
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PETRA: PARALLEL END-TO-END TRAINING OF RE-
VERSIBLE ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reversible architectures have been shown to be capable of performing on par with
their non-reversible architectures, being applied in deep learning for memory sav-
ings and generative modeling. In this work, we show how reversible architectures
can solve challenges in parallelizing deep model training. We introduce PETRA, a
novel alternative to backpropagation for parallelizing gradient computations. PE-
TRA facilitates effective model parallelism by enabling stages (i.e., a set of layers)
to compute independently on different devices, while only needing to communi-
cate activations and gradients between each other. By decoupling the forward
and backward passes and keeping a single updated version of the parameters, the
need for weight stashing is also removed. We develop a custom autograd-like
training framework for PETRA, and we demonstrate its effectiveness on CIFAR-
10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to
backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.

1 INTRODUCTION

First-order methods using stochastic gradients computed via backpropagation on mini-batches are
the de-facto standard for computing parameter updates in Deep Neural Networks (LeCun et al.,
2015). As datasets and models continue to grow (Alabdulmohsin et al., 2022) there is an urgent need
for memory-efficient and scalable parallelization of deep learning training across multiple workers.
Data parallelism via mini-batches (LeCun et al., 2015) has been widely adopted in deep learning
frameworks (Li et al., 2020). This approach computes gradients across model replicas distributed
among workers, yet it requires frequent synchronization to aggregate gradients, leading to high com-
munication costs, as well as substantial memory redundancy. Furthermore, with the increasing size
and scale of models exceeding that of the growth of on-device memory, the forward and backward
passes now often exceed a single device’s memory capacity (Ren et al., 2021). To further address
these issues, methods have attempted to mitigate this memory overhead and to parallelize the sequen-
tial backpropagation steps themselves across devices, while computing exact gradients. Techniques
like optimizer sharding (Rajbhandari et al., 2020), tensor parallelism (Shoeybi et al., 2019), activa-
tion checkpointing (Chen et al., 2016), or pipelining (Huang et al., 2019), have been deployed indi-
vidually or combined, leading for instance to the development of 3D parallelism (Smith et al., 2022),
a popular methodology which improves the efficiency of the backpropagation implementation. On
the other hand, the fundamental inefficiency underlying the parallelization of backpropagation has
not been addressed by these methods.

However, the use of exact gradient restricts algorithmic choices and parallel implementations, as
highlighted by Jaderberg et al. (2017). For instance, backpropagation is backward locked: the in-
puts of each layer must be propagated through the network and preserved until an error signal is
retropropagated to the layer of origin. This requirement enforces a synchronous dependency among
subsequent layers and requires them to systematically store intermediary activations, potentially im-
peding overall resource efficiency as workers must wait for each other to continue their computations
and release memory used for activations. To unlock the potential of backpropagation, inexact back-
propagation procedures have been proposed. These procedures are generally conceptualized within
the context of model parallelism, where a neural network is split into stages that can process their
activations in parallel, potentially on multiple devices. For example, some methods use outdated pa-
rameters or activations, such as double-buffered pipelining (Harlap et al., 2018) or delayed gradient
approaches (Zhuang et al., 2021b). However, these methods introduce significant memory overhead

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a) Backpropagation

b) PETRA

Time

Stage 2

Stage 1

Stage 0

Stage 2

Stage 1

Stage 0

Propagation
of one batch

Layer

Loss

Figure 1: Comparison of PETRA with standard backpropagation. This approach splits the
stages of a model and decouples their forward and backward passes, resulting in a sixfold increase
in parallelization speed in this example.

due to the use of ad hoc buffers for activations, parameters, or both. Following an opposite direction,
local learning methods (Nøkland & Eidnes, 2019; Belilovsky et al., 2020), which estimate inexact
gradients via a local auxiliary neural network, pave the way to parallel gradient computations but
often lead to unrecoverable performance drops (Fournier et al., 2023). This underscores the need for
a robust alternative to backpropagation, with limited memory overhead.

In this work, we introduce PETRA (Parallel End-to-End Training with Reversible Architectures),
a novel method designed to parallelize gradient computations within reversible architectures with
minimal computational overhead. Reversible architectures are an ideal candidate for this task, as
they can significantly reduce memory overhead during standard backpropagation with limited com-
munication costs. Furthermore, reversibility is a minor requirement, as many studies have demon-
strated that standard architectures can be adapted into reversible ones without any performance drops
(Gomez et al., 2017; Jacobsen et al., 2018b; Mangalam et al., 2022; Kitaev et al., 2020). By allow-
ing parameters to evolve in parallel and by computing an approximate inversion during backward,
we propose an effective alternative to backpropagation which allows high model parallelism with
a constant communication overhead and no additional parameter or activation buffers. In fact,
for a constant increase in communication overhead, PETRA achieves a linear speedup compared to
standard backpropagation with respect to the number J of stages the network is split into. We illus-
trate our approach in Fig. 1, by contrasting the evolution of PETRA with a standard backpropagation
pass.

Contributions. Our contributions are as follows: (1) We introduce PETRA, a streamlined ap-
proach for parallelizing the training of reversible architectures. This method leverages a delayed,
approximate inversion of activations during the backward pass, allowing for enhanced computa-
tional efficiency. (2) Our technique significantly reduces memory overhead by minimizing the ne-
cessity to store extensive computational graphs. (3) It enables the parallelization of forward and
backward pass computations across multiple devices, effectively distributing the workload and re-
ducing training time. (4) We validate the efficacy of PETRA through rigorous testing on benchmark
datasets such as CIFAR-10, ImageNet-32, and ImageNet, where it demonstrates robust performance
with minimal impact on accuracy. (5) We observe a significant empirical throughput increase when
using PETRA. (6) Additionally, we will provide a flexible reimplementation of the autograd system
in PyTorch at the time of publication.

2 RELATED WORK

Reversible architectures. Reversible DNNs are composed of layers that are invertible, meaning
that the input of a layer can be computed from its output. This approach allows to avoid the need to
store intermediary activations during the forward pass by reconstructing them progressively during
the backward pass (Gomez et al., 2017), at the cost of an extra computation per layer. Invertible net-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

works further improve this method by removing dimensionality reduction steps such as downsam-
plings, making the networks fully invertible (Jacobsen et al., 2018a). Reversibility is not restricted
to a type of architecture or tasks and has been extensively used for generative models (Dinh et al.,
2014), for ResNets (Gomez et al., 2017), and Transformers (Mangalam et al., 2022). However, as
far as we know, reversible architectures have never been used to enhance parallelization capabilities.

Alternatives to backpropagation. Multiple alternatives to backpropagation have been proposed
previously to improve over its computational efficiency. For instance, DNI (Jaderberg et al., 2017)
is the first to mention the backpropagation inefficiency and its inherent synchronization locks. How-
ever, they address those locks with a method non-competitive with simple baselines. Local (or
greedy) learning (Nøkland & Eidnes, 2019; Belilovsky et al., 2019) propose to use layerwise losses
to decouple the training of layers, allowing them to train in parallel (Belilovsky et al., 2021). Local
learning in videos (Malinowski et al., 2021) notably uses the similarity between successive tempo-
ral features to remove buffer memory. However, the difference in training dynamics between local
training and backpropagation still limits such approaches (Fournier et al., 2023; Wang et al., 2021).

Pipeline parallelism. Pipelining encompasses a range of model parallel techniques that divide the
components of a network into stages that compute in parallel, while avoiding idle workers. Initially
popularized by Huang et al. (2019), a batch of data is divided into micro-batches that are processed
independently at each stage. Although more efficient pipelining schedules have been proposed (Fan
et al., 2021), notably to mitigate the peak memory overhead, keeping an exact batch gradient compu-
tation requires leaving a bubble of idle workers. By alternating one forward and one backward pass
for each worker, PipeDream (Narayanan et al., 2019) can allow to get rid of idleness bubbles, but
at the expense of introducing staleness in the gradients used. Narayanan et al. (2021) mitigates this
staleness to only one optimization step by accumulating gradients, thus also reducing the parameter
memory overhead to only two versions of the parameters. Nevertheless, these approaches still suffer
from a quadratic activation memory overhead with regard to the number of stages, as micro-batch
activations pile up in buffers, especially for early layers. Some implementations propose to limit
this overhead by combining activation checkpointing (Chen et al., 2016) with pipelining (Kim et al.,
2020; Liu et al., 2023), although the memory overhead still scales with the number of stages.

