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ABSTRACT

Federated multi-view clustering aims to provide a feasible and effec-
tive solution for handling unlabeled data owned by multiple clients.
There are two main challenges: 1) The local data is always sensitive,
thus preventing any inadvertent data leakage to the server or other
clients. 2) Multi-view data contain both consistency and complemen-
tarity information, necessitating thorough exploration and utilization
of these aspects to achieve enhanced clustering performance. Fully
considering the above challenges, in this paper, we propose a novel
federated multi-view method named Federated Fuzzy C-Means
with Schatten-p Norm Minimization(FFCMSP) which is based on
Fuzzy C-Means and Schatten p-norm. Specifically, we utilize the
membership degrees to replace conventional hard clustering results
in K-means, enabling improved uncertainty handling and less in-
formation loss. Moreover, we introduce a Schatten p-norm-based
regularizer to fully explore the inter-view complementary informa-
tion and global spatial structure. Correspondingly, we also proposed
a federated optimization algorithm enabling clients to collabora-
tively learn the clustering results. Extensive experiments on several
datasets demonstrate that our proposed method exhibits superior
performance in federated multi-view clustering.

CCS CONCEPTS

¢ Computing methodologies — Machine learning; Artificial
intelligence.

KEYWORDS
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1 INTRODUCTION

Multi-view data refers to data containing information from multiple
perspectives (e.g., modalities, sources, and viewpoints), and each
view represents a distinct observation of the same object, thus, they
generally have consistent and complementary information, which
is beneficial for several applications. For example, by leveraging
diverse types of medical data, such as CT scans and electrocardio-
grams, hospitals can obtain a more comprehensive assessment of
a patient’s physical condition. However, multi-view data learning
confronts several challenges because the high cost of annotating
complex multi-view data makes it difficult to acquire a substantial
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number of high-quality labels. Thus, multi-view clustering has at-
tracted considerable attention as an unsupervised learning approach
[5, 35].

Existing multi-view clustering methods can be summarised into
two categories [12]: neural network-based multi-view clustering and
heuristic-based multi-view clustering. Furthermore, neural network-
based multi-view clustering can be categorized into deep represen-
tation learning [40, 43] and deep graph learning [44, 45] while
heuristic-based multi-view clustering can be categorized into non-
negative matrix factorization [19, 30], graph learning [20, 28], latent
representation learning [22, 46], and tensor learning [33].

Even though existing multi-view clustering methods achieve
promising performance, they cannot be applied to scenarios where
multi-view data is distributed across multiple clients, while clients
are unwilling to share their data for the sake of privacy. Inspired by
federated learning, which enables multiple clients to cooperatively
train a global model without revealing any sensitive information [34],
federated multi-view learning is developed. For example, Huang et
al. extended multi-view clustering based on non-negative matrix
factorization (NMF) to construct a federated multi-view clustering
method named FedMVL [19] by dividing the global optimization
problem into multiple sub-problems that can be solved locally to
fully protect local data privacy.

However, FedMVL cannot obtain optimal performance because
the underlying K-means enforces the clustering result to assign a
concrete cluster label to each label and thus suffers from sensitivity
to outliers and . Besides, it separates feature extraction and clustering
into two steps and results in performance degradation. For another,
FedMVL first learns each view’s feature via NMF separately and
then fuses multi-view features for clustering. Thus, it is unable to
exploit the inter-view spatial structure of multi-view data.

To overcome these weaknesses, we propose a novel Federated
Fuzzy C-Means with Schatten-p Norm Minimization (FFCMSP).
Compared with FedM VL, FFCMSP replaces K-means with fuzzy
C-Means. Since fuzzy C-Means directly learn soft assignment via
membership degree matrix, it alleviates the sensitivity to outliers due
to the hard assignment of K-means and caused by two-step cluster-
ing. Besides, inspired tenser-based methods [33, 48], we construct a
tensor from the membership degree matrix of each view and validate
Schatten p-norm based loss on it to learn the inter-view spatial struc-
ture. We further develop a distributed optimization algorithm, which
enables all clients to optimize the model locally and collaboratively.
Specifically, our contributions are as follows:

e We introduce fuzzy C-Means to federated multi-view cluster-
ing to overcome the weaknesses of K-means. It utilizes the
membership degree instead of hard assignment to capture the
overall structure of distributed data with heterogenic features.

e We construct a membership degree tensor from each view’s
membership degree matrix, and by minimizing the Schatten
p-norm based regularizer, it can better explore the relation-
ship between views and the complementary information of
different views.
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e To enable clients to cooperatively train a global model without
any privacy data leakage, we developed a federated optimiza-
tion algorithm to solve the tensor-based multi-view clustering
objective.

e We conducted extensive experiments on multiple datasets
to evaluate the model performance and compare it with sev-
eral state-of-the-art methods, whose results demonstrate the
superiority of our proposed approach.

