow overall (camera+scene) optimization time; h \rightarrow hour; m \rightarrow minute. We mark the shortest time in **bold**. Our method is the most efficient.

Method		Ours	CO	L ^{w/o mask}	casualSAM		
Method	Cam	Cam+Scene	Cam	Cam+Scene	Cam	Cam+Scene	
Apple	33m	47m	10.95h	11.25h	6.80h	7.32h	
Paper-windmill	15m	27m	8.18h	8.70h	3.50h	3.97h	
Space-out	23m	69m	4.42h	4.72h	5.87h	6.30h	
Backpack	7m	25m	1.83h	2.12h	1.58h	2h	
Block	27m	42m	10h	10.45h	6h	6.50h	
Creeper	27m	45m	16.03h	16.45h	4.38h	4.82h	
Handwavy	15m	30m	4.62h	5.1h	3.30h	3.72h	
Haru-sit	10m	25m	0.77h	1.18h	1.25h	1.72h	
Mochi-high-five	6m	18m	0.67h	1.03h	1.53h	1.93h	
Pillow	21m	36m	19.18h	19.70h	3.70h	4.20h	
Spin	30m	44m	20h	20.58h	5.50h	6h	
Sriracha-tree	15m	27m	4.58h	4.88h	3.22h	3.68h	
Teddy	31m	46m	19h	19.71h	6.78h	7.28h	
Wheel	27m	46m	6m	13.80h	3.67h	4.17h	
Mean	20m	38m	9.53h	9.97h	4.07h	4.53h	

Table 11: Quantitative runtime results on NeRF-DS [50]. Cam \rightarrow camera optimization time; Cam+Scene \rightarrow overall (camera+scene) optimization time; h \rightarrow hour; m \rightarrow minute. We mark the shortest time in **bold**. we show only Cam+Scene of RoDynRF [20] due to its joint optimization of the camera and scene. * is supervised by additional GT priors. $COL^{w/mask}$ and $COL^{w/omask}$ are faster than us on Plate because they fail on this video, leading to a quick convergence to the local minima, which can be supported by qualitative results of fig. 8 in the main paper. Among all, our method is the most efficient.

Mathad		Ours	CC	COL ^{w/ mask *}		COL w/o mask		ualSAM	RoDynRF*
Method Ca	Cam	Cam+Scene	Cam	Cam+Scene	Cam	Cam+Scene	Cam	Cam+Scene	Cam+Scene
Bell	1.05h	1.20h	2.50h	2.72h	3.00h	3.25h	16.5h	16.8h	28.6h
As	0.95h	1.08h	2.00h	2.17h	2.55h	2.72h	14.87h	15.08h	33.6h
Basin	0.75h	0.92h	1.42h	1.62h	1.60h	1.85h	9.88h	10.67h	33.8h
Plate	0.53h	0.68h	0.42h	0.60h	0.50h	0.87h	4.67h	4.98h	25.6h
Press	0.68h	0.82h	0.85h	1.05h	0.90h	1.08h	6.28h	6.60h	28.5h
Cup	1.02h	1.15h	2.37h	2.58h	2.57h	2.73h	13.50h	13.78h	28.8h
Sieve	0.78h	0.92h	1.15h	1.35h	1.58h	1.77h	7.83h	8.13h	28.3h
Mean	0.83h	0.97h	1.52h	1.73h	1.82h	2.03h	10.50h	10.80h	29.6h

E.2 Qualitative Results

E.2.1 Trajectories from Patch-wise Tracking Filters as Pseudo-supervision

In Figure 10, we show the trajectory comparisons on the NeRF-DS [50] dataset as samples. As discussed in the 3rd paragraph in section 1, and section 3.1 of the main paper, our patch-wise tracking filters can establish robust and maximally sparse hinge-like relations as accurate pseudo-supervision, avoiding noisy and inaccurate tracking trajectories. In Figure 10, it is easy to see our proposed method avoids the inaccurate ones in the low-texture regions (walls), and meanwhile, adaptively adds new reliable trajectories when the number of left trajectories on each frame is less than B.

E.2.2 NVS

We show more RGB and depth rendering results on NeRF-DS [50], DAVIS [28], and iPhone [7] dataset in Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, and Figure 18. It is easy to see that the RGB and depth rendering results of our method are better than other RGB-only supervised approaches. In addition, the performance of our method is also comparable with that of the LiDAR-based Record3D app.

E.2.3 Optimized 3D Gaussian Fields

Since the iPhone [7] dataset is the most challenging dataset with large camera and object movements, we show more visualizations of optimized 3D Gaussian fields in Figure 20, Figure 21, and Figure 19. Such comparisons demonstrate that our camera estimates enable superior reconstruction of 3D Gaussian fields compared to other RGB-only supervised approaches. Moreover, the reconstructed fields using our estimates are comparable to, or even surpass, those obtained with the LiDAR-based Record3D [33] app, particularly in scenes with significant motion.