Delayed gradient. By allowing stale gradients in the update process, these previous methods
provide the context for our approach. Delayed gradient optimization methods are model parallel
techniques that aim to decouple and process layers in parallel during backpropagation. In these ap-
proaches, delays occur stage-wise: the backward pass may be computed with outdated parameters or
activations compared to the forward pass. For instance, Huo et al. (2018a) proposes a feature replay
approach, where a forward pass first stores intermediary activations, which are then ”replayed” to
compute the backward pass in parallel. This method still requires heavy synchronization between
layers, yielding a lock on computations. In Zhuang et al. (2020) and Zhuang et al. (2021a), stale
gradients are computed from older parameter versions differing from the parameters used during the
update. This staleness can be mitigated: Zhuang et al. (2021a) ’shrinks’ the gradient by the delay
value, but more advanced techniques also exist (Yang et al., 2021; Kosson et al., 2021). Still, these
methods are limited like previous pipelining methods by their memory overhead as the computa-
tional graph is fully stored. A first step to reduce this, as proposed in Diversely Stale Parameters
(DSP) (Xu et al., 2019), PipeMare (Yang et al., 2021) and (Kosson et al., 2021), is to keep a single set
of parameters and approximate the gradients computed during the backward pass with the updated
parameters, which differ from the ones used in the forward pass. This requires, like in activation
checkpointing, an additional reconstruction of the computational graph. Furthermore, the quadratic
activation memory overhead still limits the scalability of these methods for a large number of stages.

3 METHOD

3.1 STANDARD BACKPROPAGATION

We consider a DNN composed of J stages (e.g., a layer or a set of layers). An input x0 is propagated
through the network, recursively defined by

xj ≜ Fj(xj−1, θj) , (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="NlPFO0Kys4OBN8nyEAhy8VZNCXM=">AAACS3icZVBNT9tAEF2nhVK3QGiPvawaKlUCRXYkCkdULj2mggASjtB4PXZW7Ie1uwZFK/+EXttfxQ/o7+it6qHrkAOBkVZ682be7MzLa8GtS5LfUe/Fy7X1Vxuv4zdvN7e2+zvvzq1uDMMJ00KbyxwsCq5w4rgTeFkbBJkLvMhvTrr6xS0ay7U6c/MapxIqxUvOwAXqdHdv97o/SIbJIuhzkC7BgCxjfL0TjbJCs0aickyAtVdpUrupB+M4E9jGWWOxBnYDFV4FqECinfrFri39FJiCltqEpxxdsI8VHqS1c5nv0wAkuNk+LWzXGqRdalfHu/Jo6rmqG4eKPUwvG0Gdpt21tOAGmRPzAIAZHhakbAYGmAuexFk3twTJxdxXqE3Foc2Cl0HSVeJM4R3TUoIqfFYbnbc+63YorB+3K3f6RZubrZKyEeFHLdo4Di6nTz19Ds5Hw/TL8OD7aHD8den3BvlAPpLPJCWH5Jh8I2MyIYxU5Af5SX5F99Gf6G/076G1Fy0178lK9Nb+Aw/9s60=</latexit>

+

<latexit sha1_base64="6BD1YYAfVFbkQSRv9I6joaNqXZ4=">AAACU3icZVBNT9tAEF0b2oIpBdpjLytCpR5oZOdAe0TthWMqNYAUh2i8Hidb9sPaXbeNVv4ZvcKv4sBv6aXrkAOBkVZ682be7MwrasGtS9P7KN7YfPHy1dZ2svN6983e/sHbc6sbw3DEtNDmsgCLgiscOe4EXtYGQRYCL4rrb1394hcay7X64RY1TiTMFK84Axeo8dGfqf/5KWuvsqPpfi/tp8ugz0G2Aj2yiuH0IBrkpWaNROWYAGvHWVq7iQfjOBPYJnljsQZ2DTMcB6hAop345c4t/RCYklbahKccXbKPFR6ktQtZHNMAJLj5MS1t1xqkXWrXx7vqy8RzVTcOFXuYXjWCOk27q2nJDTInFgEAMzwsSNkcDDAXvEnybm4FkouFn6E2Mw5tHjwNkq6S5Ap/My0lqNLntdFF6/Nuh9L6Ybt2p1+2ufk6KRsRftSiTZLgcvbU0+fgfNDPTvon3we9068rv7fIe3JIPpKMfCan5IwMyYgwoslfckNuo7voXxzHmw+tcbTSvCNrEe/+B679tPs=</latexit>

x1
j�1

<latexit sha1_base64="PhlGfVzywNXNryMbXJtoLHuhj0k=">AAACU3icZVBNT9tAEF0b2oIpBdpjLytCpR5oZOdAe0TthWMqNYAUh2i8Hidb9sPaXbeNVv4ZvcKv4sBv6aXrkAOBkVZ682be7MwrasGtS9P7KN7YfPHy1dZ2svN6983e/sHbc6sbw3DEtNDmsgCLgiscOe4EXtYGQRYCL4rrb1394hcay7X64RY1TiTMFK84Axeo8dGfqf/5KWuvBkfT/V7aT5dBn4NsBXpkFcPpQTTIS80aicoxAdaOs7R2Ew/GcSawTfLGYg3sGmY4DlCBRDvxy51b+iEwJa20CU85umQfKzxIaxeyOKYBSHDzY1rarjVIu9Suj3fVl4nnqm4cKvYwvWoEdZp2V9OSG2ROLAIAZnhYkLI5GGAueJPk3dwKJBcLP0NtZhzaPHgaJF0lyRX+ZlpKUKXPa6OL1ufdDqX1w3btTr9sc/N1UjYi/KhFmyTB5eypp8/B+aCfnfRPvg96p19Xfm+R9+SQfCQZ+UxOyRkZkhFhRJO/5IbcRnfRvziONx9a42ileUfWIt79D7DjtPw=</latexit>

x2
j�1

<latexit sha1_base64="GuhomRqAmxFW+A4xXkUntQB06do=">AAACUXicZVBNb9NAEB2br+Ly0cKRy4oUiUMV2TkUjhVcOAaJtEV1iMbrcbJ0P6zdNRCt/Cu4wq/ixE/hxjrNgdCRVnrzZt7szKtaKZzP899Jeuv2nbv39u5n+w8ePnp8cPjkzJnOcppxI429qNCRFJpmXnhJF60lVJWk8+rq7VA//0LWCaM/+HVLc4VLLRrB0Ufq49G3RfjcfyqOFgejfJxvgt0ExRaMYBvTxWEyKWvDO0Xac4nOXRZ56+cBrRdcUp+VnaMW+RUu6TJCjYrcPGw27tmLyNSsMTY+7dmG/VcRUDm3VtUxi0ChXx2z2g2tUTqkbne8b17Pg9Bt50nz6+lNJ5k3bLiZ1cIS93IdAXIr4oKMr9Ai99GZrBzmNqiEXIclGbsU2JfR0SgZKlmp6Ss3SqGuQ9laU/WhHHaoXZj2O3eGTZtf7ZKqk/FHI/ssiy4X/3t6E5xNxsXJ+OT9ZHT6Zuv3HjyD5/ASCngFp/AOpjADDgq+ww/4mfxK/qSQptetabLVPIWdSPf/AqzHtIk=</latexit>