2 RELATED WORK
2.1 Multi-View Clustering

Multi-view clustering aims to partition multi-view data into different
clusters, which is widely applied in multi-view data labeling and
pre-processing. Existing multi-view clustering methods include neu-
ral network-based multi-view clustering and heuristic multi-view
clustering [12]. Although neural network based methods exhibit
outstanding performance due to their ability to extract deep and
nonlinear features of multi-view, their training cost is extremely high
and is not suitable for lightweight applications. Differently, heuris-
tic has lower computational complexity and better interpretability,
which has attracted more attention recently.

There are mainly four categories of heuristic multi-view clustering
methods: non-negative matrix factorization-based (NMF) methods
[19, 30], graph learning-based methods [20, 28], latent representa-
tion learning methods [22, 46], and tensor learning-based methods
[33]. The main idea of NMF-based methods is to factorize the data
matrix of each view into a coefficient matrix and a basis matrix
with lower dimensions for clustering. For example, Liu et al. [30]
proposed joint multi-view NMF to learn a common consensus coef-
ficient matrix; Liang et al. [29] introduced co-orthogonal constraints
to capture the diversity within views and learn the orthogonal basis
matrices. Multi-view graph clustering attempts to learn a consistent
clustering structure from the correlation of samples, which is com-
posed of graph fusion and graph partition. Wang et al. [41]firstly
perceived the correlations between samples under the same view,
and then all views adaptively collaborated to construct the consen-
sus graph. Latent representation learning-based methods learn the
shared latent representation of each view for clustering. [24] presents
regularized and hybrid multiview coding (RHMC), which employs
self-supervised learning to enhance the discriminative information
of the shared feature.

The aforementioned methods all process multi-view data sepa-
rately and then fuse the learned features or clustering results. To
better exploit the inter-view spatial structure, tensor-based methods
compose multi-view data into a three-order tensor. For instance, Lu
et al. [33] constructed the third-order tensor from view-specific label
matrices and minimized the divergence between the matrices to fully
explore the complementary information between views. Li et al. [23]
extended NMF into orthogonal non-negative tensor factorization and
introduced tensor Schatten p-norm regularizer to fully utilize the
complementary information provided by each view. Nevertheless,
these methods are designed for centralized settings and ignore the
possibility that multi-view data are held by different entities.
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2.2 Federated Learning

Federated learning [34] is a distributed learning paradigm that en-
ables multiple entities to collaboratively train a global model on
data distributed across multiple devices without revealing any pri-
vate information. The concept of federated learning and its specific
algorithm, FedAVG, were proposed simultaneously [34]. FedAVG
involves performing stochastic gradient descent on each client while
aggregating the local trained models on the server by performing
averaging. Afterward, many variants of federated learning were
proposed: FedAMP [21], FedProx [27]. Federated learning can be
categorized into three types: Horizontal Federated learning (HFL),
vertical federated learning(VFL), and federated transfer learning
(FTL).

In HFL, several clients share the same feature spaces but different
sample spaces. [14] introduced HFL for Electroencephalography
classification techniques to meet the requirements of privacy protec-
tion and data heterogeneity. Moreover, [47] focused on measuring
the contribution to the model of all clients and the global server eval-
uates the contribution through reinforcement learning techniques.
For VFL, several clients share the same sample space but different
feature spaces. [6] proposed a novel method that enables each client
to execute stochastic gradient algorithms independently, and a new
technique of perturbed local embedding is proposed. Traditional
VFL identifies the shared sample by Private Set Intersection(PSI),
which may lead to some data leakage. Thus, [39] proposed a Private
Set Union(PSU) based VFL framework to avoid such kind of data
leakage. For FTL, clients share both different sample spaces and
feature spaces. [31] first proposed the concept of FTL, enabling a
target-domain party to build flexible and effective models by leverag-
ing rich labels from a source domain. All the previously mentioned
methods are designed for single-view data and fail to fully exploit
the latent information inherent in multi-view data for learning.

