
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-CORRECTION VIA TASK DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown promising self-correction abilities,
where iterative refinement improves the quality of generated responses. However,
most existing approaches operate at the level of output critique, patching surface
errors while often failing to correct deeper reasoning flaws. We propose SELF-
THOUGHT, a framework that introduces an intermediate step of task abstraction
before solution refinement. Given an input and an initial response, the model first
distills the task into a structured template that captures key variables, constraints,
and problem structure. This abstraction then guides solution instantiation, ground-
ing subsequent responses in a clearer understanding of the task and reducing error
propagation. Crucially, we show that these abstractions can be transferred across
models: templates generated by larger models can serve as structured guides for
smaller LLMs, which typically struggle with intrinsic self-correction. By reusing
distilled task structures, smaller models achieve more reliable refinements with-
out heavy fine-tuning or reliance on external verifiers. Experiments across diverse
reasoning tasks demonstrate that SELF-THOUGHT improves accuracy, robustness,
and generalization for both large and small models, offering a scalable path toward
more reliable self-correcting language systems.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in reasoning, problem-solving,
and dialogue generation (Brown et al., 2020; Chang et al., 2024; Kojima et al., 2022, inter alia).
However, despite their impressive abilities, even the strongest models often produce errors such as
flawed reasoning steps, factual mistakes, or inconsistent results (Maynez et al., 2020; Gehman et al.,
2020; Alkaissi & McFarlane, 2023; Yuan et al., 2023, inter alia). Self-correction is a capability of
LLMs that has recently emerged as a promising solution to mitigate these limitations (Kamoi et al.,
2024; Liu et al., 2024, inter alia). Recent studies of this and other similar methods (Madaan et al.,
2023; Shinn et al., 2023; Welleck et al., 2022; Chen et al., 2024, inter alia) show that models can
critique their answers, generate feedback, and revise solutions. These methods highlight the promise
of intrinsic self-correction, where models improve their own output through iterative refinement.

However, existing self-correction methods (Madaan et al., 2023; Shinn et al., 2023; Cook et al.,
2024) have largely take the form of surface-level editing. A model generates an answer, evaluates
that answer, and then attempts to patch errors. While effective in some cases, their efficacy in com-
plex problem-solving, such as mathematical reasoning, remains limited. For instance, SELF-REFINE
(Madaan et al., 2023) yields an average gain of 20% across tasks, but only modest improvements on
mathematical reasoning tasks even when aided by external signals. Similar limitations are observed
in SELF-TICK (Cook et al., 2024) and PROGCO (Song et al., 2025), where gains on mathematics
and reasoning benchmarks remain marginal compared to the other tasks. Without a structured un-
derstanding of the task itself, corrections may be shallow, inconsistent, or fail to generalize beyond
the specific example.

Moreover, current self-correction studies are primarily designed for large-scale models, relying on
their extensive capacity to generate critiques and perform revisions (Madaan et al., 2023; Cook et al.,
2024; Huang et al., 2023; Kamoi et al., 2024). However, these methods often fail to extend to smaller
models, which remain widely used in practice due to their efficiency, lower deployment costs, and
utility in resource-constrained settings (Kamoi et al., 2024; Madaan et al., 2023; Belcak et al., 2025).
Despite their advantages, small models typically lack the reasoning depth and robustness of larger
counterparts, and existing self-correction techniques provide little to no measurable improvement

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

for them. This gap raises an important question of how to design self-correction mechanisms that
are effective not only for frontier LLMs but also for smaller models, enabling them to benefit from
iterative refinement. Addressing this challenge is crucial for broadening the impact of self-correction
beyond cutting-edge systems and enabling reliable reasoning across diverse model scales.

In this paper, we propose SELF-THOUGHT, a new framework for iterative self-correction that em-
phasizes task abstraction before refinement. Instead of immediately critiquing the output, the model
first distills the problem into a structured template, identifying variables, constraints, and underlying
problem types. This abstraction acts as a reusable guide that grounds subsequent reasoning. The
model then instantiates this template to produce a refined solution. By separating understanding the
task from solving it, our method reduces error propagation and leads to more robust corrections.

Moreover, we extend SELF-THOUGHT to smaller models through a variant called DISTIL-
THOUGHT. In this setting, we reuse the abstract templates distilled by larger, more capable models.
These templates encapsulate high-level reasoning and self-correction strategies, allowing smaller
models to benefit from structured guidance without requiring external verifiers or costly fine-tuning.
By templatizing the problem-solving process, DISTIL-THOUGHT enables smaller models to con-
verge on solutions more quickly and with fewer iterative refinements. This not only improves perfor-
mance but also offers a cost-saving advantage – reusable templates reduce computational overhead
and accelerate inference, making the approach more efficient and scalable across model sizes.

We evaluate our approaches on a range of LLMs, including GPT-4O-MINI, GPT-4O, O3-MINI,
DEEPSEEK-R1, and open-source models QWEN-2.5-7B and LLAMA-3.3-70B, across a wide range
of tasks. Our findings demonstrate that SELF-THOUGHT consistently surpasses prior techniques, ob-
viating the need for supplementary data or training. For example, when applied to GPT-4O-MINI,
SELF-THOUGHT attains 126.30% enhancements on Game of 24, 81.82% gains on Word Sorting,
and a 199.85% improvement on AIME 2025. Similarly, on small models such as QWEN-2.5-7B and
LLAMA-3.3-70B, DISTIL-THOUGHT yields notable gains, including 154.54% average improve-
ment on QWEN-2.5-7B and 121.42% on LLAMA-3.3-70B, demonstrating that task abstractions
learned from large models can effectively transfer to smaller models.

Our primary contributions include: (1) We introduce a two-stage self-correction framework based
on task abstraction and solution instantiation, moving beyond surface-level response critique. (2)
We demonstrate that abstracted task templates can be reused across models, enabling smaller LLMs
to self-correct more effectively. (3) Through experiments across diverse tasks, we show that SELF-
THOUGHT improves accuracy, robustness, and generalization compared to baseline self-correction
methods. Our work reframes self-correction as a process of thinking about the task rather than fixing
the answer. This perspective not only enhances the performance of large models but also provides a
scalable path for empowering smaller ones with structured reasoning support.

2 RELATED WORK

Intrinsic Self-Correction. Intrinsic self-correction seeks to enable models to generate and act on
their own feedback during inference, without relying on external signals or additional training. Sev-
eral methods have been proposed to ask LLMs to critique their initial responses and then attempt
refinements (Kim et al., 2023; Shinn et al., 2023; Madaan et al., 2023), but recent studies highlight
their limitations, where models often fail to detect reasoning errors reliably, and performance some-
times degrades when self-reflection is applied naively (Huang et al., 2023; Tyen et al., 2024; Kamoi
et al., 2024). More structured variants (Shinn et al., 2023; Zelikman et al., 2022) introduce iterative
critique or self-distillation, showing that verbal self-feedback can improve output quality, yet these
techniques remain brittle and mostly applicable to large models with strong baseline reasoning abil-
ities. In contrast, our method introduces an explicit task abstraction step before refinement, rather
than relying on unstructured critique; the model distills the input into a structured template capturing
key variables and constraints. This abstraction not only improves the intrinsic correction of large
models by grounding refinements in a clearer task representation, but also enables transferability—
smaller models, which struggle to generate useful feedback themselves, can leverage abstractions
produced by larger models as structured guidance for more reliable correction.

Source of Feedback. Feedback is crucial to improve LLM output, with humans traditionally
providing corrective signals (Tandon et al., 2021; Elgohary et al., 2021; Bai et al., 2022). Since

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 SELF-THOUGHT algorithm

Require: Input x, model M, prompts {ℑ, ℘,ℜ}, stop condition stop(·), number of iterations n
Ensure: Corrected output ŷ from M
1: Generate initial output ŷ0 ∼ PM(·|ℑ ⊕ x) ▷ Initialization
2: for iteration t ∈ {0, 1, . . . , n} do
3: dt ∼ PM(·|℘⊕ x⊕ ŷt) ▷ Task Abstraction
4: if stop(dt, t) then ▷ Stopping Criteria
5: return ŷt
6: end if
7: ŷt+1 ∼ PM(·|ℜ ⊕ x⊕ ŷt ⊕ dt) ▷ Instantiation
8: end for
9: return ŷn

human feedback is costly, alternative sources such as scalar reward functions (Bai et al., 2022; Liu
et al., 2022; Welleck et al., 2022), external tools like compilers or search engines (Yasunaga & Liang,
2020; Chen et al., 2024; Yu et al., 2023), and domain-specific knowledge bases (Schick et al., 2023)
have been used. More recently, LLMs themselves have been employed to generate feedback (Kim
et al., 2023; Madaan et al., 2023; Cook et al., 2024), allowing models to iteratively refine their own
outputs. However, without structured or verified guidance, LLMs often struggle to correct deeper
reasoning errors (Huang et al., 2023). In contrast, our method provides feedback through explicit
task abstractions distilled from the input, offering structured guidance. For large models, these
abstractions ground refinements in a clearer task representation, while for smaller models they serve
as reusable templates from stronger models, enabling more reliable self-correction than unverified
self-critiques.

3 SELF-THOUGHT: CORRECTING VIA TASK DISTILLATION

Our proposed method, SELF-THOUGHT, builds upon the principle of iterative refinement but intro-
duces a unique intermediate step, task abstraction. This abstraction process distills the core compo-
nents of a problem, transforming it into a structured template that guides the model in generating a
more precise and accurate final solution. SELF-THOUGHT first creates a canonical representation of
the task itself, ensuring that subsequent solution generation is grounded in a deep understanding of
the objectives and constraints of the problem. See Algorithm 1 for a summary of SELF-THOUGHT
method, and we describe SELF-THOUGHT in more detail in the following sections.

3.1 INITIAL GENERATION.

SELF-THOUGHT generates an initial response ŷ0 given an input x, prompt ℑ, and a model M:

ŷ0 ∼ PM(·|ℑ ⊕ x) (1)

where ℑ is a task-specific prompt for an initial generation, and ⊕ denotes concatenation. This is a
standard generation process where the model produces a preliminary response to user input. The
initial response serves as the starting point for the subsequent self-correction loop.

3.2 TASK ABSTRACTION

Next, SELF-THOUGHT focuses on abstracting the user’s input query x and the initial response ŷ0
into a structured task representation d. This is guided by a structured prompt ℘, which facilitates
the distillation of the problem into a generalized, constraint-aware template. The model M is in-
structed to act as a “meta-distiller” and perform a critical analysis of the user’s request. This analysis
systematically extracts and formalizes the essential elements of the problem:

dt ∼ PM(·|℘⊕ x⊕ ŷt) (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

There are $8!= 40320$ eight-digit positive integers that use 
each of the digits 1, 2, 3, 4, 5, 6, 7, 8 exactly once. Let N be 
the number of these integers that are divisible by $22$. Find 
the difference between $N$ and 2025.

To find the number of eight-digit integers that use each of 
the digits 1 through 8 exactly once and are divisible by 22, 
we need to check the divisibility rules for 22. Since 22 = 2 × 
11, an integer must be divisible by both 2 and 11.

…
Let’s denote the digits of the number as d1, d2, d3, d4, d5, 
d6, d7, d8 where d8 is the last digit. The odd positions are 
d1, d3, d5, d7 and the even positions are d2, d4, d6, d8.
The total sum of digits from 1 to 8 is: 1 + 2 + 3 + 4 + 5 + 6 + 
7 + 8 = 36

…
Since S2 = 36 - S1, we can rewrite the divisibility condition 
as: |S1 - (36 - S1)| = |2 × S1 - 36| is divisible by 11
This simplifies to: |2 × S1 - 36| is divisible by 11
We can find the values of S1 that are possible. The 
minimum sum S1 can take (if we pick the smallest digits) is 
1 + 2 + 3 + 4 = 10, and the maximum (if we pick the largest) 
is 5 + 6 + 7 + 8 = 26. Therefore, S1 can take values from 10 
to 26.
To solve 2 × S1 ≡ 3 mod 11, we can try values for S1:
S1 = 4 gives 2 × 4 = 8
S1 = 6 gives 2 × 6 = 12 ≡ 1 mod 11
S1 = 7 gives 2 × 7 = 14 ≡ 3 mod 11 (valid)
S1 = 8 gives 2 × 8 = 16 ≡ 5 mod 11

…
After calculating valid arrangements for S1 and S2, we can 
compute the total arrangements for each case based on the 
last digit being 2, 4, 6, or 8 (up to 4 cases).
We find N and compute N - 2025. After calculating the final 
result, we find: N = 2016
So, the difference is: 2016 - 2025 = -9
Thus, the answer is: <Answer> -9 <Answer>

Distilled Information:
1. Key information:

● Digits: {1,...,8}, each used once.
● Total permutations: 8! = 40320.
● Divisible by 22 = 2 × 11.