x1
j

<latexit sha1_base64="rwibaP1K6U6Ilf6ENwVeZoDINQk=">AAACUXicZVBNb9NAEB2br+Ly0cKRy4oUiUMV2TkUjhVcOAaJtEV1iMbrcbJ0P6zdNRCt/Cu4wq/ixE/hxjrNgdCRVnrzZt7szKtaKZzP899Jeuv2nbv39u5n+w8ePnp8cPjkzJnOcppxI429qNCRFJpmXnhJF60lVJWk8+rq7VA//0LWCaM/+HVLc4VLLRrB0Ufq49G3Rfjcf5ocLQ5G+TjfBLsJii0YwTami8NkUtaGd4q05xKduyzy1s8DWi+4pD4rO0ct8itc0mWEGhW5edhs3LMXkalZY2x82rMN+68ioHJurapjFoFCvzpmtRtao3RI3e5437yeB6HbzpPm19ObTjJv2HAzq4Ul7uU6AuRWxAUZX6FF7qMzWTnMbVAJuQ5LMnYpsC+jo1EyVLJS01dulEJdh7K1pupDOexQuzDtd+4Mmza/2iVVJ+OPRvZZFl0u/vf0JjibjIuT8cn7yej0zdbvPXgGz+ElFPAKTuEdTGEGHBR8hx/wM/mV/EkhTa9b02SreQo7ke7/Ba6ttIo=</latexit>

x2
j

(b) RevNet Forward (c) RevNet Reverse

<latexit sha1_base64="FCGisnFWx9pU2DD8uG3Qixqz97s=">AAACYXicZVBNbxMxEHWWUtqllLQcOPRikVbiUEW7ORSOFUiIY5BIW6kbRbPe2cTUHyvbC4os/xqu8IM494/Um+RA2pEsvXkzbzzzykZw67LsXy95tvN898Xefvry4NXh6/7R8ZXVrWE4YVpoc1OCRcEVThx3Am8agyBLgdfl3eeufv0TjeVafXfLBqcS5orXnIGL1Kz/9rRwXFToCwluwUD4LyHMfpzO+oNsmK2CPgX5BgzIJsazo96oqDRrJSrHBFh7m2eNm3owjjOBIS1aiw2wO5jjbYQKJNqpX10Q6FlkKlprE59ydMX+r/AgrV3K8pxG0G16TivbtUZpl9rt8a7+OPVcNa1DxdbT61ZQp2nnAa24QebEMgJghscFKVuAAeaiU2nRza1BcrH0c9RmziEU0eEo6SppofAX01KCqnzRGF2GtXmV9eOwdadftbnFNilbEX/UIqRpdDl/7OlTcDUa5hfDi2+jweWnjd975IS8I+9JTj6QS/KVjMmEMBLIb/KH/O3dJ/tJPzletya9jeYN2Yrk5AGFDLoi</latexit>

F̃j

<latexit sha1_base64="Z7SKX3hYfOOtCkemp9oM/aTD/Xk=">AAACT3icZZDPThsxEMa9gRZY2gLtsRertFIPNNrlABxRe+kxlRqCxEbRrHc2ceM/K9sLjax9CK7wHn0BnoBjH6TtDeENOTQwkqWfP8+MZ768Ety6JPkddVZWnz1fW9+IN1+8fLW1vfP6xOraMOwzLbQ5zcGi4Ar7jjuBp5VBkLnAQT790r4PztFYrtV3N6twKGGseMkZuCANfo78j09pM9reTbrJPOhTSBewe/z+z6+b882/vdFOtJ8VmtUSlWMCrD1Lk8oNPRjHmcAmzmqLFbApjPEsoAKJdujn8zb0Q1AKWmoTjnJ0rv5f4UFaO5P5Hg0gwU32aGHb1FDaXu1ye1ceDT1XVe1QsYfuZS2o07TdmBbcIHNiFgCY4WFAyiZggLngS5y1fUuQXMz8GLUZc2iy4GcoaV/iTOEF01KCKnxWGZ03PmtnKKzvNUt7+nmamyyLshbhRy2aOA4up489fQon+930oHvwLdj9mTzEOnlL3pGPJCWH5Jh8JT3SJ4xMySW5ItfRbfQvuussUjvRAt6Qpehs3AP9JrlC</latexit>xj�1

<latexit sha1_base64="PiFuRgBWj6JVPsZ5v4E8jE04zmw=">AAACTXicZVDNThsxEPamBdLlN+2xF6sUiQOKdjnQHhG9cEylBpDYKJr1ziYG/6xsLxBZ+wxcy4v0BfoAPfdB6Kmq6k04NGUkS998M9945ssrwa1Lkp9R58XLldW17qt4fWNza3un9/rM6towHDIttLnIwaLgCoeOO4EXlUGQucDz/PpTWz+/QWO5Vl/crMKRhIniJWfgAjW8G/urZryzm/STedDnIH0Cu8fvH799v1n/NRj3osOs0KyWqBwTYO1lmlRu5ME4zgQ2cVZbrIBdwwQvA1Qg0Y78fNuG7gWmoKU24SlH5+y/Cg/S2pnMD2gAEtz0gBa2bQ3SNrXL4135ceS5qmqHii2ml7WgTtP2Xlpwg8yJWQDADA8LUjYFA8wFV+KsnVuC5GLmJ6jNhEOTBTeDpK3EmcJbpqUEVfisMjpvfNbuUFg/aJbu9PM2N10mZS3Cj1o0cRxcTv/39Dk4O+ynR/2jz8HuE7KILnlL3pF9kpIP5JickgEZEkY4uSdfyUP0I3qMfkd/Fq2d6EnzhixFZ+0vHU+5zw==</latexit>xj

(a) ResNet

<latexit sha1_base64="6BD1YYAfVFbkQSRv9I6joaNqXZ4=">AAACU3icZVBNT9tAEF0b2oIpBdpjLytCpR5oZOdAe0TthWMqNYAUh2i8Hidb9sPaXbeNVv4ZvcKv4sBv6aXrkAOBkVZ682be7MwrasGtS9P7KN7YfPHy1dZ2svN6983e/sHbc6sbw3DEtNDmsgCLgiscOe4EXtYGQRYCL4rrb1394hcay7X64RY1TiTMFK84Axeo8dGfqf/5KWuvsqPpfi/tp8ugz0G2Aj2yiuH0IBrkpWaNROWYAGvHWVq7iQfjOBPYJnljsQZ2DTMcB6hAop345c4t/RCYklbahKccXbKPFR6ktQtZHNMAJLj5MS1t1xqkXWrXx7vqy8RzVTcOFXuYXjWCOk27q2nJDTInFgEAMzwsSNkcDDAXvEnybm4FkouFn6E2Mw5tHjwNkq6S5Ap/My0lqNLntdFF6/Nuh9L6Ybt2p1+2ufk6KRsRftSiTZLgcvbU0+fgfNDPTvon3we9068rv7fIe3JIPpKMfCan5IwMyYgwoslfckNuo7voXxzHmw+tcbTSvCNrEe/+B679tPs=</latexit>

x1
j�1

<latexit sha1_base64="PhlGfVzywNXNryMbXJtoLHuhj0k=">AAACU3icZVBNT9tAEF0b2oIpBdpjLytCpR5oZOdAe0TthWMqNYAUh2i8Hidb9sPaXbeNVv4ZvcKv4sBv6aXrkAOBkVZ682be7MwrasGtS9P7KN7YfPHy1dZ2svN6983e/sHbc6sbw3DEtNDmsgCLgiscOe4EXtYGQRYCL4rrb1394hcay7X64RY1TiTMFK84Axeo8dGfqf/5KWuvBkfT/V7aT5dBn4NsBXpkFcPpQTTIS80aicoxAdaOs7R2Ew/GcSawTfLGYg3sGmY4DlCBRDvxy51b+iEwJa20CU85umQfKzxIaxeyOKYBSHDzY1rarjVIu9Suj3fVl4nnqm4cKvYwvWoEdZp2V9OSG2ROLAIAZnhYkLI5GGAueJPk3dwKJBcLP0NtZhzaPHgaJF0lyRX+ZlpKUKXPa6OL1ufdDqX1w3btTr9sc/N1UjYi/KhFmyTB5eypp8/B+aCfnfRPvg96p19Xfm+R9+SQfCQZ+UxOyRkZkhFhRJO/5IbcRnfRvziONx9a42ileUfWIt79D7DjtPw=</latexit>

