AUTOSP: UNLOCKING LONG-CONTEXT LLM TRAIN-ING VIA COMPILER-BASED SEQUENCE PARALLELISM

Anonymous authors

Paper under double-blind review

ABSTRACT

Large-language-models (LLMs) demonstrate enormous utility in long-context tasks which require processing prompts that consist of tens to hundreds of thousands of tokens. However, existing LLM training libraries do not provide easy to use abstractions to optimize for long-context training, instead focusing on optimizations for models with large parameter counts through ZeRO-3/FSDP, Tensor and Pipeline parallelism. This forces users to rewrite LLM training libraries to incorporate compositions of various complex long-context optimizations, such as sequenceparallelism, to training pipelines; a process that requires in-depth expertise, reducing developer productivity. To tackle these challenges, we introduce AutoSP: the first automated solution to automatically optimize LLM training for longer-contexts. AutoSP compiles models and applies a targeted set of optimizations: automated sequence parallelism, and long-context aware activation-checkpointing, to drastically enhance LLM trainability at negligible cost to throughput. Our evaluation demonstrates AutoSP's capability on both NVIDIA and AMD hardware, increasing training contexts by upto $2.7 \times$ and $2.5 \times$ respectively at negligible cost to runtime performance over competitive hand-written baselines.

1 Introduction

Large Language Models (LLMs) are increasingly being trained with long-context data for scenarios such as document understanding (Han et al., 2025; Zhu et al., 2025; Landeghem et al., 2023), multi-hop reasoning (Cobbe et al., 2021; Feng et al., 2020), and extended multi-turn dialogue generation (Touvron et al., 2023; Bai et al., 2024). These use cases often contain input sequences ranging from tens to hundreds of thousands of tokens, creating massive activation memory demands and pushing the memory and system limits of GPU clusters. Without targeted memory optimizations, training such models quickly becomes infeasible, even when using multiple GPUs.

To circumvent out-of-memory-errors, researchers have explored Sequence parallelism (SP), a key enabler for long-context training. State-of-the-art SP strategies such as DeepSpeed-Ulysses (Jacobs et al., 2024) and RingAttention (Liu et al., 2023) distribute the sequence dimension of activations across devices and allow the training engine to leverage aggregated GPU memory to train longer contexts with increasing device counts.

Despite effectively enabling long-context training, existing implementations of SP strategies are tightly coupled to specialized training frameworks such as DeepSpeed (Rajbhandari et al., 2020) and Megatron-LM (Shoeybi et al., 2020). Integrating SP to custom training pipelines typically requires invasive code refactoring, which makes it difficult to apply across diverse model architectures and hardware platforms. Developers must manually insert communication collectives (e.g., all2all) between operators that require the full input sequence (such as attention), manage activation layouts across devices, and ensure correctness in both forward and backward passes. These manual efforts are error-prone and reduce developer productivity.

To improve developer productivity, researchers have begun to lift several complex distributed training strategies such as ZeRO-3/FSDP (Rajbhandari et al., 2020) into SoTA deep-learning compilers, such as PyTorch-2.0 (Ansel et al., 2024). Examples include: SimpleFSDP (Zhang et al., 2024) & DeepCompile (Tanaka et al., 2025), optimized compiler passes to implement ZeRO-3/FSDP in the PyTorch-2.0 ecosystem. However, each of these techniques focuses on models with large parameter

counts, focusing on different ways to shard model parameters rather than explicitly optimizing for long-context training. This raises the question: can we lift SP into a deep-learning compilation stack and enable automated sequence parallelism for long-context model training?

Specifically, we focus on lifting SP into PyTorch-2.0's compiler ecosystem as it is a SoTA opensourced compiler that targets training workloads. However, achieving this introduces several challenges. First, PyTorch-2.0's compilation pipeline includes multiple intermediaterepresentations (IRs) such as Torch-IR, Aten-IR, and Inductor-IR, to name a few. Each IR operates at a different abstraction level and encodes the input program at varying levels of granularity. This makes choosing an appropriate IR to conduct program-analysis, so as to recover the necessary information to apply semanticallypreserving rewrites that transform single-GPU code into distributed sequence-parallel execution, a major challenge. A fine-grained abstrac-

```
1# Register passes #
2 reg_passes(['auto_sp, sp_ac'])
3# Initialize dist training #
4 dist.init(SP_GROUP_SIZE)
5# Compile model. #
6 model.compile()
7# model training #
8 for batch in data_set:
9 output = model(batch[:,SP_GROUP])
10 output.backward()
11 optimizer.step(model)
```

Listing 1: AutoSP provides an easy to use interface to apply long-context optimizations to training pipelines

tion will make program-analysis (to uncover important attributes about the input model) increasingly non-trivial whilst a coarse-grained abstraction will make semantic-rewrites (to insert communication collectives, transform buffer sizes and recompute manually indexed tensors) infeasible. Second, lifting SP into the PyTorch-2.0 compilation stack has consequences to other optimization passes that PyTorch-2.0 natively supports, notably: activation-checkpointing (AC). AC also enables memory savings for training by discarding activations in the forward pass and rematerializing them in the backwards pass to compute gradients. Naively rematerializing activations together with SP may trigger extraneous communication in the backwards pass, adversarially impacting runtime performance.