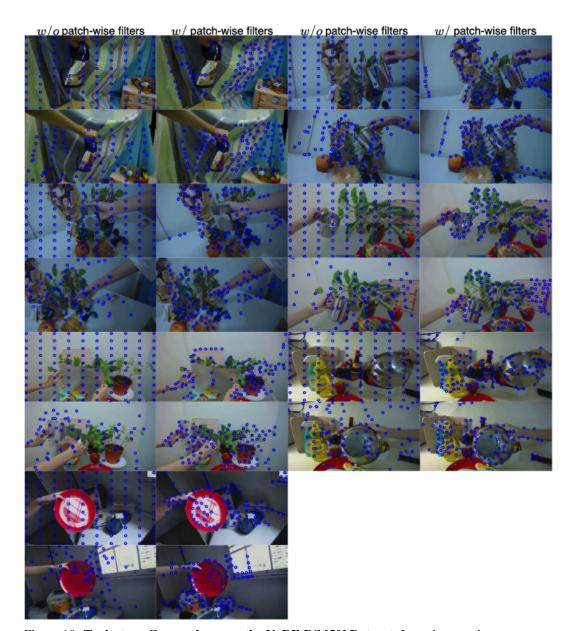


Figure 10: **Trajectory Comparisons on the NeRF-DS [50] Dataset.** In each scenario, top row \rightarrow F_0 ; bottom row \rightarrow F_{247} ; w/o patch-wise filters \rightarrow raw CoTracker [13]; w/ patch-wise filters \rightarrow Ours. It is easy to see our proposed method avoids the inaccurate trajectories in the low-texture regions, whereas the trajectories of the points in the low-texture regions tracked by raw CoTracker [13] are extremely unreliable.

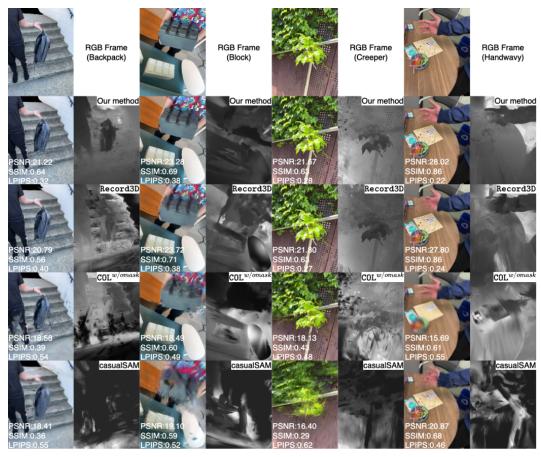


Figure 11: More Qualitative NVS Results on iPhone [7] - Part 1. Our renderings exhibit higher fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.

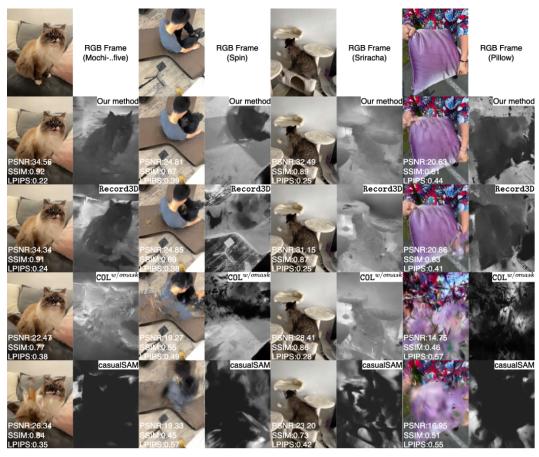


Figure 12: **More Qualitative NVS Results on iPhone [7] - Part 2.** Our renderings exhibit higher fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.

Figure 13: More Qualitative NVS Results on iPhone [7] - Part 3. Our renderings exhibit higher fidelity and more accurate geometry compared to other RGB-only supervised methods. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.

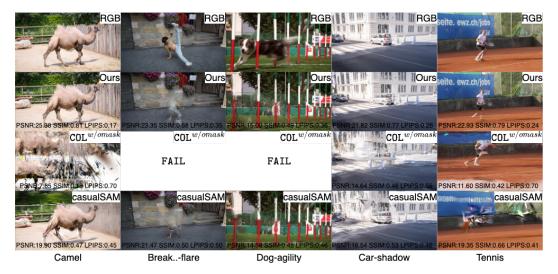


Figure 14: More Qualitative NVS Results on DAVIS [28] - Part 1. Our renderings exhibit higher fidelity compared to other RGB-only supervised methods.

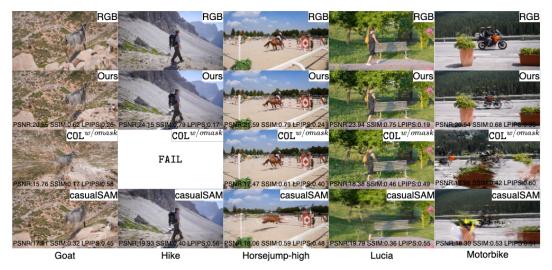


Figure 15: More Qualitative NVS Results on DAVIS [28] - Part 2. Our renderings exhibit higher fidelity compared to other RGB-only supervised methods.

