
Mobility-LLM: Learning Visiting Intentions and
Travel Preferences from Human Mobility Data with

Large Language Models

Letian Gong1,2∗, Yan Lin3∗, Xinyue Zhang1,2, Yiwen Lu1, Xuedi Han1

Yichen Liu1,2, Shengnan Guo1,2†, Youfang Lin1,2, Huaiyu Wan1,2

1School of Computer Science and Technology, Beijing Jiaotong University, China
2Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing, China

3Department of Computer Science, Aalborg University, Denmark
{gonglt, zhangxinyue, luyiwen, hanxuedi, liuyichen, guoshn,

yflin, hywan}@bjtu.edu.cn, lyan@cs.aau.dk

Abstract

Location-based services (LBS) have accumulated extensive human mobility data
on diverse behaviors through check-in sequences. These sequences offer valuable
insights into users’ intentions and preferences. Yet, existing models analyzing
check-in sequences fail to consider the semantics contained in these sequences,
which closely reflect human visiting intentions and travel preferences, leading to
an incomplete comprehension. Drawing inspiration from the exceptional semantic
understanding and contextual information processing capabilities of large language
models (LLMs) across various domains, we present Mobility-LLM, a novel frame-
work that leverages LLMs to analyze check-in sequences for multiple tasks. Since
LLMs cannot directly interpret check-ins, we reprogram these sequences to help
LLMs comprehensively understand the semantics of human visiting intentions and
travel preferences. Specifically, we introduce a visiting intention memory network
(VIMN) to capture the visiting intentions at each record, along with a shared pool
of human travel preference prompts (HTPP) to guide the LLM in understanding
users’ travel preferences. These components enhance the model’s ability to extract
and leverage semantic information from human mobility data effectively. Extensive
experiments on four benchmark datasets and three downstream tasks demonstrate
that our approach significantly outperforms existing models, underscoring the
effectiveness of Mobility-LLM in advancing our understanding of human mobility
data within LBS contexts.

1 Introduction

Location-based services (LBS) such as Gowalla, Weeplace, and Foursquare enable users to share and
discover location information and nearby services. This results in the collection of extensive human
mobility data, often presented in the form of check-in sequences. These sequences record users’
visits to different points of interest (POIs) like restaurants and hospitals at various times, reflecting
significant semantics about their intentions and preferences. Analyzing these check-in sequences
is crucial as it offers valuable information on human mobility data, which can positively impact
individuals, businesses, and urban management.

∗Both authors contributed equally to this research.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

The key to effectively mining check-in sequences lies in understanding their rich semantics. Ex-
isting methods primarily focus on specific tasks, such as location prediction [10, 59, 52, 26], time
prediction [40, 45], and trajectory user linking [34, 13, 62], rather than delving into the semantics
of human behaviors. This narrow focus often results in limited optimization goals and a shallow
understanding of the semantics contained in check-in sequences. Recently, large language models
(LLMs) have demonstrated impressive capabilities in semantic understanding and contextual infor-
mation processing, demonstrating successful adaptability across different domains. LLMs trained on
extensive corpora surpass task-specific models in their potential to understand semantic information.
Inspired by this, we aim to utilize pre-trained LLMs as powerful check-in sequence learners.

Nevertheless, LLMs encounter a significant obstacle in their inability to directly interpret check-in
sequences. As typical sequential data, check-in sequences contain a wealth of semantic information
that reflects various near-term regularities and inherent characteristics. The future intention of an
individual is prone to be dictated by near-term regularities that are close to recent visits, termed
visiting intentions. Furthermore, an individual’s inherent characteristics tend to persist over time and
determine their travel preferences, which is necessary to analyze them across multiple domains for a
comprehensive understanding. Hence, our main challenge is to enable LLMs to effectively extract
semantics from check-in sequences and comprehensively understand human visiting intentions and
travel preferences.

To address this challenge, we present a novel unified framework called Mobility-LLM for various
check-in sequence analysis tasks. It leverages pre-trained LLMs for general check-in sequence
analysis. Our contributions can be summarized as follows:

• We propose a unified framework called Mobility-LLM that uses a pre-trained LLM to achieve
a SOTA or comparable performance across various check-in analysis tasks including location
prediction, trajectory user link, and time prediction. We extract the semantics of check-in
sequences to enable LLMs to gain a comprehensive understanding of human visiting intentions
and travel preferences.

• A visiting intention memory network (VIMN) is proposed for capturing users’ visiting intentions
of users at each check-in record by prioritizing relevant check-in records.

• A shared pool of human travel preference prompts (HTPP) in different domains is introduced,
which enables a comprehensive understanding of human travel preferences and matches appropri-
ate prompts from multiple domains.

• Our model’s exceptional performance is validated through extensive experiments on four bench-
mark datasets involving three tasks. Our robust outcomes in cross-domain pre-training exhibit an
average enhancement of 17.8% and an average of 23.6% to 38.3% on the few-shot scenario.

2 Related Works

In this section, we provide short reviews of literature in the areas of mobility data mining and cross-
domain applications of LLMs. We postpone the detailed discussion of works to the Appendix A, due
to limited space.

Mobility Data Mining has emerged as a promising research area due to the proliferation of location-
based services. This has led to the development of three significant tasks that enhance service quality:
next location prediction (LP), next time prediction (TP), and trajectory user link (TUL). The LP
task aims to anticipate a user’s future location based on their historical movement. Several notable
models have emerged as leading approaches in LP [10, 59, 51, 48, 5, 23, 58]. The TUL task focuses
on establishing connections between different trajectories and users, facilitating the analysis of user
movement patterns and uncovering valuable insights into their behavior [13, 7, 60, 16]. The TP
task focuses on estimating the time at which a user is likely to visit their next location. Various
models have been developed to model the intensity function representing the rate or density of event
occurrences, effectively making accurate time predictions [57, 17, 53].

Cross-domain Application of LLMs has gained attention in recent studies, which adopt large
language models to address the challenge of limited training data. In the field of time series analysis,
LLM4TS [4] is a pioneering method that aligns pre-trained large language models with temporal
characteristics, introducing a two-level aggregation method to effectively incorporate multi-scale
temporal data into pre-trained LLMs. One-Fits-All [63] is a unified framework that leverages a frozen

2

pre-trained language model to attain state-of-the-art or comparable performance across various major
types of time series analysis tasks. AutoTimes [30] facilitates the tokenization of time series into
the embedding space of LLMs and intelligently utilizes the inherent token transitions to effectively
predict time series in an autoregressive manner. In the field of computer vision, LM4VE [35]
incorporates a frozen transformer block from an LLM as a general-purpose visual encoder layer. To
tackle graph-related tasks, TAPE [19] utilizes semantic knowledge generated by LLMs to enhance
the quality of initial node embeddings in GNNs. MoleculeSTM [27] aligns GNNs and LLMs within
a shared vector space, integrating textual knowledge into graphs to enhance reasoning capabilities.

3 Preliminaries

POI Visiting Record In the check-in datasets, a user’s visit to a certain place is represented by a
POI visiting record R = (Lp, t) generated by the user u. Lp indicates the visited POI at time t. Lp is
represented by (Lid, Llon, Llat, Lcategory), comprising Lid as a POI index, and accurate longitude
Llon and latitude Llat. Lcategory denotes the category of the visited POI (e.g., hospital, restaurant).

Check-in Sequence A user’s movement during a specific period can be represented by sequential
POI visiting records, which we refer to as a check-in sequence. We denote a check-in sequence as
C =< R1, R2, · · · , Rn >, where the POI visit records are ordered by their visited time, and n is the
length of the sequence.

Problem Statement Given a check-in sequence C, our objective is to encode this sequence into a
meaningful representation. This representation can be used for various tasks. In this paper, we choose
three typical check-in prediction tasks: 1) Identifying the user û who generated the check-in sequence
(TUL task). 2) Predicting the next location ŝn+1 the user will arrive at (LP task). 3) Predicting the
arrival time t̂n+1 at this location (TP task).

4 Methodology

We introduce a novel unified framework, Mobility-LLM, designed to address a variety of check-in
sequence tasks. The overall structure of this framework is illustrated in Fig. 1. 1) Initially, to
embed POIs by incorporating category semantics, we introduce the POI Point-wise Embedding Layer
(PPEL) to generate the embedding of POIs in the current check-in record (referred to as PPE). 2)
Subsequently, we feed the PPEs and timestamps of a check-in sequence into the Visiting Intention
Memory Network (VIMN) to capture the visiting intentions of users at each check-in record. 3)
A Human Travel Preference Prompt (HTPP) pool is introduced to extract users’ preferences from
check-in sequences, which act as cues to assist the LLM in comprehending users’ travel preferences
more effectively. 4) Finally, we use the different parts outputs of LLM (corresponding to VIMN,
HTPP), each with its own projection head, to forecast the user’s next location, the estimated arrival
time, and the user who generates the check-in sequence.

POI Point-wise Embedding Layer (PPEL) is designed to generate the semantic information
embedding for each POI in a check-in record. This is especially important since POI categories
contain a wealth of semantic information. It has been observed that the category descriptions of
POIs in the original check-in datasets are often vague or unidentified. When we refer to "vague," we
are indicating that the descriptions are too broad or contain abbreviations, making it challenging to
determine the specific POI categories accurately. To address this issue, we have developed a category
word pool (see Appendix I for the whole categories list) that allows each POI to match with the
most appropriate categories automatically. We reindex the POI IDs and word IDs in each dataset,
making it convenient for subsequent encoding of these IDs. As shown in Fig. 1a, we use the learnable
embedding ELid

of each POI ID as the query, the learnable embedding ECid
of the category word ID

as the key, and the corresponding category word token ECtoken
from the LLM tokenizer as the value.

A Point-wise attention mechanism is used to calculate the i-th PPE si of POIs:

si = Softmax(
Que(ELid

)Key(ECid
)T√

d
)Val(ECtoken

) + GeoHash(Llon, Llat), (1)

where Que(·), Key(·), and Val(·) denote linear projections, d is the dimension of ECtoken
,

GeoHash(·, ·) encodes geographic coordinates (latitude and longitude) into an embedding vec-

3

Figure 1: The overall of our Mobility-LLM framework. a) POI Point-wise Embedding Layer (PPEL).
b) Visiting Intention Memory Network (VIMN). c) Human Travel Preference Prompt (HTPP). d) α
denotes the output of the LLM corresponding to VIMN (i.e. first n output of the LLM), while the
remaining outputs are denoted as β.

tor (see Appendix H for details). We omit the MLP Layer and Layer Normalizations in Transformer
layers to simplify the representation in Eq. 1.

Visiting Intention Memory Network (VIMN) is proposed to capture the visiting intentions of
users at each check-in record by prioritizing relevant check-in records. As shown in Fig. 1b, we
feed the timestamp of each check-in record and the time interval between the adjacent records into
the Imminent GRU layer. We adopt a dual encoding approach for time representation: 1) Periodic
encoding for timestamps t as T (t) = [cos(ω1t), sin(ω1t), . . . , cos(ωkt), sin(ωkt)], where {ωk} are
frequencies determined to capture periodicity across various temporal scales. 2) Logarithmic encoding
for time intervals ∆t represented as ∆T = log(1 + ∆t), which adjusts the GRU’s forget gate based
on the time interval ∆t. This adjusted factor, denoted as ∆T , affects the forget gate of the GRU unit
through Gforget(∆T) = σ(Wf∆T + bf). The other components like Gupdate remain unchanged
from the original GRU configuration. The Imminent GRU layer can be depicted as:

zi = σ(WinT (ti) +Gupdate(Hi−1)×Gforget(∆T)), (2)

where zi represents the output of the Imminent GRU at time step ti, and Hi−1 denotes the hidden
state at time step i − 1. This setup allows for filtering out less relevant, temporally distant data.
Subsequently, the outputs [zi−r+1, · · · , zi−1, zi] from the most recent r cycles of the Imminent GRU,
along with the latest r PPEs, are forwarded to the feed-forward layer [44] (further elaborated in
Appendix G) to refine the representation of the user’s visiting intentions hi.

Commuting, Mealtime, Exercise, Studying, Working, Shopping ···

Student, Doctor, Teacher, Engineer, Lawyer, Nurse, Programmer ···

Active, Healthy, Unhealthy, Luxurious, Urban, Rural, Leisure ···

Travel preference Prompt Pool

Lifestyle

Occupation

Activity
Domain

Top-Score-matching Function
···

Significant Score

···
() =

𝒉!𝒉!"# 𝒉$

Figure 2: The architecture of HTPP.

