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ABSTRACT

Large-language-models (LLMs) demonstrate enormous utility in long-context tasks
which require processing prompts that consist of tens to hundreds of thousands of
tokens. However, existing LLM training libraries do not provide easy to use abstrac-
tions to optimize for long-context training, instead focusing on optimizations for
models with large parameter counts through ZeRO-3/FSDP, Tensor and Pipeline
parallelism. This forces users to rewrite LLM training libraries to incorporate
compositions of various complex long-context optimizations, such as sequence-
parallelism, to training pipelines; a process that requires in-depth expertise, reduc-
ing developer productivity. To tackle these challenges, we introduce AutoSP: the
first automated solution to automatically optimize LLM training for longer-contexts.
AutoSP compiles models and applies a targeted set of optimizations: automated
sequence parallelism, and long-context aware activation-checkpointing, to drasti-
cally enhance LLM trainability at negligible cost to throughput. Our evaluation
demonstrates AutoSP’s capability on both NVIDIA and AMD hardware, increasing
training contexts by upto 2.7× and 2.5× respectively at negligible cost to runtime
performance over competitive hand-written baselines.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly being trained with long-context data for scenarios
such as document understanding (Han et al., 2025; Zhu et al., 2025; Landeghem et al., 2023),
multi-hop reasoning (Cobbe et al., 2021; Feng et al., 2020), and extended multi-turn dialogue
generation (Touvron et al., 2023; Bai et al., 2024). These use cases often contain input sequences
ranging from tens to hundreds of thousands of tokens, creating massive activation memory demands
and pushing the memory and system limits of GPU clusters. Without targeted memory optimizations,
training such models quickly becomes infeasible, even when using multiple GPUs.

To circumvent out-of-memory-errors, researchers have explored Sequence parallelism (SP), a key
enabler for long-context training. State-of-the-art SP strategies such as DeepSpeed-Ulysses (Jacobs
et al., 2024) and RingAttention (Liu et al., 2023) distribute the sequence dimension of activations
across devices and allow the training engine to leverage aggregated GPU memory to train longer
contexts with increasing device counts.

Despite effectively enabling long-context training, existing implementations of SP strategies are
tightly coupled to specialized training frameworks such as DeepSpeed (Rajbhandari et al., 2020) and
Megatron-LM (Shoeybi et al., 2020). Integrating SP to custom training pipelines typically requires
invasive code refactoring, which makes it difficult to apply across diverse model architectures and
hardware platforms. Developers must manually insert communication collectives (e.g., all2all)
between operators that require the full input sequence (such as attention), manage activation layouts
across devices, and ensure correctness in both forward and backward passes. These manual efforts
are error-prone and reduce developer productivity.

To improve developer productivity, researchers have begun to lift several complex distributed training
strategies such as ZeRO-3/FSDP (Rajbhandari et al., 2020) into SoTA deep-learning compilers,
such as PyTorch-2.0 (Ansel et al., 2024). Examples include: SimpleFSDP (Zhang et al., 2024) &
DeepCompile (Tanaka et al., 2025), optimized compiler passes to implement ZeRO-3/FSDP in the
PyTorch-2.0 ecosystem. However, each of these techniques focuses on models with large parameter
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counts, focusing on different ways to shard model parameters rather than explicitly optimizing for
long-context training. This raises the question: can we lift SP into a deep-learning compilation stack
and enable automated sequence parallelism for long-context model training?

1# Register passes #
2reg_passes([’auto_sp, sp_ac’])
3# Initialize dist training #
4dist.init(SP_GROUP_SIZE)
5# Compile model. #
6model.compile()
7# model training #
8for batch in data_set:
9 output = model(batch[:,SP_GROUP])

10 output.backward()
11 optimizer.step(model)

Listing 1: AutoSP provides an easy to use interface
to apply long-context optimizations to training
pipelines