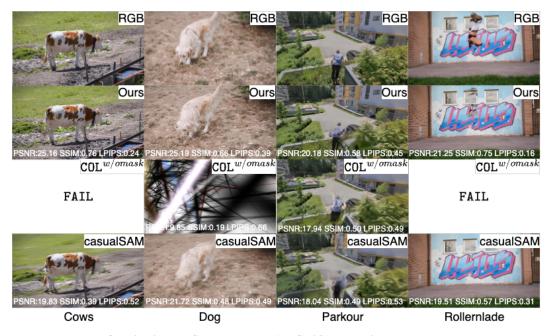


Figure 16: More Qualitative NVS Results on DAVIS [28] - Part 3. Our renderings exhibit higher fidelity compared to other RGB-only supervised methods.

Figure 17: More Qualitative NVS Results on DAVIS [28] - Part 4. Our renderings exhibit higher fidelity compared to other RGB-only supervised methods.

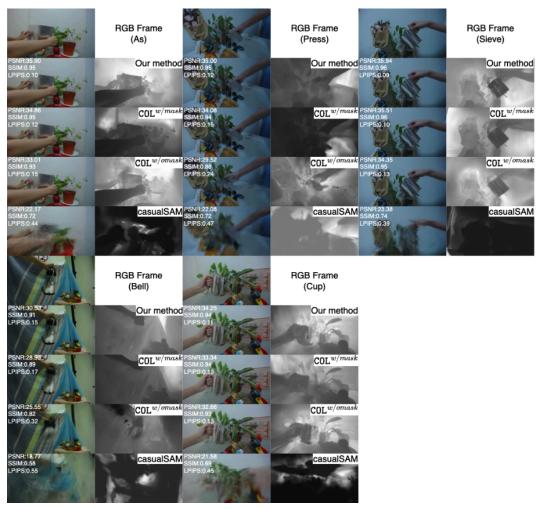


Figure 18: **More Qualitative NVS Results on NeRF-DS [50].** Our renderings exhibit higher fidelity compared to other RGB-only supervised methods.

Figure 19: **Optimized 3D Gaussian Fields on iPhone [7] - Part 1.** Our reconstructed 3D Gaussian Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods, which demonstrates our camera estimates are more accurate. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.

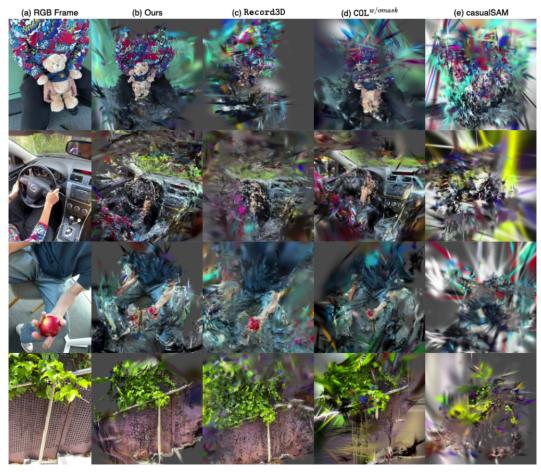


Figure 20: **Optimized 3D Gaussian Fields on iPhone** [7] - **Part 2.** Our reconstructed 3D Gaussian Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods, which demonstrates our camera estimates are more accurate. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.

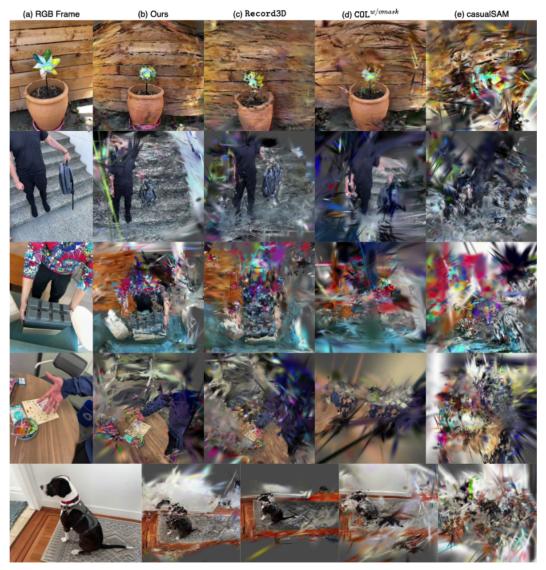


Figure 21: **Optimized 3D Gaussian Fields on iPhone** [7] - **Part 3.** Our reconstructed 3D Gaussian Fields are more geometrically accurate compared to the ones of other RGB-only supervised methods, which demonstrates our camera estimates are more accurate. Besides, our performance is comparable with, or even better than, the ones of the LiDAR-based Record3D app.