Human Travel Preference Prompt (HTPP). This paragraph introduces a method for extracting
users’ travel preferences to help the LLM enable a comprehensive understanding of human travel
preferences and match appropriate prompts from multiple domains. Prompting strategies have
demonstrated encouraging outcomes in various applications that aid model predictions [3]. Previous
works primarily focus on utilizing a fixed prompt to boost the pre-trained models’ performance
through fine-tuning [30] or learnable prompts lacking reality semantic meaning [41, 3]. User behavior
is diverse and cannot be accurately summarized as a single fixed prompt to describe the user’s travel

4

preferences. Adopting a prompt-based approach with meaningless learnable prompt vectors can only
handle sequences with simple semantics, such as time series [41, 3]. However, it lacks the capability
to adequately extract human travel preferences. To address this limitation, we introduce a shared pool
of travel preference prompt words across D = 3 domains (e.g., occupation, activity type, lifestyle)
as illustrated in Fig. 2. Each domain includes a selection of m = 16 prompt words. For every
prompt word, we create a key-value pair where the value represents the word token obtained from the
LLM tokenizer, and the key is derived from the word token through a trainable linear transformation.
Specifically, these key-value pairs are defined as follows:

P = {(kD
1 , V D

1), (kD
2 , V D

2), · · · , (kD
m, V D

m)}, D ∈ {1, 2, 3}, (3)

where kD
m, V D

m ∈ RLE is a key-value pair, and we maintained it at the same embedding size LE

as visiting intentions hi. We then employ a scoring function ϕ(hi,k
D
m) = hi · kD

m/∥hi∥∥kD
m∥ to

determine the significance score of each hi, where ϕ : RLE × RLE → R. The significant score of
each hi indicates the relevance of the current visiting intention to each word in the travel preference
prompts pool. Subsequently, we aggregate the significant scores of each hi to identify the top-K
most significant pairs in a domain. By defining {mj}Kj=1 as a subset of indices for the selected top-K
prompt words in each domain, we obtain the output [V D

m1
; · · · ;V D

mK
] of HTPP as prompts (illustrated

in Fig. 1c) to more accurately recognize and comprehensively understand user’s travel preferences at
the level of individual check-in sequences.

Training Task In Fig. 1d, the input to the LLMs consists of the output of VIMN H =
[h1,h2, · · · ,hn], HTPP, and the user embedding Ui, denoted as xinput:

xinput =
[
H,Ui, V

D
m1

; · · · ;V D
mK

]
, D ∈ {1, 2, 3} (4)

We concatenate all the tokens along the check-in length dimension. As shown in Fig. 1e, α denotes the
output of the LLM corresponding to VIMN (i.e., the first n output of the LLM), while the remaining
outputs are denoted as β, where n is the length of this check-in sequence. Various projection heads
are used to predict the next location ŝn+1 the user will arrive at and its arrival time t̂n+1 with the β.
We use the β and α with a mean pooling projection head to predict the user û who generates this
check-in sequence.

5 Experiments

To evaluate the performance of our proposed model, we carry out extensive experiments on four
real-world check-in sequence datasets, targeting three different types of downstream tasks: Next
Location Prediction (LP), Trajectory User Link (TUL), and Time Prediction (TP). We use TinyLlama-
1B [56] as the default backbone unless stated otherwise. The code of Mobility-LLM is released at
https://github.com/LetianGong/Mobility-LLM.

Baselines: For the LP task, we cover five state-of-the-art LP models to demonstrate the superiority
of our model: DeepMove [10], LightMove [22], PLSPL [47], HMT-LSTM [25], LSTPM [59].
For the TUL task, we select four end-to-end models for comparison: TULER [13], TULVAE [62],
MoveSim [11], S2TUL [7]. For time prediction methods, we select four SOTA models for comparison:
IFLTPP [40], THP [64], NSTPP [17], DSTPP [53]. NSTPP and DSTPP can also be applied to the LP
task. For sequence representation methods ReMVC [55], VaSCL [54], SML [61], CACSR [15], we
apply them to learn the representation of the check-in sequence and serve different downstream tasks.
More details are in Appendix D.

Datasets: In our experiments, we use four real-world datasets derived from Gowalla 3, WeePlace [28,
31], Brightkite 4, and FourSquare [49, 50]. To ensure data consistency, we set a maximum historical
time limit of 120 days and filter out users with fewer than 10 records and places visited fewer than
10 times. Appendix C provides statistical information for each processed dataset. We shuffle all the
samples and then split the datasets into training, validation, and test sets in a 6:2:2 ratio based on the
number of samples.

3https://snap.stanford.edu/data/loc-Gowalla.html
4https://snap.stanford.edu/data/loc-brightkite.html

5

Implement Details: During the training phase, we adopt a partially frozen strategy to fine-tune
the pre-trained LLM. We apply different parameter freezing strategies to the 1− LF layers and the
LF − LF+U layers. In order to enhance the model’s performance on trajectory data, we employ the
Low-Rank Adaptation (LoRA) algorithm [21] to incorporate additional parameters into the LLMs.
Details of the partially frozen strategy and other settings can be found in Appendix B. We run each
set of experiments 5 times and reported their mean values

5.1 Next Location Prediction

Table 1: Next location prediction (LP) performance results. A higher value indicates better perfor-
mance. Red: the best, Blue: the second best. The units of all metics are expressed as e-2.

Datasets Gowalla WeePlace Brightkite FourSquare

Metric (e-2) Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRRMethod

DeepMove 10.51 23.21 33.9 16.65 19.23 37.79 52.61 27.03 49.82 66.25 71.19 56.94 16.3 35.06 48.39 25.02
LightMove 9.88 20.93 29.95 15.01 18.33 36.37 52.75 27.03 49.01 63.11 68.94 55.46 13.27 29.33 41.45 20.71

PLSPL 11.26 24.12 33.82 17.44 18.77 37.31 53.31 27.86 51.42 65.34 71.46 57.59 13.73 30.65 43.18 21.42
HMT-LSTM 10.73 22.41 32.77 16.47 17.29 34.23 49.82 25.69 49.22 63.36 67.96 55.41 13.67 29.9 42.6 21.17

LSTPM 9.83 20.88 30.25 15.12 15.6 31.15 45.98 23.34 42.58 54.65 60.21 48.16 15.46 34.17 48.49 24.27
VaSCL 11.47 22.17 32.92 16.56 18.11 37.54 53.04 28.46 49.95 66.21 71.17 57.23 14.99 32.84 47.06 23.39

SimCSE 7.15 16.12 23.8 11.53 14.12 31.06 46.89 22.31 46.65 64.48 70.43 54.69 14.5 33.13 47.89 23.29
NSTPP 10.81 23.23 32.94 16.87 16.58 32.37 47.82 24.2 45.83 58.44 64.56 52.16 14.89 33.18 47.03 23.36
DSTPP 10.85 23.11 33.19 16.74 18.85 37.68 53.44 27.52 48.71 62.82 67.71 55.26 13.3 29.11 41.53 20.66
ReMVC 11.03 22.94 33.38 16.65 18.07 35.92 51.93 26.66 49.57 63.58 69.28 56.31 16.92 36.05 49.39 26.02

SML 9.92 20.91 30.36 15.25 17.42 35.23 51.07 25.96 46.26 58.93 65.35 51.97 14.72 32.54 46.87 23.27
CACSR 10.94 18.22 26.56 12.83 19.66 36.46 51.25 28.15 44.56 62.01 65.91 51.91 14.73 31.54 46.47 22.78

Mobility-LLM 11.87 25.14 36.36 18.29 20.47 39.22 56.69 29.21 53.18 68.31 74.11 59.89 17.29 37.17 53.16 26.47

Table 2: Trajectory user link (TUL) performance results. A higher value indicates better performance.
Red: the best, Blue: the second best. The units of all metics are expressed as e-2.

Datasets Gowalla WeePlace Brightkite FourSquare

Metric (e-2) Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRRMethod

TULER 55.85 64.55 72.19 60.09 63.69 79.24 86.4 72.37 58.37 73.48 83.36 65.26 44.43 58.41 69.14 51.04
TULVAE 41.33 43 44.6 42.22 32.72 39.02 44.87 36.22 37.76 47.42 54.99 42.68 21.7 26.52 31.21 24.44
MoveSim 46.5 59.42 68.21 52.66 57.07 70.49 79.13 63.42 60.19 70.2 78.52 65.04 37.48 50.65 61.57 44.02
S2TUL 59.33 67.78 67.07 61.2 52.82 55.09 57.43 51.77 39.54 44.46 44.73 48.7 37.97 45.08 43.42 44.85
VaSCL 59.9 68.34 74.99 63.99 74.31 83.25 88.64 78.42 63.88 67.67 68.67 63.86 51.44 61.22 69.72 56.38

SimCSE 26.78 43.63 57.76 35.02 55.58 71.74 82.56 63.34 59.96 71.11 79.9 65.39 40.1 53.15 65.54 46.78
ReMVC 68.75 74.4 73.19 70.02 65.78 73.09 71.64 66.15 73.85 82.55 87.93 77.93 58.18 66.84 72.67 65.14

SML 57.42 62.44 63.07 61.97 59.44 69.93 69.52 62.43 63.91 72.28 70.52 66.38 55.69 58.42 63.7 57.7
CACSR 52.62 63.5 71.29 57.84 70.01 81.3 86.98 75.24 58.6 72.54 79.72 65.18 51.89 64.59 72.91 57.98

Mobility-LLM 80.43 86.29 88.56 83.18 79.03 88.04 91.48 83.21 83.06 88.52 90.35 85.73 72.08 79.67 84.32 75.71

Setups: We consider the LP task as a multi-classification problem. Given a check-in sequence
CUi from a specific user Ui, we feed it to our framework GLLM to obtain the check-in sequence
representation GLLM (CUi). As shown in Fig. 1e, a multi-class projection head fmulti

θ (β) =
softmax (Wβ + b)) is used to predict the next location ŝn+1 with the corresponding output β
of VIMN. We maximize the conditional log-likelihood for a given N observations as follows:
LMLE(θ) =

∑N
i=1 log f

multi
θ (ŝn+1 | β), where N is the number of POIs. We maintain all baseline

user embeddings at 256 dimensions and POI embeddings at 128 dimensions. The evaluation metrics
include Acc@k and mean reciprocal rank (MRR). The details of the implementation and metric can
be found in Appendix B.2.

Results: Our brief results are shown in Tab. 1, and consistently surpass all baselines. The comparison
with CACSR is particularly noteworthy since it is the latest check-in sequence learning model. We
note average performance gains of 17.19% and 7.49% over CACSR and ReMVC, respectively.
Compared with the SOTA task-specific models, PLSPL and LSTPM realized an average MRR
improvement of 9.32% and 19.88%. Relative to the time point process models, e.g., NSTPP and
DSTPP, our improvements are also pronounced, exceeding 14.86% and 13.22%.

5.2 Trajectory User Link

Setups: Unlike the LP task, the TUL task requires predicting which user generated a given check-in
sequence. Therefore, the input information cannot contain any details about the user. We use the

6

Table 3: Time Prediction (TP) preference results. A lower value indicates better performance. Red:
the best, Blue: the second best. The units of all metrics are minutes.

Method Mobility-LLM IFLTTP THP NSTPP DSTPP ReMVC SML CACSR

Datasets MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Gowalla 353.89 509.55 369.82 522.83 354.6 534.52 362.39 532.99 368.76 524.33 360.62 531.46 362.03 515.16 356.37 518.22
WeePlace 28.28 35.54 29.31 36.96 29.47 36.11 29.41 37.17 28.82 37.28 29.61 36.11 28.34 36.04 28.42 35.97
Brightkite 346.44 423.26 362.72 441.46 354.41 433.84 345.74 435.11 358.91 427.49 348.86 440.61 348.86 437.65 358.91 440.61

FourSquare 309.78 505.03 314.74 503.01 314.52 513.11 319.39 521.69 317.84 524.22 319.39 515.13 318.46 523.71 315.67 513.11

Table 4: Few-shot learning on 5% training data. Red: the best, Blue: the second best. We keep the
same protocol with the other settings. The results on all training datasets are in Tab. 1 and Tab. 2.
The results of few-shot on 1% and 20% can be found in Appendix F.