Specifically, we focus on lifting SP into PyTorch-
2.0’s compiler ecosystem as it is a SoTA open-
sourced compiler that targets training work-
loads. However, achieving this introduces sev-
eral challenges. First, PyTorch-2.0’s compi-
lation pipeline includes multiple intermediate-
representations (IRs) such as Torch-IR, Aten-IR,
and Inductor-IR, to name a few. Each IR oper-
ates at a different abstraction level and encodes
the input program at varying levels of granu-
larity. This makes choosing an appropriate IR
to conduct program-analysis, so as to recover
the necessary information to apply semantically-
preserving rewrites that transform single-GPU
code into distributed sequence-parallel execu-
tion, a major challenge. A fine-grained abstrac-
tion will make program-analysis (to uncover important attributes about the input model) increasingly
non-trivial whilst a coarse-grained abstraction will make semantic-rewrites (to insert communication
collectives, transform buffer sizes and recompute manually indexed tensors) infeasible. Second,
lifting SP into the PyTorch-2.0 compilation stack has consequences to other optimization passes that
PyTorch-2.0 natively supports, notably: activation-checkpointing (AC). AC also enables memory
savings for training by discarding activations in the forward pass and rematerializing them in the back-
wards pass to compute gradients. Naively rematerializing activations together with SP may trigger
extraneous communication in the backwards pass, adversarially impacting runtime performance.

To tackle these challenges, we introduce AutoSP, a compiler-based system for automating long-
context optimizations in PyTorch-based LLM training. AutoSP introduces two key components: (1) a
graph rewriting pass that automatically inserts SP collectives and resizes buffers for distributed SP, and
(2) an AC pass that is aware of SP-induced communication and selectively applies rematerialization
of intermediate activations.

We implement AutoSP by extending PyTorch 2.0’s compilation stack for long-context training. It
abstracts significant complexity from the user. With just a few lines of code (as shown in 1), users
can compile standard PyTorch models into distributed long-context training pipelines that scale
input lengths without manual engineering. Our evaluation demonstrates that AutoSP significantly
improves trainability at negligible loss to training speed on diverse hardware backends (NVIDIA and
AMD GPUs), enabling training on 2.7× longer input context lengths compared to hand-written SP
implementations such as DeepSpeed-Ulysses.

2 BACKGROUND

GPU 0
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Figure 1: DeepSpeed-Ulysses with 3-SP groups.
Linear-projections operate on the partial sequence
length, while attention-layers operate on a subset
of the heads. alltoalls switch between the two
data-layouts.

Sequence parallel training. Sequence paral-
lelism (SP) is a key enabler for long-context
training. These strategies enable scaling input
sequence lengths with increasing GPU resources
by sharding input tensors and activations across
the sequence dimension. Communication collec-
tives are inserted in the forward and backward
pass as necessary to correctly shuffle tokens to
the desired device. A popular SP strategy, and
the focus of this work, is DeepSpeed-Ulysses
(Ulysses) (Jacobs et al., 2024). We illustrate how
Ulysses operates with 3-SP groups in Fig. 1.
First, tokens are sharded across the sequence
dimension, with different devices operating on different parts of the input sequence. Next, linear
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projections form multiple Q/K/V heads. Since linear projections operate pointwise across the sequen-
tial dimension, each device directly operates on its own tokens with no additional communication.
However, since attention requires the entire input-context, an all-to-all reshuffles tokens, re-sharding
the activations across the head-dimension rather than sequence-dimension. Each device locally
computes attention on its respective head(s) after which another all-to-all reshuffles the tokens back
to their original input sizes, re-sharding across the sequence dimension.

def model(a, b):
x = F.linear(a, b)
return b + x

PyTorch-2 APIs

Torch-IR

Aten-IR

def model(L_a_, L_b_):
x = torch.C._nn.linear(L_a_, L_b_)
return L_a_ + x

def model(L_a_, L_b_):
permute = torch.ops.aten \

.permute.default(L_b_,[1, 0])
mm = torch.ops.aten.mm.default(L_a_,\

permute)
return torch.ops.aten. \

add.default(L_a_, mm)

Figure 2: A sample neural network com-
piled using PyTorch-2.0. We illustrate
the lowering to Torch-IR and Aten-IR
that occur within Dynamo.

PyTorch-2.0 compiler. PyTorch-2.0 (Ansel et al., 2024)
is a just-in-time deep-learning compiler that targets train-
ing workloads. It comprises of two components: dynamo
and inductor each with a series of compiler passes that
progressively lowers and optimizes code. Each compiler
pass focuses on a single-responsibility. An example code-
snippet of a neural-network and its progressive lower-
ing through different IRs in PyTorch-2.0’s compilation
pipeline, is shown in Fig. 2.