2.3 Federated Multi-view Clustering

Traditional multi-view clustering methods generally assume that all
data are held by a single party and never consider the application
in which multi-view data are distributed across different clients
and privacy-preservation. To tackle this problem, federated multi-
view learning was proposed, and there are several federated multi-
view learning methods developed for different settings. Multi-view
learning was introduced to the personalized recommendation system
[10], cancer subtype identification [7], and other domains.
However, similarly, labeling multi-view data is costly, several
times more expensive than labeling single-view data. This led to
the emergence of federated multi-view clustering(FMVC). [4] in-
troduced FMVC to the medical field. The proposed method applies
to both VFL and HFL and keeps sensitive data private. [8] is a fed-
erated multi-view clustering method based on neural networks and
guarantees data security by transmitting non-sensitive parameters
between clients and the global server. Neural network-based FMVC
methods are always time-consuming. Thus, most FMVC methods
are based on heuristic clustering methods. [19] combines NMF and
K-means to construct a time-efficient FMVC framework and the
final clustering result comes from the coefficient matrix. However,
because of using K-means on the coefficient matrix, we cannot effec-
tively capture the relationship between samples and clusters, leading
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Figure 1: The framework of the proposed FFCMSP. The feder-
ated framework contains one global server and M local clients.
X™ V™ denotes the data matrix and center cluster centroid
matrix. The grey ¢ represents that the membership matrix U
is used to describe the membership relationship between sam-
ples and cluster centroid. Moreover, black O visually represents
whether the parameters are updated on the client or the server.
The contruction of tenser I{ is also visualized. Finally, the A(¢)
denotes the c-th frontier slice of U and it well characterize the
complementary information embedded in inter-views. [15]

to some information loss and performance degradation. Therefore,
[17] proposed fuzzy C-Means-based FMVC which uses membership
degree instead of hard clustering assignment. Nevertheless, it fails
to capture the consistent information between views.

3 METHOD
3.1 Preliminaries

For easier presentation, we introduce Schatten p-norm [32] as fol-
lows.

DEFINITION 1. The matrix Schatten p-norm for matrix M €
R™*"2 js defined as below:

min(ny,nz)

IIMl]sp = Z a"(M> (1)

where o; (M) is the i-th singular value of matrix M.

DEFINITION 2 (TENSOR SINGULAR VALUE DECOMPOSITION,
T-SVD). Given a tensor M € R™M*"2X thep we have its t-SVD:

M=U+»8=VT 2)

where U € RM>MXns ) ¢ RM2XmXn3 qrp hoth orthogonal tensors,
and 8 € R™M>*MX1s s digeonal tensor. Moreover, all frontal slices
of S are diagonal matrixes, and the i-th singular value of k-th frontal
slices of S is denoted as S8 ().

DEFINITION 3 (TENSOR SCHATTEN p-NORM). Based on Defi-
nition 1 and Definition 2, the tensor Schatten p-norm for tensor M
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is defined as below:

min(ny,nz) ns

> (st ) ©)

i=1 k=1

IMIls, =

where 0 < p < 1, tensor Schatten p-norm has proven to be a better
rank approximation method than the tensor nuclear norm (TNN),
which motivates us to apply it in our work to learn more robust and
clustering results. Given a typical Tensor Schatten p-norm problem,
it can be solved with the following Lamma.

LAMMA 1. For B € RMX™X1s qnd C € RM*M2X13 the function

1
SIB-cli} o)

: P
min o[BI, +
has the optimal solution given by
= ifft (U « Drp (C) + VT) 5)

where U andV are obtained via -SVD of C, i.e. C = UsS+VT, and

D,, (c<m)) = diag (g (c<m>)), ¢ (c<m>) - GST(U (S(m),r,p)).
The GST algorithm is introduced in [15].

3.2 Objective Function

Problem Statement: We consider the same federated multi-view
settings as that in [19], which includes a centralized server S and
M clients. Multi-view data, denoted as X = {X(l), x@) ...xM) 1,
is held by different clients. Specifically, the m-th view x(m) ¢
RNXd(m) (m=1,2,- -, M) isdistributed in the m-th client, Cy,, where
d(™) is the feature dimension, N is sample number, and M is the
number of views as well as client number. Our goal is enable the
server and clients to cooperatively train a global clustering model
without exchanging any raw data.