Datasets Gowalla WeePlace Brightkite FourSquare
Metric Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR

Task Method
DeepMove 7.58 18.01 26.29 12.58 15.47 32.89 46.85 23.35 42.25 60.56 61.72 50.62 14.44 32.26 44.34 22.73
LightMove 7.12 16.24 23.23 11.34 15.17 32.8 47.59 23.78 41.55 57.69 59.76 49.3 12.9 28.3 39.15 20.1

PLSPL 8.27 18.72 26.23 13.17 14.54 31.26 46.24 23.03 43.61 59.73 61.95 51.2 16.41 35.05 46.56 25.32
HMT-LSTM 7.74 17.39 25.41 12.44 14.02 30.66 45.48 22.43 41.74 57.92 58.92 49.26 13.26 29.07 40.16 20.6

LSTPM 7.09 16.2 23.46 11.42 15.82 31.73 45.64 24.32 36.11 49.96 52.2 42.81 14.99 33.22 45.71 23.61
VaSCL 8.12 17.2 25.53 12.51 14.57 32.67 47.23 24.59 42.36 60.52 61.7 50.88 14.54 31.93 44.37 22.76

LP SimCSE 5.16 12.51 18.46 8.71 11.36 27.03 41.75 19.27 39.56 58.94 61.06 48.62 14.06 32.21 45.15 22.66
NSTPP 7.79 18.02 25.55 12.74 13.34 28.17 42.58 20.91 38.86 53.42 55.97 46.37 15.81 34.09 45.62 24.34
DSTPP 7.82 17.93 25.74 12.65 14.75 31.66 46.97 23.35 41.31 57.42 58.7 49.13 12.87 28.52 39.08 20.15
ReMVC 7.95 17.8 25.89 12.58 15.1 32.47 47.47 24.07 42.04 58.12 60.06 50.06 13.32 29.8 40.71 20.84

SML 7.15 16.22 23.54 11.52 13.91 29.79 44.36 22.19 39.23 53.87 56.65 46.2 14.28 31.64 44.19 22.64
CACSR 7.89 14.14 20.6 9.69 12.55 27.11 40.94 20.16 37.79 56.68 57.14 46.15 14.29 30.67 43.81 22.16

Mobility-LLM 9.98 21.82 32.02 15.74 18.27 36.59 53.23 27.15 48.49 65.31 68.66 55.64 16.86 36.47 51.36 25.98

TUL

TULER 26.32 40.62 52.43 31.62 44.62 59.14 70.72 52.95 49.67 65.38 76.97 56.71 22.29 36.6 50.7 29.4
TULVAE 27.24 43.36 55.17 34.01 52.58 63.7 72.14 56.58 25.03 35.69 47.35 29.82 9.94 15.89 22.42 13.72
Movesim 12.28 27.73 41.55 19.17 40.61 53.33 63.86 46.16 41.1 54.05 67.93 47.21 29.9 41.88 52.98 24.69
S2TUL 32.13 46.84 53.43 37.93 35.88 41.55 46.56 37.16 26.01 34.32 38.15 35.96 27.61 36.3 46.74 35.5
VaSCL 18.95 26.76 31.46 21.59 22.19 28.26 35.49 26.42 40.75 57.2 73.66 46.6 26.29 40.4 53.66 31.45

SimCSE 21.2 36.02 49.89 27.15 37.89 53.88 66.82 46.28 41.45 56.68 69.7 47.88 19.7 32.78 48.66 24.89
ReMVC 27.76 42.29 48.14 33.63 46.08 55.73 58.49 47.89 43.38 52.84 58.61 47.55 18.85 31.63 45.11 24.8

SML 26.78 39.45 45.19 34 40.53 53.91 57.55 45.63 43.56 56.31 62.53 49.68 18.42 27.95 31.59 33.25
CACSR 24.67 39.52 50.7 31.36 48.85 61.46 72.04 55.73 39.83 57.24 69.76 47.51 24.95 38.3 50.28 32.37

Mobility-LLM 55.75 69.25 76.45 61.97 66.82 77.65 83.57 71.94 69.65 79.28 85.12 74.21 51.75 64.01 73.04 57.66

corresponding output β of HTPP and α with a mean pooling projection head to predict the user û
who generates this check-in sequence (TUL task). Other settings and evaluation metrics are the same
as those used in the LP task.

Results: Mobility-LLM consistently surpasses all baselines in Tab. 2, outperforming the all baselines
by an average of 47.3%. Mobility-LLM remains competitive even when compared with the SOTA
model, ReMVC, by 17.17%. Our model performs exceptionally well in the TUL task thanks to its
effective extraction of users’ travel preferences, allowing for precise identification of users.

5.3 Time Prediction

Setups: For the time prediction task, we follow the method of IFLTPP [40] using an intensity-free
method to model the interaction time as a mixture distribution. We first obtain the mixture weights
w, means µ and standard deviations s from the corresponding output β of LLM with linear layer.
Then we use the TPP projection head built by a mixed distribution function and sample to get the
prediction time t̂n+1 as follows:

p (τ | w, µ, s) =
K∑

k=1

1

τsk
√
2π

exp− (log τ − µk)
2

2sk2
, t̂n+1 =

K∑
k=1

wk exp (aµk + b+
a2sk
2

), (5)

where k represents the number of independent Gaussian distributions in the mixed distribution, a
denotes the mean of the whole set and b denotes the standard deviation of the whole set. We sample
from the mixture model in the parsing solution. The evaluation metrics include root mean square
error (RMSE) and mean absolute error (MAE).

Results: Our brief results are shown in Tab. 3. Due to the diversity of user behaviors and the
unpredictability of activity timing, even the state-of-the-art (SOTA) models for Temporal Point

7

Table 5: Ablations on Gowalla dataset in all tasks. Red: the best, Blue: the second best. Our full
results can be found in Appendix E.3.1. The setting of A.1-8 can be found in Appendix E.1, and the
settings of B.1-4 can be found in Appendix E.2.

Tasks LP TUL TP

Variant Metic Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR MAE RMSE

A.1 TinyLlama (Default) 11.87 25.14 36.36 18.29 80.43 86.29 88.56 83.18 353.89 509.55
A.2 TinyLlama-Chat 11.59 24.33 35.76 17.88 71.83 79.37 83.38 75.38 356.34 513.76
A.3 LiteLlama 11.56 25.39 35.78 18.41 80.53 85.11 86.12 81.11 354.71 496.36
A.4 phi-2 11.22 24.29 35.97 17.62 72.33 79.53 83.55 75.77 358.67 512.28
A.5 pythia-70M 11.03 24.86 35.74 17.91 79.47 85.51 86.18 81.69 356.71 513.15
A.6 pythia-1B 11.19 24.84 35.82 18.01 78.83 84.91 88.46 80.92 354.21 511.04
A.7 pythia-2.8B 11.76 25.14 36.11 18.02 79.63 84.32 87.24 80.95 354.57 512.59
A.8 GPT-2 11.33 23.67 34.49 17.28 77.01 83.33 84.35 78.98 353.85 510.01

B.1 w/o HTPP 11.35 24.29 33.62 17.38 72.02 79.64 80.45 75.17 361.08 517.35
B.2 w/o VIMN 11.01 23.27 34.03 16.83 75.88 81.79 83.72 78.06 355.65 517.26
B.3 w/o PPEL 11.32 23.74 35.31 17.61 76.11 81.85 82.96 78.37 356.01 513.12
B.4 w/o LLM 10.06 20.82 31.52 15.62 70.79 76.32 78.32 73.75 366.84 526.73

Epoch 0 Epoch 1 Epoch 5 Epoch 20

Behavioral Prompt Behavioral Prompt Behavioral Prompt
Significant Behavioral Prompt Less Significant

Behavioral Prompt
(a) The significance of a particular sample varies across 16 different behavioral prompts
within three domains in the HTPP module.

(b) w/o HTPP (c) w/ HTPP (d) w/o VIMN (e) w/o Delta time (f) w/ VIMN (g) Delta time

0 1 2 3 4

9:45 am

10:15 am

3:30 pm

9:20 pm

11:30 pm

∆t 1
= 30

 m
in

∆t 2
= 31

5 m
in

∆t 3
= 35

0 m
in

∆t 4
= 13

0 m
in

Time

Figure 3: Showcases of the HTPP and VIMN.

Processes (TPP) struggle to achieve excellent results across all datasets. However, our model
outperforms all baselines in most cases and does so significantly for most of them.

5.4 Few-shot Forecasting

Setups: LLMs have recently demonstrated remarkable few-shot learning capabilities [29]. This
section assesses whether our reprogrammed LLM retains this ability in different tasks. In our
experiments, we maintain consistent splits for training, validation, and test sets in both standard
learning (where the full training set is used) and few-shot learning. For few-shot scenarios, we
intentionally limit the training data percentage of sample number (i.e., using first 20%, 5%, 1%
samples of the training dataset).

Results: Our 5% few-shot learning results are in Tab. 4 remarkably excel over all baseline methods,
and we attribute this to the successful knowledge activation in our reprogrammed LLM. Interestingly,
our approach on both LP and TUL tasks consistently surpasses other competitive baselines, further
underscoring the potential prowess of language models as proficient human behavior analysis ma-
chines. Concerning recent SOTA models such as NSTPP, DSTPP, S2TUL, ReMVC, and CACSR, our
average enhancements surpass 21.4%, 21.7%, 86.6%, 46.2%, and 45.2% w.r.t. average on all the
metrics. Even with only 5% of the training dataset, our model achieves results comparable to other
models using 100% of the training dataset. This is particularly significant for privacy-protected and
typically smaller Check-in datasets, as our model can effectively understand the distribution patterns
of human behaviors with minimal data.

5.5 Model Analysis

Language Model Variants. We compare eight representative backbones with varying capacities
(A.1-8 in Tab. 5). We find that the TinyLlama (A.1 in Tab. 5) backbone model performed the best
overall for our task, while its Chat version (A.2) is relatively less suitable for reprogramming. Our
results indicate that the scaling law is not strictly retained after the LLM reprogramming. Even

8

WeePlace-TUL Brightkite-TULGowalla-TUL

MRR
Acc@5

FourSquare-TUL

MRR
Acc@5

MRR
Acc@5

MRR
Acc@5

(%) (%) (%) (%)(%) (%) (%) (%)

WeePlace-LP Brightkite-LPGowalla-LP

MRR
Acc@5

FourSquare-LP

MRR
Acc@5

MRR
Acc@5

MRR
Acc@5

(a) Effect of the selection of Top-k in HTPP.

(b) Effect of the recent r cycles in VIMN.

Figure 4: Effects of hyper-parameters validated on different datasets.

the Pythia-70M (A.5 in Tab. 5) backbone model, which has fewer parameters, can demonstrate
advantages in certain datasets and tasks. Therefore, it can be inferred that the suitability of backbone
models for different tasks is significantly related to the training strategy of the backbone model, and
not just to the number of parameters. For example, in time prediction tasks, GPT-2 (A.8) performs
better than the 2.7B+ parameter backbone model (A.4,7).

Ablation Study. As shown in Tab. 5, we find that the removal of (B.1) stands as a pivotal element in
harnessing the efficiency for the TUL task. We observe a notable average performance degradation
of 5.16% on the TUL task. The inherent habits of human activities can effectively reflect a user’s
behavioral characteristics, which strongly validates the importance of (B.1) in capturing the inherent
habits of people’s activities. Ablation of this component (B.2) results in over 4.09% degradation on
LP task, as people’s actions are largely influenced by visiting intentions. Additionally, (B.3) allows
for more accurate embedding of POI types and semantics, providing a foundation for subsequent
modules and tasks. In the w/o LLM setting (B.4), we replace the large language model with a standard
transformer. (B.4) also shows that even without using an LLM as the base model, our reprogramming
still achieves excellent results, even surpassing many baselines.

Reprogramming Interpretation. We provide three case studies to visualize the improvements
brought by HTPP and VIMN. In Fig. 3a, we visualize the significance of different prompt words
in three domain pools within the HTPP model. Orange indicates high significance, and Purple
indicates low significance. It can be observed that as training progresses, the prompt words for this
sample in each domain concentrate on a few words. This also indicates that user behavior is diverse
and personalized. To more intuitively see the effect of HTPP, we select 10 different users, each with
several samples. We visualize the output of LLM with t-SNE [43] corresponding to the samples
generated by these 10 users in Fig. 3b and Fig. 3c. It can be seen that with the addition of HTPP, the
model can more comprehensively capture user behavior patterns and better recognize the behavioral
characteristics of each user. Similarly, to better visualize the effect of VIMN, we select a continuous
sequence of five user behavior points. Fig. 3d-f show the Pearson correlation coefficients between the
five outputs h without using the VIMN, without considering Delta Time as input, and when using
VIMN, respectively. Fig. 3g shows the time intervals among these five points. It can be observed that
with the use of the VIMN, the closer the time, the greater the influence on the current state, which
aligns with human behavior patterns. Since plans cannot keep up with changes, people’s decisions
are mostly influenced by recent behaviors. Therefore, our model uses Delta Time as a constraint for
correlation, effectively mimicking human activity patterns and achieving better prediction results.

Hyperparameter Analysis. There is a significant difference in user behavior patterns across different
datasets. As shown in Fig. 4a, in larger datasets like Foursquare, user behavior is more diverse, and
larger K values yield better results. In Fig. 4b, it can also be seen that the number of nearby cycles in
VIMN is highly correlated with the distribution of time intervals in the dataset.

Reprogramming Efficiency. Tab. 6 provides an overall efficiency analysis with and without the
backbone LLM. Our proposed reprogramming network itself is lightweight in activating the LLM’s
ability for different tasks (i.e., fewer than 10 million trainable parameters; only around 3.4% of
the total parameters in TinyLlama), and the leveraged backbones actually cap the overall efficiency.
This is favorable even compared to the parameter-efficient fine-tuning methods (e.g., QLoRA [8])

9

Table 6: Efficiency analysis of Mobility-LLM on WeePlace dataset on all tasks. Param. represents
the total parameters of the model. Mem. denotes the GPU Memory. The ratio represents the
ratio of trainable parameters (including the trainable parameters in QLoRA and the reprogramming
parameters). The Time column denotes the total training time.