Dynamo. The input to dynamo is a model comprising of
PyTorch & python operators. Dynamo then executes the
function and records a trace, represented as its interme-
diate representation: a computation graph. Each node in
the computation-graph comprises of Torch-IR statements,
which loosely correspond to statements in the original in-
put program. Next, AOTAutograd (a sub-component of
dynamo) lowers each Torch-IR statement to Aten-IR state-
ments, which consist of finer-grained operators. Aten-IR
statements do not consist of higher-level abstractions such
as linear or attention layers, but instead consist of (batch)
matrix-multiplication, convolution, and data-movement
operators. Each Torch-IR statement is accordingly low-
ered to its corresponding set of (multiple) Aten-IR statement(s), forming an FX-graph. For example,
in Fig. 2, we observe that the linear operator in Torch-IR is lowered to two operators in Aten-IR:
permute and mm. At this stage, a variety of compiler-passes to optimize the FX-graph are applied,
notably automated acitvation-checkpointing (AC). The AC compiler-pass (Chillee) is responsible
for selecting which tensors to rematerialize in the backwards pass without incurring performance
penalties. It reduces this problem to a network-flow construction whose min-cut determines the
tensors to rematerialize. We describe it in detail in Section 3.2.

Inductor. Finally, inductor consumes the output Aten-IR FX-graph and lowers it to a custom define-by-
run IR, subsequently code-generating necessary kernels specialized to the backend microarchitecture.

3 AUTOSP

AutoSP lifts SP parallelism as a compiler-pass into the PyTorch-2.0 compiler stack to optimize
long-context training. Fig. 3 is an overview of how AutoSP’s compiler-passes interoperate with the
PyTorch-2.0 compilation stack to optimize LLM training code. Section 3.1 describes how we enable
automated sequence parallelism as a compiler pass, and Section 3.2 describes our long-context aware
activation checkpointing strategy.

3.1 AUTOMATED SEQUENCE PARALLELISM

Challenges. To implement automated sequence parallelism, we must select (a single) PyTorch
IR(s) to analyze and transform accordingly. However, recovering the necessary model information
through program analysis and subsequently transforming the model through semantically-preserving
rewrites is non-trivial for three reasons. (1) Each inserted communication collective must have
token-buffers instantiated to a particular size parameterized by the model-dimension, batch-size and
sequence length. However, these parameters are not explicitly represented in any IR. (2) Existing
intermediate buffers need to be resized to different shapes depending on the SP group-size as well as
their placement within the neural network. For example, in DeepSpeed-Ulysses, buffers within the
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class Transformer(nn.Module): 
def init (self, ...):

...

def call(self, x):
q, k, v = linear_projections(x) 
attention = sdpa(q, k, v)
x = mlp(attention)
return x

Input Model

import torch

def model(L_a_, L_b_, \
L_c_, L_d_, L_e_):

...
q = torch.C._nn.\

linear(L_a_, L_b_)
...
all_to_all(q, q_buffer) # INSERTED
all_to_all(k, k_buffer) # INSERTED
all_to_all(v, v_buffer) # INSERTED
out = torch.C._nn.\

sdpa(q_buffer,\
k_buffer, v_buffer) 

all_to_all(out, out_buffer) # INSERTED 
return torch.C._nn.\

linear(out_buffer, L_e_)

Torch-IR

Lower to 
Torch-IR SP-Pass Lower to 

Aten-IR
AC-Pass

Aten-IR
def model(L_a_, L_b_, \

L_c_, L_d_, L_e_):
...
permute_b = torch.ops.\

aten.permute.default(L_b_,[1, 0]) 
q = torch.ops.\

aten.mm.default(L_a_, permute_b)
...
all_to_all(q, q_buffer) # INSERTED
...
out = torch.C._nn.\

sdpa(q_buffer, k_buffer, v_buffer) 
all_to_all(out, out_buffer) # INSERTED
...
release_memory(q, ...) # REMATERIALIZED
...

Inductor …
PyTorch-2.0

AutoSP

Figure 3: An overview of AutoSP. AutoSP enables an automated approach to scale input context
lengths for long-context training through a targeted set of compiler optimization passes: an automated
sequence-parallelism pass (Section 3.1), and a SP-aware long-context AC-pass (Section 3.2).

attention layer should be resized to operate on the full-sequence but a subset of all the heads, whilst
buffers within MLP layers operate on the full model-dimension but on a partial sequence-length.
(3) Certain operations require manual indexing for correctness, e.g. indexing the causal mask to
appropriately apply to attention matrices, and need to be automatically recomputed.