To tackle these challenges, we introduce AutoSP, a compiler-based system for automating long-context optimizations in PyTorch-based LLM training. AutoSP introduces two key components: (1) a graph rewriting pass that automatically inserts SP collectives and resizes buffers for distributed SP, and (2) an AC pass that is aware of SP-induced communication and selectively applies rematerialization of intermediate activations.

We implement AutoSP by extending PyTorch 2.0's compilation stack for long-context training. It abstracts significant complexity from the user. With just a few lines of code (as shown in 1), users can compile standard PyTorch models into distributed long-context training pipelines that scale input lengths without manual engineering. Our evaluation demonstrates that AutoSP significantly improves trainability at negligible loss to training speed on diverse hardware backends (NVIDIA and AMD GPUs), enabling training on $2.7 \times$ longer input context lengths compared to hand-written SP implementations such as DeepSpeed-Ulysses.

2 Background

Sequence parallel training. Sequence parallelism (SP) is a key enabler for long-context training. These strategies enable scaling input sequence lengths with increasing GPU resources by sharding input tensors and activations across the sequence dimension. Communication collectives are inserted in the forward and backward pass as necessary to correctly shuffle tokens to the desired device. A popular SP strategy, and the focus of this work, is DeepSpeed-Ulysses (Ulysses) (Jacobs et al., 2024). We illustrate how Ulysses operates with 3-SP groups in Fig. 1. First, tokens are sharded across the sequence

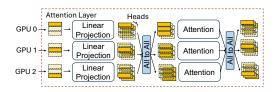


Figure 1: DeepSpeed-Ulysses with 3-SP groups. Linear-projections operate on the partial sequence length, while attention-layers operate on a subset of the heads. alltoalls switch between the two data-layouts.

dimension, with different devices operating on different parts of the input sequence. Next, linear

projections form multiple Q/K/V heads. Since linear projections operate pointwise across the sequential dimension, each device directly operates on its own tokens with no additional communication. However, since attention requires the entire input-context, an all-to-all reshuffles tokens, re-sharding the activations across the head-dimension rather than sequence-dimension. Each device locally computes attention on its respective head(s) after which another all-to-all reshuffles the tokens back to their original input sizes, re-sharding across the sequence dimension.

PyTorch-2.0 compiler. PyTorch-2.0 (Ansel et al., 2024) is a just-in-time deep-learning compiler that targets training workloads. It comprises of two components: dynamo and inductor each with a series of *compiler passes* that progressively lowers and optimizes code. Each compiler pass focuses on a single-responsibility. An example codesnippet of a neural-network and its progressive lowering through different IRs in PyTorch-2.0's compilation pipeline, is shown in Fig. 2.

Dynamo. The input to dynamo is a model comprising of PyTorch & python operators. Dynamo then executes the function and records a *trace*, represented as its intermediate representation: a computation graph. Each node in the computation-graph comprises of Torch-IR statements, which loosely correspond to statements in the original input program. Next, AOTAutograd (a sub-component of dynamo) lowers each Torch-IR statement to Aten-IR statements, which consist of finer-grained operators. Aten-IR statements do not consist of higher-level abstractions such as linear or attention layers, but instead consist of (batch) matrix-multiplication, convolution, and data-movement operators. Each Torch-IR statement is accordingly low-

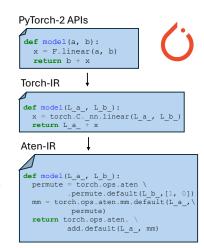


Figure 2: A sample neural network compiled using PyTorch-2.0. We illustrate the lowering to Torch-IR and Aten-IR that occur within Dynamo.

ered to its corresponding set of (multiple) Aten-IR statement(s), forming an *FX-graph*. For example, in Fig. 2, we observe that the linear operator in Torch-IR is lowered to two operators in Aten-IR: permute and mm. At this stage, a variety of compiler-passes to optimize the FX-graph are applied, notably automated acitvation-checkpointing (AC). The AC compiler-pass (Chillee) is responsible for selecting which tensors to rematerialize in the backwards pass without incurring performance penalties. It reduces this problem to a network-flow construction whose min-cut determines the tensors to rematerialize. We describe it in detail in Section 3.2.