x2
j�1

<latexit sha1_base64="GuhomRqAmxFW+A4xXkUntQB06do=">AAACUXicZVBNb9NAEB2br+Ly0cKRy4oUiUMV2TkUjhVcOAaJtEV1iMbrcbJ0P6zdNRCt/Cu4wq/ixE/hxjrNgdCRVnrzZt7szKtaKZzP899Jeuv2nbv39u5n+w8ePnp8cPjkzJnOcppxI429qNCRFJpmXnhJF60lVJWk8+rq7VA//0LWCaM/+HVLc4VLLRrB0Ufq49G3RfjcfyqOFgejfJxvgt0ExRaMYBvTxWEyKWvDO0Xac4nOXRZ56+cBrRdcUp+VnaMW+RUu6TJCjYrcPGw27tmLyNSsMTY+7dmG/VcRUDm3VtUxi0ChXx2z2g2tUTqkbne8b17Pg9Bt50nz6+lNJ5k3bLiZ1cIS93IdAXIr4oKMr9Ai99GZrBzmNqiEXIclGbsU2JfR0SgZKlmp6Ss3SqGuQ9laU/WhHHaoXZj2O3eGTZtf7ZKqk/FHI/ssiy4X/3t6E5xNxsXJ+OT9ZHT6Zuv3HjyD5/ASCngFp/AOpjADDgq+ww/4mfxK/qSQptetabLVPIWdSPf/AqzHtIk=</latexit>

x1
j

<latexit sha1_base64="rwibaP1K6U6Ilf6ENwVeZoDINQk=">AAACUXicZVBNb9NAEB2br+Ly0cKRy4oUiUMV2TkUjhVcOAaJtEV1iMbrcbJ0P6zdNRCt/Cu4wq/ixE/hxjrNgdCRVnrzZt7szKtaKZzP899Jeuv2nbv39u5n+w8ePnp8cPjkzJnOcppxI429qNCRFJpmXnhJF60lVJWk8+rq7VA//0LWCaM/+HVLc4VLLRrB0Ufq49G3Rfjcf5ocLQ5G+TjfBLsJii0YwTami8NkUtaGd4q05xKduyzy1s8DWi+4pD4rO0ct8itc0mWEGhW5edhs3LMXkalZY2x82rMN+68ioHJurapjFoFCvzpmtRtao3RI3e5437yeB6HbzpPm19ObTjJv2HAzq4Ul7uU6AuRWxAUZX6FF7qMzWTnMbVAJuQ5LMnYpsC+jo1EyVLJS01dulEJdh7K1pupDOexQuzDtd+4Mmza/2iVVJ+OPRvZZFl0u/vf0JjibjIuT8cn7yej0zdbvPXgGz+ElFPAKTuEdTGEGHBR8hx/wM/mV/EkhTa9b02SreQo7ke7/Ba6ttIo=</latexit>

x2
j

<latexit sha1_base64="FCGisnFWx9pU2DD8uG3Qixqz97s=">AAACYXicZVBNbxMxEHWWUtqllLQcOPRikVbiUEW7ORSOFUiIY5BIW6kbRbPe2cTUHyvbC4os/xqu8IM494/Um+RA2pEsvXkzbzzzykZw67LsXy95tvN898Xefvry4NXh6/7R8ZXVrWE4YVpoc1OCRcEVThx3Am8agyBLgdfl3eeufv0TjeVafXfLBqcS5orXnIGL1Kz/9rRwXFToCwluwUD4LyHMfpzO+oNsmK2CPgX5BgzIJsazo96oqDRrJSrHBFh7m2eNm3owjjOBIS1aiw2wO5jjbYQKJNqpX10Q6FlkKlprE59ydMX+r/AgrV3K8pxG0G16TivbtUZpl9rt8a7+OPVcNa1DxdbT61ZQp2nnAa24QebEMgJghscFKVuAAeaiU2nRza1BcrH0c9RmziEU0eEo6SppofAX01KCqnzRGF2GtXmV9eOwdadftbnFNilbEX/UIqRpdDl/7OlTcDUa5hfDi2+jweWnjd975IS8I+9JTj6QS/KVjMmEMBLIb/KH/O3dJ/tJPzletya9jeYN2Yrk5AGFDLoi</latexit>

F̃j

<latexit sha1_base64="G6eLQoZXQ2+T24zd5RTQZJbPJIs=">AAACSXicZVBLThwxEHUPSYDOj88yGysoUhZk1M2CsESwYTlIDCDoEap2V89Y+NOy3cDI6hOwTRacgoNwAo7BDrEh7hkWTCjJ0qtX9cpVL68Ety5J7qPO3Lv3H+YXFuOPnz5/+bq0vHJodW0Y9pkW2hznYFFwhX3HncDjyiDIXOBRfr7b1o8u0Fiu1YEbVziQMFS85AxcoPZ/nS2tJd1kEvQtSF/A2vZidXNye/XcO1uONrJCs1qickyAtadpUrmBB+M4E9jEWW2xAnYOQzwNUIFEO/CTTRv6IzAFLbUJTzk6YV8rPEhrxzJfpwFIcKN1Wti2NUjb1M6Od+XWwHNV1Q4Vm04va0Gdpu2ttOAGmRPjAIAZHhakbAQGmAuOxFk7twTJxdgPUZshhyYLTgZJW4kzhZdMSwmq8FlldN74rN2hsL7XzNzpJ21uNEvKWoQftWjiOLic/u/pW3C40U03u5v7we4dMo0F8o18Jz9JSn6TbbJHeqRPGEFyTf6Qv9Fd9BA9Rk/T1k70olklM9GZ+wfTF7ck</latexit>�
<latexit sha1_base64="iKlxt/I4cTbsUcPxU2zq+bIwuFM=">AAACVXicZVDNbtQwEHZCaUsKtIUjF4uCxKFaJT2UHisqVRwXiW0rNdFq4kx2Tf0TbKdoZeU5ei0vwQvwEIgHgRsSTrYHlo5k6Ztv5hvPfGUjuHVp+jOKH6w9XN/YfJRsPX7ydHtn99mZ1a1hOGFaaHNRgkXBFU4cdwIvGoMgS4Hn5dVJXz+/RmO5Vh/dosFCwkzxmjNwgSpyCW7OQPjTbvppurOXjtIh6H2Q3YG941e/vn2/3vo9nu5GB3mlWStROSbA2sssbVzhwTjOBHZJ3lpsgF3BDC8DVCDRFn7YuqOvA1PRWpvwlKMD+6/Cg7R2Ict9GkC/5z6tbN8apH1qV8e7+qjwXDWtQ8WW0+tWUKdpfzetuEHmxCIAYIaHBSmbgwHmgjtJ3s+tQXKx8DPUZsahy4OrQdJXklzhF6alBFX5vDG67PxgXWX9uFu50w9tbr5KylaEH7XokiS4nP3v6X1wdjDKDkeHH4Ld78gyNskL8pK8IRl5S47JezImE8LIZ3JDbsnX6Ef0J16L15etcXSneU5WIt7+C9YRuyU=</latexit>Fj

Figure 2: Differences between the residual block of a ResNet and its reversible counterpart. (a)
Forward of a residual block. (b) Forward and (c) Reverse forward of a reversible residual block. For
reversible blocks, as in Gomez et al. (2017), the input xj is doubled in size and split equally into
{x1

j , x
2
j} along its channels. The function Fj includes a skip-connection while F̃j does not.

where Fj is the j-th stage parameterized by θj . The backpropagation algorithm is the ubiquitous
algorithm to compute parameter gradients. First, an input is propagated through the network with
a forward pass, while storing its intermediate activations. A scalar loss L is then deduced from
the corresponding output xJ . Parameter gradients are then computed during the backward pass by
taking advantage of the chain rule: starting from the last stage with δJ = ∇xJ

L, the gradients with
regard to the activations are given by

δj ≜ ∇xj−1
L = ∂xFj(xj−1, θj)

Tδj+1 , (2)

and the gradients with regard to the parameters are defined as

∆j ≜ ∇θjL = ∂θFj(xj−1, θj)
Tδj+1 . (3)

Note that these computations follow a synchronous and sequential order. The parameters θj can
then be updated given their gradient estimate ∆j , using any optimizer.