To tackle these challenges, AutoSP’s SP-pass accordingly analyzes computational structures to extract
the pertinent information required for transforming single-GPU code to distributed sequence-parallel
code. We next describe how it operates.

3.1.1 ANALYSIS AND TRANSFORMATIONS

1# b=batch, s=seq, h=heads, d=dim
2def transform(mod,b,s,h,d):
3 for node in mod.nodes:
4 # WS = World Size
5 part_seq = s/WS
6 # Resize buffers.
7 if node.name in RESIZE_BUFS:
8 if node.name in ATTN_OPS:
9 resize_attn(node, [b,s,h/WS,d])

10 else:
11 resize_others(node,
12 [b,part_seq,d])
13 # Recalculate manual indexing
14 if node.name in INDEX_OPS:
15 recalc_index(node, node.args)
16 # Insert comm. collectives
17 if node.name is ATTN_OPS[0]:
18 buf_proj = [batch,seq,heads/WS,
19 dim]
20 insert_before(node, all_to_all,
21 buf_proj)
22 elif node.name is ATTN_OPS[-1]:
23 buf_attn = [batch,seq/WS,heads,
24 dim]
25 insert_after(node, all_to_all,
26 buf_attn)

Listing 2: AutoSP’s Transformation Pass:
converting single-GPU code to sequence-parallel
multi-GPU code

Our pass operates in two stages. First, we an-
alyze tensor sizes to gather information about
the batch, sequence and hidden dimension that
parameterize the model. Next, we transform
the IR by: (1) inserting communication collec-
tives at appropriate places in the network with
appropriately sized buffers to store their output,
(2) adjusting the sizes of existing buffers within
the graph to account for sequence sharding. (3)
Recompute any manually indexed tensors appro-
priately. All our analysis and transformations
operate on Torch-IR.

Why AutoSP analyzes and transforms Torch-
IR? Our SP-pass operates on Torch-IR as the
analysis and transformations are significantly
more challenging to accomplish on Aten-IR for
three reasons. (1) Torch-IR more closely resem-
bles the neural-network programmed by the user
(see Section 2) with operators such as linear
and attention-layers, making it easier to identify
which parts of the graph belong to which layer
for appropriate tensor resizing. On the other
hand, equivalent operators in Aten-IR are rep-
resented as a series of finer-grained operators,
such as mat-muls and permutations, making it
challenging to reason about which operators belong to linear-projections and attention-operators
respectively. (2) The lowering process from Torch-IR to Aten-IR inserts various data-layout transfor-
mations such as reshapes and permutes, obscuring information as to which dimension corresponds to
the sequence, batch, and hidden sizes of a tensor, making it challenging to appropriately resize the
correct tensor dimension. (3) Torch-IR operates on only the forward-pass resulting in our transforma-
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tions operating on a simpler computation-graph, merely requiring each new added node to have a
registered conjugate gradient operator. On the other hand, Aten-IR operates on both the forward and
backwards pass and requires more complex transformations to the computation-graph.

PyTorch 2.0’s AC Pass

Aten-IR
def model(L_a_, L_b_):

mm = torch.ops.aten.mm.default(L_a_,L_b_)
return torch.ops.aten.mul.default(L_a_, mm)

AutoSP’s AC Pass

Source

a b

output

gradientsmul
add

mul

db

Sink

matmul

da

matmul

mul

transpose

transpose

matmul

Source

matmul

output

gradientsmul
add

mul

db

Sink

transpose

matmul

da

matmul

mul

transpose
ba

Figure 4: A comparison of PyTorch-2.0
vs. AutoSP’s AC-passes on a sample code-
snippet. Gray and orange boxes demarcate
forward and backward pass operations respec-
tively. The red line is the additional edge
from source to node in PyTorch-2.0’s AC-
pass to enforce no rematerialization of com-
pute heavy operators. AutoSP’s AC-pass, in
removing this constraint, reduces memory-
consumption at negligible cost to throughput.