Inductor. Finally, inductor consumes the output Aten-IR FX-graph and lowers it to a custom define-by-run IR, subsequently code-generating necessary kernels specialized to the backend microarchitecture.

3 AUTOSP

AutoSP lifts SP parallelism as a compiler-pass into the PyTorch-2.0 compiler stack to optimize long-context training. Fig. 3 is an overview of how AutoSP's compiler-passes interoperate with the PyTorch-2.0 compilation stack to optimize LLM training code. Section 3.1 describes how we enable automated sequence parallelism as a compiler pass, and Section 3.2 describes our long-context aware activation checkpointing strategy.

3.1 AUTOMATED SEQUENCE PARALLELISM

Challenges. To implement automated sequence parallelism, we must select (a single) PyTorch IR(s) to analyze and transform accordingly. However, recovering the necessary model information through program analysis and subsequently transforming the model through semantically-preserving rewrites is non-trivial for three reasons. (1) Each inserted communication collective must have token-buffers instantiated to a particular size parameterized by the model-dimension, batch-size and sequence length. However, these parameters are not explicitly represented in any IR. (2) Existing intermediate buffers need to be resized to different shapes depending on the SP group-size as well as their placement within the neural network. For example, in DeepSpeed-Ulysses, buffers within the

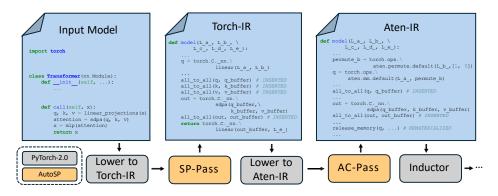


Figure 3: An overview of AutoSP. AutoSP enables an automated approach to scale input context lengths for long-context training through a targeted set of compiler optimization passes: an automated sequence-parallelism pass (Section 3.1), and a SP-aware long-context AC-pass (Section 3.2).

attention layer should be resized to operate on the full-sequence but a subset of all the heads, whilst buffers within MLP layers operate on the full model-dimension but on a partial sequence-length. (3) Certain operations require manual indexing for correctness, e.g. indexing the causal mask to appropriately apply to attention matrices, and need to be automatically recomputed.

To tackle these challenges, AutoSP's SP-pass accordingly analyzes computational structures to extract the pertinent information required for transforming single-GPU code to distributed sequence-parallel code. We next describe how it operates.

3.1.1 Analysis and Transformations

Our pass operates in two stages. First, we analyze tensor sizes to gather information about the batch, sequence and hidden dimension that parameterize the model. Next, we transform the IR by: (1) inserting communication collectives at appropriate places in the network with appropriately sized buffers to store their output, (2) adjusting the sizes of existing buffers within the graph to account for sequence sharding. (3) Recompute any manually indexed tensors appropriately. All our analysis and transformations operate on Torch-IR.

Why AutoSP analyzes and transforms TorchIR? Our SP-pass operates on Torch-IR as the analysis and transformations are significantly more challenging to accomplish on Aten-IR for three reasons. (1) Torch-IR more closely resembles the neural-network programmed by the user (see Section 2) with operators such as linear and attention-layers, making it easier to identify which parts of the graph belong to which layer for appropriate tensor resizing. On the other hand, equivalent operators in Aten-IR are represented as a series of finer-grained operators, such as mat-muls and permutations, making it

```
1 # b=batch, s=seq, h=heads, d=dim
2def transform(mod,b,s,h,d):
3 for node in mod.nodes:
    # WS = World Size
   part_seq = s/WS
     Resize buffers
    if node.name in RESIZE_BUFS:
     if node.name in ATTN OPS:
      resize_attn(node, [b,s,h/WS,d])
      resize_others(node,
                 [b,part_seq,d])
     Recalculate manual indexing
14
    if node.name in INDEX_OPS:
15
    recalc_index(node, node.args)
16
     Insert comm. collectives
    if node.name is ATTN_OPS[0]:
    buf_proj = [batch, seq, heads/WS,
                 diml
     insert_before(node, all_to_all,
                     buf_proj)
    elif node.name is ATTN OPS[-1]:
    buf_attn = [batch, seq/WS, heads,
                 dim]
     insert_after(node, all_to_all,
                     buf_attn)
```

Listing 2: AutoSP's Transformation Pass: converting single-GPU code to sequence-parallel multi-GPU code

challenging to reason about which operators belong to linear-projections and attention-operators respectively. (2) The lowering process from Torch-IR to Aten-IR inserts various data-layout transformations such as reshapes and permutes, obscuring information as to which dimension corresponds to the sequence, batch, and hidden sizes of a tensor, making it challenging to appropriately resize the correct tensor dimension. (3) Torch-IR operates on only the forward-pass resulting in our transforma-

tions operating on a simpler computation-graph, merely requiring each new added node to have a registered conjugate gradient operator. On the other hand, Aten-IR operates on both the forward and backwards pass and requires more complex transformations to the computation-graph.