○ Divisible by 2: last digit even (2,4,6,8).
○ Divisible by 11: alternating sum condition: 2Sodd ≡ 

36 mod 11.
● Target: find N (# of valid integers) and output N - 

2025.

2. Restriction:
● Digits must be used exactly once.
● Must apply divisibility rules correctly (parity for 2, 

alternating sum for 11).
● Modular arithmetic must be solved rigorously.

3. Distilled task:
Determine valid odd-position digit subsets summing to 
the required total, count their permutations considering 
the last digit constraint, sum to get N, then compute N - 
2025.

4. Answer form:
 Single integer: N - 2025.

(End of distilled information.)

To find the number of eight-digit integers that use each of 
the digits 1 through 8 exactly once and are divisible by 22, 
we check the divisibility rules for 22. Since 22 = 2 × 11, an 
integer must be divisible by both 2 and 11.
1. Divisibility by 2: An integer is divisible by 2 if its last 

digit is even. The even digits among 1 to 8 are 2, 4, 6, 
and 8. Therefore, the last digit of our eight-digit integer 
must be one of these four digits.

2. Divisibility by 11: A number is divisible by 11 if the 
difference between the sum of its digits in odd positions 
and the sum of its digits in even positions is divisible by 
11.

Let’s denote the digits of the number as d1, d2, d3, d4, d5, 
d6, d7, d8 where d8 is the last digit. The odd positions are 
d1, d3, d5, d7 and the even positions are d2, d4, d6, d8.
The total sum of digits from 1 to 8 is:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
If we denote the sum of the digits in odd positions as S1 
and the sum of the digits in even positions as S2, we know:
S1 + S2 = 36
The condition for divisibility by 11 gives:
S1 - S2 ≡ 0 mod 11
Since S2 = 36 - S1, this becomes:
2S1 - 36 ≡ 0 mod 11 gives 2S1 ≡ 36 mod 11
Solving this gives the only feasible sum for the odd 
positions:
S1 = 18
Next, we find 4-element subsets of 1,2,3,4,5,6,7,8 that sum 
to 18. There are exactly 8 such subsets. For each subset, 
the digits in odd positions can be arranged in 4! ways, and 
the digits in even positions (complement) include 2 even 
digits for the last digit and the remaining 3 digits arranged in 
3! ways. Therefore, each subset contributes:
4! × 2 × 3! = 288
Multiplying by the 8 valid subsets gives the total number of 
integers divisible by 22:
N = 8 × 288 = 2304
Finally, the difference is:
N - 2025 = 2304 - 2025 = 279
Thus, the final answer is: <Answer> 279 </Answer>

Question

Initial Answer

Task Abstraction Solution Instantiation

● Correct parts: Identified divisibility by 2 and 11, used 
total digit sum 36.

● Mistakes: Trial-and-error instead of solving modular 
congruence cleanly; arithmetic slips; skipped subset 
enumeration and complement parity check.

● Fix: Solve congruence with modular inverse, 
enumerate valid subsets, check last-digit options, 
compute carefully.

Feedback

Figure 1: We present an example trace of SELF-THOUGHT self-correcting on a sample from AIME
2025 using GPT-4O-MINI. The initial answer is simplified for clarity, and the full response is pro-
vided in Figure 6 in the Appendix. This initial response contains logical reasoning errors, incomplete
calculations, and an incorrect final result. By applying task abstraction, SELF-THOUGHT success-
fully identifies and corrects these mistakes.

The output, d, is a structured object that encapsulates the essence of the problem in a format designed
to guide subsequent solution generation. An example is presented in Figure 1.

Functionally, as a first step, our method extracts key information, identifying all salient variables,
values, and data points from x. Concurrently, it formalizes the problem restrictions, such as math-
ematical operator precedence or physical laws, to ensure the solution adheres to real-world rules.
These explicitly defined constraints are crucial for preventing errors. Finally, SELF-THOUGHT gen-
eralizes the problem, reframing x into a higher-level, more abstract, distilled task to ensure the
solution is robust and applicable to a wider range of similar inputs. Depending on the problem, the
structured task abstraction may also contain other constraints such as expected answer format.

In concert, these steps encourage the model to identify the underlying problem type rather than
focusing solely on the specific example. The process also translates the problem into an algorithmic
structure, identifying required input parameters and data types, effectively preparing the problem
for a programmatic solution. This comprehensive, multi-faceted analysis in the abstraction phase
ensures that the final solution in the next phase is grounded in a deep, accurate understanding of the
problem’s structure and constraints.

3.3 SOLUTION INSTANTIATION

Next, SELF-THOUGHT utilizes the distilled information d to generate a specific, concrete solution.
The objective here is to instantiate an improved answer (ŷt+1) by applying the abstract knowledge
of d to the initial query x and response ŷt. The model is provided with the prompt ℜ to act as a
problem-solving expert to analyze d, the input query x, and previous output ŷt to produce a refined
and accurate response ŷt+1:

ŷt+1 ∼ PM(·|ℜ ⊕ x⊕ ŷt ⊕ dt) (3)

The presence of explicitly defined constraints and the abstracted task in d serves as a powerful
guide, significantly reducing the likelihood of errors and ensuring that the solution aligns with the
true intent of the problem.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: A single step of self-correction performance on Game of 24, Word Sorting, Check-
mateInOne, AIME 2024, AIME 2025 with GPT-4O-MINI, GPT-4O, O3-MINI, and DEEPSEEK-R1.
Green (↑) and red (↓) arrows indicate performance changes against the previous attempt (i.e., INI-
TIAL (t = 0)). Bold corresponds to the best performance. We find that SELF-THOUGHT consistently
yields positive gains between the first and second attempts, demonstrating stable improvements.
While baseline approaches often erroneously modify a correct response into an incorrect one, SELF-
THOUGHT preserves correctness and consistently improves LLM performance.

Method Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025 Mean
Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆
c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆
c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1

GPT-4O-MINI

INITIAL (t = 0) 38.78 - - 55.0 - - 30.67 - - 20.0 - - 6.67 - - 30.0
REFLEX 24.49 ↓14.29 8.16 22.45 60.0 ↑5.0 7.5 2.5 9.33 ↓21.34 5.33 26.67 10.0 ↓10.0 0.0 10.0 10.0 ↑3.33 3.33 0.0 23.0 ↓7.0

SELF-REFINE 25.51 ↓13.27 11.22 24.49 58.75 ↑3.75 7.5 3.75 10.67 ↓20.0 6.67 26.67 13.33 ↓6.67 3.33 10.0 16.67 ↑10.0 10.0 0.0 25.0 ↓5.0

SELF-TICK 38.78 18.37 18.37 40.0 ↓15.0 7.5 22.5 20.0 ↓10.67 6.67 17.33 23.33 ↑3.33 6.67 3.33 13.33 ↑6.66 6.67 0.0 27.0 ↓3.0

REFLEXION 26.53 ↓12.25 9.18 21.43 60.0 ↑5.0 11.25 6.25 9.33 ↓21.34 4.0 25.33 13.33 ↓6.67 6.67 13.33 6.67 3.33 3.33 23.0 ↓7.0

SELF-THOUGHT 87.76 ↑48.98 51.02 2.04 100.0 ↑45.0 45.0 0.0 33.33 ↑2.66 14.67 12.0 30.0 ↑10.0 16.67 6.67 20.0 ↑13.33 13.33 0.0 54.0 ↑24.0

GPT-4O

INITIAL (t = 0) 17.35 - - 86.25 - - 41.33 - - 13.33 - - 10.0 - - 34.0
REFLEX 19.39 ↑2.04 11.22 9.18 81.25 ↓5.0 3.75 8.75 26.67 ↓14.66 12.0 26.67 13.33 0.0 0.0 6.67 ↓3.33 0.0 3.33 29.0 ↓5.0

SELF-REFINE 33.67 ↑16.32 27.55 11.22 78.75 ↓7.5 7.5 15.0 38.67 ↓2.66 13.33 16.0 20.0 ↑6.67 10.0 3.33 10.0 6.67 6.67 36.0 ↑2.0

SELF-TICK 30.61 ↑13.26 24.49 11.22 70.0 ↓16.25 3.75 20.0 30.67 ↓10.66 16.0 26.67 16.67 ↑3.34 3.33 0.0 10.0 6.67 6.67 32.0 ↓2.0

REFLEXION 36.73 ↑19.38 27.55 8.16 82.5 ↓3.75 6.25 10.0 25.33 ↓16.0 16.0 32.0 16.67 ↑3.34 10.0 6.67 10.0 6.67 6.67 34.0
SELF-THOUGHT 37.76 ↑20.41 30.61 10.2 100.0 ↑13.75 13.75 0.0 65.33 ↑24.0 32.0 8.0 33.33 ↑20.0 20.0 0.0 16.67 ↑6.67 10.0 3.33 51.0 ↑17.0

O3-MINI

INITIAL (t = 0) 86.73 - - 90.0 - - 34.67 - - 80.0 - - 73.33 - - 73.0
REFLEX 83.67 ↓3.06 5.1 8.16 90.0 8.75 8.75 32.0 ↓2.67 5.33 8.0 80.0 3.33 3.33 76.67 ↑3.34 3.33 0.0 72.0 ↓1.0

SELF-REFINE 86.73 11.22 11.22 87.5 ↓2.5 8.75 11.25 20.0 ↓14.67 4.0 18.67 83.33 ↑3.33 10.0 6.67 73.33 6.67 6.67 70.0 ↓3.0

SELF-TICK 0.0 ↓86.73 0.0 86.73 87.5 ↓2.5 7.5 10.0 13.33 ↓21.34 2.67 24.0 76.67 ↓3.33 3.33 6.67 66.67 ↓6.66 10.0 16.67 49.0 ↓24.0

REFLEXION 84.69 ↓2.04 7.14 9.18 97.5 ↑7.5 7.5 0.0 32.0 ↓2.67 12.0 14.67 80.0 3.33 3.33 66.67 ↓6.66 3.33 10.0 72.0 ↓1.0

SELF-THOUGHT 88.78 ↑2.05 11.22 9.18 97.5 ↑7.5 8.75 1.25 37.33 ↑2.66 21.33 18.67 86.67 ↑6.67 6.67 0.0 80.0 ↑6.67 6.67 0.0 78.0 ↑5.0

DEEPSEEK-R1
INITIAL (t = 0) 84.69 - - 97.5 - - 17.33 - - 80.0 - - 63.33 - - 69.0
REFLEX 64.29 ↓20.4 5.1 25.51 93.75 ↓3.75 2.5 6.25 16.0 ↓1.33 9.33 10.67 76.67 ↓3.33 0.0 3.33 63.33 6.67 6.67 63.0 ↓6.0

SELF-REFINE 52.04 ↓32.65 5.1 37.76 88.75 ↓8.75 1.25 10.0 16.0 ↓1.33 10.67 12.0 76.67 ↓3.33 3.33 6.67 70.0 ↑6.67 20.0 13.33 61.0 ↓8.0

SELF-TICK 17.35 ↓67.34 2.04 69.39 91.25 ↓6.25 0.0 6.25 5.33 ↓12.0 1.33 13.33 60.0 ↓20.0 0.0 20.0 53.33 ↓10.0 6.67 16.67 45.0 ↓24.0

REFLEXION 50.0 ↓34.69 6.12 40.82 90.0 ↓7.5 0.0 7.5 18.67 ↑1.34 14.67 13.33 56.67 ↓23.33 3.33 26.67 60.0 ↓3.33 6.67 10.0 55.0 ↓14.0

SELF-THOUGHT 85.71 ↑1.02 12.24 11.22 100.0 ↑2.5 2.5 0.0 20.0 ↑2.67 12.0 9.33 80.0 10.0 10.0 73.33 ↑10.0 13.33 3.33 72.0 ↑3.0

The SELF-THOUGHT method thus establishes a self-correction loop where the model’s internal
analysis of the problem, rather than a critique of its initial output, becomes the mechanism for re-
finement. This approach ensures that the final response is not merely a corrected version of an initial
attempt but a well-reasoned solution derived from a foundational understanding of the problem’s
structure. This two-step abstraction and instantiation process leads to more robust, reliable, and
consistent performance across a wide range of tasks.