Program analysis to uncover training parameters.
To correctly instantiate token-buffers for communi-
cation collectives, the correct batch, sequence and
model-dimensions need to be extracted. Fortunately,
we can analyze the input nodes of the entire computa-
tion graph to extract the necessary information. Since
the input to the computation-graph is the data-loaded
after preprocessing, it is guaranteed to resemble a
particular shape depending on the problem domain.
For example, in natural-language tasks, the data will
be a [batch, seq length]-sized tensor. Next,
to acquire the model-dimension we traverse the graph
until we encounter an attention operator and inspect
its output ND tensor whose last two dimensions are:
[num heads, head dim]-sized. The product of
the outer two dimensions is the model-dimension.

Program transformation. After acquiring the batch,
sequence and model-dimensions, we have the nec-
essary information to transform the computation
graph from single-GPU to distributed sequence-
parallel code. Listing 2 illustrates how we trans-
form the existing computation-graph, mod, compris-
ing of Torch-IR statements. We traverse through the
graph, and for each node: (1) Check if it belongs
to the RESIZE BUFS set, and accordingly resize its
buffers depending on its placement in the attention
or linear-projection/MLP-layers. (2) Check if it be-
longs in the INDEX OPS set, and accordingly resize
its tensor indexing. (3) Check if it is the first/last
attention-op and accordingly instantiate communi-
cation buffers and insert the necessary alltoall
before/after the attention-layer. We manually curate
the RESIZE BUFS, INDEX OPS, and ATTN OPS
sets by analyzing dynamo FX-graphs of compiled
hand-written transformer implementations.

3.2 SEQUENCE-PARALLEL AWARE ACTIVATION CHECKPOINTING

Challenges. In addition to the SP-pass, activation checkpointing (AC) is an important memory
reducing optimization that enables longer context training. torch.compile provides an automated
AC-pass (Chillee) that operates on Aten-IR to compose with arbitrary neural networks. However,
naively composing its AC-pass with AutoSP’s SP-pass within the compiler-stack leads to sub-optimal
performance for long-context training. We briefly explain how PyTorch-2.0’s automated AC-pass
functions, and why it is insufficient.

PyTorch-2.0’s AC-pass. PyTorch’s AC-pass operates on Aten-IR, within Dynamo. Its primary
function is to reduce memory consumption of model training without incurring performance penalties.
The optimization reduces the problem to a network-flow construction whose min-cut determines
the tensors to rematerialize. We give an example code-snippet and its equivalent network-flow
construction in Fig. 4. The input to the optimization is an FX-graph comprising of Aten-IR statements.
First, a joint-graph of the forward and backwards graph is constructed. Next, the source node is
connected to all the input tensors of the graph, and all the nodes reachable from the incoming
gradients are connected to the sink. Then, capacities, representing costs, are assigned to each node.
A node’s capacity is determined by a heuristic function comprising of various characteristics such
as the output activation memory produced. Finally, the problem is converted from a flow on nodes
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to a flow on edges. Each edge’s capacity is set to inf and each node is split into two: an in and
out node. Incoming edges to each node are connected to its respective in node and outgoing

edges are connected to its respective out node. An edge with the original node’s capacity connects
in to out. A min-cut on this graph will cut only finite-capacity edges from a node’s in to out

(highlighted by green circles in Fig. 4); only nodes on this cut are stored. Intuitively, the min-cut
identifies the smallest cost set of activations to preserve to compute the necessary dependencies in the
backwards pass. PyTorch-2.0 additionally enforces constraints on which nodes can be rematerialized,
resulting in its conservative nature which we explain next.

Why PyTorch-2.0’s AC solution is insufficient. PyTorch-2.0’s AC-pass is effective in identifying
which activations to store without compromising runtime performance in polynomial time. However,
it makes the conservative decision to disallow rematerialization of many seemingly compute-intensive
operators such as: mat-muls, convolutions, and scaled mat-muls to name a few, based purely
on operator type, without considering runtime cost in long-context settings. This is enforced by
connecting each compute-intensive node’s in to the source with infinite capacity (indicated by the
additional dotted red line in Fig. 4), enforcing that node, or some downstream value of it, to belong to
the min-cut. However, in long-context training, we observe that certain compute-intensive operators
take a small fraction of overall compute and can accordingly be rematerialized without incurring
performance penalties. AutoSP’s AC strategy exploits this. We explain these observations next.