Federated Multi-View Fuzzy C-Means: Our work is derived from
fuzzy C-Means (FCM) [1], which assigns data points to clusters
with membership degree matrix. Suppose there are N samples of
dimension D denoted by X € RN*P FCM divides them into C
clusters with the following objective:

N C
o3 St
i=1 j=1 (6)
c
s.t ZuUZO:l,uUZO,tZI
=

where u;; is the membership degree, representing the probability
that the i-th sample belongs to the j-th cluster; V € REXD is the
clustering centroids matrix; ¢ is the fuzzification coefficient, and
bigger t tends to defocus membership towards the fuzziest state [1],
whose suggested range is 1 < ¢t < 3.

Compared with K-means, FCM can better resist noises or outliers,
motivated by which, we adopt multi-view FCM as our underlying
multi-view clustering method, which can be expressed as follows:

. V(m) Z Z Z( (m)) gm) _v;m)“%

m=1 i=1 j=1

@)

(M) (m)
s.t. U l,uij >0,t>1
J=1
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where X(™) is the data matrix located on the m-th clients and V(™)
is the corresponding cluster centroids. ¢ is also the fuzzification
coefficient, similarly. To simplify the optimization process, this
paper sets the fuzzification coefficient ¢ to 1. Thus, based on Eq. (7),
the objective function is:

M
U(m) V(m Z

=11

C
D™ =
Jj=1

Mz

Il
—

c ®)
s.t. Zui(;n) =1, u(m) >0
Jj=1

Tensor Schatten p-Norm Based Regularizer: By observing Eq.
(8), we find that in each view, each sample corresponds to a member-
ship degree u;; for each cluster, and for N samples and C clusters,
the membership degrees form a matrix U(m) e RNXC thus latent
information is hidden between different view-specific membership
degree matrix. Inspired by [33], we introduce a regularizer based on
the tensor Schatten p-norm to enforce the model to learn the global
spatial structure and inter-view complementary information, the final
objective function becomes:

M C
min Z Z u(™ ||x§m) -
U(m)’V(m) | = ) i

C
(m) (m)
s.t. Z U —1uU >0
Jj=1

Mz

(m) 2 P
ij 17+ Al s,

1l
—
—

i

©))

where A is the trade-off parameter and the membership degree tensor
U is constructed by stacking all views’ local membership degree
matrix and taking a simple rotation as shown in Fig. 1.

4 OPTIMIZATION ALGORITHM

In centralized scenarios, Eq. (9) can be easily solved. However, with
the multi-view data distributed to local clients, our design goal is to
employ federated learning to collaboratively learn a clustering model
while considering the requirement of data privacy. This requires that
the raw models or parameters transmitted between clients and the
global server should be non-sensitive, which poses extra challenges
of optimization. To address this issue, we further develop a federated
optimization algorithm in this scenario.

Firstly, we introduced augmented Lagrange multiplier(ALM) to
Eq. (9):
SESES (m) 1 (m) _ _(m)
m m m) 2
min £(UG.V)= Y, > > u ™ —vi™ I}
m=1 i=1 j=1
+AGIIE, +(QU -6) + Ll - 6ll} (10)
2m Z g, m
s.t. U =1, ul.j >0
j=1

where p is the penalty parameter, Q is the Lagrange multiplier, and
() denotes the inner product operation. The optimization algorithm
is divided into three parts, as described below.
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Solving U(™) with fixed G and V: with fixed G and V, the objec-
tive function becomes:

M N C
min Z Z Z ui(}n)HXEm) -
m=1 i=1 j=1
C

s.t. Zug") 1, l(jm)>0
j=1

vk QU-g)+ Liu- gl

an
Considering the independence of U, Q, and G, Eq. (10) could
be decomposed into M independent subproblems, where the m-th
subproblem is:

min Z Z (m) ||X(m)

V’”II% + <Q<m>,U<m) _G<m)>

i=1 j=
u
+ 5||U<’"> -G (12)
4 g, m
s.t. J =1,u ij >0
j=1

Through simple algebra, Eq. (12) can be transformed into:

N C
: (m)y(m) B 2
mm;;uij Dl.j +§|IU(’")—T("’)|IF
c (13)
s.t. Z l(]m) ul(Jm) >0
J=1
m)
where D) = [|x(™ — v{™ |2, and T(™ = 6™ - %,