Tasks LP TUL TP

Variant Metric Param. Mem. Ratio Time Param. Mem. Ratio Time Param. Mem. Ratio Time

TinyLlama (Default) 1.07B 11.3GB 3.72% 5.45h 1.03B 10.6GB 3.34% 13.24h 1.03B 10.6GB 3.42% 2.76h
TinyLlama-Chat 1.07B 11.3GB 3.72% 5.45h 1.03B 10.6GB 3.34% 13.24h 1.03B 10.6GB 3.41% 2.76h
LiteLlama 434M 8.7GB 5.42% 4.58h 412M 8.2GB 5.02% 5.65h 414M 8.2GB 4.60% 2.36h
phi-2 2.82B 21.7GB 1.12% 8.95h 2.81B 20.76GB 1.03% 17.59h 2.81B 20.76GB 1.21% 6.42h
pythia-70M 63M 2.74GB 27.23% 2.76h 53M 2.56GB 20.21% 4.92h 51M 2.56GB 22.03% 1.13h
pythia-1B 1.08B 12.03GB 3.89% 3.89h 1.01B 11.87GB 3.21% 6.5h 1.01B 11.87GB 3.43% 3.98h
pythia-2.8B 2.73B 22.4GB 1.19% 11.7h 2.71B 21.76GB 1.23% 11.7h 2.71B 21.76GB 1.15% 6.53h
GPT-2 0.138B 3.67GB 19.32% 3.06h 0.135B 3.23GB 19.11% 4.51h 0.135B 3.23GB 19.04% 1.27h

w/o LLM 0.012B 3.23GB 92.23% 2.42h 0.011B 3.12GB 94.32% 4.95h 0.011B 3.12GB 97.53% 1.2h

in balancing task performance and efficiency. In terms of runtime, the total training time with the
advanced fine-tuning framework is acceptable compared to not using LLMs.

6 Conclusion

In conclusion, our work presents Mobility-LLM, a unified framework leveraging large language
models (LLMs) to analyze check-in sequences and understand human mobility behaviors. By
incorporating the visiting intention memory network (VIMN) and the human travel preference
prompts (HTPP), our model excels in various tasks. Moreover, our model exhibits robust few-
shot learning capabilities, outperforming existing methods by an average of 23.6% to 38.3%. Our
work paves the way for a more comprehensive and accurate analysis of human mobility, benefiting
individuals, businesses, and urban management.

Limitations The sets of POIs in different datasets (which usually cover different regions) are unique.
Therefore, our proposed model is trained on one dataset, its learned information about the set of POIs
is not easily transferable to another dataset. Different sets of POIs have different functionalities and
usually have a different number of POIs, making many modules (such as embedding and predictor)
technically untransferable in a zero-shot setting. Future work will focus on developing universal user
and POI embeddings to enhance cross-dataset migration and improve model versatility.

Acknowledgment. This work was supported by the National Natural Science Foundation of China
(No. 62372031) and the Beijing Natural Science Foundation (Grant No. 4242029).

References
[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany

Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[2] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[3] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

[4] Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

[5] Quanjun Chen, Renhe Jiang, Chuang Yang, Zekun Cai, Zipei Fan, Kota Tsubouchi, Ryosuke
Shibasaki, and Xuan Song. Dualsin: Dual sequential interaction network for human intentional

10

mobility prediction. In Proceedings of the 28th International Conference on Advances in
Geographic Information Systems, pages 283–292, 2020.

[6] Tri Dao et al. Tinyllama: An open-source small language model. arXiv preprint
arXiv:2401.02385, 2024.

[7] Liwei Deng, Hao Sun, Yan Zhao, Shuncheng Liu, and Kai Zheng. S2tul: A semi-supervised
framework for trajectory-user linking. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, WSDM ’23, page 375–383. Association for
Computing Machinery, 2023.

[8] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 2023.

[9] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 1555–1564. Association for Computing Machinery, 2016.

[10] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng Jin.
Deepmove: Predicting human mobility with attentional recurrent networks. In Proceedings of
the 2018 world wide web conference, pages 1459–1468, 2018.

[11] Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. Learning to simulate
human mobility. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 3426–3433, 2020.

[12] Xue-Yong Fu, Md Tahmid Rahman Laskar, Elena Khasanova, Cheng Chen, and Shashi Bhushan
TN. Tiny titans: Can smaller large language models punch above their weight in the real world
for meeting summarization? arXiv preprint arXiv:2402.00841, 2024.

[13] Qiang Gao, Fan Zhou, Kunpeng Zhang, Goce Trajcevski, Xucheng Luo, and Fengli Zhang.
Identifying human mobility via trajectory embeddings. In IJCAI, volume 17, pages 1689–1695,
2017.

[14] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821, 2021.

[15] Letian Gong, Youfang Lin, Shengnan Guo, Yan Lin, Tianyi Wang, Erwen Zheng, Zeyu Zhou,
and Huaiyu Wan. Contrastive pre-training with adversarial perturbations for check-in se-
quence representation learning. Proceedings of the AAAI Conference on Artificial Intelligence,
37(4):4276–4283, Jun. 2023.

[16] Letian Gong, Huaiyu Wan, Shengnan Guo, Xiucheng Li, Yan Lin, Erwen Zheng, Tianyi Wang,
Zeyu Zhou, and Youfang Lin. Spatial-temporal cross-view contrastive pre-training for check-in
sequence representation learning. IEEE Transactions on Knowledge and Data Engineering,
2024.

[17] Vinayak Gupta, Srikanta Bedathur, and Abir De. Learning temporal point processes for efficient
retrieval of continuous time event sequences. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 4005–4013, 2022.

[18] Vinayak Gupta, Abir De, Sourangshu Bhattacharya, and Srikanta Bedathur. Learning temporal
point processes with intermittent observations. In Proc. of the 24th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2021.

[19] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. Explanations as features:
Llm-based features for text-attributed graphs. arXiv preprint arXiv:2305.19523, 2023.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[21] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR,
2022.

11

[22] Jinsung Jeon, Soyoung Kang, Minju Jo, Seunghyeon Cho, Noseong Park, Seonghoon Kim,
and Chiyoung Song. Lightmove: A lightweight next-poi recommendation fortaxicab rooftop
advertising. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, CIKM ’21, page 3857–3866. Association for Computing Machinery,
2021.

[23] Renhe Jiang, Quanjun Chen, Zekun Cai, Zipei Fan, Xuan Song, Kota Tsubouchi, and Ryosuke
Shibasaki. Will you go where you search? a deep learning framework for estimating user
search-and-go behavior. Neurocomputing, 472:338–348, 2022.

[24] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

[25] Nicholas Lim, Bryan Hooi, See-Kiong Ng, Yong Liang Goh, Renrong Weng, and Rui Tan.
Hierarchical multi-task graph recurrent network for next poi recommendation. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Information
Retrieval, page 1133–1143, 2022.

[26] Yan Lin, Huaiyu Wan, Shengnan Guo, and Youfang Lin. Pre-training context and time aware
location embeddings from spatial-temporal trajectories for user next location prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4241–4248,
2021.

[27] Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang,
Chaowei Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for
text-based retrieval and editing. Nature Machine Intelligence, 5(12):1447–1457, 2023.

[28] Xin Liu, Yong Liu, Karl Aberer, and Chunyan Miao. Personalized point-of-interest recommen-
dation by mining users’ preference transition. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 733–738, 2013.

[29] Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan,
Ming-Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are
few-shot health learners. arXiv preprint arXiv:2305.15525, 2023.

[30] Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Au-
toregressive time series forecasters via large language models. arXiv preprint arXiv:2402.02370,
2024.

[31] Yong Liu, Wei Wei, Aixin Sun, and Chunyan Miao. Exploiting geographical neighborhood
characteristics for location recommendation. In Proceedings of the 23rd ACM international
conference on conference on information and knowledge management, pages 739–748, 2014.

[32] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
universal computation engines. Proceedings of the AAAI Conference on Artificial Intelligence,
36(7):7628–7636, Jun. 2022.

[33] Yingtao Luo, Qiang Liu, and Zhaocheng Liu. Stan: Spatio-temporal attention network for next
location recommendation. In Proceedings of the Web Conference 2021, pages 2177–2185, 2021.

[34] Congcong Miao, Jilong Wang, Heng Yu, Weichen Zhang, and Yinyao Qi. Trajectory-user
linking with attentive recurrent network. In Proceedings of the 19th international conference on
autonomous agents and multiagent systems, pages 878–886, 2020.

[35] Ziqi Pang, Ziyang Xie, Yunze Man, and Yu-Xiong Wang. Frozen transformers in language
models are effective visual encoder layers. arXiv preprint arXiv:2310.12973, 2023.

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

12

[37] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. hayate-lab.com, 2018.

[38] Xuan Rao, Lisi Chen, Yong Liu, Shuo Shang, Bin Yao, and Peng Han. Graph-flashback network
for next location recommendation. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’22, page 1463–1471, New York, NY, USA,
2022. Association for Computing Machinery.

[39] Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and
Chao Huang. Representation learning with large language models for recommendation. CoRR,
abs/2310.15950, 2023.

[40] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes. International Conference on Learning Representations (ICLR), 2020.

[41] Chenxi Sun, Yaliang Li, Hongyan Li, and Shenda Hong. Test: Text prototype aligned embedding
to activate llm’s ability for time series. arXiv preprint arXiv:2308.08241, 2023.

[42] Zhou Tian, Niu Peisong, Wang Xue, Liang Sun, Rong Jin, and Patchtst Timesnet. One fits all:
Power general time series analysis by pretrained lm. CoRR, abs/2302.11939, 2023.

[43] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[45] Huaiyu Wan, Yan Lin, Shengnan Guo, and Youfang Lin. Pre-training time-aware location
embeddings from spatial-temporal trajectories. IEEE Transactions on Knowledge and Data
Engineering, 2021.

[46] Jiawei Wang, Renhe Jiang, Chuang Yang, Zengqing Wu, Makoto Onizuka, Ryosuke Shibasaki,
and Chuan Xiao. Large language models as urban residents: An llm agent framework for
personal mobility generation. arXiv preprint arXiv:2402.14744, 2024.

[47] Yuxia Wu, Ke Li, Guoshuai Zhao, and QIAN Xueming. Personalized long-and short-term
preference learning for next poi recommendation. IEEE Transactions on Knowledge and Data
Engineering, 2020.

[48] Xiaohang Xu, Toyotaro Suzumura, Jiawei Yong, Masatoshi Hanai, Chuang Yang, Hiroki
Kanezashi, Renhe Jiang, and Shintaro Fukushima. Revisiting mobility modeling with graph: A
graph transformer model for next point-of-interest recommendation. In Proceedings of the 31st
ACM International Conference on Advances in Geographic Information Systems, pages 1–10,
2023.

[49] Dingqi Yang, Daqing Zhang, Zhiyong Yu, and Zhu Wang. A sentiment-enhanced personalized
location recommendation system. In Proceedings of the 24th ACM Conference on Hypertext
and Social Media, pages 119–128. ACM, 2013.

[50] Dingqi Yang, Daqing Zhang, Zhiyong Yu, and Zhiwen Yu. Fine-grained preference-aware
location search leveraging crowdsourced digital footprints from lbsns. In Proceedings of
the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages
479–488. ACM, 2013.

[51] Song Yang, Jiamou Liu, and Kaiqi Zhao. Getnext: trajectory flow map enhanced transformer
for next poi recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on research and development in information retrieval, pages 1144–1153, 2022.

[52] Di Yao, Chao Zhang, Jianhui Huang, and Jingping Bi. Serm: A recurrent model for next
location prediction in semantic trajectories. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages 2411–2414, 2017.

13

[53] Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. Spatio-temporal diffusion
point processes. arXiv preprint arXiv:2305.12403, 2023.

[54] Dejiao Zhang, Wei Xiao, Henghui Zhu, Xiaofei Ma, and Andrew Arnold. Virtual augmentation
supported contrastive learning of sentence representations. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 864–876, 2022.

[55] Liang Zhang, Cheng Long, and Gao Cong. Region embedding with intra and inter-view
contrastive learning. IEEE Transactions on Knowledge and Data Engineering, 2022.

[56] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024.

[57] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
11183–11193. PMLR, 13–18 Jul 2020.

[58] Qianru Zhang, Haixin Wang, Cheng Long, Liangcai Su, Xingwei He, Jianlong Chang, Tailin
Wu, Hongzhi Yin, Siu-Ming Yiu, Qi Tian, and Christian S. Jensen. A survey of generative
techniques for spatial-temporal data mining, 2024.

[59] Pengpeng Zhao, Anjing Luo, Yanchi Liu, Fuzhen Zhuang, Jiajie Xu, Zhixu Li, Victor S
Sheng, and Xiaofang Zhou. Where to go next: A spatio-temporal gated network for next poi
recommendation. IEEE Transactions on Knowledge and Data Engineering, 2020.

[60] Fan Zhou, Shupei Chen, Jin Wu, Chengtai Cao, and Shengming Zhang. Trajectory-user linking
via graph neural network. In ICC 2021 - IEEE International Conference on Communications,
pages 1–6, 2021.

[61] Fan Zhou, Yurou Dai, Qiang Gao, Pengyu Wang, and Ting Zhong. Self-supervised human
mobility learning for next location prediction and trajectory classification. Knowledge-Based
Systems, 228:107214, 2021.

[62] Fan Zhou, Qiang Gao, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fengli Zhang.
Trajectory-user linking via variational autoencoder. In IJCAI, pages 3212–3218, 2018.