Program analysis to uncover training parameters.

To correctly instantiate token-buffers for communication collectives, the correct batch, sequence and model-dimensions need to be extracted. Fortunately, we can analyze the input nodes of the entire computation graph to extract the necessary information. Since the input to the computation-graph is the data-loaded after preprocessing, it is *guaranteed* to resemble a particular shape depending on the problem domain. For example, in natural-language tasks, the data will be a [batch, seq_length]-sized tensor. Next, to acquire the model-dimension we traverse the graph until we encounter an attention operator and inspect its output ND tensor whose last two dimensions are: [num_heads, head_dim]-sized. The product of the outer two dimensions is the model-dimension.

Program transformation. After acquiring the batch, sequence and model-dimensions, we have the necessary information to transform the computation graph from single-GPU to distributed sequenceparallel code. Listing 2 illustrates how we transform the existing computation-graph, mod, comprising of Torch-IR statements. We traverse through the graph, and for each node: (1) Check if it belongs to the RESIZE_BUFS set, and accordingly resize its buffers depending on its placement in the attention or linear-projection/MLP-layers. (2) Check if it belongs in the INDEX_OPS set, and accordingly resize its tensor indexing. (3) Check if it is the first/last attention-op and accordingly instantiate communication buffers and insert the necessary alltoall before/after the attention-layer. We manually curate the RESIZE_BUFS, INDEX_OPS, and ATTN_OPS sets by analyzing dynamo FX-graphs of compiled hand-written transformer implementations.

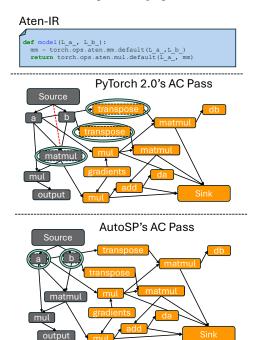


Figure 4: A comparison of PyTorch-2.0 vs. AutoSP's AC-passes on a sample codesnippet. Gray and orange boxes demarcate forward and backward pass operations respectively. The red line is the additional edge from source to node in PyTorch-2.0's ACpass to enforce no rematerialization of compute heavy operators. AutoSP's AC-pass, in removing this constraint, reduces memoryconsumption at negligible cost to throughput.

3.2 SEQUENCE-PARALLEL AWARE ACTIVATION CHECKPOINTING

Challenges. In addition to the SP-pass, activation checkpointing (AC) is an important memory reducing optimization that enables longer context training. torch.compile provides an automated AC-pass (Chillee) that operates on Aten-IR to compose with arbitrary neural networks. However, naively composing its AC-pass with AutoSP's SP-pass within the compiler-stack leads to sub-optimal performance for long-context training. We briefly explain how PyTorch-2.0's automated AC-pass functions, and why it is insufficient.

PyTorch-2.0's AC-pass. PyTorch's AC-pass operates on Aten-IR, within Dynamo. Its primary function is to reduce memory consumption of model training without incurring performance penalties. The optimization reduces the problem to a network-flow construction whose min-cut determines the tensors to rematerialize. We give an example code-snippet and its equivalent network-flow construction in Fig. 4. The input to the optimization is an FX-graph comprising of Aten-IR statements. First, a *joint-graph* of the forward and backwards graph is constructed. Next, the source node is connected to all the input tensors of the graph, and all the nodes reachable from the incoming gradients are connected to the sink. Then, capacities, representing costs, are assigned to each node. A node's capacity is determined by a heuristic function comprising of various characteristics such as the output activation memory produced. Finally, the problem is converted from a flow on nodes

to a flow on edges. Each edge's capacity is set to inf and each node is split into two: an _in and _out node. Incoming edges to each node are connected to its respective _in node and outgoing edges are connected to its respective _out node. An edge with the original node's capacity connects _in to _out. A min-cut on this graph will cut only finite-capacity edges from a node's _in to _out (highlighted by green circles in Fig. 4); only nodes on this cut are stored. Intuitively, the min-cut identifies the smallest cost set of activations to preserve to compute the necessary dependencies in the backwards pass. PyTorch-2.0 additionally enforces constraints on which nodes can be rematerialized, resulting in its conservative nature which we explain next.

Why PyTorch-2.0's AC solution is insufficient. PyTorch-2.0's AC-pass is effective in identifying which activations to store without compromising runtime performance in polynomial time. However, it makes the conservative decision to disallow rematerialization of many *seemingly* compute-intensive operators such as: mat-muls, convolutions, and scaled mat-muls to name a few, based purely on operator type, without considering runtime cost in long-context settings. This is enforced by connecting each compute-intensive node's _in to the source with infinite capacity (indicated by the additional dotted red line in Fig. 4), enforcing that node, or some downstream value of it, to belong to the min-cut. However, in long-context training, we observe that certain compute-intensive operators take a small fraction of overall compute and can accordingly be rematerialized without incurring performance penalties. AutoSP's AC strategy exploits this. We explain these observations next.