3.4 TASK DISTILLATION FOR SMALLER MODELS

While SELF-THOUGHT is model-agnostic, we extend its utility to settings where smaller language
models struggle with abstraction. In such cases, we leverage the output of the Task Abstraction
step, d, produced by a stronger model. This distilled representation serves as a reusable template
that encodes the essential problem structure, constraints, and solution strategy. Given a distilled
abstraction d generated by a larger model ML, a smaller model MS can instantiate the solution as:

ŷSt+1 ∼ PMS
(ℜ⊕ x⊕ ŷSt ⊕ dL ⊕ dS), (4)

where ySt denotes the current output of the smaller model.

This extension effectively performs task distillation: instead of requiring MS to perform high-level
reasoning from scratch, it inherits the abstract reasoning trace from ML. As a result, smaller models
benefit from the structured guidance in d, leading to more accurate self-corrections without incurring
the computational overhead of repeatedly prompting larger models.

By decoupling abstraction from instantiation, SELF-THOUGHT not only improves self-correction in
a single model but also provides a scalable mechanism for transferring distilled reasoning to less
capable models.

4 EXPERIMENTAL SETUP

Datasets. We evaluate a wide range of tasks that require varying degrees of mathematical and al-
gorithmic reasoning, focusing on problem types where traditional self-correction methods fail. The
results and analysis of existing self-correction methods are provided in Appendix G. We conduct

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: A single step of self-correction performance on Game of 24, Word Sorting, Check-
mateInOne, AIME 2024, AIME 2025 with small models, QWEN-2.5-7B and LLAMA-3.3-70B.
Green (↑) and red (↓) arrows indicate performance changes against the previous attempt (i.e., INI-
TIAL (t = 0)). Bold corresponds to the best performance. Both SELF-THOUGHT and DISTIL-
THOUGHT achieve consistent improvements, with the latter leveraging task abstractions.

Method Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025 Mean
Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆
c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆
c→i(t0, t1) Acc@t1 ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc@t1

QWEN-2.5-7B
INITIAL (t = 0) 8.16 - - 13.75 - - 2.67 - - 20.0 - - 10.0 - - 11.0
REFLEX 6.12 ↓2.04 5.1 7.14 16.25 ↑2.5 5.0 2.5 0.0 ↓2.67 0.0 2.67 16.67 ↓3.33 3.33 6.67 10.0 0.0 0.0 10.0 ↓1.0

SELF-REFINE 6.12 ↓2.04 5.1 7.14 23.75 ↑10.0 13.75 3.75 1.33 ↓1.34 1.33 2.67 20.0 10.0 10.0 3.33 ↓6.67 3.33 10.0 11.0
SELF-TICK 0.0 ↓8.16 0.0 8.16 17.5 ↑3.75 13.75 10.0 0.0 ↓2.67 0.0 2.67 10.0 ↓10.0 3.33 13.33 6.67 ↓3.33 6.67 10.0 7.0 ↓4.0

REFLEXION 11.22 ↑3.06 9.18 6.12 21.25 ↑7.5 10.0 2.5 2.67 2.67 2.67 13.33 ↓6.67 3.33 10.0 13.33 ↑3.33 6.67 3.33 12.0 ↑1.0

SELF-THOUGHT 11.22 ↑3.06 8.16 5.1 66.25 ↑52.5 57.5 5.0 4.0 ↑1.33 4.0 2.67 20.0 3.33 3.33 10.0 10.0 10.0 22.0 ↑11.0

DISTIL-THOUGHT 41.84 ↑33.68 37.76 4.08 48.75 ↑35.0 40.0 5.0 10.67 ↑8.0 10.67 2.67 23.33 ↑3.33 13.33 10.0 13.33 ↑3.33 13.33 10.0 28.0 ↑17.0

LLAMA-3.3-70B
INITIAL (t = 0) 19.39 - - 75.0 - - 8.0 - - 33.33 - - 3.33 - - 28.0
REFLEX 42.86 ↑23.47 30.61 7.14 77.5 ↑2.5 12.5 10.0 1.33 ↓6.67 0.0 6.67 36.67 ↑3.34 6.67 3.33 3.33 0.0 0.0 32.0 ↑4.0

SELF-REFINE 33.67 ↑14.28 22.45 8.16 76.25 ↑1.25 11.25 10.0 5.33 ↓2.67 4.0 6.67 40.0 ↑6.67 10.0 3.33 6.67 ↑3.33 3.33 0.0 32.0 ↑4.0

SELF-TICK 14.29 ↓5.1 12.24 17.35 71.25 ↓3.75 5.0 8.75 6.67 ↓1.33 5.33 6.67 30.0 ↓3.33 6.67 10.0 6.67 ↑3.33 3.33 0.0 26.0 ↓2.0

REFLEXION 23.47 ↑4.08 19.39 15.31 76.25 ↑1.25 7.5 6.25 5.33 ↓2.67 1.33 4.0 26.67 ↓6.66 3.33 10.0 3.33 0.0 0.0 27.0 ↓1.0

SELF-THOUGHT 64.29 ↑44.9 48.98 4.08 98.75 ↑23.75 25.0 1.25 2.67 ↓5.33 1.33 6.67 36.67 ↑3.34 10.0 6.67 16.67 ↑13.33 13.33 0.0 44.0 ↑16.0

DISTIL-THOUGHT 100.0 ↑80.61 80.61 0.0 100.0 ↑25.0 25.0 0.0 38.67 ↑30.67 38.67 8.0 46.67 ↑13.33 20.0 6.67 23.33 ↑20.0 20.0 0.0 62.0 ↑34.0

experiments on Game of 24 (Yao et al., 2023), CheckmateInOne (Srivastava et al., 2023), Word
Sorting (Suzgun et al., 2023), AIME 2024 (AIME, 2024), and AIME 2025 (AIME, 2025). Addi-
tional dataset details are provided in Appendix B.1.

Baselines and Comparison. We compare our methods to relevant prior approaches based on
prompting, sampling, or fine-tuning a single model for both task-solving and self-correction. For
prompting, we specifically compare to REFLEX (Song et al., 2025), a basic iterative refinement
method where the model revises its initial output. SELF-REFINE (Madaan et al., 2023) is a rep-
resentative approach for eliciting self-correction behaviors. REFLEXION (Shinn et al., 2023) itera-
tively evaluates its output, generates verbal feedback, and refines its response based on this feedback.
SELF-TICK (Cook et al., 2024) generates a checklist of Yes/No questions for the task and uses any
unsatisfied points as feedback to improve its output. We include SELF-CONSISTENCY (Wang et al.,
2023) as a sampling-based baseline, since recent work (Huang et al., 2023) shows it can outperform
prompting-based self-correction methods when the number of generated samples matches the num-
ber of correction steps. Among the fine-tuning based approaches, we compare to SUPERCORRECT
(Yang et al., 2025), which enhances small LLM reasoning by distilling thought templates and in-
corporating self-correction mechanisms, S2R (Ma et al., 2025) employs reinforcement learning to
teach LLMs to self-verify and self-correct during inference, and STaSC (Moskvoretskii et al., 2025)
focuses on self-correction for small language models through iterative fine-tuning using solely self-
generated data. Complete details of baseline methods are in Appendix B.2.

Models. We evaluate our approaches on a diverse set of language models, covering both large
and small models. The large models include GPT-4O-MINI (OpenAI, 2024b) and GPT-4O (Ope-
nAI, 2024a), representing strong general-purpose systems.1 To assess performance in resource-
constrained settings, we also consider smaller models such as QWEN-2.5-7B (Qwen, 2025) and
LLAMA-3.3-70B (Llama Team, 2024). In addition, we include specialized models focused on rea-
soning, such as O3-MINI (OpenAI, 2025) and DEEPSEEK-R1 (Guo et al., 2025), which are explicitly
designed to handle complex problem-solving tasks.

Evaluation Protocol and Metrics. We evaluate performance using different accuracy metrics tai-
lored to the specific requirements of each tasks: Exact Match (EM) (Suzgun & Kalai, 2024), which
requires the output to match the ground-truth label exactly; Soft Match (SM) (Suzgun & Kalai,
2024; Suzgun et al., 2025), which accepts answers containing the correct label while ignoring mi-
nor formatting differences; and Functionally Correct (FC) (Suzgun & Kalai, 2024; Suzgun et al.,
2025), which considers outputs correct if they satisfy task-specific constraints even when formatting
or presentation differs. Following prior work (Suzgun & Kalai, 2024; Suzgun et al., 2025; Huang
et al., 2023), we use EM for CheckmateInOne, SM for Word Sorting, and FC for Game of 24, AIME
2024, and AIME 2025.

1We note that newer model families such as GPT-4.1 and GPT-5 were not included, since our experiments
were initiated prior to their release, and a full re-evaluation with these models would have incurred considerable
additional cost.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(a) GPT-4O-MINI

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(b) GPT-4O

0 1 2 3 4 5
Iteration

60

65

70

75

80

85

90

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(c) O3-MINI

0 1 2 3 4 5
Iteration

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(d) DEEPSEEK-R1

0 1 2 3 4 5
Iteration

10

15

20

25

30

A
cc

u
ra

cy
(%

) Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(e) QWEN-2.5-7B

0 1 2 3 4 5
Iteration

20

25

30

35

40

45

50

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(f) LLAMA-3.3-70B

0 1 2 3 4 5
Iteration

0

5

10

15

20

A
cc

u
ra

cy
(%

) Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(g) QWEN-2.5-7B

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(h) LLAMA-3.3-70B

Figure 2: Accuracy over iterations with self-correction methods across models. Top row show re-
sults on AIME 2024 using large models, while Bottom row show results on AIME 2024 (subfigures
e and f) and AIME 2025 (subfigures g and h). Please refer to Figures 7 and 8 in the Appendix for
the iteration effect plots of other tasks.

To measure self-correction performance, we report and analyze the following metrics: (1) Acc@ti:
accuracy at the i-th attempt; (2) ∆i→c(ti−1, ti): the fraction of problems that were incorrect at
attempt i − 1 but corrected at attempt i, capturing how many new problems self-correction solves;
and (3) ∆c→i(ti−1, ti): the fraction of problems that were correct at attempt i − 1 but become
incorrect at attempt i, reflecting how reliably the model preserves correct answers.

Selecting Task Abstraction. For our experiments, we randomly sample a single task abstraction
from the set of successful cases, i.e., those in which the large model (GPT-4O-MINI) successfully
corrected the initial output. Our idea is that abstractions associated with successful corrections
provide at least one concrete example of reasoning that leads to the right solution, thereby offering
a useful, though not necessarily optimal, guideline for subsequent models. The selected abstraction
is then reused across smaller models, serving as structured guidance to support their self-correction.
This choice allows us to test whether relatively lightweight abstractions, distilled from a mid-sized
model, are sufficient to enhance the performance of smaller models without relying exclusively on
the largest and most costly systems.