[63] Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series
analysis by pretrained lm. Advances in neural information processing systems, 36, 2024.

[64] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

14

Appendix

Here we introduce the related work of this paper in Sec.A. The implement details including experiment
settings and evaluation metrics can be found in Sec.B. The datasets and Partially Frozen Attention
(PFA) LLM settings are shown in Sec. C. An introduction to Baselines is presented in Sec.D. We
display the results of ablation and few shot on all datasets in Sec.E and Sec.F respectively. Moreover,
We introduce the calculation process of data in feed-forward layer and geohash embedding layer in
Sec.G and Sec.H in detail respectively. We also list POI categories in Sec.I.

A Related Works

A.1 Mobility Data Mining

Location-based services have given rise to a new and promising research topic known as mobility
data mining, which has led to the emergence of three significant tasks that contribute to enhancing
the quality of services: next location prediction (LP), next time prediction (TP), and trajectory user
link (TUL). Recent studies have confirmed that deep learning techniques, specifically recurrent
neural networks (RNNs) and attention mechanisms, are highly effective in capturing sequential and
periodic patterns of human mobility. By combining deep learning techniques, researchers have made
significant advancements in capturing both the sequential and periodic patterns of human mobility.
The core of these models is the modeling of check-in sequences, which leads to improved accuracy
in location prediction and trajectory analysis.

LP aims to anticipate a user’s future location based on their historical movement. Several notable
models have emerged as prominent approaches in LP. DeepMove [10] leverages RNNs and attention
mechanisms to capture the spatial-temporal intentions in users’ location data and predict their next
destination. STAN [33] introduces a spatial-temporal attention network that incorporates spatial and
temporal contexts for accurate prediction. LSTPM [59] focuses on long and short-term patterns in
user trajectory using an attention-based LSTM [20] model. SERM [52] utilizes an encoder-decoder
architecture with a spatial-temporal residual network to capture user preferences and predict future
locations. PLSPL [47] trains two LSTM models for location- and category-based sequences to
capture the user’s preference. LightMove [22] designs neural ordinary differential equations to
enhance robustness against sparse or incorrect inputs. HMT-GRN [25] alleviates the data sparsity
problem by learning different User-Region matrices of lower sparsities in a multitask setting. Graph-
Flashback [38] constructs a spatial-temporal knowledge graph to enhance the representation of
POIs, having a great advantage when dealing with the historical sequence input of the same length.
GETNext [51] introduces a user-agnostic global trajectory flow map as a means to leverage the
abundant collaborative signals.

TUL is a significant task that focuses on establishing connections between different trajectories,
facilitating the analysis of user movement patterns, and uncovering valuable insights about their
behavior. Notable models have been specifically developed to address the challenge of predicting
trajectory links. TULER [13] takes advantage of advanced algorithms to establish links between
trajectories, allowing for a comprehensive understanding of user movement patterns. TULVAE [62]
uses latent variables to model the variability in trajectories, capturing hierarchical and structural
semantics and improving the identification and linking performance. MoveSim [11] simulates
human mobility using a generative adversarial framework that incorporates attention mechanisms
to capture complex spatial-temporal transitions in human mobility. DeepTUL [34] utilizes deep
learning techniques to extract representations from trajectory data and facilitate the prediction of
trajectory links. S2TUL [7] utilizes graph convolutional networks and sequential neural networks
to capture trajectory relationships and intra-trajectory information. GNNTUL [60] employs graph
neural networks for human mobility and associates the traces with users on social networks.

TP focuses on estimating the time at which a user is likely to visit their next location. To accomplish
this, it is common practice to use intensity functions to represent the rate or density of event
occurrences, various models have been developed to model the intensity function and make accurate
time predictions effectively. Modeling the intensity function using RNNs or attention mechanisms
is a common approach for predicting the occurrence of events. IFLTPP [40] approximates any
distribution of inter-event times using normalizing flows and mixture distributions. RMTPP [9]
utilizes RNNs to model the intensity function. SAHP [57] combines the Hawkes process with self-

15

attention mechanisms to capture the temporal dependencies and spatial influences in event sequences.
THP [64] combines the Hawkes process with transformer-based architectures to capture temporal
dependencies in event sequences. NSTPP [17] utilizes neural ODEs to model discrete events in
continuous time and space, enabling the learning of complex distributions in spatial and temporal
domains. IMTPP [18] models the generative processes of observed and missing events and utilizes
unsupervised modeling and inference methods for time prediction. DSTPP [53] proposes a novel
parameterization framework that uses diffusion models to learn complex joint distributions.

In recent years, many sequence representation models have become a hot topic, including those
for natural language sequences and spatial-temporal trajectory sequences. For natural language
sequences, SimCSE [14] is a classical sequence representation language model that utilizes a straight-
forward contrastive learning framework. It employs standard dropout as noise, making it easy to
implement. However, it cannot effectively distinguish between hard negative samples or semanti-
cally similar sequences. Thus, VaSCL [54] leverages neighborhood information to generate virtual
augmentations, improving the quality of data transformations compared to traditional methods. In-
spired by models for natural language sequence representation, researchers in the spatial-temporal
domain have also conducted similar studies on spatial-temporal sequences. SML [61] first employs
self-supervised contrastive learning to effectively manage sparse and noisy trajectory data, enhancing
trajectory representation through spatial-temporal data augmentation. However, the spatial-temporal
augmentation in SML needs to be manually specified, which is relatively cumbersome. Therefore,
ReMVC [55] effectively addresses this issue by adopting a cross-view contrastive approach. It
uses contrastive learning to extract meaningful region representations, improving intra-view and
inter-view learning. And CACSR [15] effectively adds adversarial perturbations and automated data
augmentation, enhancing contrastive training processing. While it lacks interpretability and does not
understand the semantic information of time and space from the actual semantics of human activities.

In summary, it can be seen that whether it is end-to-end models designed for specific tasks or
spatiotemporal sequence representation learning models, their understanding of human activities is
not yet deep enough, and they lack a profound understanding of the essence and spatial-temporal
patterns behind human activities.

A.2 Cross-domain Application of LLMs

We have witnessed the great success of Large Language Models (LLMs) in natural language process-
ing [37], and some cross-domain (such as computer vision [36], time series, and graph-related tasks.
In the field of graph theory, To tackle graph-related tasks, Graph Neural Networks (GNNs) have
emerged as one of the most popular choices for processing and analyzing graph data. While GNNs
excel at capturing structural information, their reliance on semantically constrained embeddings as
node features limits their ability to fully express the complexities of the nodes. By incorporating
LLMs, GNNs can be augmented with stronger node features that effectively capture both structural
and contextual aspects. TAPE utilizes semantic knowledge that is pertinent to the nodes (e.g., papers)
generated by LLMs to enhance the quality of initial node embeddings in GNNs. Furthermore,
InstructGLM replaces the predictor in GNNs with LLMs, harnessing the expressive capabilities
of natural language through techniques like graph flattening and prompt-based instruction design.
MoleculeSTM aligns GNNs and LLMs within a shared vector space, integrating textual knowledge
into graphs (e.g., molecules) to enhance reasoning capabilities.

In the field of Computer Vision (CV), ViT is an image classification model based on the Transformer
architecture, which has achieved excellent performance on multiple benchmark image classification
datasets. CLIP is a large-scale pre-trained model developed by OpenAI that aligns images and text,
enabling simultaneous learning of representations for both modalities, which allows for interactive
understanding between images and text. DALL-E utilizes a large-scale pre-trained language model
to transform text into images through a generative approach, showcasing remarkable capabilities in
image generation. TEST [41], as a time series (TS) embedding method tailored for Large Language
Models (LLMs), generates embeddings that capture similarity, instance-wise, feature-wise, and
text-prototype alignment for TS tokens. Time-LLM [24] introduces a reprogramming framework.
Given the challenge of limited training data, recent studies turn to adopting large language models
(LLMs) to address cross-domain applications. In the field of time series analysis, LLM4TS [4] is
the pioneering method that aligns pre-trained Large Language Models with temporal characteristics,
introducing a two-level aggregation method to effectively incorporate multi-scale temporal data

16

into pre-trained LLMs. One-Fits-All [63] is a unified framework that leverages a frozen pre-trained
language model to attain state-of-the-art or comparable performance across various major types
of time series analysis tasks. AutoTimes [30] facilitates the tokenization of time series into the
embedding space of LLMs and intelligently utilizes the inherent token transitions to effectively
predict time series in an autoregressive manner. In the field of computer vision, LM4VE [35]
incorporates a frozen transformer block from an LLM as a general-purpose visual encoder layer.
To tackle graph-related tasks, TAPE [19] utilizes semantic knowledge that is pertinent to the nodes
generated by LLMs to enhance the quality of initial node embeddings in GNNs. MoleculeSTM [27]
aligns GNNs and LLMs within a shared vector space, integrating textual knowledge into graphs to
enhance reasoning capabilities.

GPT4TS [42] utilizes PLMs by freezing the self-attention feed-forward layers. For visual encoding
tasks, LM4VisualEncoding [35] incorporates a frozen transformer block from a PLM as a general-
purpose visual encoder layer. RLMRec [39] integrates the semantic space of PLMs and collaborative
relational signals using an alignment framework. An LLM agent framework is proposed for flexible
and efficient personal mobility generation [46].

While these studies provide valuable insights, it is important to recognize that their methods cannot
be directly applied to the domain of trajectory learning. Trajectory data exhibits distinct spatial-
temporal characteristics and contains unique information that requires customized approaches and
considerations.

B Implement Details

B.1 Settings

The Mobility-LLM model was constructed using the PyTorch5. The loss function is a cross-entropy
loss for the LP and TUL tasks and an MAE loss for the TP task. The performance on the validation
sets determines the hyper-parameters and the best models. All experiments are performed five times,
and the means and standard deviations are calculated. To make a fair comparison, for all methods, the
embedding dimension d is 256, while the hidden state h has a size of 256. The learning rate is 0.001.
The model is pre-trained for 100 epochs on the training sets with the early-stopping mechanism of 10
patients. All trials have been conducted on Intel Xeon E5-2620 CPUs and NVIDIA RTX A40 GPUs.

B.2 Evaluation Metrics

Four metrics are used for evaluating the models: mean absolute error (MAE), root mean squared error
(RMSE), Accuracy at K (ACC@K), and Mean Reciprocal Rank (MRR). MAE and RMSE quantify
absolute errors. ACC@K measures the accuracy of the predictions within the top K ranks. MRR
calculates the average of the reciprocal ranks, where a higher rank indicates a better performance.

MAE =
1

m

m∑
i=1

∣∣∣Ŷi −Yi

∣∣∣ ,RMSE =

√√√√ 1

m

m∑
i=1

(
Ŷi −Yi

)2

, (6)

where m is the number of predicted values, Ŷi is the predicted value, Yi is the target value.

ACC@K =
1

m

K∑
i=1

(
Ŷi == Yi

)
,MRR =

1

m

m∑
i=1

1

ranki
, (7)

where m is the total number of queries, ranki is the rank position of the first relevant result for the
i− th query.

C Check-in Datasets

C.1 Datasets Introduction

Gowalla was a location-based social networking service where users shared their locations by
checking-in. The dataset includes 6,442,890 check-ins made by 196,591 users from February 2009 to

5HTPPs://pytorch.org

17

October 2010. Additionally, it contains the undirected friendship network, which consists of 950,327
edges. This dataset provides valuable information for studying mobility patterns and social network
analysis.

• Nodes: 196,591
• Edges: 950,327
• Check-ins: 6,442,890
• Time Period: Feb 2009 - Oct 2010
• Data Fields: User ID, Check-in Time, Latitude, Longitude, Location ID

Weeplaces dataset was collected from a service that visualizes users’ check-in activities across
multiple location-based social networks, including Facebook Places, Foursquare, and Gowalla. It
consists of 7,658,368 check-ins generated by 15,799 users over 971,309 locations. The data primarily
captures the check-in history and friend connections of users.

• Check-ins: 7,658,368
• Users: 15,799
• Locations: 971,309
• Data Fields: User ID, Check-in Time, Latitude, Longitude, Location Name, Category

Brightkite was a location-based social networking service where users could check in at various
locations and share their locations with friends. The dataset includes 4,491,143 check-ins made by
58,228 users from April 2008 to October 2010. This dataset is useful for researching user mobility
and social interaction patterns.

• Check-ins: 4,491,143
• Users: 58,228
• Time Period: Apr 2008 - Oct 2010
• Data Fields: User ID, Check-in Time, Latitude, Longitude, Location ID

Foursquare is a popular location-based social networking service where users check in at various
venues. The dataset includes check-in data from multiple cities, such as New York City and Tokyo,
over a period from April 2012 to February 2013. It contains 227,428 check-ins in New York City and
573,703 check-ins in Tokyo. Each entry provides a user ID, check-in time, latitude, longitude, and
venue category.