1ntroduc1ng the Karush-Kuhn-Tucker (KKT) condition, we have:

(m) c p(m) (m) (m)
CT,! 2 T e - 36
um = Y +—2 + 1 s
Yij Cu C
Solving G with fixed U and V: With fixed U and V, the objective
function concerning G becomes:

minA|GII%, +(QU - ) + LIU - Gl
15)
=minl|GI, + 211G - Pl

where P =U — % From Lamma. 1, we get the optimal solution of
Eq. (15):

G* = ifft (u «Da , (P)+ VT (16)
o
where U and V, are obtained via t-SVD of P, i.e., P =U =+ S V*T .

Solving V(™) with fixed ¢ and G: With fixed U and V, the objec-
tive function concerning YV becomes:

min Z Z Z (m) ||x(m)

m=1 i=1 j=1

Vi 17

Similarly, we decompose Eq. (17) into M independent subproblems
owing to the independence of U, and the m-th subproblem is defined

as:
min Ly(m) = min Z Z (m) ||x(m)

i=1 j=1
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We take the partial derivative of Eq. (18) concerning v;m) and set it
to zero:
< (m)_ (m) S (m) _(m)
m m m m
Ui X =Zuij v;
i=1 i=1 (19)
N (m)_(m)
(m) i1 Ui X
i N (m)
Liz ¥

4.1 Federated workflow

Considering local client data security, the data or parameters trans-
mitted between the client and the server must be insensitive. There-
fore, based on the above optimization algorithm, we propose the
workflow in the federated setting. By observing Eq. (14), Eq. (16),
and Eq. (19), we draw the following conclusions:

e The update of ul.(;n) is related to dl.(;"), G(M) and Q(’"),

where di(}n) describes the is between i-th sample and j-th
cluster centroid and it can be calculated locally. Therefore,
each client can update ul.(;n) locally as long as they have a
backup of G(™) and Q™).

e The update of G is related to U and Q, thus, it can only be
performed globally and U(™) should be transmitted to the
global server in advance.

e The update of V(™) is related to U™ and X(™) and it can be
performed locally because the relevant data is stored locally.

e The optimal solution of Q is @ «— Q + u (U — G), which
can only be performed globally because it requires tensor U.

After the above analysis, we described the detailed workflow in
the federated setting.

(1) Firstly, each client Cy, initializes ul.(;") = é and V(™) ran-
domly, and the global server initializes G = U and Q = 0.

(2) In each communication round, each client Cy,, updates uylm
with Eq. (14) and v(m) with Eq. (19) locally and then sends
updated U™ (o the global server S.

(3) After receiving them, S stacks all U™ into a tensor U, and
then update G with Eq. (16) and Q with @ «— Q+u (U - G).
The global server then transmits the m-th slice of updated G
and G, G(™ and Q™) to the corresponding client.

(4) The step (2) and (3) repeat until convergence, and then, the
final cluster assignment matrix H is calculated globally by:

_ . M (m))
b = 1 arg;mn (Zm:1 u; ) 20)
0 otherwise

The detailed workflow is summarized in Algorithm 1.

4.2 Complexity Analysis

4.2.1 Computational Complexity. The complexity of FFCSP
should be analyzed from two aspects, i.e., local client-side and
global server-side.

Local client-side: The computation load on each client includes the
update of U™ and V(™) In each local iteration, the computational
complexity of the update of U™ iso (N C (d (m) 4 C)) while the

computational complexity of the update of v(m is 0 (N C). Thus,
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Algorithm 1 Federated Fuzzy C-Means with Schatten p-Norm Min-
imization(FFCMSP)

input: The data X = {X(l),X(z),...,X(M)} on M local clients,
cluster number C; parameters: , p, A;
output: Output: Cluster assignment H;

1: Client initialization: Initialize ui(fn) =

% and V(™) randomly.
2: Server initialization: Initialize @ = U and G to be all zero.
3: while not converged do
4. form = 1toMdo

5 > On m-th client C,
6 Update membership matrix u(m) according to (14);

7: Update cluster centroids matrix y(m) according to (19);
8 Send updated U™ (o the global server;

9:  end for

10: > On Server S

11:  Stack all U™ to construct tensor I as shown in Fig. 1;

12:  Update G with new U according to (16);

13:  Update Q accordingto @ = Q + u(U — G);

4. Send G(™) and Q™) to Cpp;

15: end while

16: S aggregates U™ into cluster assignment matrix H according
to (20);

17: return H

the overall computational complexity of updating local model ITERy,
iterations is O (ITERLNC (d('") + C))

Global client-side: The computational load on the global server
includes the update of G and Q. In each global iteration, the computa-
tional complexity of the update of G is O (2NCMlog (CM) + NCM?),
while the computational complexity of the update of Q is O (NCM).
Thus, the overall computational complexity of updated global model
ITERG iterations is O (ITERg (2NCMlog (CM) + NCM?)).