5 EXPERIMENTS AND RESULTS

Main Results. Table 1 shows the self-correction results across five reasoning benchmarks and
four different models. We observe that SELF-THOUGHT consistently yields the highest accuracy
after one round of self-correction, outperforming other intrinsic methods such as SELF-REFINE,
SELF-TICK, and REFLEXION. We show results on iterative self-correction in the experiments, with
additional analysis in Appendix F.3. For instance, on GPT-4O-MINI, SELF-THOUGHT improves
Acc@t1 from 38.78% to 87.76% on Game of 24 and from 55.0% to 100.0% on Word Sorting,
corresponding to gains of ↑48.98% and ↑45.0%, respectively. In comparison, SELF-REFINE and
REFLEXION show far smaller net improvements and often increase ∆c→i(t0, t1), indicating that
they mistakenly alter correct responses. This trend is most evident in reasoning-heavy tasks such
as CheckmateInOne, where SELF-THOUGHT consistently improves performance across all models,
while competing approaches often reduce accuracy by altering correct answers into incorrect ones.

Looking across models, general models such as GPT-4O-MINI and GPT-4O benefit the most from
SELF-THOUGHT. On GPT-4O, it raises mean Acc@t1 from 34.0% (INITIAL (t = 0)) to 51.0%,
with especially large gains on CheckmateInOne and AIME 2024. Reasoning models like O3-MINI
and DEEPSEEK-R1, which already start from stronger baselines, still see consistent positive gains,
SELF-THOUGHT improves mean Acc@t1 from 73.0% to 78.0% on O3-MINI and from 69.0% to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025

Initial (t = 0) Self-Consistency (n = 3) Self-Consistency (n = 5) Self-Thought (t = 3) Self-Thought (t = 5) Distil-Thought (t = 3) Distil-Thought (t = 5)

Figure 3: Comparison of SELF-THOUGHT and DISTIL-THOUGHT with the SELF-CONSISTENCY
on O3-MINI and QWEN-2.5-7B. See Figure 5 in Appendix E for the results on other models.

72.0% on DEEPSEEK-R1. Importantly, the balance between ∆i→c(t0, t1) and ∆c→i(t0, t1) con-
firms that SELF-THOUGHT encourages conservative but effective revisions. For example, on GPT-
4O, it achieves ∆i→c(t0, t1) of 13.75% on Word Sorting while keeping ∆c→i(t0, t1) zero, unlike
SELF-TICK, which achieves a high ∆i→c(t0, t1) but with much higher ∆c→i(t0, t1). Taken to-
gether, these results show that SELF-THOUGHT reliably improves self-correction across tasks and
scales, whereas prior intrinsic methods either provide limited benefits or destabilize performance by
introducing unnecessary changes.

Results on Small Models. Table 2 shows the results on QWEN-2.5-7B and LLAMA-3.3-70B. We
observe that baseline self-correction methods often fail to deliver consistent gains and, in most cases,
even degrade performance. For instance, on QWEN-2.5-7B, REFLEX reduces mean accuracy from
20.0 at initialization to 10.0, while SELF-TICK drops it further to 7.0. A similar pattern holds for
LLAMA-3.3-70B, where SELF-TICK lowers mean accuracy from 28.0 to 26.0, and SELF-REFINE
shows only modest improvements to 32.0. These trends highlight that small models struggle to
generate useful intrinsic feedback, often flipping correct answers into incorrect ones.

In contrast, both SELF-THOUGHT and especially DISTIL-THOUGHT achieve substantial improve-
ments by leveraging task abstractions distilled from larger models. On QWEN-2.5-7B, DISTIL-
THOUGHT raises mean accuracy from 11.0 to 28.0, outperforming all baselines, while SELF-
THOUGHT provides a moderate improvement to 22.0. The effect is even more striking for LLAMA-
3.3-70B, where DISTIL-THOUGHT boosts mean accuracy from 28.3 to 62.0, more than doubling
performance, with particularly large gains on reasoning-heavy tasks such as AIME 2024 (from 33.0
to 46.67) and AIME 2025 (from 3.33 to 23.33). These results demonstrate that abstraction transfer
offers small models a reliable pathway to self-correction, bridging the gap between their limited
reasoning ability and the stronger feedback signals required for improvement.

Effect of Iterative Correction. We examine the effect of iterative correction for all tasks us-
ing different models. The results on AIME 2024 and AIME 2025 are depicted in Figure 4, with
more results on other tasks provided in Appendix F.3. We find that iterative self-correction con-
sistently improves accuracy across models, with the largest gains in early iterations. Importantly,
this early-stage improvement also translates to reduced computational cost, as models require fewer
refinement cycles to reach high-quality solutions. DISTIL-THOUGHT achieves the highest correct-
flip proportions, outperforming baseline self-correction methods such as SUPERCORRECT and S2R
by a notable margin (10 − 15% improvement in early rounds). While later iterations continue to
provide improvements, the marginal gains diminish after 2–3 rounds. Additionally, model-only
self-correction without external guidance or feedback is less effective (e.g., using external tools for
feedback (Gou et al., 2024)), showing slower convergence and lower overall gains compared to
approaches leveraging structured iterative updates.

Comparison with SELF-CONSISTENCY. Recent work by Huang et al. (2023) indicates that
SELF-CONSISTENCY outperforms many existing self-correction strategies, such as multi-agent de-
bate (Du et al., 2023; Liang et al., 2024; Chen et al., 2023), when applied under the same number
of response samples. We therefore adopt SELF-CONSISTENCY (Wang et al., 2023) as an addi-
tional baseline for comparison with our proposed methods. SELF-CONSISTENCY generates mul-
tiple candidate responses and selects the final output through majority voting. We evaluate this
method using n ∈ {3, 5} samples, aligning with the number of self-correction iteration used in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Results of correct and incorrect flips, comparing
with fine-tuning based models on AIME 2024 and AIME
2025. See Table 4 in the Appendix for detailed results on all
evaluation tasks.

Method Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

∆i→c(t0, t1)∆
c→i(t0, t1)∆

i→c(t1, t2)∆
c→i(t1, t2)∆

i→c(t2, t3)∆
c→i(t2, t3)∆

i→c(t3, t4)∆
c→i(t3, t4)∆

i→c(t4, t5)∆
c→i(t4, t5)

AIME 2024

SUPERCORRECT 0.0 0.0 3.33 0.00 3.33 0.00 0.00 0.00 0.00 0.00
S2R 3.33 10.00 0.00 0.00 3.33 3.33 3.33 3.33 10.00 3.33
STaSC 0.00 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SELF-THOUGHT 3.33 3.33 3.33 0.00 0.00 0.00 3.33 0.00 0.00 0.00
DISTIL-THOUGHT 13.33 10.00 3.33 0.00 3.33 3.33 6.67 3.33 0.00 0.00

AIME 2025

SUPERCORRECT 3.33 0.00 6.67 0.00 0.00 0.00 3.33 0.00 3.33 3.33
S2R 3.33 6.67 3.33 6.67 0.00 3.33 0.00 0.00 6.67 0.00
STaSC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SELF-THOUGHT 10.00 10.00 3.33 0.00 3.33 3.33 3.33 0.00 0.00 0.00
DISTIL-THOUGHT 13.33 10.00 3.33 0.00 6.67 6.67 0.00 0.00 3.33 0.00

0 1 2 3 4 5
0

6

12

18

24

30

A
cc

u
ra

cy
(%

)

0 1 2 3 4 5
SuperCorrect

S2R

STaSC

Self-Thought

Distil-Thought

Figure 4: Accuracy over iterations on
(Right) AIME 2024 and (Left) AIME
2025.

our methods. Figure 3 shows the results across O3-MINI and QWEN-2.5-7B on five reasoning
tasks. On O3-MINI, SELF-CONSISTENCY shows moderate gains over the initial responses, espe-
cially on Word Sorting, AIME 2024, and AIME 2025. However, our methods consistently match
or surpass SELF-CONSISTENCY. For example, on CheckmateInOne, where SELF-CONSISTENCY
only marginally improves performance, SELF-THOUGHT achieves a notable increase in accuracy,
indicating its ability to better exploit intermediate reasoning. Similarly, on AIME 2024 and AIME
2025, SELF-THOUGHT with t = 5 outperforms SELF-CONSISTENCY, highlighting the effective-
ness of structured task distillation in improving final answers. The difference is more noticeable
on QWEN-7B. On small models, SELF-CONSISTENCY provides limited improvement, and in some
cases (e.g., CheckmateInOne), it remains close to the baseline. In contrast, both SELF-THOUGHT
and DISTIL-THOUGHT yield substantial gains. For instance, DISTIL-THOUGHT with t = 5 boosts
accuracy by more than 20 points on Game of 24 and by over 15 points on Word Sorting compared to
SELF-CONSISTENCY, showing the scalability of our methods even for small models. These results
suggest that while SELF-CONSISTENCY can provide benefits through sampling, our approaches
more effectively harness reasoning traces, yielding stronger and more stable improvements across
diverse tasks.

Comparison with Fine-Tuning Baselines. Table 3 and Figure 4 show the comparison results
of our methods with fine-tuned based self-correction methods on AIME 2024 and AIME 2024,
with more results provided in Appendix D. Our methods, SELF-THOUGHT and DISTIL-THOUGHT,
achieve clear gains over all fine-tuning based baselines. DISTIL-THOUGHT shows the strongest
trends, with steady accuracy growth and the highest correct-flip rates (e.g., 13.3% in iteration 1),
while SELF-THOUGHT yields consistent improvements up to 16% accuracy on AIME 2025. In
contrast, S2R and STaSC plateau or decline, and SUPERCORRECT stays flat. Notably, many base-
lines are fine-tuned on math datasets for self-correction and benefit from training on task, whereas
our methods obtain strong generalization without heavy in-domain supervision. Overall, this high-
lights the efficiency of our lightweight self-correction strategies compared to costly fine-tuning ap-
proaches.

6 CONCLUSION

We introduce SELF-THOUGHT and DISTIL-THOUGHT, two complementary approaches for enhanc-
ing self-correction in language models. SELF-THOUGHT empowers models to refine their reasoning
through structured introspection, while DISTIL-THOUGHT leverages distilled guidance from a larger
model to improve correction efficiency and stability. Together, they offer a lightweight yet effective
alternative to existing prompting- and fine-tuning-based methods. Our experiments across diverse
reasoning benchmarks demonstrate consistent improvements in correction accuracy and flip reliabil-
ity, especially in early iterations, highlighting both the generality and robustness of our framework.
Beyond performance, our analysis sheds light on the limitations of current self-correction techniques
and underscores the value of structured reasoning templates for building more trustworthy systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We run all experiments on public benchmarks. We use publicly accessible large language models
for evaluation, API access to GPT models is available at https://openai.com/api, and we
use HuggingFace for open-source models.

REFERENCES

AIME. Aime 2024, 2024. URL https://huggingface.co/datasets/
HuggingFaceH4/aime_2024. Accessed: 2025.

AIME. Aime 2025, 2025. URL https://huggingface.co/datasets/yentinglin/
aime_2025. Accessed: 2025.

Hussam Alkaissi and Samy I McFarlane. Artificial hallucinations in chatgpt: implications in scien-
tific writing. Cureus, 15(2), 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
ai. arXiv preprint arXiv:2506.02153, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
transactions on intelligent systems and technology, 15(3):1–45, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and Denny Zhou. Teaching large language models
to self-debug. In The 61st Annual Meeting Of The Association For Computational Linguistics,
2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=KuPixIqPiq.

Jonathan Cook, Tim Rocktäschel, Jakob Nicolaus Foerster, Dennis Aumiller, and Alex Wang. TICK-
ing all the boxes: Generated checklists improve LLM evaluation and generation. In Language
Gamification - NeurIPS 2024 Workshop, 2024. URL https://openreview.net/forum?
id=Q3y6QhOUnI.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Ahmed Elgohary, Christopher Meek, Matthew Richardson, Adam Fourney, Gonzalo Ramos, and
Ahmed Hassan Awadallah. Nl-edit: Correcting semantic parse errors through natural language
interaction. arXiv preprint arXiv:2103.14540, 2021.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Realtoxici-
typrompts: Evaluating neural toxic degeneration in language models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020, pp. 3356–3369, 2020.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Sx038qxjek.