• Check-ins in NYC: 227,428
• Check-ins in Tokyo: 573,703
• Time Period: Apr 2012 - Feb 2013
• Data Fields: User ID, Check-in Time, Latitude, Longitude, Venue Category

C.2 The Statics of Processed Datasets

We can see that the dataset we selected includes the Gowalla dataset, which has a large number of
samples, users, and Points of Interest (POI), as well as the Foursquare dataset, which has a small
number of users but a large number of POIs. Additionally, we have the Brightkite and WeePlace
datasets, which have a small number of both users and POIs. These datasets cover different scenarios
and can fully validate the model’s comprehensive capabilities.

C.3 Partially Frozen Attention (PFA) LLM

The frozen pre-trained transformer (FPT) has demonstrated effectiveness in a variety of downstream
tasks across non-language modalities [32]. We adopt a partially frozen attention (PFA) LLM,
specifically designed to enhance prediction accuracy in check-in sequences prediction.

The difference between the FPT and our PFA primarily lies in the configuration of frozen attention
layers. In the FPT framework, both the multi-head attention and feed-forward layers are frozen during

18

Table 7: The statics of Processed Datasets
Datasets #Samples #Users #POIs
Gowalla 413,563 5,853 52,032

WeePlace 104,762 1,028 9,295
Brightkite 44,716 431 3,554

FourSquare 60,734 703 11,117

training, as these layers contain the most significant portion of the learned knowledge within the
LLM. In the PFA, we maintain the first F layers identical to the FPT, but crucially, we unfreeze the
last U multi-head attention layers since the attentions offer effective handling of spatial-temporal de-
pendencies in data. Consequently, our Mobility-LLM can adapt to check-in datasets while preserving
the foundational knowledge acquired during pre-training.

D Overview of Baselines

DeepMove [10] is an attentional recurrent network designed for predicting human mobility from
lengthy and sparse trajectories. It introduces a multi-modal embedding recurrent neural network that
captures complex sequential transitions by embedding multiple factors influencing human mobility.
DeepMove further incorporates a historical attention model with dual mechanisms to effectively
capture multi-level periodicity. This historical attention model enhances the recurrent neural network’s
ability to predict mobility patterns by leveraging the inherent periodic nature of human movement.

LightMove [22] is a lightweight and accurate deep learning-based method developed for predicting
the next locations of taxicabs in order to enhance targeted advertising on taxicab rooftop devices.
The paper focuses on Motov, a leading company in South Korea’s taxicab rooftop advertising market,
and aims to leverage demographic information of locations to improve the preparation of targeted
advertising campaigns.

PLSPL [47] addresses the task of recommending the next Point of Interest (POI) for users based
on their historical check-in data. The main objective is to capture both the users’ general taste and
their recent sequential behaviors, as these factors are crucial in making accurate recommendations.
However, existing methods often assume the same dependencies for all users, disregarding the fact
that different users may have varying preferences and dependencies on these two aspects.

HMT-LSTM [25] addresses the challenging task of predicting the next Point-of-Interest (POI) that a
user is likely to visit in personalized recommender systems. One of the main difficulties in this task is
the large search space of possible POIs in the region, which leads to data sparsity issues in existing
works and hampers performance.

LSTPM [59] proposes a method for POI recommendation by modeling long-term and short-term
preferences. It uses a nonlocal network for capturing long-term dependencies and a geo-dilated RNN
for considering geographical relationships. This approach improves the reliability of recommendation
results compared to existing methods.

TULER [13] addresses the task of understanding human trajectory patterns in Location-Based Social
Networks (LBSNs) applications. This task is crucial for various applications like personalized
recommendation and preference-based route planning. Existing methods often classify trajectories
or their segments into predefined categories based on spatial-temporal values and activities, such as
walking or jogging. However, the paper focuses on a novel problem called Trajectory-User Linking
(TUL), which aims to identify and link trajectories to the users who generated them in LBSNs.

TULVAE [62] addresses the important task of Trajectory-User Linking (TUL) in Geo-tagged social
media (GTSM) applications. It utilizes a neural generative architecture with stochastic latent variables
that span hidden states in an RNN. By incorporating variational autoencoder techniques, TULVAE
can capture the hierarchical and structural semantics of trajectories using high-dimensional latent
variables. Moreover, TULVAE addresses the data sparsity challenge by leveraging large-scale
unlabeled data, providing more comprehensive representations of user mobility patterns.

19

MoveSim [11] is a framework for the realistic simulation of massive human mobility data. Existing
solutions for mobility simulation have limitations in generating high-quality data due to complex
transitions and intricate regularities in human mobility patterns.

S2TUL [7] is a flexible Semi-Supervised framework for Trajectory-User Linking (TUL) with five
main components.

IFLTPP [40] is a novel approach that models event sequences with irregular intervals using temporal
point processes. Unlike the standard intensity-based methods, IFLTPP directly models the conditional
distribution of inter-event times. Drawing inspiration from normalizing flows, IFLTPP captures
complex dependencies in the data while maintaining practicality and interpretability through a simple
mixture model.

THP [64] is a model designed for handling massive event sequence data with complex temporal
dependencies. To address the limitations of existing recurrent neural network-based models, THP
utilizes the self-attention mechanism of Transformers, which effectively captures short-term and
long-term dependencies in the data.

NSTPP [17] is an approach that addresses the retrieval problem of continuous-time event sequences
(CTESs) using marked temporal point processes (MTPP). It improves the retrieval performance by
applying a trainable unwarping function to the query sequence, making it comparable to the corpus
sequences.

DSTPP [53] is a framework designed for modeling spatial-temporal point processes (STPPs) by
leveraging diffusion models. It addresses the limitations of existing solutions that assume conditional
independence between time and space.

ReMVC [55] is a model designed for unsupervised region representation learning from unlabeled
urban data. It addresses the limitations of previous methods by leveraging contrastive learning for
multi-view region representation learning.

VaSCL [54] is a framework designed for data augmentation in contrastive representation learning,
with a focus on the challenging context of natural language processing (NLP). Unlike other domains,
NLP lacks general rules for effective data augmentation due to the discrete nature of language.

SML [61] is a framework that tackles the challenges of extracting meaningful supervised signals from
sparse and noisy human mobility data obtained from location-based services (LBS). The framework
aims to leverage this data for various applications, including location recommendation, anomaly
trajectory detection, crime discrimination, and epidemic tracing.

CASCR [15] is a model that addresses the accurate representation learning of user-generated check-in
sequences in human mobility data. It introduces a contrastive pre-training approach specifically
designed for check-in sequence representation learning, eliminating the need for manual adjustments
to data augmentation strategies.

E Variants

E.1 Variants of the Used LLMs

TinyLlama [6]. TinyLlama-1.1B is a lightweight language model developed by a team of researchers
at the Singapore University of Technology and Design (SUTD). It has 1.1 billion parameters and
was pre-trained on about 3 trillion tokens. The training process for TinyLlama was done in 90 days
using 16 A100-40G GPUs. The researchers explored the model’s performance when the number of
tokens suggested by the scaling law was exceeded by training the mini-model using a large amount of
data. The model also used various optimizations such as flash attention 2, FSDP (Fully Sharded Data
Parallel), and xFormers to improve the efficiency and throughput of training. The application of these
techniques gives TinyLlama a significant advantage in terms of training speed and memory usage.

TinyLlama adopts exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can
be seamlessly integrated into many open-source projects built upon Llama. Additionally, TinyLlama
is compact with only 1.1B parameters, allowing it to cater to a multitude of applications demanding a
restricted computation and memory footprint.

20

TinyLlama-Chat [6]. The TinyLlama-Chat model is fine-tuned on top of TinyLlama/TinyLlama-
1.1B-intermediate-step-1431k-3T. Following HF’s Zephyr’s training recipe, the model was "initially
fine-tuned on a variant of the UltraChat dataset, which contains a diverse range of synthetic dia-
logues generated by ChatGPT. We then further aligned the model with TRL’s DPOTrainer on the
openbmb/UltraFeedback dataset, which contains 64k prompts and model completions that are ranked
by GPT-4.".

LiteLlama [12]. LiteLlama Series Models Published by Xiaotian Han, Texas A&M University. The
LiteLlama series of models have a wide range of applications on edge devices, such as smartphones,
IoT devices, and embedded systems, which usually have limited computational power and storage
space, and they are unable to run large language models efficiently. Therefore, it is particularly
important to explore small models in depth.

The main models in the LiteLlama family are LiteLlama-460M. LiteLlama presents an open-source
reproduction of Meta AI’s LLaMa 2. It has 460M parameters with 1T tokens. LiteLlama-460M-1T
was trained on the RedPajama dataset and the text was tokenized using GPT2Tokenizer. The authors
evaluated the model on the MMLU task, comparing the parameter sizes to those of a large model of
equal capacity, and the results demonstrate that with a significantly reduced number of parameters,
LiteLlama-460M-1T still achieves results comparable to or better than the other models.

Phi-2 [1]. The Phi family of language models are small language models introduced by Microsoft.
The goal of the Phi family of language models is to demonstrate that by constructing high-quality
pre-training data, small models can achieve significantly better performance than larger models at
lower training costs. The Phi family of language models includes Phi-1, Phi-1.5, and Phi-2.

Phi-2 is a Transformer with 2.7 billion parameters. Trained using the same data sources as Phi-1.5,
Phi-2 incorporates a new data source consisting of various NLP synthetic texts and filtered websites
(for safety and educational value). It showcases a nearly state-of-the-art performance among models
with less than 13 billion parameters, especially when assessed against benchmarks testing common
sense, language understanding, and logical reasoning.

Pythia-70M, 1B, 2.8B [2]. The Pythia Scaling Suite is a collection of models developed to facilitate
interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B,
2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on
the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact
same data, in the exact same order. Additionally, 154 intermediate checkpoints per model are hosted
on Hugging Face as branches.

The Pythia model suite was deliberately designed to promote scientific research on large language
models, especially interpretability research. Despite not centring downstream performance as a
design goal, the models match or exceed the performance of similar and same-sized models, such as
those in the OPT and GPT-Neo suites.

GPT-2 [37]. GPT-2 is a transformers model pre-trained on a very large corpus of English data in a
self-supervised fashion. This means it was pre-trained on the raw texts only, with no humans labeling
them in any way. More precisely, it was trained to guess the next word in sentences.

Inputs are sequences of continuous text of a certain length, and the targets are the same sequence,
shifted one token to the right. The model uses internally a masking mechanism to make sure the
predictions for the i-th token only use the inputs from 1 to i but not the future tokens.

E.2 Variants of Ablation

To further evaluate the effects of different components in Mobility-LLM, we conduct ablation
experiments and analyze experimental results on all datasets. We compare these four variants on
three downstream tasks.

• w/o HTPP: We remove the HTPP Module. The rest of the settings are the same as Mobility-LLM.
We use this setting to evaluate the function of the HTPP Module.

• w/o VIMN: We use full-connection to replace the VIMN module. The rest of the settings are the
same as Mobility-LLM. We use this setting to evaluate the function of the VIMN module.

• w/o PPEL: We use a learnable parameter to represent a POI. We use this setting to evaluate the
function of the PPEL.

21

• w/o LLM: We use a Transformer layer to replace the LLM. The rest of the settings are the same
as Mobility-LLM. We use this setting to evaluate the function of the LLM.

E.3 Rusults of Variants on Different Datasets

E.3.1 Rusults of Variants on WeePlace

Table 8: Ablations on WeePlace dataset in all tasks. Red: the best, Blue: the second-best.

Tasks LP TUL TP

Variant Metic Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR MAE RMSE

TinyLlama (default) 20.47 39.22 56.69 29.21 79.03 88.04 91.48 83.21 28.28 35.54
TinyLlama-Chat 19.93 38.52 56.20 28.32 68.69 80.90 86.21 72.25 28.61 36.12
LiteLlama 20.06 40.20 55.28 29.67 76.20 86.49 87.01 81.30 28.12 34.45
phi-2 19.10 38.23 55.97 28.51 70.72 79.03 83.38 75.87 28.09 34.87
pythia-70M 18.70 38.59 54.16 28.57 76.05 86.98 90.08 78.78 28.76 34.90
pythia-1B 19.11 37.78 53.89 28.45 76.22 86.38 90.74 81.44 28.68 35.15
pythia-2.8B 19.77 39.77 54.33 27.77 75.28 82.42 89.57 80.49 28.70 36.36
GPT-2 19.11 36.03 54.47 27.59 73.93 83.15 86.87 75.94 27.88 34.97

w/o HTPP 19.32 38.31 51.42 26.89 76.73 83.89 84.94 78.25 28.85 35.43
w/o VIMN 19.72 36.61 53.69 27.05 74.77 86.08 86.28 79.56 28.22 35.43
w/o PPE 19.19 37.67 55.00 27.53 77.21 84.96 88.29 81.85 28.82 34.76
w/o LLM 17.66 32.84 49.19 24.80 68.15 81.34 83.52 74.59 28.53 35.68

Language Model Variants. We compared eight representative backbones on WeePlace dataset
with varying capacities in Tab. 8. We found that the TinyLlama backbone model performed the best
overall for our task. In particular, TinyLlama achieved the highest scores in LP (Acc@1, Acc@20)
and TUL (Acc@1, Acc@5, Acc@20, MRR) tasks. The Chat version of TinyLlama was relatively
less suitable, showing lower performance across most metrics. Interestingly, LiteLlama exhibited
competitive performance, achieving the best Acc@5 and MRR in the LP task. Despite having fewer
parameters, Pythia-70M demonstrated advantages in some tasks, achieving the second-best Acc@5 in
the TUL task and the best MAE in the TP task. This suggests that the suitability of backbone models
for different tasks is significantly influenced by the training strategy rather than just the number of
parameters. For example, in trajectory prediction tasks, GPT-2 performed better than some models
with larger parameter sizes such as Pythia-2.8B.