Observations. We analyze the structure of compute operations in modern LLMs to identify regions
that can be appropriately rematerialized. For a transformer with: batch-size b, sequence-length s,
number of heads h, head dimension d, and MLP hidden dimension dffn, we have that:

2bhs2d Attention FLOPS

8bhsd2 Linear-projection FLOPS
4bhsdffnd MLP FLOPS

When training on long-contexts, we have that s>>d,h,dffn, which results in the following fraction
of FLOPs linear-projection and MLP layers take over all the compute operations:

8bhsd2 + 4bhsdffnd

2bhs2d+ 8bhsd2 + 4bhsdffnd
≈ O

(
1

s

)
as s → ∞ (1)

Indicating that the fraction of compute operations for linear-projection and MLP matrix-
multiplications decreases as a function of input-sequence length. This observation underpins AutoSP’s
automated AC strategy.

AutoSP’s AC strategy. AutoSP exploits equation 1, building upon PyTorch-2’s automated AC
strategy. However, instead of conservatively banning every compute-intensive operator, we permit
configurations where (batch) matrix-multiplications and other compute-intensive operators outside of
the attention layer are rematerialized. We achieve this by iterating over the joint-graph and removing
any additional edges from the source to compute-heavy operators, resulting in only inputs to the
graph (tensors a and b in Fig. 4) connecting to the source. We then dispatch this mutated joint-graph
to PyTorch-2.0’s AC strategy. This change enables traning on significantly longer context lengths at
negligible cost to training throughput.

4 EVALUATION

We evaluate AutoSP with a comprehensive set of experiments. We demonstrate its effectiveness in
enhancing trainibility of various models and sizes in Section 4.1, and detailed breakdowns of the
impact of each component in Section 4.2.

Setup. We evaluate AutoSP and all the baselines on NVIDIA GH200-96GB & A100-80GB and
AMD MI250-64GB hardware. All experiments use PyTorch-2.7 with CUDA 12.8 (on NVIDIA
GPUs), and ROCm 6.4 (on AMD GPUs). To implement AutoSP, we lift the DeepSpeed-Ulysses SP
scheme into PyTorch-2.0’s compilation stack and integrate all our compiler optimizations into the
DeepSpeed project, due to its popularity in training large scale LLMs.

Baselines. We compare AutoSP to both compiler-optimized distributed training solutions and
hand-optimized SP solutions to demonstrate the memory and compute efficiency of our approach.
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Specifically, we compare against ZeRO-3 (FSDP) Rajbhandari et al. (2020) optimized through
torch.compile() in PyTorch-2.0, as well as a hand-written DeepSpeed-Ulysses (Jacobs et al.,
2024) implementation when compiled under PyTorch-2.0’s inductor and eager mode backends. We
evaluate all techniques on a range of model sizes: Llama-3.2 1B & 3B, Llama-3.1 8B, and Llama-2
13B, covering models with either Grouped-Query-Attention (GQA) or Full-Attention.

4.1 MAIN RESULTS

In this section, we evaluate how AutoSP impacts model trainability: the maximum trainable sequence
length prior to encountering OOM issues.

Trainability. For different techniques, we measure the maximum sequence length trainable prior
to OOM on 8 NVIDIA A100-80GB in Fig. 5. For all models, we use ZeRO-1, setting the SP
group-size to 2 and the DP group-size to 4 with the exception of the ZeRO-3 augmented with
torch.compile() baseline. Compared to the ZeRO-3 (FSDP) baseline, AutoSP enables training
on upto 5×, 5.6× and 2.5× longer input sequences for the 3B, 8B and 13B models, respectively.
The trainability gains come from AutoSP’s compiler-based SP-pass, an optimization that targets
long-context training unlike the ZeRO-3 baseline, which instead targets models with large parameter
counts. Moreover, AutoSP achieves significant trainability gains compared to both the inductor
compiled and eager mode hand-written DS-Ulysses implementations. Compared to the inductor
compiled implementation, AutoSP enables training on longer input sequences by upto 2.14×, 3× and
1.88× for the 3B, 8B and 13B models, respectively. Compared to eager mode DS-Ulysses, AutoSP
enables training on upto 3.75×, 4.5× and 2.5× for the 3B, 8B and 13B models, respectively. The
additional gains over hand-written SP implementations come from the SP-aware AC-pass that exploits
equation 1, rematerializing compute-heavy operators (such as mat-muls) for low runtime costs but
large memory gains. The trainability gains are especially pronounced for the 8B model compared to
3B as many of the compute-heavy operators, such as linear-projections and MLPs, produce activations
parameterized by the model hidden-dimension. These need to be stored to compute gradients in the
backwards pass and result in larger models producing significantly more activation memory due to
compute-heavy operators. AutoSP, in rematerializing these large tensors, alleviates memory issues at
negligible runtime cost. The trainability gains are less pronounced for the 13B model as optimizer
states begin to consume a substantial portion of memory (∼50%).
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Figure 5: Maximum sequence length prior to
OOM across various model sizes.
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Figure 6: Max sequence length prior to OOM
across various SP group-sizes for Llama-3.1 8B.