Observations. We analyze the structure of compute operations in modern LLMs to identify regions that can be appropriately rematerialized. For a transformer with: batch-size b, sequence-length s, number of heads h, head dimension d, and MLP hidden dimension d_{ffn} , we have that:

2bhs²d Attention FLOPS 8bhsd² Linear-projection FLOPS 4bhsd_{ffn}d MLP FLOPS

When training on long-contexts, we have that s>>d, h, d_{ffn}, which results in the following fraction of FLOPs linear-projection and MLP layers take over all the compute operations:

$$\frac{8 \text{bhsd}^2 + 4 \text{bhsd}_{\text{ffn}} d}{2 \text{bhs}^2 d + 8 \text{bhsd}^2 + 4 \text{bhsd}_{\text{ffn}} d} \approx O\left(\frac{1}{\text{s}}\right) \quad \text{as s} \to \infty \tag{1}$$

Indicating that the fraction of compute operations for linear-projection and MLP matrix-multiplications decreases as a function of input-sequence length. This observation underpins AutoSP's automated AC strategy.

AutoSP's AC strategy. AutoSP exploits equation 1, building upon PyTorch-2's automated AC strategy. However, instead of conservatively banning *every* compute-intensive operator, we permit configurations where (batch) matrix-multiplications and other compute-intensive operators outside of the attention layer are rematerialized. We achieve this by iterating over the joint-graph and removing any additional edges from the source to compute-heavy operators, resulting in only inputs to the graph (tensors a and b in Fig. 4) connecting to the source. We then dispatch this mutated joint-graph to PyTorch-2.0's AC strategy. This change enables traning on significantly longer context lengths at negligible cost to training throughput.

4 EVALUATION

We evaluate AutoSP with a comprehensive set of experiments. We demonstrate its effectiveness in enhancing trainibility of various models and sizes in Section 4.1, and detailed breakdowns of the impact of each component in Section 4.2.

Setup. We evaluate AutoSP and all the baselines on NVIDIA GH200-96GB & A100-80GB and AMD MI250-64GB hardware. All experiments use PyTorch-2.7 with CUDA 12.8 (on NVIDIA GPUs), and ROCm 6.4 (on AMD GPUs). To implement AutoSP, we lift the DeepSpeed-Ulysses SP scheme into PyTorch-2.0's compilation stack and integrate all our compiler optimizations into the DeepSpeed project, due to its popularity in training large scale LLMs.

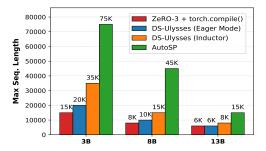
Baselines. We compare AutoSP to both compiler-optimized distributed training solutions and hand-optimized SP solutions to demonstrate the memory and compute efficiency of our approach.

Specifically, we compare against ZeRO-3 (FSDP) Rajbhandari et al. (2020) optimized through torch.compile() in PyTorch-2.0, as well as a hand-written DeepSpeed-Ulysses (Jacobs et al., 2024) implementation when compiled under PyTorch-2.0's inductor and eager mode backends. We evaluate all techniques on a range of model sizes: Llama-3.2 1B & 3B, Llama-3.1 8B, and Llama-2 13B, covering models with either Grouped-Query-Attention (GQA) or Full-Attention.

4.1 MAIN RESULTS

In this section, we evaluate how AutoSP impacts model trainability: the maximum trainable sequence length prior to encountering OOM issues.

Trainability. For different techniques, we measure the maximum sequence length trainable prior to OOM on 8 NVIDIA A100-80GB in Fig. 5. For all models, we use ZeRO-1, setting the SP group-size to 2 and the DP group-size to 4 with the exception of the ZeRO-3 augmented with torch.compile() baseline. Compared to the ZeRO-3 (FSDP) baseline, AutoSP enables training on upto $5\times$, $5.6\times$ and $2.5\times$ longer input sequences for the 3B, 8B and 13B models, respectively. The trainability gains come from AutoSP's compiler-based SP-pass, an optimization that targets long-context training unlike the ZeRO-3 baseline, which instead targets models with large parameter counts. Moreover, AutoSP achieves significant trainability gains compared to both the inductor compiled and eager mode hand-written DS-Ulysses implementations. Compared to the inductor compiled implementation, AutoSP enables training on longer input sequences by upto $2.14 \times, 3 \times$ and $1.88 \times$ for the 3B, 8B and 13B models, respectively. Compared to eager mode DS-Ulysses, AutoSP enables training on upto $3.75 \times, 4.5 \times$ and $2.5 \times$ for the 3B, 8B and 13B models, respectively. The additional gains over hand-written SP implementations come from the SP-aware AC-pass that exploits equation 1, rematerializing compute-heavy operators (such as mat-muls) for low runtime costs but large memory gains. The trainability gains are especially pronounced for the 8B model compared to 3B as many of the compute-heavy operators, such as linear-projections and MLPs, produce activations parameterized by the model hidden-dimension. These need to be stored to compute gradients in the backwards pass and result in larger models producing significantly more activation memory due to compute-heavy operators. AutoSP, in rematerializing these large tensors, alleviates memory issues at negligible runtime cost. The trainability gains are less pronounced for the 13B model as optimizer states begin to consume a substantial portion of memory (\sim 50%).