10

https://openai.com/api
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/yentinglin/aime_2025
https://huggingface.co/datasets/yentinglin/aime_2025
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=Q3y6QhOUnI
https://openreview.net/forum?id=Q3y6QhOUnI
https://openreview.net/forum?id=Sx038qxjek
https://openreview.net/forum?id=Sx038qxjek


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Deli Chen, Dongjie
Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Hanwei Xu, Honghui Ding, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Ji-
ashi Li, Jingchang Chen, Jingyang Yuan, Jinhao Tu, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi
Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaichao You, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu,
Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingxu Zhou, Meng Li, Miaojun
Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi
Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping
Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Tao Yun, Tian Pei,
Tianyu Sun, T. Wang, Wangding Zeng, Wen Liu, Wenfeng Liang, Wenjun Gao, and Wenqin Yu.
Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. Nature, 648:633–639,
2025. doi: 10.1038/s41586-025-09422-z. URL https://www.nature.com/articles/
s41586-025-09422-z.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
their own mistakes? a critical survey of self-correction of llms. Transactions of the Association
for Computational Linguistics, 12:1417–1440, 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36:39648–39677, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
agent debate. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 17889–17904, 2024.

Dancheng Liu, Amir Nassereldine, Ziming Yang, Chenhui Xu, Yuting Hu, Jiajie Li, Utkarsh Kumar,
Changjae Lee, Ruiyang Qin, Yiyu Shi, et al. Large language models have intrinsic self-correction
ability. arXiv preprint arXiv:2406.15673, 2024.

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He, Sean Welleck, Hannaneh Hajishirzi, and
Yejin Choi. Rainier: Reinforced knowledge introspector for commonsense question answering.
arXiv preprint arXiv:2210.03078, 2022.

AI@Meta Llama Team. The llama 3 herd of models. arXiv e-prints, pp. arXiv–2407, 2024.

Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu, Jiaqi Chen, Bang Zhang, Xin Zhou, Nan
Du, and Jia Li. S2R: Teaching LLMs to self-verify and self-correct via reinforcement learning.
In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 22632–22654, 2025. doi: 10.18653/v1/2025.acl-long.1104. URL
https://aclanthology.org/2025.acl-long.1104/.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 1906–1919, 2020.

11

https://www.nature.com/articles/s41586-025-09422-z
https://www.nature.com/articles/s41586-025-09422-z
https://aclanthology.org/2025.acl-long.1104/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Viktor Moskvoretskii, Chris Biemann, and Irina Nikishina. Self-taught self-correction for small lan-
guage models. In Scaling Self-Improving Foundation Models without Human Supervision - ICLR
2025 Workshop, 2025. URL https://openreview.net/forum?id=vKE0StOgZ6.

OpenAI. Hello GPT-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. GPT-4o mini: Advancing Cost-Efficient Intelligence, 2024b. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAI. OpenAI o3-mini System Card, 2025. URL https://openai.com/index/
o3-mini-system-card/.

Qwen. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2025.

Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio Petroni, Patrick Lewis, Gautier Izacard, Qingfei
You, Christoforos Nalmpantis, Edouard Grave, and Sebastian Riedel. PEER: A collaborative
language model. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=KbYevcLjnc.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Xiaoshuai Song, Yanan Wu, Weixun Wang, Jiaheng Liu, Wenbo Su, and Bo Zheng. Progco: Pro-
gram helps self-correction of large language models. arXiv preprint arXiv:2501.01264, 2025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan
Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum,
Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia
Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej
Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chen-
lin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt,
Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro,
Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks,
Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguı́
González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa,
David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin,
Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar
Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova,
Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, El-
lie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang,
Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozh-
skii, Fanyue Xia, Fatemeh Siar, Fernando Martı́nez-Plumed, Francesca Happé, Francois Chol-
let, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germàn Kruszewski,
Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez,
Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
jishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hi-
romu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski,
Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Je-
sujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller,

12

https://openreview.net/forum?id=vKE0StOgZ6
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/o3-mini-system-card/
https://openai.com/index/o3-mini-system-card/
https://openreview.net/forum?id=KbYevcLjnc


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-
Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina
Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Math-
ewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson,
Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-
Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis
Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Ho-
eve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin
Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,
Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen, Michael Gu, Michael
Ivanitskiy, Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilacqua, Michi-
hiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Ti-
wari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun
Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Ni-
tish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush
Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan
Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wise-
man, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev
Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebas-
tian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank
Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar,
Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon
Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene,
Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko,
Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin
Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj,
Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas
Raunak, Vinay Venkatesh Ramasesh, vinay uday prabhu, Vishakh Padmakumar, Vivek Sriku-
mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,
Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang,
and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Mirac Suzgun and Adam Tauman Kalai. Meta-prompting: Enhancing language models with task-
agnostic scaffolding. arXiv preprint arXiv:2401.12954, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pp. 13003–13051. Association for Computational Linguis-
tics, 2023. doi: 10.18653/v1/2023.findings-acl.824. URL https://aclanthology.org/
2023.findings-acl.824/.

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi, Dan Jurafsky, and James Zou. Dynamic cheat-
sheet: Test-time learning with adaptive memory. arXiv preprint arXiv:2504.07952, 2025.

13

https://openreview.net/forum?id=uyTL5Bvosj
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Niket Tandon, Aman Madaan, Peter Clark, Keisuke Sakaguchi, and Yiming Yang. Inter-
script: A dataset for interactive learning of scripts through error feedback. arXiv preprint
arXiv:2112.07867, 2021.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot
find reasoning errors, but can correct them given the error location. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 13894–13908, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
Advances in Neural Information Processing Systems, 37:113519–113544, 2024.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E. Gonzalez, Bin CUI, and Shuicheng
YAN. Supercorrect: Advancing small LLM reasoning with thought template distillation and self-
correction. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=PyjZO7oSw2.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=5Xc1ecxO1h.

Michihiro Yasunaga and Percy Liang. Graph-based, self-supervised program repair from diagnostic
feedback. In International Conference on Machine Learning, pp. 10799–10808. PMLR, 2020.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improving lan-
guage models via plug-and-play retrieval feedback. arXiv preprint arXiv:2305.14002, 2023.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, and Songfang Huang. How well do large
language models perform in arithmetic tasks? arXiv preprint arXiv:2304.02015, 2023.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_3ELRdg2sgI.

14

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=PyjZO7oSw2
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

A Limitations & Future Work 16

B Additional Experiment Details 16

B.1 Datasets and Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

B.2.1 Compression against SELF-CONSISTENCY . . . . . . . . . . . . . . . . . 17

B.2.2 Compression against SUPERCORRECT . . . . . . . . . . . . . . . . . . . 17

B.3 Answer Extraction Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B.4 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Prompts 18

C.1 Initial Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Task Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C.3 Solution Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D Additional Comparison with Fine-tuning Baselines 22

E Additional Comparison with SELF-CONSISTENCY 23

F Additional Experiments and Results 24

F.1 Full Initial Answer for An Example . . . . . . . . . . . . . . . . . . . . . . . . . 24

F.2 Results on Second Step of Self-Correction . . . . . . . . . . . . . . . . . . . . . . 25

F.3 Additional Results on Effect of Iterative Correction . . . . . . . . . . . . . . . . . 26

G Results from Baseline Studies 27

G.1 Additional Analysis on Results from SELF-REFINE . . . . . . . . . . . . . . . . . 27

G.2 Additional Analysis on Results from SELF-TICK . . . . . . . . . . . . . . . . . . 28

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LIMITATIONS & FUTURE WORK

Task Abstraction Selection. Our current approach relies on randomly selecting task abstractions
from successful GPT-4O-MINI cases. While this provides a practical starting point, it does not
guarantee that the chosen abstraction is the most effective one for a given problem. Future work
could explore more principled strategies, such as embedding-based similarity measures to align
problems with the most relevant abstractions. Additionally, abstractions could be generated from
stronger models (e.g., GPT-4O, O3-MINI, or DEEPSEEK-R1), which may yield richer reasoning
patterns. A systematic comparison across source models would clarify whether larger and more
capable models produce abstractions that better generalize across tasks.

B ADDITIONAL EXPERIMENT DETAILS

B.1 DATASETS AND TASKS

To evaluate the efficacy of our proposed approach compared to other state-of-the-art proposed self-
correction baselines, we consider a wide range of tasks and datasets that require various degrees of
mathematical and algorithmic reasoning. The introduction to the evaluation datasets is as follows:

• Game of 24 (Yao et al., 2023): A mathematical reasoning challenge where the objective
is to form an expression that evaluates to 24 using four given numbers exactly once. For
instance, if the input values were “7 7 8 11,” one valid answer would be “8 ∗ (7 + 7 −
11).” This task emphasizes systematic search, strategic reasoning, and pattern recognition.
We use the 99 examples from (Yang et al., 2024) to evaluate models capacity for refining
computational heuristics and strategy over manual attempts.

• CheckmateInOne (Srivastava et al., 2023): A chess reasoning challenge where the objec-
tive is to identify the move, expressed in Standard Algebraic Notation (SAN), that delivers
checkmate in a given position. The input consists of a sequence of prior moves leading to
a state where a one-move checkmate is possible. For instance, after the sequence “1. e4 e5
2. Qh5 Nc6 3. Bc4 Nf6,” the correct output is “Qxf7#.” This task probes spatial reasoning,
rule application, and tactical foresight. We use 3,500 curated game positions to evaluate
models’ ability to achieve exact match accuracy in identifying checkmating moves.

• Word Sorting (Suzgun et al., 2023): A linguistic reasoning challenge where the model
must sort a given list of words according to a specified criterion, such as alphabetical order,
length, or semantic attributes. For example, sorting “cat, elephant, dog” by length yields
“cat, dog, elephant.” This task tests systematic application of sorting rules, attention to fine-
grained instructions, and consistency in following multi-step language-based procedures.

• AIME 2024 and AIME 2025: The American Invitational Mathematics Examination
(AIME) is a prestigious high-school competition featuring complex problems across al-
gebra, combinatorics, number theory, geometry, and probability. These questions require
deep mathematical reasoning and multi-step problem-solving. We consider two subsets
that are shown to be challenging for large language models (Suzgun et al., 2025), namely,
AIME 20242 and AIME 20253, where each subset has 30 questions.

B.2 BASELINES

Here, we introduce the details of the baseline methods for comparison with our proposed method:

• REFLEX: REFLEX is a basic iterative refinement method in which the LLM reflects on
its initial output and generates a revised response. We include REFLEX as one of our
comparison baselines, following the recent work of Song et al. (2025), which showed that
this simple approach can improve performance when using large base models such as GPT-
4o (refer to Table 1 in Song et al. (2025) for detailed results).

2https://huggingface.co/datasets/HuggingFaceH4/aime_2024
3https://huggingface.co/datasets/yentinglin/aime_2025

16

https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/yentinglin/aime_2025


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• SELF-REFINE (Madaan et al., 2023): SELF-REFINE iteratively reviews its own output to
generate feedback and proposes refinements based on the feedback from the previous step,
continuing this process until no errors are detected or a maximum number of iterations is
reached.

• REFLEXION (Shinn et al., 2023): REFLEXION is an iterative approach where the model
first evaluates its output, then generates verbal feedback about its previous output based on
the evaluation and uses this feedback to refine its output. Shinn et al. (2023) uses ground
truth labels about answer correctness for evaluation to guide the self-correction process.
However, in our experiments, we rely on the Chain-of-Thought (CoT) generated by the
model itself, because we assume that the ground truth context or an external API is not
available (see Section 4.2 in Shinn et al. (2023)).

• SELF-TICK (Cook et al., 2024): SELF-TICK first generates a checklist, i.e., Yes/No
questions, for the input task, and then verifies whether the generated response satisfies all
the questions from the checklist one by one. Any unsatisfied verification points will be
used as feedback to refine and improve its own output.