Scalability. For different techniques, we identify how scaling the SP group-size influences the
maximum trainable sequence length for different device counts in Fig. 6. We focus on a Llama-3.1 8B
model, using ZeRO-1 with a fixed DP-size of 2. We evaluate on 4 and 8 GPUs setting the SP group-
size to 2 and 4 respectively. Compared to the ZeRO-3 baseline compiled with torch.compile(),
AutoSP enables training on 5× and 11.25× on 4 and 8 GPUs, respectively. Moreover, compared to
the hand-written DS-Ulysses implementations, AutoSP enables training on upto 3× (4×) longer input
sequences against the inductor (eager mode) baselines on 4 GPUs, respectively. On 8 GPUs, AutoSP
enables training on upto 2.57× (4.5×) longer input sequences against the baselines, respectively.
When scaling up the SP group size and device count, AutoSP maintains significant trainability gains
over the baselines, due to the effective compiler-based SP-pass and long-context aware AC-pass.
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4.2 ANALYSIS

In this section, we run additional studies to demonstrate the effectiveness of AutoSP, as well as to
ascertain the impact of each optimization on different components of LLM training.

Hardware portability. We run an additional trainibility study on different NVIDIA and AMD
hardware, identifying the maximum sequence length before encountering an OOM in Fig. 7 to
demonstrate AutoSP’s portability. We focus on smaller, 1B and 3B models, running on either 2
GH200-96GB (NVIDIA) GPUs, or 2 AMD MI250-64GB GPUs. On NVIDIA hardware, AutoSP
enables training on upto 1.58× (2.97×) and 2.7× (4.0×) longer sequence lengths on the 1B (3B)
models respectively. On AMD hardware, AutoSP enables training on upto 2.0× (3.3×) and 2.5×
(5×) longer input sequences on the 1B (3B) models, respectively. AutoSP consistently delivers
significant trainibility gains across diverse hardware, model architectures and sizes through its
targeted long-context optimizations.
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Figure 7: Comparing the max sequence length
prior to OOM across different hardware.
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Impact of optimizations on speed. For different techniques, we measure the per-iteration
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Figure 9: Average execution time of various Llama
3.2 model sizes at different sequence lengths on
NVIDIA and AMD hardware.

end-to-end training time (averaged across 100
training iterations) on NVIDIA (GH200-96GB)
and AMD (MI250-64GB) hardware in Fig. 9,
demonstrating the performance-portability of
our approach. We trigger the SP-aware AC-
pass only to avoid OOM issues for AutoSP.
On sequence lengths that all techniques can
train on, AutoSP has the following speedups:
1.08×, 0.97× (1B) and 1.05×, 0.98× (3B) com-
pared to the eager mode and inductor baselines
on NVIDIA hardware, respectively. On AMD
hardware, AutoSP has the following speedups:
1.02×, 0.97× (1B) and N/A, 0.87× (3B) com-
pared to the eager mode and inductor baselines,
respectively. We note two observations. (1)
Using PyTorch-2.0’s compiler ecosystem im-
proves performance compared to its eager mode
backend due to the novel fusions it introduces.
(2) Despite being a general and performance-
portable compiler pass, AutoSP achieves 97%
of DS-Ulysses’ highly-optimized hand-written
baseline whilst providing an upto 2.7× trainability gain. Without AutoSP’s targeted optimizations,
training at long-contexts quickly becomes infeasible.

Breakdown analysis. We breakdown the impact of AutoSP’s optimizations in Fig. 8 on a NVIDIA
GH200-96GB. We breakdown the activation memory produced by the attention and MLP operators
as well as the per-iteration runtime of the forward and backward passes when training a Llama-3.2 1B
model using a sequence length of 40k. Overall, AutoSP reduces memory consumption of the attention
and MLP operators by 13.03× and 2.22×, respectively. The marked impact on MLP operators
arises due to the presence of many mat-muls, which AutoSP’s AC-pass rematerializes to alleviate
memory consumption at low runtime costs. On the other hand, AutoSP incurs a 1.14× cost runtime
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performance cost for the backward pass, whilst having similar forward pass times as a result of the
extra rematerialized operators, which are recomputed in the backwards pass only.