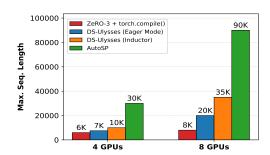


Figure 5: Maximum sequence length prior to OOM across various model sizes.

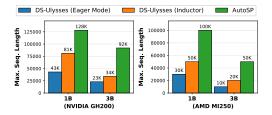
Figure 6: Max sequence length prior to OOM across various SP group-sizes for Llama-3.1 8B.

Scalability. For different techniques, we identify how scaling the SP group-size influences the maximum trainable sequence length for different device counts in Fig. 6. We focus on a Llama-3.1 8B model, using ZeRO-1 with a fixed DP-size of 2. We evaluate on 4 and 8 GPUs setting the SP group-size to 2 and 4 respectively. Compared to the ZeRO-3 baseline compiled with torch.compile(), AutoSP enables training on $5\times$ and $11.25\times$ on 4 and 8 GPUs, respectively. Moreover, compared to the hand-written DS-Ulysses implementations, AutoSP enables training on upto $3\times(4\times)$ longer input sequences against the inductor (eager mode) baselines on 4 GPUs, respectively. On 8 GPUs, AutoSP enables training on upto $2.57\times(4.5\times)$ longer input sequences against the baselines, respectively. When scaling up the SP group size and device count, AutoSP maintains significant trainability gains over the baselines, due to the effective compiler-based SP-pass and long-context aware AC-pass.

4.2 Analysis

In this section, we run additional studies to demonstrate the effectiveness of AutoSP, as well as to ascertain the impact of each optimization on different components of LLM training.

Hardware portability. We run an additional trainibility study on different NVIDIA and AMD hardware, identifying the maximum sequence length before encountering an OOM in Fig. 7 to demonstrate AutoSP's portability. We focus on smaller, 1B and 3B models, running on either 2 GH200-96GB (NVIDIA) GPUs, or 2 AMD MI250-64GB GPUs. On NVIDIA hardware, AutoSP enables training on upto $1.58 \times (2.97 \times)$ and $2.7 \times (4.0 \times)$ longer sequence lengths on the 1B (3B) models respectively. On AMD hardware, AutoSP enables training on upto $2.0 \times (3.3 \times)$ and $2.5 \times (5 \times)$ longer input sequences on the 1B (3B) models, respectively. AutoSP consistently delivers significant trainibility gains across diverse hardware, model architectures and sizes through its targeted long-context optimizations.



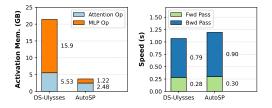


Figure 7: Comparing the max sequence length prior to OOM across different hardware.

Figure 8: Breakdown of Attention and MLP operator memory consumption and forward iteration times.

Impact of optimizations on speed. For different techniques, we measure the per-iteration

end-to-end training time (averaged across 100 training iterations) on NVIDIA (GH200-96GB) and AMD (MI250-64GB) hardware in Fig. 9, demonstrating the performance-portability of our approach. We trigger the SP-aware ACpass only to avoid OOM issues for AutoSP. On sequence lengths that all techniques can train on, AutoSP has the following speedups: $1.08 \times$, $0.97 \times$ (1B) and $1.05 \times$, $0.98 \times$ (3B) compared to the eager mode and inductor baselines on NVIDIA hardware, respectively. On AMD hardware, AutoSP has the following speedups: $1.02 \times$, $0.97 \times$ (1B) and N/A, $0.87 \times$ (3B) compared to the eager mode and inductor baselines, respectively. We note two observations. (1) Using PyTorch-2.0's compiler ecosystem improves performance compared to its eager mode backend due to the novel fusions it introduces. (2) Despite being a general and performanceportable compiler pass, AutoSP achieves 97% of DS-Ulysses' highly-optimized hand-written

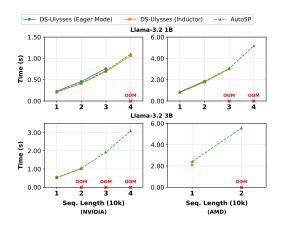


Figure 9: Average execution time of various Llama 3.2 model sizes at different sequence lengths on NVIDIA and AMD hardware.

baseline whilst providing an upto $2.7 \times$ trainability gain. Without AutoSP's targeted optimizations, training at long-contexts quickly becomes infeasible.