• SELF-CONSISTENCY (Wang et al., 2023): SELF-CONSISTENCY is a decoding strategy
that samples diverse reasoning trajectories from the model and selects the most consistent
answer based on majority voting among these reasoning traces.

• SuperCorrect (Yang et al., 2025): SuperCorrect is a two-stage framework in which a large
teacher model supervises the reasoning and self-correction processes of a smaller student.
First, the reasoning trajectories generated by the teacher model are used to perform Super-
vised Fine-Tuning (SFT) on the student model to enhance its reasoning capabilities. Then,
the teacher model provides corrections for the hierarchical reasoning trajectories generated
by the SFT-fine-tuned student model, and a collaborative Direct Preference Optimization
(DPO) technique is applied to improve the ability of the student model to refine its outputs
based on these correction traces. Yang et al. (2025) used o1-mini or GPT-4o-mini as
the teacher model and Qwen-2.5-Math-7B-Instruct as the student model.

• S2R (Ma et al., 2025): S2R introduces a framework that enhances LLM reasoning by
teaching models to self-verify and self-correct during inference. It begins by initializing
LLMs with iterative self-verification and self-correction behaviors through supervised fine-
tuning on curated data. These skills are further strengthened by both outcome-level and
process-level reinforcement learning, with minimized resource requirements, enabling the
model to adaptively refine its reasoning process during inference. Experimental results
demonstrate significant accuracy improvements, showcasing the effectiveness of S2R in
enhancing LLM reasoning capabilities.

• STaSC (Moskvoretskii et al., 2025): STaSC focuses on self-correction in small language
models through iterative fine-tuning using solely self-generated data. The Self-Taught Self-
Correction (STaSC) algorithm incorporates multiple algorithmic design choices, allowing
models to improve their outputs without external supervision. Experimental results on a
question-answering task demonstrate that STaSC effectively learns self-correction, leading
to significant performance improvements. The study provides insights into the mechanisms
of self-correction and the impact of different design choices on learning dynamics and
overall performance.

B.2.1 COMPRESSION AGAINST SELF-CONSISTENCY

Why should we compare our approach with SELF-CONSISTENCY (Wang et al., 2023)? SELF-
CONSISTENCY prompts models to generate multiple responses and select the most consistent re-
sponses by performing majority voting. A recent study (Huang et al., 2023) shows that SELF-
CONSISTENCY outperforms the multi-agent debate approach with the equivalent number of re-
sponses. A recent study compared majority voting with the other techniques and showed that it
outperforms other aggregation functions (Song et al., 2025).

B.2.2 COMPRESSION AGAINST SUPERCORRECT

Why should we compare our approach with SUPERCORRECT (Yang et al., 2025)? SUPERCORRECT
is a recent self-correcting model that leverages distillation from larger models. A model that is fine-

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

tuned in two stages, SFT and DPO. In the SFT stage, the model is fine-tuned on reasoning traces
generated by a larger model on math datasets, and in the DPO stage, it is fine-tuned on a preference
pair dataset of corrected reasoning trajectories generated by the large model and the small model.

B.3 ANSWER EXTRACTION PROTOCOL

To keep the evaluation consistent and reliable, all models are asked to write their final answers in a
structured and machine-readable format. Each answer is expected to be wrapped in the following
XML-style tags:

<Answer> Your Final Answer Here </Answer>

This specific format makes it easy to correctly read and process the answers, avoiding mistakes
from extra text or ambiguous outputs. After being extracted, the final answers are evaluated using
the accuracy measure for each specific task.

B.4 EVALUATION PROTOCOL

Given the diversity of tasks, we use different accuracy metrics tailored to the specific requirements
of each benchmark:

• Exact Match (EM). EM is a strict metric that marks an answer as correct only if it matches
the ground-truth label exactly, without extra text or formatting differences.

• Soft Match (SM). SM is a lenient metric that marks an answer as correct if the ground-
truth label appears in the model’s output, ignoring minor formatting differences such as
punctuation or whitespace. Unlike EM, SM does not require the output to match the label
verbatim.

• Functionally Correct (FC). FC is a flexible metric that marks an answer as correct if it
satisfies task-specific constraints, even when the exact wording, numeral presentation, or
formatting differs from the reference solution.

We apply EM for CheckmateInOne, SM for Word Sorting, and FC for Game of 24, AIME 2024,
and AIME 2025 benchmarks.

To measure self-correction performance, we report and analyze the following metrics: (1) Acc@ti:
accuracy at the i-th attempt; (2) ∆i→c(ti−1, ti): the fraction of problems that were incorrect at
attempt i − 1 but corrected at attempt i, capturing how many new problems self-correction solves;
and (3) ∆c→i(ti−1, ti): the fraction of problems that were correct at attempt i − 1 but become
incorrect at attempt i, reflecting how reliably the model preserves correct answers.

C PROMPTS

C.1 INITIAL GENERATION

Game of 24

Let’s play a game called 24. You’ll be given four integers, and your objective is to use each
number only once, combined with any of the four arithmetic operations (addition, subtrac-
tion, multiplication, and division) and parentheses, to achieve a total of 24. For example, if
the input is 4, 7, 8, and 8, the output could be (7 * 8) - (4 * 8). You only need to find one
feasible solution!
Input: {question}. Please provide the final answer within <Answer> Your Final Answer
Here </Answer>.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Word Sorting

Sort a list of words alphabetically, placing them in a single line of text separated by spaces.
Input: {question}. Please provide the final answer within <Answer> Your Final Answer
Here </Answer>.

CheckmateInOne

Given a series of chess moves written in Standard Algebraic Notation (SAN), determine the
next move that will result in a checkmate.
Input: {question}. Please provide the final answer within <Answer> Your Final Answer
Here </Answer>.

AIME 2024

Given the input question, your task is to provide the answer to the question.
Input: {question}. Please provide the final answer within <Answer> Your Final Answer
Here </Answer>.

AIME 2025

Given the input question, your task is to provide the answer to the question.
Input: {question}. Please provide the final answer within <Answer> Your Final Answer
Here </Answer>.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 TASK ABSTRACTION

Task Abstraction and Distillation

As a highly professional and intelligent expert in information distillation, you excel at
extracting essential information to solve problems from user input queries. You adeptly
transform this extracted information into a suitable format based on the respective type of
issue. If the problem can be generalized to a higher level to solve multiple issues, further
analysis and explanation will be provided upon your next response. Please categorize and
extract the crucial information required to solve the problem from the user’s input query.
Combining these two elements will generate distilled information. The distilled information
should include:

1. Values and information of key variables extracted from user input, which will be handed
over to the respective expert for task resolution, ensuring all essential information required
to solve the problem is provided.
2. The objective of the problem and corresponding constraints.
3. Extend the problem based on 1 and 2, propose a meta problem that can address the user
query and handle more input and output variations. Incorporate the real-world scenario of
the extended problem along with the types of key variables and information constraints
from the original problem to restrict the key variables in the extended problem. After that,
use the user query input key information as input to solve the problem, as an example.
4. Try to transform the problem into a Python algorithm problem, and provide the input
parameters.
5. Your task is to distill the problem; you shouldn’t give the final result or possible solution
in your response.

Please distill the information following the format below and cease responding after the
output of the distilled information.

Meta distiller Respond:

Distilled Information:

1. Key information:

2. Restriction: (It should be noted that the answer should strictly follow the real-world rule,
such as in an arithmetic equation, the priority of operators, the need for parentheses, etc.
So, according to the distilled information, emphasize the real-world rules that need to be
followed within the problem.)

3. Distilled task:

4. Python transformation:
Input parameters: (The names of each variable should be clear and not confusing, and
correspond to the entity names in the problem)
variable1 name = x
variable2 name = y
.....
variableN name = z

5. Answer form: (Optional, skip when there is no specific answer form)

** Note: The generation ends here. Do not show this message in your answer! **

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 SOLUTION INSTANTIATION

Solution Instantiation and Refinement

You are an expert in problem analysis and can apply previous problem-solving approaches to
new issues. The user will provide an input query and a specific task description. Your goal is
to analyze the user’s query and generate a specific solution based on the task description. If
the solution does not involve code, provide a final answer that is easy to extract from the text.

Distilled information:
{distilled information}
User Input:
{user input}

Instantiated Solution:
Please analyze the above user task description and thought template, and generate a specific,
detailed solution. Please provide a clear and extractable final answer within <Answer> Your
Final Answer Here </Answer>.

Solution Instantiation and Refinement (Small Models)

You are an expert in problem analysis and can apply previous problem-solving approaches to
new issues. The user will provide an input query and a specific task description. Your goal is
to analyze the user’s query and generate a specific solution based on the task description. If
the solution does not involve code, provide a final answer that is easy to extract from the text.

Distilled information:
{distilled information}
User Input:
{user input}
Thought Template:
{task abstraction}

Instantiated Solution:
Please analyze the above user task description and thought template, and generate a specific,
detailed solution. Please provide a clear and extractable final answer within <Answer> Your
Final Answer Here </Answer>.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ADDITIONAL COMPARISON WITH FINE-TUNING BASELINES

Table 4: Self-correction performance on Game of 24, Word Sorting, CheckmateInOne, AIME 2024,
and AIME 2025 using fine-tuning based baselines (SUPERCORRECT, S2R, STaSC) and our meth-
ods (SELF-THOUGHT, DISTIL-THOUGHT). Bold indicates the best performance.

Method Acc@0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Acc ∆i→c(t0, t1) ∆

c→i(t0, t1) Acc ∆i→c(t1, t2) ∆
c→i(t1, t2) Acc ∆i→c(t2, t3) ∆

c→i(t2, t3) Acc ∆i→c(t3, t4) ∆
c→i(t3, t4) Acc ∆i→c(t4, t5) ∆

c→i(t4, t5)

Game of 24
SuperCorrect 11.22 10.2 0.0 1.02 7.14 1.02 4.08 5.1 1.02 3.06 12.24 8.16 1.02 12.24 2.04 2.04
S2R 20.41 14.29 5.1 11.22 9.18 1.02 6.12 10.2 5.1 4.08 8.16 4.08 6.12 6.12 3.06 5.1
STaSC 2.04 0.0 0.0 2.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.02 1.02 0.0
SELF-THOUGHT 8.16 11.22 8.16 5.1 12.24 1.02 0.0 11.22 1.02 2.04 12.24 2.04 1.02 12.24 0.0 0.0
DISTIL-THOUGHT 8.16 41.84 37.76 4.08 52.04 23.47 13.27 47.96 9.18 13.27 51.02 11.22 8.16 42.86 10.2 18.37

Word Sorting
SuperCorrect 2.5 1.25 0.0 1.25 0.0 0.0 1.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S2R 16.25 3.75 0.0 12.5 3.75 1.25 1.25 1.25 0.0 2.5 1.25 0.0 0.0 0.0 0.0 1.25
STaSC 18.75 10.0 0.0 8.75 7.5 1.25 3.75 6.25 0.0 1.25 3.75 0.0 2.5 3.75 0.0 0.0
SELF-THOUGHT 13.75 66.25 57.5 5.0 61.25 5.0 10.0 53.75 1.25 8.75 45.0 2.5 11.25 35.0 3.75 13.75
DISTIL-THOUGHT 13.75 48.75 40.0 5.0 32.5 8.75 25.0 33.75 10.0 8.75 33.75 8.75 8.75 33.75 8.75 8.75

CheckmateInOne
SuperCorrect 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S2R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
STaSC 1.33 0.0 0.0 1.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SELF-THOUGHT 2.67 4.0 4.0 2.67 5.33 1.33 0.0 5.33 0.0 0.0 6.67 1.33 0.0 5.33 1.33 2.67
DISTIL-THOUGHT 2.67 10.67 10.67 2.67 25.33 18.67 4.0 25.33 12.0 12.0 29.33 16.0 12.0 22.67 10.67 17.33