Ablation Study. As shown in Tab. 8, we conducted an ablation study to understand the impact of
different components on performance. Removing HTPP (w/o HTPP) led to a significant decrease in
performance, particularly in the LP task where Acc@20 decreased of 9.29% and MRR of 7.94%.
This highlights the importance of HTPP in the model’s ability to make accurate predictions. Similarly,
removing VIMN (w/o VIMN) resulted in noticeable performance drops in both LP and TUL tasks,
indicating its role in maintaining robust prediction capabilities. Without PPE (w/o PPE), the model
showed a moderate decrease in performance, with MRR in the LP task decreased of 5.75%. The
removal of LLM (w/o LLM) had the most pronounced negative effect across all tasks, with LP
Acc@1 decreased of 13.7% and MRR of 15.1%, and TUL metrics significantly reduced. This
underscores the crucial role of the large language model in the overall framework, as even replacing
it with a standard transformer could not achieve comparable performance.

Table 9: Ablations on Brightkite dataset in all tasks. Red: the best, Blue: the second-best.

Tasks LP TUL TP

Variant Metic Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR MAE RMSE

TinyLlama (default) 53.18 68.31 74.11 59.89 83.06 88.52 90.35 85.73 346.44 423.26
TinyLlama-Chat 52.03 66.31 72.81 58.31 74.33 81.67 85.07 77.54 347.79 425.90
LiteLlama 51.74 69.13 72.93 59.98 83.08 87.40 87.51 83.18 345.51 411.89
phi-2 50.17 65.87 73.02 57.52 74.40 81.59 85.24 77.86 351.12 423.40
pythia-70M 49.22 67.48 72.70 58.82 81.66 87.63 87.92 84.19 348.50 427.10
pythia-1B 50.23 67.70 73.23 59.03 81.65 86.84 89.89 83.40 346.06 424.50
pythia-2.8B 52.85 68.04 73.38 58.83 81.90 86.59 88.65 83.68 346.06 424.93
GPT-2 50.86 64.19 70.30 56.41 79.21 85.31 85.88 81.24 346.75 423.22

w/o HTPP 50.70 65.80 68.25 56.74 79.61 83.52 85.34 80.63 352.77 428.88
w/o VIMN 51.12 65.07 71.47 57.46 80.67 85.01 86.52 81.24 348.51 428.38
w/o PPE 50.61 64.44 71.83 57.49 80.42 86.10 86.68 82.83 348.52 424.52
w/o LLM 45.21 56.68 64.05 51.10 74.23 81.78 81.99 77.63 358.04 438.41

22

E.3.2 Rusults of Variants on BrightKite

Language Model Variants. We compared various language model variants on the Brightkite
dataset across different tasks, as shown in Tab. 9. The TinyLlama (default) variant achieved the
best performance in LP tasks, with the highest Acc@1 (53.18%) and Acc@20 (74.11%), and the
second-best MRR (59.89%). It also excelled in TUL tasks, achieving the highest scores across all
metrics, indicating its robust performance. LiteLlama performed exceptionally well, securing the
highest Acc@5 (69.13%) and MRR (59.98%) in LP tasks, and the best MAE in TP tasks.

TinyLlama-Chat showed slightly lower performance compared to TinyLlama, particularly in TUL
tasks, where it fell behind the other variants. Pythia-70M, despite having fewer parameters, performed
competitively, achieving the second-best Acc@5 (87.63%) in TUL tasks and the best RMSE in TP
tasks. Pythia-2.8B demonstrated strong performance as well, securing the second-best Acc@20
(73.38%) in LP tasks and showing consistency in TUL tasks.

Overall, the results suggest that the TinyLlama variants, especially the default one, are highly effective
across different tasks, while LiteLlama and Pythia variants show specific strengths, indicating that
the choice of backbone model can be tailored to the specific requirements of the task.

Ablation Study. The ablation study results in Tab. 9 highlight the importance of different components
in the model. Removing HTPP (w/o HTPP) led to a significant drop in performance across all
tasks. In TUL tasks, MRR decreased of 5.95%, while in LP tasks, there was a notable decrease in
performance metrics, with Acc@20 decreased of 7.91% and MRR of 5.26% indicating the critical
role of HTPP in maintaining prediction accuracy.

Removing VIMN (w/o VIMN) also resulted in decreased performance, particularly in LP and TUL
tasks, where the metrics showed a notable average performance degradation of 4.07%.

The absence of PPE (w/o PPE) led to moderate performance degradation, with MRR in LP tasks
decreased of 4.01% and in TUL tasks of 3.38%. The removal of LLM (w/o LLM) had the most
pronounced negative effect, especially in LP tasks where Acc@5 decreased of 17.03% and MRR
of 14.68%. This underscores the importance of the LLM component, as its absence significantly
hinders the model’s overall performance across all tasks.

Table 10: Ablations on FourSquare dataset in all tasks. Red: the best, Blue: the second-best.

Tasks LP TUL TP

Variant Metic Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR MAE RMSE

TinyLlama (default) 17.29 37.17 53.16 26.47 72.08 79.67 84.32 75.71 309.78 505.03
TinyLlama-Chat 16.88 35.94 52.18 25.88 64.37 73.50 79.63 68.54 310.68 507.17
LiteLlama 16.80 37.50 52.10 26.59 72.10 78.42 81.83 73.46 311.43 489.99
phi-2 16.36 35.81 52.48 25.37 64.76 73.36 79.55 68.69 313.34 506.72
pythia-70M 16.07 36.83 52.04 25.97 71.01 78.79 82.30 74.43 311.94 507.07
pythia-1B 16.23 36.84 52.11 26.12 70.65 78.08 84.39 73.87 308.51 507.01
pythia-2.8B 17.13 37.28 52.95 26.16 71.58 77.77 82.65 73.31 310.69 505.50
GPT-2 16.47 34.96 50.38 24.91 69.22 76.55 80.39 71.89 310.67 506.50

w/o HTPP 16.55 35.91 49.25 25.23 68.94 75.55 80.05 70.78 314.81 512.76
w/o VIMN 16.62 35.51 51.06 25.27 69.79 76.21 80.26 71.60 311.63 510.11
w/o PPE 16.51 35.14 51.73 25.36 70.00 77.42 80.81 72.86 310.70 506.53
w/o LLM 14.65 30.78 45.95 22.58 64.28 73.46 76.52 68.62 321.44 519.45

E.3.3 Rusults of Variants on Foursquare

Language Model Variants. We evaluated multiple language model variants on the FourSquare
dataset across different tasks, with results presented in Tab. 10. The TinyLlama (default) variant
demonstrated the best performance in LP tasks, achieving the highest Acc@1 (17.29%), Acc@20
(53.16%), and the second-best MRR. In TUL tasks, it also performed exceptionally well, securing the
second-best Acc@1 (72.08%) and the best Acc@20 (84.32%) and MRR. This indicates its overall
robustness in handling various tasks.

The LiteLlama variant excelled with the highest Acc@5 (37.50%) and MRR in LP tasks and matched
TinyLlama in TUL tasks with the best Acc@1 (72.10%), although it slightly underperformed in other
TUL metrics. TinyLlama-Chat, while showing strong performance, did not outperform the default
TinyLlama variant, particularly in TUL tasks where it scored lower across all metrics.

Pythia-70M and Pythia-2.8B showed competitive results, with Pythia-70M achieving the second-best
Acc@5 (78.79%) in TUL tasks and Pythia-2.8B securing the second-best Acc@1 (17.13%) in LP

23

tasks. Pythia-1B also performed well, particularly in TUL tasks with the highest Acc@20 (84.39%).
GPT-2, while generally performing well, did not achieve top ranks in any specific metric, indicating
it may not be the best choice for these tasks compared to other variants.

Ablation Study. The ablation study in Tab. 10 highlights the importance of various components in
the model. Removing HTPP (w/o HTPP) led to a noticeable drop in performance across all tasks.
For instance, in LP tasks, Acc@20 decreased of 7.35% and MRR of 4.69%, while in TUL tasks,
MRR decreased of 6.51%, underscoring the critical role of HTPP in maintaining high performance.

Removing VIMN (w/o VIMN) also resulted in decreased performance, particularly in LP and TUL
tasks, where metrics showed a notable average performance degradation of 4.32%.

The absence of PPE (w/o PPE) led to moderate performance degradation, with MRR in LP tasks
decreased of 4.19% and in TUL tasks of 3.76%. The removal of LLM (w/o LLM) had the most
significant negative effect, especially in LP tasks where Acc@5 decreased of 17.19% and MRR of
14.69%. This emphasizes the importance of the LLM component, as its absence significantly hinders
the model’s overall performance across all tasks.

F Few Shot Study

The results of 1% few-shot learning are presented in Tab. 11 and they significantly outperform all
baseline methods. We attribute this to the efficient knowledge activation in our reprogrammed LLM.
Remarkably, our approach consistently surpasses other competitive baselines across both LP and TUL
tasks, further highlighting the potential of language models in proficient human behavior analysis.
When compared to recent state-of-the-art models such as NSTPP, DSTPP, S2TUL, ReMVC, and
CACSR, our average improvements exceed 20.3%, 22.9%, 84.5%, 48.2%, and 41.2% respectively,
across all metrics. Even with only 1% of the training dataset, our model achieves results comparable to
other models using 100% of the training dataset. This is particularly significant for privacy-protected
and typically smaller Check-in datasets, as our model can effectively understand the distribution
patterns of human behaviors with minimal data.

Table 11: Few-shot learning on 1% training data. Red: the best, Blue: the second-best.

Datasets Gowalla WeePlace Brightkite FourSquare
Metric Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR

Task Method

LP

DeepMove 5.03 11.55 16.72 8.18 13.22 29.00 41.96 20.33 33.55 47.07 52.57 40.67 11.28 26.19 36.59 14.65
LightMove 4.68 10.33 14.84 7.40 13.04 28.98 42.41 20.81 33.13 44.57 50.90 39.45 10.05 22.95 32.30 12.92

PLSPL 5.49 11.98 16.75 8.57 12.38 27.64 41.58 20.03 34.91 46.42 52.71 41.05 12.77 28.48 38.46 16.32
HMT-LSTM 5.12 11.08 16.20 8.07 11.93 27.03 40.57 19.53 33.08 45.02 50.54 39.65 10.31 23.58 33.07 13.32

LSTPM 4.68 10.32 14.94 7.46 13.60 28.20 40.67 21.15 28.85 38.64 44.55 34.46 11.68 26.78 37.87 15.19
VaSCL 5.35 11.02 16.31 8.20 12.49 29.04 42.13 21.30 33.87 46.76 52.71 40.96 11.36 25.79 36.43 14.66

SimCSE 3.39 8.00 11.73 5.70 9.67 23.86 37.20 16.81 31.60 45.86 52.22 38.79 11.00 25.97 37.37 14.58
NSTPP 5.12 11.49 16.30 8.30 11.46 25.04 38.13 18.30 31.04 41.40 47.58 37.21 12.33 27.70 37.79 15.74
DSTPP 5.14 11.42 16.46 8.25 12.62 28.14 41.94 20.41 32.74 44.49 50.15 39.19 10.05 23.15 32.09 12.96
ReMVC 5.25 11.32 16.44 8.22 12.96 28.74 42.72 20.96 33.58 44.95 51.41 40.18 10.44 24.24 33.52 13.42

SML 4.70 10.33 14.90 7.52 11.92 26.24 39.65 19.36 31.21 41.79 48.54 36.93 11.12 25.69 36.39 14.68
CACSR 5.21 9.09 13.10 6.34 10.70 23.88 36.66 17.55 30.13 44.01 48.96 36.96 11.13 24.87 36.29 14.26

Mobility-LLM 6.59 13.95 20.37 10.26 15.63 32.39 47.67 23.64 38.62 50.71 58.60 44.61 13.16 29.52 42.38 16.78

TUL

TULER 18.54 29.77 36.15 22.95 34.62 52.05 65.59 43.70 33.31 47.59 63.44 40.41 19.29 29.78 41.20 26.89
TULVAE 19.21 31.59 38.26 24.56 40.79 56.07 66.97 46.84 16.72 26.06 39.11 21.19 8.60 12.81 18.26 12.56
Movesim 8.70 20.24 28.56 13.93 31.48 46.61 59.52 38.02 27.43 39.39 55.82 33.51 25.72 33.78 42.80 22.71
S2TUL 22.66 34.06 36.98 27.61 27.95 36.42 43.22 30.79 17.29 25.03 31.48 25.57 23.75 29.42 38.06 32.53
VaSCL 13.32 19.51 21.62 15.75 17.27 24.77 32.82 21.76 27.11 41.51 60.90 33.01 22.68 32.65 43.39 28.90

SimCSE 14.98 26.27 34.50 19.61 29.43 47.19 62.34 38.01 27.77 41.18 57.68 34.02 17.05 26.60 39.51 22.94
ReMVC 19.50 30.90 33.25 24.39 35.72 49.10 54.24 39.41 28.83 38.70 48.21 33.75 16.29 25.74 36.37 22.70

SML 18.91 28.68 31.37 24.80 31.54 47.45 53.75 37.44 29.01 40.91 51.54 35.15 15.99 22.74 25.54 30.41
CACSR 17.29 28.73 35.13 22.83 38.01 53.99 66.95 45.77 26.45 41.88 57.79 33.65 21.59 30.92 40.62 29.81

Mobility-LLM 39.28 50.50 52.81 44.98 51.79 68.14 77.66 59.32 46.48 57.77 70.23 52.67 44.69 51.83 59.18 52.94

The results of 20% few-shot learning are presented in Tab. 12 and they significantly outperform all
baseline methods. We attribute this to the efficient knowledge activation in our reprogrammed LLM.
Remarkably, our approach consistently surpasses other competitive baselines across both LP and TUL
tasks, further highlighting the potential of language models in proficient human behavior analysis.
When compared to recent state-of-the-art models such as NSTPP, DSTPP, S2TUL, ReMVC, and
CACSR, our average improvements exceed 21.4%, 21.8%, 86.6%, 46.3%, and 45.1% respectively,
across all metrics.