Table 1: Various optimizations in AutoSP against a baseline on a Llama-3.1 1B.

DS-Ulysses (Inductor)
AutoSP

SP-Pass SP & AC-pass

Max. Token count 81,000 77,000 128,000
Speed (s) 1.06 1.09 1.19

Ablation study. Finally, we toggle different optimizations on/off to demonstrate their impact on
trainability and speed in Table 1. The top row indicates the maximum trainable input context length
before an OOM, and the bottom row indicates the average training iteration time at a fixed 40k input
sequence length. Overall, AutoSP’s optimizations result in a 1.58× trainibility gain whilst achieving
89% of DeepSpeed-Ulysses’ per-iteration training time. Moreover, the incremental trainibility gain
of the AC-pass over the SP-pass is 1.66× with a mere 7% decrease in runtime-performance. This
significant trainability gain with little runtime-performance cost is due to equation 1. At longer
contexts, the attention-operator’s FLOPs dominate runtime, enabling traditionally compute-heavy
operators (such as mat-muls) to be rematerialized with marginal performance costs and large memory
gains. Note that the baseline is a highly hand-optimized SP implementation with several optimizations
such as communication-computation overlapping using streams. Nevertheless, the SP-pass achieves
97% of the baseline’s performance as a general compiler-pass.

5 RELATED WORK

Parallel training strategies. ZeRO-3/FSDP (Rajbhandari et al., 2020), Tensor Shoeybi et al. (2020)
& Pipeline (Huang et al., 2019) parallelism are training strategies that target models with large
parameter counts, reducing per-device memory consumption of optimizer, model, activation and
gradient states. Expert-parallelism (Lepikhin et al., 2020; DeepSeek-AI et al., 2025; Dai et al., 2024)
targets large sparse mixtures-of-experts which contain many intermediate expert MLPs. Though
effective in enhancing the trainability of large-language model training, these parallel strategies do
not explicitly target long-context training and are insufficient to scale input context lengths.

Automated optimizations. Deep-compile (Tanaka et al., 2025) provides an automated approach
to implement ZeRO-3/FSDP using profile-guided optimization. Though effective, FSDP does not
explicitly target long-context training. General-Single-Program-Multiple-Data (GSPMD) (Xu et al.,
2021), is an automated parallelization strategy in XLA guided through user annotations, requiring
some human effort. Lastly, deep-learning compilers such as: TVM (Chen et al., 2018), Mirage (Wu
et al., 2025), and AITemplate (Meta, 2022), focus on schedule rewrites for inference workloads only
and do not consider inter-GPU parallelism, a key optimization for long-context training.

Activation checkpointing. Various works propose AC techniques (Jain et al., 2020; Kirisame et al.,
2021; Chen et al., 2016). They primarily consist of two approaches. (1) Search-based optimization
(e.g. via integer-linear-programming), which may not scale up to today’s LLM sizes (billion parameter
models). (2) Static-policies (e.g. checkpoint chunks of

√
N layers’ activations), which may result in

extraneous communication calls in the backward pass in the SP-setting. Comparatively, our SP-aware
AC-pass exploits observations of compute & memory properties of LLM training at long-contexts to
alleviate memory consumption at negligible cost to runtime performance.

6 CONCLUSION

In this paper, we present AutoSP, an automated solution for training large-language-models at long-
contexts. Through a combination of automated sequence-parallelism (SP) and a long-context aware
AC strategy, AutoSP achieves significant sequence length extensions at negligible cost to training
throughput. Moreover, AutoSP’s interfaces are easy to use. Our results highlight the importance
of automated optimizations for long-context training, and point towards broader opportunities to
leverage compiler optimizations to optimize deep learning workloads.
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REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. We have documented the
critical components of our implementation in Section 3 and our evaluation in Section 4 additionally
documents our setup with a description of our hardware and software versions. We have ensured
that each result is consistent with good benchmarking practices, including taking the average over
multiple runs. Moreover, all our code and benchmarks will be made publicly available to further
enhance reproducibility.
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