Breakdown analysis. We breakdown the impact of AutoSP's optimizations in Fig. 8 on a NVIDIA GH200-96GB. We breakdown the activation memory produced by the attention and MLP operators as well as the per-iteration runtime of the forward and backward passes when training a Llama-3.2 1B model using a sequence length of 40k. Overall, AutoSP reduces memory consumption of the attention and MLP operators by $13.03\times$ and $2.22\times$, respectively. The marked impact on MLP operators arises due to the presence of many mat-muls, which AutoSP's AC-pass rematerializes to alleviate memory consumption at low runtime costs. On the other hand, AutoSP incurs a $1.14\times$ cost runtime

performance cost for the backward pass, whilst having similar forward pass times as a result of the extra rematerialized operators, which are recomputed in the backwards pass only.

Table 1: Various optimizations in AutoSP against a baseline on a Llama-3.1 1B.

	DS-Ulysses (Induc	(Inductor)	AutoSP	
		(Inddecor)	SP-Pass	SP & AC-pass
Max. Token count Speed (s)	81,000 1.06		77,000 1.09	128,000 1.19

Ablation study. Finally, we toggle different optimizations on/off to demonstrate their impact on trainability and speed in Table 1. The top row indicates the maximum trainable input context length before an OOM, and the bottom row indicates the average training iteration time at a fixed 40k input sequence length. Overall, AutoSP's optimizations result in a 1.58× trainibility gain whilst achieving 89% of DeepSpeed-Ulysses' per-iteration training time. Moreover, the incremental trainibility gain of the AC-pass over the SP-pass is 1.66× with a mere 7% decrease in runtime-performance. This significant trainability gain with little runtime-performance cost is due to equation 1. At longer contexts, the attention-operator's FLOPs dominate runtime, enabling traditionally compute-heavy operators (such as mat-muls) to be rematerialized with marginal performance costs and large memory gains. Note that the baseline is a highly hand-optimized SP implementation with several optimizations such as communication-computation overlapping using streams. Nevertheless, the SP-pass achieves 97% of the baseline's performance as a general compiler-pass.

5 RELATED WORK

Parallel training strategies. ZeRO-3/FSDP (Rajbhandari et al., 2020), Tensor Shoeybi et al. (2020) & Pipeline (Huang et al., 2019) parallelism are training strategies that target models with large parameter counts, reducing per-device memory consumption of optimizer, model, activation and gradient states. Expert-parallelism (Lepikhin et al., 2020; DeepSeek-AI et al., 2025; Dai et al., 2024) targets large sparse mixtures-of-experts which contain many intermediate expert MLPs. Though effective in enhancing the trainability of large-language model training, these parallel strategies do not explicitly target long-context training and are insufficient to scale input context lengths.

Automated optimizations. Deep-compile (Tanaka et al., 2025) provides an automated approach to implement ZeRO-3/FSDP using profile-guided optimization. Though effective, FSDP does not explicitly target long-context training. General-Single-Program-Multiple-Data (GSPMD) (Xu et al., 2021), is an automated parallelization strategy in XLA guided through user annotations, requiring some human effort. Lastly, deep-learning compilers such as: TVM (Chen et al., 2018), Mirage (Wu et al., 2025), and AITemplate (Meta, 2022), focus on schedule rewrites for inference workloads only and do not consider inter-GPU parallelism, a key optimization for long-context training.

Activation checkpointing. Various works propose AC techniques (Jain et al., 2020; Kirisame et al., 2021; Chen et al., 2016). They primarily consist of two approaches. (1) Search-based optimization (e.g. via integer-linear-programming), which may not scale up to today's LLM sizes (billion parameter models). (2) Static-policies (e.g. checkpoint chunks of \sqrt{N} layers' activations), which may result in extraneous communication calls in the backward pass in the SP-setting. Comparatively, our SP-aware AC-pass exploits observations of compute & memory properties of LLM training at long-contexts to alleviate memory consumption at negligible cost to runtime performance.

6 CONCLUSION

In this paper, we present AutoSP, an automated solution for training large-language-models at long-contexts. Through a combination of automated sequence-parallelism (SP) and a long-context aware AC strategy, AutoSP achieves significant sequence length extensions at negligible cost to training throughput. Moreover, AutoSP's interfaces are easy to use. Our results highlight the importance of automated optimizations for long-context training, and point towards broader opportunities to leverage compiler optimizations to optimize deep learning workloads.