3.2 REVERSIBLE ARCHITECTURES

We focus on the reversible neural networks presented in Gomez et al. (2017), although our method
is not dependent on this architecture. Note that this is a weak restriction as many architectures are
adaptable to reversible ones Mangalam et al. (2022). In practice, only a few stages which do not
preserve feature dimensionality are not reversible and correspond to the downsampling blocks in
the ResNet. Fig. 2 highlights how reversible residual blocks Fj differ from their standard counter-
part. The input is split into two equal-size inputs, along the channel dimension, that are propagated
forward according to Fig. 2b using an ad-hoc operator F̃j . It can be reconstructed by reverse prop-
agating the output according to Fig. 2c, by subtracting the output of F̃j rather than adding it like in
the previous forward.

Reversible stages. In order to compute the exact gradients during the backpropagation phase, each
reversible stage needs to retrieve its output from the stage above. We note F−1

j the reverse stage
function, which reconstructs the input from the output. We recursively apply the reconstruction to
the final activation xJ , such that

[
xj−1

δj

]
=

[F−1
j (xj , θj)

∂xFj(F−1
j (xj , θj), θj)

Tδj+1

]
. (4)

Note that reconstructing the input in our procedure is computationally equivalent to recomputing
the activations in activation checkpointing, meaning it is equivalent to a single forward pass. Thus,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparisons with other methods in an ideal setting for one stage. We compare several
methods to compute a gradient estimate in a model parallel setting: classical backpropagation, its
reversible counterpart (Gomez et al., 2017), the Delayed gradients approach of Zhuang et al. (2020)
and its improvements using checkpointing by Xu et al. (2019), and our proposed approach. Here, J
is the total number of stages while j is the stage index. For the sake of simplicity, we assume that a
backward pass requires approximately 2 times more FLOPs than a forward pass. Full Graph indi-
cates that it is required to store the full computational graph of a local forward pass. With a limited
increase in communication volume and FLOPs, PETRA requires the least storage of all methods
while being linearly faster than backpropagation. We assume that the forward and backward passes
can be executed in parallel for PETRA or delayed gradients, making the backward pass responsible
for most of the computation time in parallelizable approaches.

Storage Comm. FLOPs Mean time
Methods Activations Params. Volume per batch

Backpropagation Full Graph (FG) 1 1 3J 3J

Reversible backprop. 0 1 4 4J 4J

Delayed gradients 2(J − j)× FG 2(J−j)
k 1 3J 2

+ Checkpointing 2(J − j) 1 1 4J 3

PETRA (ours) 0 1 4 4J 3

this augmented backward procedure is equivalent to one regular forward call and backward call.
However, one should observe that since the input xj−1 must be sent to the reversible stages, this
doubles the cost of backward communications.

Non-reversible stages. In practice, a reversible architecture includes layers that reduce dimen-
sionality for computational efficiency, which thus correspond to non-invertible functions. For those
very few stages, we employ a buffer mechanism to store activations and, like activation checkpoint-
ing, we recompute the computational graph with a forward pass during the backward pass. Note
that this would not be the case when using invertible (i.e., bijective) architectures (Jacobsen et al.,
2018a), which use an invertible downsampling.

3.3 A PARALLELIZABLE APPROACH: PETRA

As with any model parallel training technique, PETRA requires to partition the network architecture
into stages Fj that are distributed across distinct devices. Each device j needs only to communicate
with its neighboring devices j − 1 and j + 1. The pseudo-code in Alg. 1 details the operations
performed by each device, and the whole algorithm execution can be summarized as follows. The
first device sequentially accesses mini-batches, initiating the data propagation process. When re-
ceiving its input xt

j−1 from the previous stage, each stage processes it in forward mode and passes
it to the next stage, until the final stage is reached. The final stage evaluates the loss and computes
the gradients with regard to its input and parameters, thus initiating the backward process, which is
performed in parallel of the forward process. In it, each stage processes the input and its associated
gradient from the next stage. This means first reconstructing the computational graph, either while
reconstructing the input x̃t

j−1 for reversible stages or with a forward pass as in activation check-
pointing otherwise. Then, the parameter gradient approximation ∆t+1

j and the input gradient are
computed before passing the latter to the previous stage. For intermediary reversible stages, this
translates into the following equations, where t corresponds to the current time step of the training,

xt+1
j = Fj(x

t
j−1, θ

t
j)

x̃t+1
j−1 = F−1

j (x̃t
j , θ

t
j)

δt+1
j = ∂xFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

∆t+1
j = ∂θFj(x̃

t+1
j−1, θ

t
j)

Tδtj+1

θt+1
j = Optimizertj(θ

t
j ,∆

t+1
j) .

(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Loss

Buffer
size 2

Stage 0

Stage 1

Stage 2

Buffer
size 4

Buffer
size 6

Loss

Forward connection
(activations)

Backward connection
(reconstructed activations)

Backward connection
(gradients)

Gradient computation

a) Delayed
Gradients

b) PETRA

Figure 3: Comparison of memory use between PETRA and a standard Delayed Gradient
method (Zhuang et al., 2020). By avoiding weight stashing and reversing the output into the in-
put during the backward phase, we are able to fully decouple the forward and backward phases in
all reversible stages, with no memory overhead, compared to standard delayed gradient approaches.

Note that this complete set of equations effectively decouples communications, computations, and
parameter updates between independent devices. Indeed, reversible stages are able to operate with-
out maintaining any state between the forward and corresponding backward phase by simply avoid-
ing weight stashing, similarly to Xu et al. (2019), and by reversing the output into the input during
the backward phase, removing the need for an input buffer. As parameters are updated between the
forward and backward phases, the reversible stage produces an approximate input reconstruction,
thus evaluating gradients with an approximate set of inputs and parameters during the backward
phase. We illustrate in Fig. 3 the mechanism of PETRA compared to standard delayed gradient
approaches that rely on additional buffers (Zhuang et al., 2021b; 2020).

Complexity analysis. We now discuss the benefits of our method, which are summarized in Tab.
1. In this discussion, we assume a homogeneous setting in which almost identical stages are dis-
tributed across J devices uniformly. First, we consider the backpropagation setting, assuming a
model parallelism strategy: a standard backpropagation pass requires storing locally both the pa-
rameters and the computational graph and due to the update lock of backpropagation (Jaderberg
et al., 2017), requires synchronization between subsequent layers which impede the speed of com-
putations. Standard Delayed Gradients strategies as implemented in Zhuang et al. (2021b; 2020)
allow to unlock this barrier, but they require buffers for storing both the computational graph and
parameters which can become impractical when using large models. In Xu et al. (2019), an activation
checkpointing strategy removes the need for storing parameters, yet it requires a small computational
overhead of 33% (assuming a backward pass is approximatively two times slower than a forward
pass, see Fig. 6 of Huo et al. (2018b) and Mizutani & Dreyfus (2001)). To avoid storing activations,
we rely on reversible architectures (Gomez et al., 2017) which increases the amount of forward
communications by a factor of 2 and backward communication by a factor of 4 – activations sizes
double and one has to pass both activations and gradients at the same time during backward. None
of the aforementioned methods scale with the depth J : PETRA combines all the advantages of the
previous methods, allowing an efficient parallelization scaling linearly with no memory overhead,
while leading to a limited and constant overhead in computations and communications.

4 NUMERICAL EXPERIMENTS

4.1 CLASSIFICATION ACCURACY

We now describe our experimental setup on CIFAR-10 (Krizhevsky, 2009), ImageNet-
32 (Chrabaszcz et al., 2017), and ImageNet (Deng et al., 2009).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Worker perspective for training in parallel with PETRA, on a stage j, assuming initial-
ized parameters θj and time step t, as well as an accumulation factor k > 1.