4.2.2 Communication Complexity. Moreover, we analyze the
transmission load between each client and the global server.

Local Client—Global Server: Each client transmits its local U(™)
to the global server before aggregating. For all clients, the amount
of data transmitted in each communication round is O (NCM).
Global Server —Local Client: The global server sends the m-th
slice of G and Q to the m-th client after aggregating. Thus, the
total amount of data transmitted in each communication round is
O (2NCM).

5 EXPERIMENT
5.1 Experimental Settings

We validate our model on eight multi-view datasets and compare it
with several state-of-the-art methods. We implement all the methods
with MATLAB2023b on a Desktop running Windows 11 equipped
with Intel Core i5-13400CPU(2.50GHz) and 32GB DDR4 RAM. For
the federated setting, our experiment consists of the same number
of clients as the number of views and one server, while each client
stores the data with one view. We use three widely used metrics,
i.e., Accuracy (ACC), Normalized Mutual Information(NMI), and
Purity(PUR) to evaluate our method.
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Datasets 3-sources BBCSport Sonar Caltech-5v

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
DiMSC 70.81 63.81 76.13 82.17 64.07 82.17 56.41 1.63 5641 5757 39.76 6143
MVLRSSC  54.67 4492 6331 64.07 4092 65.07 5048 0.01 5337 46.15 3481 46.79
RMSL 3491 1443 42.60 76.63 7236 76.63 5048 1.76 5337 55.00 52.18 59.07
GMC 69.23 62.16 74.56 80.70 76.00 79.43 5048 450 5337 34.07 4840 36.07
MvDGNMF 66.27 48.77 7041 85.11 70.07 85.11 6394 6.00 63.94 49.57 38.24 53.86
UDBGL 3491  5.60 3550 3640 243 36.58 57.21 1.61 5721 31.80 2354 19.28
FastMICE 52.07 4557 66.27 50.00 2549 5533 58.65 3.63 58.65 77.58 69.6 79.57
FedMVL 5621 45.88 68.05 62.13 4228 71.14 6490 871 6490 29.71 11.20 30.36
FedFuzzy 80.47 66.09 80.47 87.15 8291 87.15 72.60 17.05 72.60 80.83 64.51 81.00

Table 1: Clustering performance comparison in terms of ACC(%), NMI(%),

Caltech-5V datasets.

and PUR(%) on

3-sources, BBCSport, Sonar and

Datasets Yale Vehicle Sensor HAR RGBD
Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
DIiMSC 4828 51.85 49.09 76.06 2947 76.06 51.79 32.14 2569 40.72 32.57 50.10
MvLRSSC 4585 50.16 4697 56.78 6.12 56.78 49.38 53.56 5340 4395 37.29 4329
RMSL 67.27 74.02 68.48 68.07 1234 68.07 48.64 5299 5538 1380 3.06 2643
GMC 54.55 62.44 5455 64.68 19.55 64.68 48.04 5740 48.60 40.23 33.06 46.51
MvDGNMF 4727 5224 5091 5263 020 52.63 4636 3521 4636 2657 078 26.98
UDBGL 5273 6594 5455 51.69 0.08 51.69 47.78 4620 5045 43.89 35.96 53.55
FastMICE 66.68 67.94 67.88 51.76 0.09 51.76 56.66 50.17 56.71 41.81 32.61 49.53
FedMVL 46.67 51.50 47.27 74.03 1739 74.03 53.68 54.70 43.71 3251 23.65 45.89
FFCMSP 67.64 73.67 7391 9994 99.31 99.94 59.54 5322 59.54 46.71 27.13 51.84

Table 2: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on Yale, Vehicle Sensor, HAR, and RGBD

datasets.