REPRODUCIBILITY STATEMENT

We have made several efforts to ensure the reproducibility of our work. We have documented the critical components of our implementation in Section 3 and our evaluation in Section 4 additionally documents our setup with a description of our hardware and software versions. We have ensured that each result is consistent with good benchmarking practices, including taking the average over multiple runs. Moreover, all our code and benchmarks will be made publicly available to further enhance reproducibility.

REFERENCES

- Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch 2: Faster machine learning through dynamic python bytecode transformation and graph compilation. In *Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2*, ASPLOS '24, pp. 929–947, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703850. doi: 10.1145/3620665.3640366. URL https://doi.org/10.1145/3620665.3640366.
- Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su, Tiezheng Ge, Bo Zheng, and Wanli Ouyang. Mt-bench-101: A fine-grained benchmark for evaluating large language models in multi-turn dialogues. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7421–7454. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.401. URL http://dx.doi.org/10.18653/v1/2024.acl-long.401.
- Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost, 2016. URL https://arxiv.org/abs/1604.06174.
- Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated End-to-End optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), pp. 578–594, Carlsbad, CA, October 2018. USENIX Association. ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/osdi18/presentation/chen.
- Chillee. Min-cut optimal recomputation (i.e. activation checkpointing) with aotautograd.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.
- Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2401.06066.
- DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,

541

543

544

546

547

548

549

550

551

552

553

554

556

558

559

561

563

564

565

566 567

568

569

570

571

573

574

575

576

577

578

579

580 581

582

583

584

585

586

588 589

592

Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

- Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan, and Xiang Ren. Scalable multi-hop relational reasoning for knowledge-aware question answering, 2020. URL https://arxiv.org/abs/2005.00646.
- Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, and Huaxiu Yao. Mdocagent: A multi-modal multi-agent framework for document understanding, 2025. URL https://arxiv.org/abs/2503.13964.
- Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism, 2019. URL https://arxiv.org/abs/1811.06965.
- Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminadabi, Shuaiwen Leon Song, Samyam Rajbhandari, and Yuxiong He. System optimizations for enabling training of extreme long sequence transformer models. In *Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing*, PODC '24, pp. 121–130, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706684. doi: 10.1145/3662158.3662806. URL https://doi.org/10.1145/3662158.3662806.
- Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion Stoica, and Joseph E. Gonzalez. Checkmate: Breaking the memory wall with optimal tensor rematerialization, 2020. URL https://arxiv.org/abs/1910.02653.
- Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch, Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization, 2021. URL https://arxiv.org/abs/2006.09616.
- Jordy Van Landeghem, Rubén Tito, Łukasz Borchmann, Michał Pietruszka, Paweł Józiak, Rafał Powalski, Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko, Sien Moens, and Tomasz Stanisławek. Document understanding dataset and evaluation (dude), 2023. URL https://arxiv.org/abs/2305.08455.
- Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.16668.
- Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

 Meta. AITemplate: Python framework which renders neural network into high performance CUDA/HIP C++ code., 2022. URL https://github.com/facebookincubator/AITemplate.

- Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward training trillion parameter models, 2020. URL https://arxiv.org/abs/1910.02054.
- Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. URL https://arxiv.org/abs/1909.08053.
- Masahiro Tanaka, Du Li, Umesh Chand, Ali Zafar, Haiying Shen, and Olatunji Ruwase. Deepcompile: A compiler-driven approach to optimizing distributed deep learning training, 2025. URL https://arxiv.org/abs/2504.09983.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.
- Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit Ao, Praveen Velliengiri, Xupeng Miao, Oded Padon, and Zhihao Jia. Mirage: A multi-level superoptimizer for tensor programs. In 19th USENIX Symposium on Operating Systems Design and Implementation (OSDI 25), Boston, MA, July 2025. USENIX Association.
- Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni, Ruoming Pang, Noam Shazeer, Shibo Wang, Tao Wang, Yonghui Wu, and Zhifeng Chen. Gspmd: General and scalable parallelization for ml computation graphs, 2021. URL https://arxiv.org/abs/2105.04663.
- Ruisi Zhang, Tianyu Liu, Will Feng, Andrew Gu, Sanket Purandare, Wanchao Liang, and Francisco Massa. Simplefsdp: Simpler fully sharded data parallel with torch.compile, 2024. URL https://arxiv.org/abs/2411.00284.
- Zhaoqing Zhu, Chuwei Luo, Zirui Shao, Feiyu Gao, Hangdi Xing, Qi Zheng, and Ji Zhang. A simple yet effective layout token in large language models for document understanding, 2025. URL https://arxiv.org/abs/2503.18434.