1: In parallel on the j-th stage, 1 ≤ j < J , perform:
2: Forward Communications and Computations:
3: If j = 1 then
4: x0 ← Readdataset
5: Else
6: xj−1 ←Wait and Receive from j−1

7: If stage j is not reversible :
8: Bufferj ← xj

9: xj ← Fj(xj−1, θj)
10: Send to j+1(xj)
11: Backward Communications and Computations:
12: (x̃j , δj+1)←Wait and Receive from j+1

13: If stage j is reversible:
14: x̃j−1 ← F−1

j (x̃j , θj) and keep computational graph in memory
15: Else :
16: x̃j−1 ← Bufferj
17: xj ← Fj(x̃j−1, θj) to recompute the computational graph
18: δj ← ∂xFj(x̃j−1, θj)

T δj+1

19: ∆j ← ∆j +
1
k∂θFj(x̃j−1, θj)

T δj+1

20: If t mod k = 0 then:
21: Update parameters θj with ∆j

22: ∆j ← 0
23: t← t+ 1
24: Send to j−1(xj , δj)
25:
26: In parallel on the final stage J , perform:
27: xJ−1 ←Wait and Receive from J−1

28: L ← FJ(xJ−1, θJ)
29: δJ ← ∇xJ

L
30: ∆J ← ∆J + 1

k∇θJL
31: If t mod k = 0 then:
32: Update parameters θJ with ∆J

33: ∆J ← 0
34: t← t+ 1
35: Send to J−1(xJ−1, δJ)

Experimental setup. All our experiments use a standard SGD optimizer with a Nesterov momen-
tum factor of 0.9. We train all models for 300 epochs on CIFAR-10 and 90 epochs on ImageNet32
and ImageNet. We apply standard data augmentation, including horizontal flip, random cropping,
and standard normalization but we do not follow the more involved training settings of Wightman
et al. (2021), which potentially leads to higher accuracy. We perform a warm-up of 5 epochs where
the learning rate linearly increases from 0 to 0.1, following Goyal et al. (2017). Then, the learning
rate is decayed by a factor of 0.1 at epochs 30, 60, and 80 for ImageNet32 and ImageNet – it is
decayed at epochs 150 and 225 for CIFAR-10. We use a weight decay of 5e-4 for CIFAR-10 and
1e-4 for ImageNet32 and ImageNet. As suggested in Goyal et al. (2017), we do not apply weight
decay on the batch norm learnable parameters and biases of affine and convolutional layers. For our
standard backpropagation experiments, we follow the standard practice and use a batch size of 128
on ImageNet32 and CIFAR-10, and 256 on ImageNet32. However, we made a few adaptations to
train our models with PETRA. As suggested by Zhuang et al. (2020; 2021a), we employ an accumu-
lation factor k and a batch size of 64, which allows to reduce the effective staleness during training:
in this case, k batches of data must be successively processed before updating the parameters of a
stage (see Alg. 1). Such gradient accumulation however also increases the effective batch size, and
we apply the training recipe used in Goyal et al. (2017) to adjust the learning rate; note that we use
the average of the accumulated gradients instead of the sum. The base learning rate is thus given by
the formula lr = 0.1 64k

256 , with k the accumulation factor.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Classification accuracies using our PETRA method with RevNets, compared to stan-
dard backpropagation on ResNets and RevNets on CIFAR-10, ImageNet32, and ImageNet. Our
method delivers competitive results with backpropagation, even on ImageNet.

Method Model Param. count CIFAR-10 ImNet32 ImNet
Backprop ResNet18 (PyTorch) 11.7M - - 69.8
Backprop ResNet18 (Ours) 11.7M 95.0 54.0 70.8
Backprop RevNet18 (Ours) 12.2M 94.9 54.6 70.8
PETRA RevNet18 (Ours) 12.2M 94.9 54.6 71.0

Backprop ResNet34 (PyTorch) 21.8M - - 73.3
Backprop ResNet34 (Ours) 21.8M 95.5 56.5 74.0
Backprop RevNet34 (Ours) 22.3M 95.3 56.4 73.2
PETRA RevNet34 (Ours) 22.3M 94.8 56.1 73.5

Backprop ResNet50 (PyTorch) 25.6M - - 76.1
Backprop ResNet50 (Ours) 25.6M 94.8 58.8 75.6
Backprop RevNet50 (Ours) 30.4M 95.2 59.7 75.4
PETRA RevNet50 (Ours) 30.4M 94.5 59.6 74.8

Model adaptations. For designing our RevNet architectures, we adopt a methodology similar to
Gomez et al. (2017): the number of channels in each stage is multiplied by 2 to account for the
second data stream according to Fig. 2. However, as the stage function F̃j operates only on one of
the two streams, the number of parameters stays almost the same between a residual block and its
revertible counterpart. Consequently, the DNNs are split to preserve each residual block, resulting
in 10 stages for RevNet18, and 18 stages for RevNet34 and RevNet50; thus varying the level of
staleness between configurations. On CIFAR-10, the input layer uses 3x3 convolutions instead of
7x7 convolutions and does not perform max-pooling. The running statistics of batch normalization
layers are updated when recomputing the activations during the backward pass and are then used
during model evaluation – the running statistics are not updated during the forward pass.

Performance comparison. Tab. 2 reports our numerical accuracy on several vision datasets,
comparing a backpropagation performance from an official PyTorch implementation of ResNets
(the numbers can be found as v1 of https://pytorch.org/hub/pytorch_vision_
resnet/), for our own implementation of ResNets and RevNets in our custom computational
framework, and our proposed method, PETRA. For PETRA, we report the best classification accu-
racy after the last learning rate drop, using the best value (picked on the training set) of accumulation
steps within {1, 2, 4, 8, 16, 32}. Our CIFAR-10 accuracies are averaged over 3 runs, with a vari-
ance smaller than 0.1. We observe that while our reversible models have about the same parameter
count, they all perform in the same range of accuracy as their non-reversible counterparts. Only the
RevNet-50 leads to a small drop in accuracy on ImageNet of about 0.6%: using different downsam-
pling layers removes this gap at the expense of a substantial increase in the parameter count (30.4M
to 50M). For the stake of comparison with the original ResNets, we did not include this result.

Impact of the accumulation k. We test the impact of the accumulation on a RevNet-18 trained via
PETRA for various values of accumulations k ∈ {1, 2, 4, 8, 16, 32} on the ImageNet dataset. Fig. 4
indicates that our method can benefit from large accumulation factors, with the well-known trade-off
of large batches mentioned in Goyal et al. (2017). Increasing the accumulation factor reduces the
effective staleness during training, and closes the performance gap with standard backpropagation
with perfect matching for k = 32. This confirms that this large-batch training recipe derived for
synchronous data parallelism is also particularly suited for our model parallel approach.

4.2 TECHNICAL DETAILS

A note on the implementation. We shortly describe our implementation details. We base our
method on PyTorch (Ansel et al., 2024), although we require significant modifications to the Au-
tograd framework in order to manage delayed first-order quantities consistently with PETRA. We
rely heavily on the Vector Jacobian Product of PyTorch to compute gradients during the backward

8

https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Accumulation steps

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Va
lid

at
io

n
ac

cu
ra

cy

Backprop
PETRA

Figure 4: Validation accuracy of PETRA and backpropagation for a various number of accu-
mulation steps, for a RevNet18 trained on ImageNet with k ∈ {1, 2, 4, 8, 16, 32}. The validation
accuracies are averaged over the last 10 epochs. As the number of accumulation steps increases, the
effective staleness in PETRA decreases, closing the gap with standard backpropagation.

Table 3: Memory savings for RevNet50 on ImageNet with our method for different configura-
tions. We indicate the use of memory buffers for inputs or parameters. The savings are computed
with respect to the first configuration, where inputs and buffers are stored. Our method achieves
54.3% memory reduction over the base configuration of Delayed Gradients.

Buffer Memory (GB) Saving (%)
Input Params.
√ √

44.5 0.0√ × 43.6 2.0
× √

21.2 52.3
× × 20.3 54.3

pass of each stage, but other backends could be used. The backward pass for reversible stages only
necessitates a reconstruction step and a backward step – a naive implementation would use a recon-
struction step, followed by a forward and a backward step. This is because we only need the output
gradient as well as the computational graph of F̃j to compute the input and parameter gradients at
line 12 and 13 of Alg. 1, which can be obtained during the input reconstruction phase. For non-
reversible stages, we reconstruct the computational graph with a forward pass on the input retrieved
from the buffer during the backward pass. Our models can run on a single A100, 80GB to easily
compare training dynamics, or distributed over 10 or 18 GPUs when training with a RevNet-18 or a
RevNet-34 or 50.