AIME 2024
SuperCorrect 13.33 13.33 0.0 0.0 16.67 3.33 0.0 20.0 3.33 0.0 20.0 0.0 0.0 20.0 0.0 0.0
S2R 13.33 6.67 3.33 10.0 6.67 0.0 0.0 6.67 3.33 3.33 6.67 3.33 3.33 13.33 10.0 3.33
STaSC 10.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SELF-THOUGHT 20.0 20.0 3.33 3.33 23.33 3.33 0.0 23.33 0.0 0.0 26.67 3.33 0.0 26.67 0.0 0.0
DISTIL-THOUGHT 20.0 23.33 13.33 10.0 26.67 3.33 0.0 26.67 3.33 3.33 30.0 6.67 3.33 30.0 0.0 0.0

AIME 2025
SuperCorrect 3.33 6.67 3.33 0.0 13.33 6.67 0.0 13.33 0.0 0.0 16.67 3.33 0.0 16.67 3.33 3.33
S2R 10.0 6.67 3.33 6.67 3.33 3.33 6.67 0.0 0.0 3.33 0.0 0.0 0.0 6.67 6.67 0.0
STaSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SELF-THOUGHT 10.0 10.0 10.0 10.0 13.33 3.33 0.0 13.33 3.33 3.33 16.67 3.33 0.0 16.67 0.0 0.0
DISTIL-THOUGHT 10.0 13.33 13.33 10.0 16.67 3.33 0.0 16.67 6.67 6.67 16.67 0.0 0.0 20.0 3.33 0.0

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E ADDITIONAL COMPARISON WITH SELF-CONSISTENCY

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

20

40

60

80

100
A

cc
u

ra
cy

(%
)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

(a) GPT-4O-MINI

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

(b) GPT-4O

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

(c) O3-MINI

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

(d) DEEPSEEK-R1

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

10

20

30

40

50

60

A
cc

u
ra

cy
(%

)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

Distil-Thought (t = 3)

Distil-Thought (t = 5)

(e) QWEN-2.5-7B

Game of 24

Word Sorting

CheckmateInOne
AIME 2024

AIME 2025
0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Initial (t = 0)

Self-Consistency (n = 3)

Self-Consistency (n = 5)

Self-Thought (t = 3)

Self-Thought (t = 5)

Distil-Thought (t = 3)

Distil-Thought (t = 5)

(f) LLAMA-3.3-70B

Figure 5: Comparison of SELF-THOUGHT and DISTIL-THOUGHT with the SELF-CONSISTENCY.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS AND RESULTS

F.1 FULL INITIAL ANSWER FOR AN EXAMPLE

To find the number of eight-digit integers that use each of the digits 1 through 8 exactly 
once and are divisible by 22, we need to check the divisibility rules for 22. Since 22 = 2 × 
11, an integer must be divisible by both 2 and 11.

1. Divisibility by 2: An integer is divisible by 2 if its last digit is even. The even digits 
among 1 to 8 are 2, 4, 6, and 8. Therefore, the last digit of our eight-digit integer 
must be one of these four digits.

2. Divisibility by 11: A number is divisible by 11 if the absolute difference between 
the sum of its digits in odd positions and the sum of its digits in even positions is 
either 0 or a multiple of 11.

Let’s denote the digits of the number as d1, d2, d3, d4, d5, d6, d7, d8 where d8 is the 
last digit. The odd positions are d1, d3, d5, d7 and the even positions are d2, d4, d6, d8.
The total sum of digits from 1 to 8 is: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36
If we denote the sum of the digits in odd positions as S1 and the sum of the digits in 
even positions as S2, we know: S1 + S2 = 36
The condition for divisibility by 11 gives us: |S1 - S2| is divisible by 11
Since S2 = 36 - S1, we can rewrite the divisibility condition as: |S1 - (36 - S1)| = |2 × S1 - 
36| is divisible by 11
This simplifies to: |2 × S1 - 36| is divisible by 11
We can find the values of S1 that are possible. The minimum sum S1 can take (if we 
pick the smallest digits) is 1 + 2 + 3 + 4 = 10, and the maximum (if we pick the largest) is 
5 + 6 + 7 + 8 = 26. Therefore, S1 can take values from 10 to 26.
Next, we find S1 such that: 2 × S1 is divisible by 11 and congruent to 36 modulo 11
Calculating 36 modulo 11 gives us 36 ≡ 3 mod 11. Thus, we need: 2 × S1 ≡ 3 mod 11
To solve 2 × S1 ≡ 3 mod 11, we can try values for S1:

● S1 = 2 gives 2 × 2 = 4
● S1 = 3 gives 2 × 3 = 6
● S1 = 4 gives 2 × 4 = 8
● S1 = 5 gives 2 × 5 = 10
● S1 = 6 gives 2 × 6 = 12 ≡ 1 mod 11
● S1 = 7 gives 2 × 7 = 14 ≡ 3 mod 11 (valid)
● S1 = 8 gives 2 × 8 = 16 ≡ 5 mod 11
● S1 = 9 gives 2 × 9 = 18 ≡ 7 mod 11
● Continuing this, we find:
● S1 = 14 gives 2 × 14 = 28 ≡ 6 mod 11
● S1 = 15 gives 2 × 15 = 30 ≡ 8 mod 11
● S1 = 16 gives 2 × 16 = 32 ≡ 10 mod 11
● S1 = 17 gives 2 × 17 = 34 ≡ 1 mod 11
● S1 = 18 gives 2 × 18 = 36 ≡ 3 mod 11 (valid)
● Continuing this gives us all valid S1 values.

After calculating valid arrangements for S1 and S2, we can compute the total 
arrangements for each case based on the last digit being 2, 4, 6, or 8 (up to 4 cases).
We find N and compute N - 2025.
After calculating the final result, we find:
N = 2016
So, the difference is: 2016 - 2025 = -9
Thus, the answer is: <Answer> -9 <Answer>

Figure 6: Full Initial Answer for Provided Example

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 RESULTS ON SECOND STEP OF SELF-CORRECTION

Table 5: The second attempt of self-correction performance on Game of 24, Word Sorting, Check-
mateInOne, AIME 2024, AIME 2025 with GPT-4O-MINI, GPT-4O, O3-MINI, and DEEPSEEK-R1.
Green (↑) and red (↓) arrows indicate performance changes against the previous attempt (i.e., INI-
TIAL (t = 0)). Bold corresponds to the best performance.

Method Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025 Mean

Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2

GPT-4O-MINI

INITIAL (t = 0) 38.78 - - 55.0 - - 30.67 - - 20.0 - - 6.67 - - 0.3
REFLEX 28.57 ↑4.08 15.31 11.22 61.25 ↑1.25 5.0 3.75 13.33 ↑4.0 10.67 6.67 10.0 3.33 3.33 13.33 ↑3.33 3.33 0.0 0.25 ↑2.0

SELF-REFINE 19.39 ↓6.12 9.18 15.31 68.75 ↑10.0 10.0 0.0 16.0 ↑5.33 8.0 2.67 16.67 ↑3.34 6.67 3.33 16.67 0.0 0.0 0.27 ↑2.0

SELF-TICK 39.8 ↑1.02 3.06 2.04 26.25 ↓13.75 3.75 17.5 17.33 ↓2.67 0.0 2.67 20.0 ↓3.33 0.0 3.33 6.67 ↓6.66 0.0 6.67 0.22 ↓5.0

REFLEXION 31.63 ↑5.1 14.29 9.18 63.75 ↑3.75 6.25 2.5 17.33 ↑8.0 14.67 6.67 10.0 ↓3.33 0.0 3.33 13.33 ↑6.66 6.67 0.0 0.27 ↑4.0

SELF-THOUGHT 87.76 12.24 12.24 100.0 0.0 0.0 36.0 ↑2.67 4.0 1.33 33.33 ↑3.33 6.67 3.33 20.0 3.33 3.33 0.55 ↑1.0

GPT-4O

INITIAL (t = 0) 17.35 - - 86.25 - - 41.33 - - 13.33 - - 10.0 - - 0.34
REFLEX 7.14 ↓12.25 2.04 14.29 86.25 ↑5.0 10.0 5.0 26.67 16.0 16.0 10.0 ↓3.33 0.0 3.33 10.0 ↑3.33 3.33 0.0 0.28 ↓1.0

SELF-REFINE 29.59 ↓4.08 10.2 14.29 88.75 ↑10.0 12.5 2.5 40.0 ↑1.33 18.67 17.33 20.0 3.33 3.33 10.0 0.0 0.0 0.38 ↑2.0

SELF-TICK 16.33 ↓14.28 0.0 14.29 70.0 2.5 2.5 20.0 ↓10.67 0.0 10.67 23.33 ↑6.66 6.67 0.0 6.67 ↓3.33 0.0 3.33 0.27 ↓5.0

REFLEXION 30.61 ↓6.12 8.16 14.29 81.25 ↓1.25 3.75 5.0 32.0 ↑6.67 13.33 6.67 20.0 ↑3.33 3.33 0.0 13.33 ↑3.33 3.33 0.0 0.35 ↑1.0

SELF-THOUGHT 38.78 ↑1.02 6.12 5.1 100.0 0.0 0.0 64.0 ↓1.33 2.67 4.0 36.67 ↑3.34 13.33 10.0 23.33 ↑6.66 6.67 0.0 0.53 ↑2.0

O3-MINI

INITIAL (t = 0) 86.73 - - 90.0 - - 34.67 - - 80.0 - - 73.33 - - 0.73
REFLEX 84.69 ↑1.02 6.12 5.1 85.0 ↓5.0 6.25 11.25 30.67 ↓1.33 2.67 4.0 83.33 ↑3.33 3.33 0.0 80.0 ↑3.33 3.33 0.0 0.73 ↑1.0

SELF-REFINE 89.8 ↑3.07 8.16 5.1 86.25 ↓1.25 8.75 10.0 25.33 ↑5.33 5.33 0.0 86.67 ↑3.34 3.33 0.0 73.33 6.67 6.67 0.72 ↑2.0

SELF-TICK 0.0 0.0 0.0 76.25 ↓11.25 3.75 15.0 13.33 1.33 1.33 76.67 0.0 0.0 63.33 ↓3.34 0.0 3.33 0.46 ↓3.0

REFLEXION 85.71 ↑1.02 8.16 7.14 96.25 ↓1.25 1.25 2.5 30.67 ↓1.33 4.0 5.33 83.33 ↑3.33 3.33 0.0 73.33 ↑6.66 6.67 0.0 0.74 ↑2.0

SELF-THOUGHT 91.84 ↑3.06 3.06 0.0 96.25 ↓1.25 0.0 1.25 38.67 ↑1.34 2.67 1.33 86.67 0.0 0.0 83.33 ↑3.33 10.0 6.67 0.79 ↑1.0

DEEPSEEK-R1
INITIAL (t = 0) 84.69 - - 97.5 - - 17.33 - - 80.0 - - 63.33 - - 0.69
REFLEX 65.31 ↑1.02 13.27 12.24 95.0 ↑1.25 5.0 3.75 20.0 ↑4.0 10.67 6.67 70.0 ↓6.67 3.33 10.0 63.33 3.33 3.33 0.63
SELF-REFINE 35.71 ↓16.33 2.04 18.37 91.25 ↑2.5 8.75 6.25 13.33 ↓2.67 5.33 8.0 63.33 ↓13.34 6.67 20.0 66.67 ↓3.33 13.33 16.67 0.54 ↓7.0

SELF-TICK 7.14 ↓10.21 0.0 10.2 91.25 1.25 1.25 0.0 ↓5.33 0.0 5.33 33.33 ↓26.67 6.67 33.33 40.0 ↓13.33 0.0 13.33 0.34 ↓11.0

REFLEXION 35.71 ↓14.29 8.16 22.45 85.0 ↓5.0 5.0 10.0 10.67 ↓8.0 4.0 12.0 66.67 ↑10.0 10.0 0.0 43.33 ↓16.67 3.33 20.0 0.48 ↓7.0

SELF-THOUGHT 86.73 ↑1.02 2.04 1.02 100.0 0.0 0.0 22.67 ↑2.67 6.67 4.0 83.33 ↑3.33 6.67 3.33 73.33 3.33 3.33 0.73 ↑1.0

Table 6: The second attempt of self-correction performance on Game of 24, Word Sorting, Check-
mateInOne, AIME 2024, AIME 2025 with small models QWEN-2.5-7B and LLAMA-3.3-70B.
Green (↑) and red (↓) arrows indicate performance changes against the previous attempt (i.e., INI-
TIAL (t = 0)). Bold corresponds to the best performance.