Datasets: We evaluate our method on eight public multi-view datasets,
Concretely: (1)3-sources is a three-view text dataset and the three
views are sourced from three reputable news outlets: BBC, Reuters,
and The Guardian while their dimensions are 3056, 3631, and 3068.
169 samples are selected to form the datasets. (2)BBCSport [16] is
composed of 544 sports news articles sourced from the BBC Sport
website spanning the years 2004-2005. The dataset is categorized
into five distinct topical areas with the following class labels: ath-
letics, cricket, football, rugby, and tennis. It has two views and the
dimensions are 3283 and 3183 respectively (3)Sonar [37] extracts
its multi-view features from the 111 patterns obtained by bouncing
sonar signals off a metal cylinder at various angles and under var-
ious conditions and 97 patterns obtained from rocks under similar
conditions. Then the 60 features are divided into three views equally.
(4)Caltech-5v [13] is the five-view version of Caltech-7, which has 7
classes and 1400 sample. The dimensions of Caltech-5v are [40, 254,
1984, 512, 1400]. (5)Yale is a two-view dataset of 165 facial images
of 11 people, and the first view is a 32 X 32 image, while the second
view is a 64 X 64 image. (6)Vehicle Sensor [9] is a four-view dataset
and the four features are gathered from distributed sensors while
their dimensions are 5, 5, 7, and 5. (7)Human Activity Recogni-
tion(HAR) [36] is a dataset documenting 30 individuals performing
six daily activities(walking, walking upstairs, walking downstairs,

sitting, standing, lying down), and the features are gathered from
Samsung Galaxy S II on the waist. The four-view dataset consists of
10299 samples. The feature dimensions of the four views are 20, 65,
237, and 59. (8)SentencesNYU v2(RGB-D) [38] is about images
of indoor scenes and corresponding descriptions. We preprocess the
dataset by following [40] and obtained a two-view dataset of 1449
samples divided into 13 classes, and the feature dimensions are 2048,
and 300.

Compared Methods: We compared our methods with five central-
ized multi-view clustering methods and two federated multi-view
clustering to verify the superiority of our proposed model. Con-
cretely, (1)DiMSC [3] boosts the multi-view clustering by min-
ing the complementary information among multi-view features.
(2)MVLRSSC [2] constructs an affinity matrix shared among all
views to learn a joint subspace representation. (3)RMSL [26] is
composed of Hierarchical Self-Representative Layers and Backward
Encoding Networks, which recover the subspace structure of data
and explore the complex relationships among different views respec-
tively. (4)GMC [42] is a graph-based multi-view clustering method
that learns a unified graph from the affinity graph of each view for
clustering. (5)MVDGNMF [25] is an NMF-based method that can
extract more abstract representation by constructing a multi-layer
NMF model with graph Laplacian regularizer. (6) UDBGL [11]
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Figure 2: The convergence curves of FFCMSP on 3-sources, BBCSport, Sonar, and Yale.
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Figure 3: Parameter sensitivity analysis concerning p and A.

jointly learns both single-view and consensus graphs and combines
it with k-means to construct a unified framework. (7) FastMICE
[18] presents the concept of a random view group to capture the
versatile view-wise relationships and design a hybrid early-late fu-
sion strategy. The method has linear time and space complexity.
(8)FedMVL [19] is a federated multi-view clustering based on NMF
and K-means.

5.2 Experiment Results and Analysis

Table. 1 and Table. 2 present the experiment results of the proposed
method and eight other multi-view clustering methods on eight
real-world datasets. From the results we can observe that on ACC,
NMI, and PUR, FFCMSP demonstrates superior performance across
almost all datasets, demonstrating its robust clustering capability.
Additionally, on the sonar dataset, it outperforms the second-best
model by 7.70%, 8.34%, and 7.70%, respectively. Particularly, its
performance on the Vehicle Sensor dataset, where its ACC, NMI,
and PUR metrics nearly reach 100%, far surpassing other algorithms.

This could be attributed to the proposed FFCMSP effectively captur-
ing the consistency and complementary information between views
using tensor Schatten p-norm while leveraging FCM to better pre-
serve information between data points. Besides, in the eight chosen
compared method, FedMVL is the only federated multi-view clus-
tering method, thus, the experiment results further demonstrate the
the superiority of FFCMSP over centralized ones. Overall, these ex-
perimental results validate the superiority of FFCMSP in multi-view
clustering tasks.