Memory benefits and training time. Here, we discuss the practical memory savings and through-
put speedup. To better understand the advantage of our method compared to other delayed gradient
approaches (Harlap et al., 2018; Xu et al., 2019; Kosson et al., 2021), we emphasize the practical
memory savings associated with different methods in Tab. 3. We estimate the memory needed in
gigabytes, as the sum of the size of the model, the input and parameter buffers (excluding the input
buffer of the first stage, which uses retrievable dataset inputs). Here we do not include the effect of
gradient accumulation, which depends on k and would only affect the parameter buffer size, which
is small in our case. Note that the batch size also affects the memory savings, and we set it to 64
for consistency with Tab. 2. Storing both inputs and parameters into a buffer corresponds to the
PipeDream approach (Harlap et al., 2018), while only storing inputs would correspond to the ap-
proach in Xu et al. (2019); Kosson et al. (2021). Not storing inputs (lines 3 and 4) is only applicable
to reversible architectures. The input buffer has the biggest impact on the total memory, being re-
sponsible for 52.3% of the memory footprint. Dropping the parameter buffer with PETRA pushes
the savings further up to 54.3% for a RevNet50 on ImageNet. We report on-device stage memory
in Tab. 6, where we note that non-reversible stages account for the majority of total memory use,
indicating that savings would be much higher when using fully invertible architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance on CIFAR-100 with our method for different configurations, for different
RevNets. Here, we use no accumulation (k = 1) to better pinpoint the effect of the staleness.
We indicate the use of memory buffers for inputs or parameters and whether using exact reversible
backpropagation or using delayed gradients. We note that using the loss of both of the buffers does
not have a particular effect on performance compared to the delay, further justifying our approach.

Delayed Buffer Accuracy
gradients Input Params. RevNet-18 RevNet-34 RevNet-50
× √ √

77.5 78.1 78.5√ √ √
76.5 76.3 77.7√ √ × 76.4 75.5 76.7√ × √
75.4 76.4 78.3√ × × 75.9 75.2 77.2

Table 5: Mean iteration time of one micro-batch of size 256 of CIFAR-10 data, when training with
PETRA or Reversible backpropagation. Training is distributed in both cases on 10 (for the RevNet-
18) or 18 GPUs (for the RevNet-34/50). We observe a significant speed-up for the 3 models.

Model Rev. backprop. PETRA Speed-up
RevNet-18 160.3ms 53.4ms 3.0×
RevNet-34 235.6ms 97.1ms 2.4×

We also measure the effective throughput of training with PETRA a ResNet-18 on 10 GPUs and
a ResNet-34 on 18 GPUs, and compare it with basic model parallelism, where batch computations
are not overlapped between stages. After letting a warm-up period of 500 iterations, we report the
effective throughput by measuring the processing time of 50 mini-batches and averaging it. As can
be seen in Tab. 5, our method achieves wall-clock time speedup compared to basic model paral-
lelism. While our main objective is to show the empirical effectiveness of our training procedure for
convergence, we also observe a significant speed-up, despite using relatively unbalanced stages. A
more efficient implementation in the future will allow further training speed improvements.

Impact of the buffers on gradient estimation Three different approximations in gradient esti-
mation are used in PETRA which may affect our performances, and we investigate in Tab. 4 their
impact on CIFAR-100. The use of a gradient computed on previous iterations of the parameters is
necessary to speed-up computations. This has the most impact on performances (line 2), but note
that using accumulation vanishes this performance drop as shown in Fig. 4. Line 4 should corre-
sponds to reversible backpropagation with delays, which is equivalent to line 2, but we choose to
reconstruct the input using the latest parameters in the memory buffer, to better characterize the im-
pact of reconstructing inputs with the latest parameters, as done in PETRA. Lines 4 and 5 indicate
that approximating the input affects the learning dynamics more than approximating the weights.

5 CONCLUSION

In this work, we introduce PETRA, a novel model parallel training technique for reversible ar-
chitectures which is a novel promising alternative to backpropagation. It achieves a significant
parallelization with a limited overhead compared to standard backpropagation or other competitive
alternatives to end-to-end training, like delayed gradients approaches. Our method has the potential
to achieve linear speedup compared to standard backpropagation and allows reversible layers to op-
erate without any parameter or activation buffers, effectively decoupling the forward and backward
phases. Despite using an approximate delayed gradient estimate, our method delivers competitive
performances compared to standard backpropagation on standard computer vision datasets.

In future work, we aim to implement and optimize PETRA for Large Language Models (LLMs),
with a first baseline being Reformers (Kitaev et al., 2020), invertible transformers that have been
shown to scale. This will validate further PETRA’s effectiveness and robustness on fully-reversible
architectures, solidifying its potential as a cutting-edge training technique.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws
in language and vision. Advances in Neural Information Processing Systems, 35:22300–22312,
2022.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael La-
zos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting
Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong
Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Py-
torch 2: Faster machine learning through dynamic python bytecode transformation and graph
compilation. In Proceedings of the 29th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2, ASPLOS ’24, pp. 929–947,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703850. doi:
10.1145/3620665.3640366. URL https://doi.org/10.1145/3620665.3640366.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In International conference on machine learning, pp. 583–593. PMLR, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
In International Conference on Machine Learning, pp. 736–745. PMLR, 2020.

Eugene Belilovsky, Louis Leconte, Lucas Caccia, Michael Eickenberg, and Edouard Oyallon. De-
coupled greedy learning of cnns for synchronous and asynchronous distributed learning. arXiv
preprint arXiv:2106.06401, 2021.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 431–445, 2021.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
Can forward gradient match backpropagation? In Fortieth International Conference on Machine
Learning, 2023.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual net-
work: Backpropagation without storing activations. Advances in neural information processing
systems, 30, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

11

https://doi.org/10.1145/3620665.3640366

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. Advances
in Neural Information Processing Systems, 31, 2018a.

Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with convergence
guarantee. In International Conference on Machine Learning, pp. 2098–2106. PMLR, 2018b.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon. i-revnet: Deep invertible networks.
arXiv preprint arXiv:1802.07088, 2018a.

Jörn-Henrik Jacobsen, Arnold W. M. Smeulders, and Edouard Oyallon. i-revnet: Deep invertible
networks. ArXiv, abs/1802.07088, 2018b. URL https://api.semanticscholar.org/
CorpusID:3433237.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Inter-
national conference on machine learning, pp. 1627–1635. PMLR, 2017.

Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim,
Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly pipeline parallelism for training giant
models, 2020.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Atli Kosson, Vitaliy Chiley, Abhinav Venigalla, Joel Hestness, and Urs Koster. Pipelined backprop-
agation at scale: training large models without batches. Proceedings of Machine Learning and
Systems, 3:479–501, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Yuliang Liu, Shenggui Li, Jiarui Fang, Yanjun Shao, Boyuan Yao, and Yang You. Colossal-auto:
Unified automation of parallelization and activation checkpoint for large-scale models, 2023.

Mateusz Malinowski, Dimitrios Vytiniotis, Grzegorz Swirszcz, Viorica Patraucean, and Joao Car-
reira. Gradient forward-propagation for large-scale temporal video modelling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9249–9259, 2021.

Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong, Christoph Feichtenhofer,
and Jitendra Malik. Reversible vision transformers. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10830–10840, 2022.

E. Mizutani and S.E. Dreyfus. On complexity analysis of supervised mlp-learning for algorithmic
comparisons. In IJCNN’01. International Joint Conference on Neural Networks. Proceedings
(Cat. No.01CH37222), volume 1, pp. 347–352 vol.1, 2001. doi: 10.1109/IJCNN.2001.939044.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gre-
gory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline par-
allelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pp. 1–15, 2019.

12

https://api.semanticscholar.org/CorpusID:3433237
https://api.semanticscholar.org/CorpusID:3433237
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-efficient
pipeline-parallel dnn training. In International Conference on Machine Learning, pp. 7937–7947.
PMLR, 2021.

Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In Inter-
national conference on machine learning, pp. 4839–4850. PMLR, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models, 2020.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pp. 551–564, 2021.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. Revisiting locally supervised learning:
an alternative to end-to-end training. arXiv preprint arXiv:2101.10832, 2021.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm, 2021.