24

Table 12: Few-shot learning on 20% training data. Red: the best, Blue: the second-best.

Datasets Gowalla WeePlace Brightkite FourSquare
Metric Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR Acc@1 Acc@5 Acc@20 MRR

Task Method

LP

DeepMove 8.19 19.09 27.59 13.10 16.66 33.80 47.76 24.33 44.48 61.15 64.51 52.28 14.67 32.69 44.12 23.06
LightMove 7.67 17.11 24.30 11.89 16.24 33.71 48.66 24.63 43.79 58.49 62.28 51.07 13.12 28.62 39.15 20.31

PLSPL 8.98 19.82 27.41 13.82 15.65 31.94 47.42 23.85 46.10 60.25 64.50 53.19 16.67 35.66 46.37 25.64
HMT-LSTM 8.41 18.28 26.69 12.97 15.13 31.20 46.50 23.41 44.17 58.84 61.28 50.92 13.51 29.52 40.08 20.78

LSTPM 7.70 17.15 24.50 11.96 16.97 32.58 46.85 25.16 38.33 50.60 54.51 44.66 15.21 33.63 45.85 23.86
VaSCL 8.75 18.19 26.68 13.11 15.66 33.48 48.39 25.64 44.96 61.42 63.85 52.70 14.80 32.42 44.33 22.93

SimCSE 5.61 13.25 19.37 9.14 12.24 27.53 42.56 20.10 41.61 59.46 63.76 50.31 14.28 32.64 45.15 23.01
NSTPP 8.45 18.96 26.73 13.29 14.31 28.87 43.36 21.72 41.00 53.83 58.39 48.37 16.06 34.65 45.62 24.62
DSTPP 8.42 18.85 27.01 13.17 15.86 32.51 48.22 24.16 43.50 57.81 61.05 50.99 13.05 28.73 39.04 20.48
ReMVC 8.55 18.77 27.06 13.10 16.13 33.04 48.54 25.10 44.44 58.57 62.65 52.17 13.45 30.02 40.59 21.16

SML 7.70 17.12 24.75 11.98 15.01 30.47 45.08 23.05 41.43 54.45 59.21 47.76 14.49 32.09 44.15 23.02
CACSR 8.50 14.96 21.62 10.13 13.49 27.67 41.61 21.02 39.83 57.58 59.73 48.04 14.54 31.08 43.63 22.33

Mobility-LLM 10.79 23.01 33.50 16.44 19.62 37.42 54.37 28.20 51.26 66.08 71.41 57.75 17.09 36.92 51.36 26.28

TUL

TULER 30.98 44.60 55.36 35.70 45.96 60.56 71.54 54.71 49.63 65.99 76.73 57.09 23.33 37.81 51.72 30.56
TULVAE 31.87 47.57 58.55 38.40 54.49 65.23 73.49 58.51 25.11 36.06 47.15 29.99 10.46 16.48 22.71 14.39
Movesim 14.41 30.36 43.83 21.69 41.71 54.61 64.79 47.60 41.35 54.17 67.45 47.62 31.30 43.70 53.66 25.89
S2TUL 37.93 51.02 56.59 42.83 37.18 42.55 47.10 38.32 26.14 34.50 37.84 36.13 29.05 37.54 47.77 37.12
VaSCL 22.30 29.33 33.19 24.57 22.95 28.91 36.22 27.13 40.84 57.56 73.50 46.73 27.58 41.90 54.84 32.72

SimCSE 24.98 39.28 52.73 30.65 38.99 55.56 68.14 47.62 41.83 56.92 69.55 47.91 20.77 33.93 49.59 26.03
ReMVC 32.74 46.30 51.24 37.93 47.56 57.12 59.40 49.33 43.78 53.12 58.14 47.68 19.73 32.71 45.78 25.96

SML 31.61 42.97 47.96 38.35 41.83 55.48 58.62 46.86 43.83 56.67 62.09 49.86 19.32 29.11 32.13 34.70
CACSR 28.98 43.44 53.54 35.62 50.37 62.81 73.60 57.41 39.92 57.77 69.33 47.83 26.28 39.81 51.34 33.88

Mobility-LLM 65.55 75.74 80.97 70.25 68.90 79.75 84.96 74.03 69.94 79.86 84.60 74.56 54.39 66.46 74.28 60.17

G Feed Forward Layer

We aim to effectively fuse the sequences [zi−r+1, · · · , zi−1, zi] and [si−r+1, · · · , si−1, si] using
a gated feed-forward layer inspired by transformers. The fusion mechanism is designed to be
sophisticated while maintaining the core principles of the feed-forward structure.

Gating Mechanism and Gated Inputs: To enhance the fusion process, we introduce gating mech-
anisms gx and gz to control the flow of information from input vectors x and z. Then, apply the
gating mechanisms to the inputs:

gx = σ(Wgxx+ bgx),gz = σ(Wgzz+ bgz),

xg = gx ⊙ x, zg = gz ⊙ z,
(8)

where σ is the sigmoid activation function, Wgx ∈ Rdg×dx , bgx ∈ Rdg , Wgz ∈ Rdg×dz , and
bgz ∈ Rdg , and ⊙ denotes element-wise multiplication.

Multi-Layer Perceptron (MLP), Layer Normalization, and Residual Connection:

Concatenate the gated inputs and process them through a multi-layer perceptron, apply layer normal-
ization to stabilize the training process, and incorporate a residual connection to preserve the original
information:

h1 = ReLU(W1[xg; zg] + b1),h2 = ReLU(W2h1 + b2),

hnorm = LayerNorm(h2),hres = hnorm + [xg; zg],
(9)

where W1 ∈ Rd1×(dx+dz), b1 ∈ Rd1 , W2 ∈ Rd2×d1 , b2 ∈ Rd2 .

Perform a final linear transformation to produce the fused output:

hi = W3hres + b3, (10)

where W3 ∈ Rdf×(dx+dz), b3 ∈ Rdf .

This design leverages the powerful feed-forward layer structure with enhancements like gating
mechanisms, MLPs, layer normalization, and residual connections to achieve a sophisticated and
effective fusion of the input sequences [zi−r+1, · · · , zi−1, zi] and [si−r+1, · · · , si−1, si].

25

H GeoHash Embedding Layer

The Geohash embedding function converts geographic coordinates (latitude and longitude) into a
Geohash-encoded embedding vector. This involves two primary steps: first, encoding the latitude
and longitude into a Geohash string, and second, converting this Geohash string into an embedding
vector.

Geohash Encoding Given a latitude Llat and longitude Llon, the Geohash encoding function G
maps the coordinates to a Geohash string g:

g = G(Llat, Llon) (11)

The function G performs the following operations: Interleave the binary representations of latitude
and longitude. 2. Encode the resulting binary string into base32 characters to form the Geohash string
g.

Geohash to Embedding Vector Let E be the embedding function that converts a Geohash string g
into an embedding vector v in Rd:

v = E(g) (12)

The embedding function E can be implemented using various methods such as a lookup table or a
neural network that maps the discrete Geohash values to continuous vector spaces.

Combined Function Combining the two steps, we define the overall Geohash embedding function
F :

F(Llat, Llon) = E(G(Llat, Llon)) (13)

This can be expanded as:

v = F(Llat, Llon), (14)

where F first encodes the latitude Llat and longitude Llon into a Geohash string using G, and then
maps the Geohash string to an embedding vector using E .

I List of POI Categories

Airport, Bank, Bakery, Beach, Bridge, Cafe, Cinema, Clinic, College, Church, Courthouse, Embassy,
Firestation, Gym, Harbor, Hospital, Hotel, Library, Market, Mall, Museum, Office, Park, Pharmacy,
Pub, Restaurant, School, Stadium, Station, Subway, Supermarket, Theater, University, Zoo, Alley,
Aquarium, Arch, Art, Bakery, Bar, Basin, Bay, Bench, Bicycle, Boat, Border, Bowling, Brewery,
Buffet, Bungalow, Butcher, Cabaret, Cabin, Canal, Candy, Casino, Castle, Cemetery, Circus, Cliff,
Club, Coffeehouse, College, Court, Creek, Cruise, Dam, Dance, Deck, Diner, Dive, Dock, Dorm,
Drive, Embassy, Factory, Farm, Fastfood, Ferry, Field, Fishing, Fitness, Fountain, Gallery, Garage,
Garden, Gate, Gazebo, Grill, Guesthouse, Hike, Hostel, Ice, Inn, Island, Jail, Kiosk, Lake, Lane,
Library, Lighthouse, Mansion, Marina, Meadow, Motel, Monument, Mountain, Nursery, Observatory,
Opera, Orchard, Outpost, Palace, Pantry, Pier, Planetarium, Plaza, Pool, Post, Promenade, Pub, Ranch,
Recreation, Refuge, Resort, Restaurant, Retreat, Roadhouse, Ruin, RV, Salon, Sanctuary, Sauna, Shel-
ter, Shrine, Silo, Ski, Snack, Spa, Speedway, Spring, Square, Statue, Studio, Subway, Swim, Tavern,
Temple, Terminal, Track, Trail, Tram, Tunnel, Vineyard, Warehouse, Wharf, Wildlife, Windmill,
Winery, Yard, Yoga, Zoo, Abattoir, Aircraft, Amphitheater, Apartment, Arena, Auction, Auditorium,
Avenue, Baggage, Barbecue, Bazaar, Boathouse, Buffet, Cafeteria, Campsite, Carpark, Carwash,
Carousel, Chapel, Chemistry, Circus, Clinic, Clubhouse, Compound, Conservatory, Convent, Corner,
Crematorium, Croft, Deli, Den, Dockyard, Driveway, Enclosure, Estate, Facility, Farmhouse, Festival,
Fieldhouse, Firehouse, Florist, Forge, Fountain, Foundry, Gallery, Gasworks, Grotto, Gymnasium,
Hall, Hangar, Harbormaster, Heritage, Homestead, Hospice, Hostel, House, Hut, Inn, Jamboree, Jetty,
Junction, Kiosk, Laboratory, Lagoon, Lavatory, Library, Lighthouse, Lodge, Lookout, Mill, Mis-
sion, Motel, Office, Oratory, Pavilion, Plaza, Platform, Postbox, Range, Refinery, Reserve, Retreat,

26

Schoolhouse, Shop, Skatepark, Slope, Stand, Station, Synagogue, Tavern, Teahouse, Terrace, Tower,
Treasury, Villa, Waterslide, Wharf, Workshop.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and Section 1 Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]

Justification: See Section 6 Limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

28

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5 and Appendix E.2,C,F,B, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

29

Answer: [Yes]

Justification: We have submitted our data and code on
https://anonymous.4open.science/r/Mobility-LLM

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Subsection 5.5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Tab. 6 in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured that the study complied with the NeurIPS Code of Ethics in all
respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not suffer from this risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related Works
	Preliminaries
	Methodology
	Experiments
	Next Location Prediction
	Trajectory User Link
	Time Prediction
	Few-shot Forecasting
	Model Analysis

	Conclusion
	Related Works
	Mobility Data Mining
	Cross-domain Application of LLMs

	Implement Details
	Settings
	Evaluation Metrics

	Check-in Datasets
	Datasets Introduction
	The Statics of Processed Datasets
	Partially Frozen Attention (PFA) LLM

	Overview of Baselines
	Variants
	Variants of the Used LLMs
	Variants of Ablation
	Rusults of Variants on Different Datasets
	Rusults of Variants on WeePlace
	Rusults of Variants on BrightKite
	Rusults of Variants on Foursquare

	Few Shot Study
	Feed Forward Layer
	GeoHash Embedding Layer
	List of POI Categories