5.3 Convergence analysis

We record the values of 3M_ N Z]C=1 ui(;n) ||x§m) - V](-m) 12 +
AllU| pr and the ACC at each iteration on four datasets. The results
are also displayed in Fig 2, from which we observed that FFCMSP
converges quickly on these four datasets, typically reaching con-

vergence within 20 iterations. Moreover, if the early-stop trick is
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Variants case 1 case 2 FFCMSP
Dataset ACC NMI PUR ACC NMI PUR ACC NMI PUR
3-cources 61.54 3481 6154 69.82 53.38 69.82 80.47 66.09 80.47
BBCSport 41.73 945 41.73 66.54 3790 66.54 87.15 8291 87.15
Sonar 5433 058 5433 6635 7.75 6635 72.60 17.05 72.60
Caltech-5v  46.36 30.07 51.71 60.07 49.78 60.07 80.83 64.51 81.00
Yale 38.79 48.83 38.79 39.39 40.14 39.39 67.64 73.67 7391
Vehicle 52.07 16.50 52.07 74.53 20.56 74.53 99.94 99.31 99.94
HAR 5240 59.70 5240 5240 3521 54.16 59.54 5322 59.54
RGBD 36.71 2254 39.82 38.16 22.84 4293 46.71 27.13 51.84

Paper ID: 4668

Table 3: Results of ablation studies.

employed, the clustering accuracy of FFCMSP would further im-
prove(The experimental results documented in this paper are all
based on converged results). We can still observe that neither the
convergence curves of the objective function nor the ACC exhibit
oscillations, which typically arise from federated aggregation. This
indicates the robustness of our model to federated settings.

5.4 Parameter Sensitivity Analysis

The objective function Eq. (9) has two main parameters: p and A.
We analyze their impact on the clustering results, which are depicted
in Fig. 3. Firstly, we analyze the influence of two parameters. p is
the most significant parameter in the tensor Scatten-p norm. When
0 < p < 1, the tensor Scatten p-norm has better rank approximation.
A is the trade-off parameter to balance the effects of the two items.
When A is large, the tensor Schatten p-norm dominates, leading the
model to explore more spatial structural information between views,
while when A is small, the model focuses on local training. From
Fig. 3, we conclude that the chosen for p is closely related to the
dataset, but when A is set to a larger value, the model performs better.
Above all, the suggested range of A is [100, 1000].

5.5 Ablation Experiments

Our proposed FFCMSP consists of two main modules: The fuzzy
C-Means module and the tensor Schatten p-norm. As the tensor U is
constructed from the all view-specific membership degree matrix U,
thus the tensor Schatten p-norm cannot exist independently. Conse-
quently, we conduct the ablation study in the following two cases: (1)
FFCMSP w/o tensor Schatten-p regularizer and fuzzy C-Means(case
1); (2)FFCMSP w/o tensor Schatten p-norm regularizer(case 2); It
is obvious that case 1 is equal to multi-view K-means, and the re-
sults are shown in Table. 3. From the results, we observe that on
3-sources, the ACC, NMI, and PUR of case 2 outperform that in
case 1 by 7.28%, 18.57%, and 7.28 %, demonstrating that intro-
ducing membership degree to clustering surely enhances clustering
performance. Moreover, the ACC, NMI, and PUR of FFCMSP on
3-sources also increase by 10.65%, 12.71%, and 10.65% compared
with case 2, indicating that introducing the tensor Schatten p-norm
can better explore spatial structural information between views. In
summary, the ablation experiments strongly support the significant
role of the two key modules in enhancing clustering performance.

6 CONCLUSION

In this paper, we proposed a novel fuzzy C-Means and Schatten p-
norm based federated multi-view clustering method named FFCMSP.
This method integrates fuzzy C-Means clustering and Schatten p-
norm regularizer to enhance the clustering performance of multi-
view data in a federated learning setting. Specifically, by employ-
ing fuzzy C-Means, we effectively alleviate the information loss
caused by K-means, while the Schatten p—norm helps to exploit the
inter-view complementary information and spatial structure, thereby
improving the accuracy and robustness of clustering. Besides, the
proposed federated optimization algorithm enables clients to train the
global clustering model collaboratively. Furthermore, we evaluated
the FFCMSP method on multiple real-world datasets and compared
it with several state-of-the-art multi-view clustering methods. The
experimental results demonstrate that our method generally achieves
superior clustering performance.
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