Method Game of 24 Word Sorting CheckmateInOne AIME 2024 AIME 2025 Mean

Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2 ∆
i→c

(t1, t2) ∆
c→i

(t1, t2) Acc@t2

QWEN-2.5-7B
INITIAL (t = 0) 8.16 - - 13.75 - - 2.67 - - 20.0 - - 10.0 - - 0.11
REFLEX 7.14 ↑1.02 4.08 3.06 12.5 ↓3.75 1.25 5.0 0.0 0.0 0.0 16.67 3.33 3.33 6.67 ↓3.33 3.33 6.67 0.09 ↓1.0

SELF-REFINE 7.14 ↑1.02 2.04 1.02 26.25 ↑2.5 7.5 5.0 0.0 ↓1.33 0.0 1.33 23.33 ↑3.33 6.67 3.33 3.33 0.0 0.0 0.12 ↑1.0

SELF-TICK 0.0 0.0 0.0 13.75 ↓3.75 3.75 7.5 0.0 0.0 0.0 10.0 0.0 0.0 6.67 0.0 0.0 0.06 ↓1.0

REFLEXION 10.2 ↓1.02 4.08 5.1 17.5 ↓3.75 3.75 7.5 2.67 1.33 1.33 16.67 ↑3.34 3.33 0.0 10.0 ↓3.33 0.0 3.33 0.11 ↓1.0

SELF-THOUGHT 12.24 ↑1.02 1.02 0.0 61.25 ↓5.0 5.0 10.0 5.33 ↑1.33 1.33 0.0 23.33 ↑3.33 3.33 0.0 13.33 ↑3.33 3.33 0.0 0.23 ↑1.0

DISTIL-THOUGHT 52.04 ↑10.2 23.47 13.27 32.5 ↓16.25 8.75 25.0 25.33 ↑14.66 18.67 4.0 26.67 ↑3.34 3.33 0.0 16.67 ↑3.34 3.33 0.0 0.31 ↑3.0

LLAMA-3.3-70B
INITIAL (t = 0) 19.39 - - 75.0 - - 8.0 - - 33.33 - - 3.33 - - 0.28
REFLEX 62.24 ↑19.38 24.49 5.1 80.0 ↑2.5 7.5 5.0 9.33 ↑8.0 8.0 0.0 36.67 0.0 0.0 3.33 0.0 0.0 0.38 ↑6.0

SELF-REFINE 42.86 ↑9.19 17.35 8.16 71.25 ↓5.0 5.0 10.0 2.67 ↓2.66 0.0 2.67 40.0 0.0 0.0 6.67 0.0 0.0 0.33 ↑1.0

SELF-TICK 11.22 ↓3.07 4.08 7.14 63.75 ↓7.5 1.25 8.75 5.33 ↓1.34 0.0 1.33 33.33 ↑3.33 3.33 0.0 10.0 ↑3.33 3.33 0.0 0.25 ↓1.0

REFLEXION 45.92 ↑22.45 25.51 3.06 72.5 ↓3.75 5.0 8.75 6.67 ↑1.34 4.0 2.67 30.0 ↑3.33 3.33 0.0 3.33 0.0 0.0 0.32 ↑5.0

SELF-THOUGHT 71.43 ↑7.14 12.24 5.1 98.75 0.0 0.0 4.0 ↑1.33 1.33 0.0 50.0 ↑13.33 16.67 3.33 16.67 0.0 0.0 0.48 ↑4.0

DISTIL-THOUGHT 100.0 0.0 0.0 98.75 ↓1.25 0.0 1.25 50.67 ↑12.0 22.67 10.67 50.0 ↑3.33 3.33 0.0 23.33 3.33 3.33 0.65 ↑3.0

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.3 ADDITIONAL RESULTS ON EFFECT OF ITERATIVE CORRECTION

0 1 2 3 4 5
Iteration

20

40

60

80

100
A

cc
u

ra
cy

(%
)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(a) GPT-4O-MINI

0 1 2 3 4 5
Iteration

0

10

20

30

40

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(b) GPT-4O

0 1 2 3 4 5
Iteration

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(c) O3-MINI

0 1 2 3 4 5
Iteration

0

20

40

60

80

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(d) DEEPSEEK-R1

(e) Game of 24

0 1 2 3 4 5
Iteration

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(f) GPT-4O-MINI

0 1 2 3 4 5
Iteration

70

75

80

85

90

95

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(g) GPT-4O

0 1 2 3 4 5
Iteration

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(h) O3-MINI

0 1 2 3 4 5
Iteration

80

85

90

95

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(i) DEEPSEEK-R1

(j) Word Sorting

0 1 2 3 4 5
Iteration

0

10

20

30

40

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(k) GPT-4O-MINI

0 1 2 3 4 5
Iteration

10

20

30

40

50

60

70

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(l) GPT-4O

0 1 2 3 4 5
Iteration

0

10

20

30

40

50

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(m) O3-MINI

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(n) DEEPSEEK-R1

(o) CheckmateInOne

0 1 2 3 4 5
Iteration

0

10

20

30

40

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(p) GPT-4O-MINI

0 1 2 3 4 5
Iteration

10

15

20

25

30

35

40

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(q) GPT-4O

0 1 2 3 4 5
Iteration

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(r) O3-MINI

0 1 2 3 4 5
Iteration

20

40

60

80

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

(s) DEEPSEEK-R1

(t) AIME 2024

Figure 7: Accuracy over iterations with self-correction methods across models.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Iteration

0

10

20

30

40

50

60

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(a) QWEN-2.5-7B

0 1 2 3 4 5
Iteration

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(b) LLAMA-3.3-70B

(c) Game of 24

0 1 2 3 4 5
Iteration

0

10

20

30

40

50

60

70
A

cc
u

ra
cy

(%
)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(d) QWEN-2.5-7B

0 1 2 3 4 5
Iteration

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(e) LLAMA-3.3-70B

(f) Word Sorting

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

30

A
cc

u
ra

cy
(%

)

Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(g) QWEN-2.5-7B

0 1 2 3 4 5
Iteration

0

10

20

30

40

50

60

70

A
cc

u
ra

cy
(%

) Reflex

Self-Refine

Self-Tick

Self-Reflection

Self-Thought

Distil-Thought

(h) LLAMA-3.3-70B

(i) CheckmateInOne

Figure 8: Accuracy over iterations with self-correction methods across models.

G RESULTS FROM BASELINE STUDIES

G.1 ADDITIONAL ANALYSIS ON RESULTS FROM SELF-REFINE

Table 7: SELF-REFINE results on various tasks using GPT-3.5, ChatGPT, and GPT-4 as base LLM.
While SELF-REFINE achieves substantial improvements on general tasks such as Dialogue Re-
sponse Generation, Sentiment Reversal, and Acronym Generation, its gains on reasoning tasks are
more modest. Results reported from Table 1 in Madaan et al. (2023).

GPT-3.5 ChatGPT GPT-4

Task Base +SELF-REFINE Base +SELF-REFINE Base +SELF-REFINE

Sentiment Reversal 8.8 30.4 (↑21.6) 11.4 43.2 (↑31.8) 3.8 36.2 (↑32.4)
Dialogue Response 36.4 63.6 (↑27.2) 40.1 59.9 (↑19.8) 25.4 74.6 (↑49.2)
Code Optimization 14.8 23.0 (↑8.2) 23.9 27.5 (↑3.6) 27.3 36.0 (↑8.7)
Code Readability 37.4 51.3 (↑13.9) 27.7 63.1 (↑35.4) 27.4 56.2 (↑28.8)
Math Reasoning 64.1 64.1 (0) 74.8 75.0 (↑0.2) 92.9 93.1 (↑0.2)
Acronym Generation 41.6 56.4 (↑14.8) 27.2 37.2 (↑10.0) 30.4 56.0 (↑25.6)
Constrained Generation 28.0 37.0 (↑9.0) 44.0 67.0 (↑23.0) 15.0 45.0 (↑30.0)

Table 7 shows results from SELF-REFINE (Madaan et al., 2023). These results indicate that SELF-
REFINE achieves substantial gains on preference-based tasks such as Dialogue Response Genera-

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

tion, Sentiment Reversal, and Acronym Generation. However, its performance improvements on
reasoning tasks are more modest, which can be attributed to the limited ability of the model to accu-
rately identify errors. Moreover, the gains on Math Reasoning increase by only 5% when an external
source is available to indicate whether the current answer is incorrect (See results in Appendix H.1
from Madaan et al. (2023)).

G.2 ADDITIONAL ANALYSIS ON RESULTS FROM SELF-TICK

Table 8: SELF-TICK results on a single step of self-refinement on different tasks with Command-
R+ and GPT-4o. SELF-TICK consistently improves overall performance compared to both base
models and SELF-REFINE, with modest gains on reasoning-related tasks. Results reported from
Table 1 in Cook et al. (2024).

Command-R+ GPT-4o

Tasks Base SELF-REFINE SELF-TICK Base SELF-REFINE SELF-TICK

Overall 32.0 23.7 (↓ 8.3) 35.8 (↑ 3.8) 55.4 47.1 (↓ 8.3) 56.2 (↑ 0.8)
Coding 18.8 9.1 (↓ 9.7) 22.7 (↑ 3.9) 50.4 36.4 (↓ 14.0) 51.6 (↑ 1.2)
Data Analysis 25.9 5.3 (↓ 20.6) 29.8 (↑ 3.9) 52.4 27.2 (↓ 25.2) 52.5 (↑ 0.1)
Instructions 69.6 60.5 (↓ 9.1) 75.8 (↑ 6.2) 73.3 62.8 (↓ 10.5) 76.2 (↑ 2.9)
Language 24.6 13.8 (↓ 9.8) 24.1 (↓ 0.5) 50.9 51.4 (↑ 0.5) 50.4 (↓ 0.5)
Mathematics 23.7 23.6 (↓ 0.1) 25.5 (↑ 1.8) 52.3 51.8 (↓ 0.5) 53.1 (↑ 0.8)
Reasoning 29.2 30.0 (↑ 0.8) 37.0 (↑ 7.8) 53.3 52.7 (↓ 0.6) 53.3 (0)

Table 8 shows results from SELF-TICK (Cook et al., 2024) for a single step of self-refinement
on various tasks with Command-R+ and GPT-4o. The results indicate that SELF-TICK consistently
improves overall performance compared to both the base models and SELF-REFINE, with the largest
gains observed in preference-based and instruction-following tasks. For example, improvements on
Coding, Data Analysis, and Instructions range from 1.2% to 6.2% across the models. In contrast,
gains on reasoning-related tasks such as Language, Mathematics, and Reasoning are more modest,
highlighting that even with SELF-TICK, these tasks remain challenging.

28


	Introduction
	Related Work
	Self-Thought: Correcting via Task Distillation
	Initial Generation.
	Task Abstraction
	Solution Instantiation
	Task Distillation for Smaller Models

	Experimental Setup
	Experiments and Results
	Conclusion
	Limitations & Future Work
	Additional Experiment Details
	Datasets and Tasks
	Baselines
	Compression against Self-Consistency
	Compression against SuperCorrect

	Answer Extraction Protocol
	Evaluation Protocol

	Prompts
	Initial Generation
	Task Abstraction
	Solution Instantiation

	Additional Comparison with Fine-tuning Baselines
	Additional Comparison with Self-Consistency
	Additional Experiments and Results
	Full Initial Answer for An Example
	Results on Second Step of Self-Correction
	Additional Results on Effect of Iterative Correction

	Results from Baseline Studies
	Additional Analysis on Results from Self-Refine
	Additional Analysis on Results from Self-TICK