An Xu, Zhouyuan Huo, and Heng Huang. On the acceleration of deep learning model paral-
lelism with staleness. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2085–2094, 2019. URL https://api.semanticscholar.org/
CorpusID:219633409.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher De Sa.
Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine Learning and
Systems, 3:269–296, 2021.

Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Accumulated decoupled learning: Mitigating
gradient staleness in inter-layer model parallelization. arXiv preprint arXiv:2012.03747, 2020.

Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled neural network learning
using delayed gradients. IEEE transactions on neural networks and learning systems, 33(10):
6013–6020, 2021a.

Huiping Zhuang, Zhenyu Weng, Fulin Luo, Toh Kar-Ann, Haizhou Li, and Zhiping Lin. Accumu-
lated decoupled learning with gradient staleness mitigation for convolutional neural networks. In
International Conference on Machine Learning, pp. 12935–12944. PMLR, 2021b.

13

https://api.semanticscholar.org/CorpusID:219633409
https://api.semanticscholar.org/CorpusID:219633409

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Memory usage of each stage when training with PETRA on CIFAR-10 with a batch size
of 256. Stages with the same memory usage are grouped together for ease of read.

RevNet-18 Stage(s) index(es) 0 1-2 3 4 5 6 7 8 9
Memory (GB) 1,15 1,01 2,67 0,52 1,13 0,31 0,57 0,25 0,11

RevNet-34 Stage(s) index(es) 0 1-4 5 6-8 9 10-12 13 14-16 17
Memory (GB) 1,15 1,01 4,2 0,52 1,66 0,31 0,71 0,25 0,11

A MEMORY USAGE BY STAGE

In Tab. 6, we report the memory usage with PETRA of each stage of the networks trained. Note
that some stages have a much higher memory footprint than others, which is due to the presence of
non-reversible stages in RevNets, which requires activation buffers.

B QUALITY OF GRADIENT APPROXIMATION AND DELAYS IN DEPTH

PETRA gradient approximations The PETRA optimization procedure estimates gradients with
two approximations. First, PETRA estimates delayed gradients, with a delay τj = 2(J− j) for each
block j of a network partitioned into J blocks. According to Eq. 5, for the j-th layer, this would
mean that ∆t+1

j = ∂θFj(x
t−τj
j , θ

t−τj
j). The implicit underlying hypothesis is that the delayed

gradients can serve as an approximation of the end-to-end gradient, or, more largely, as a descent
direction. Note that this is the gradient computed by standard approaches like Zhuang et al. (2020).
Then, PETRA makes further approximations on this delayed gradient. First, having no parameter
buffers, each layer will only use the latest available in memory weights θtj , which will differ from
those used in the forward pass θt−τj

j . Second, the input used for gradient computations is not stored
in a buffer for reversible layers, but reconstructed. For both the input reconstruction and the Jacobian
computations, the layers use the ”up-to-date” parameters θtj .

Framework To investigate the quality of these approximations empirically, we trained a RevNet18
on CIFAR-10, divided into 10 stages, while tracking approximation quality metrics for each layer
throughout training. These metrics are computed 15 times per epoch and averaged at the end of the
epoch. The optimization procedure is the same as the one used to obtain Tab. 2, without gradient
accumulation to emphasize the impact of delay. Note that the network has non-reversible stages, and
thus input buffers, at stages {3, 5, 7}; the first stage is not reversible but can retrieve its input from
the dataset. Our model is trained via PETRA, and we compare, at given snapshots throughout the
training, gradients following PETRA, standard delayed gradient approaches Zhuang et al. (2020),
and standard backprop gradients at various depths.

To compare two different gradients, the two metrics we record are their cosine similarity and their
norm ratio:

Cos-Sim(x, y) =
⟨x, y⟩
||x|| · ||y|| , Norm-Ratio(x, y) =

||x||
||y||

Approximation with the standard delayed gradient We report these metrics throughout training
in Fig. 5. We observe several tendencies. First, in Fig. 5a, we observe that the gradient computed
by PETRA is indeed a good approximation of the standard delayed gradient, as predicted. The
alignment improves during training, with a particular jump at the last learning rate drop. This
is expected as the discrepancy between θj and θ

t−τj
j becomes negligible as the model converges.

Similarly, the alignment improves for later layers, where fewer delayed parameters are used, and
with a smaller delay. The reconstruction error is also lower, although this error ”resets” after each
input buffer. Note also that the ratio of the norms of the gradients, in Fig. 5c, follows a similar trend,
and stays consistently close to 1.

Approximation with the end-to-end gradient Then, in Fig.5b, we also compare the alignment
of the PETRA gradient with the end-to-end one and the alignment of the delayed gradient with
the end-to-end one. These values are much lower for early layers, where the gradient computed

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epoch

0.2

0.4

0.6

0.8

1.0

C
os

in
e

al
ig

nm
en

t

Alignment of PETRA with the standard delayed gradient

Stage
0
1
2
3
4
5
6
7
8
9

(a) Cosine similarity between PETRA and stan-
dard Delayed Gradients.

0 50 100 150 200 250 300
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
or

m
 r

at
io

Norm ratio of PETRA and delayed gradients with the end-to-end gradient

Stage
0
4
8
Gradient
PETRA
Delayed

(b) Cosine similarities between PETRA and end-
to-end gradients (full line), and between the stan-
dard delayed gradients (dashed line) and end-to-
end ones.

0 50 100 150 200 250 300
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
or

m
 r

at
io

Ratio of the norm between PETRA and the delayed gradient

Stage
0
1
2
3
4
5
6
7
8
9

(c) Norm ratio between PETRA (numerator) and
standard delayed gradients (denominator).

0 50 100 150 200 250 300
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
or

m
 r

at
io

Norm ratio of PETRA and delayed gradients with the end-to-end gradient

Stage
0
4
8
Gradient
PETRA
Delayed

(d) Norm ratios between PETRA and end-to-end
gradients (full line) and the standard delayed gra-
dient and end-to-end gradient (dashed line).

Figure 5: Cosine similarities and norm ratios between gradients throughout training. Each point rep-
resents the average of 15 measurements during 1 epoch. Values are smoothed with a rolling window
of size 10. Color corresponds to the stage index. The approximation is noticeably better after the
last learning rate drop, and for later stages. Although PETRA approximates well the standard delay
gradient, it also approximates better the end-to-end gradient compared to standard delay gradient
approaches.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

by both methods depends much more on the delay, and is thus less aligned with the end-to-end
gradient. However, we surprisingly observe that the gradient computed by PETRA shows a better
alignment with the end-to-end gradient compared to the delayed one. Although surprising, this can
be explained by the fact that PETRA does not use delayed parameters during the backward pass, for
both the input reconstruction and the Jacobian computations. Although reducing the alignment with
the delayed gradient, this increases the alignment with the end-to-end one. The norm ratio between
the delayed and PETRA gradients and the end-to-end ones is also quite high early in training, before
coming close to 1 at convergence. Here again, the ratio is smaller for the PETRA gradient.

(a) Cosine similarities at epoch 25, i.e. 10 epoch
after warm-up phase.

(b) Cosine similarities at epoch 125, i.e. 25 epoch
before the first learning rate drop.

(c) Cosine similarities at epoch 175, i.e. 25 epoch
after the first learning rate drop.

(d) Cosine similarities at epoch 125, i.e. 25 epoch
after the second learning rate drop.

Figure 6: Cosine similarities against stage index of RevNet18 on CIFAR-10 at epochs 25, 125,
175 and 250. Approximations degrades between epoch 25 and 125, consistently with Fig. 5, but
improves noticeably after each learning rate drop.

For a clearer comparison, we also provide in Fig. 6 cosine similarities values between the three
gradients depending on the layer index, at different training epochs. We once again observe that
the similarities improve as layer indexes increase and that the discrepancies between the gradients
decrease across stages as the learning rate becomes smaller. We also observe that the similarity
between PETRA and end-to-end is sometimes higher than for the delayed gradient, suggesting that
using the up-to-date weights for the Jacobian computations and input reconstructions might help to
mitigate the staleness.

16

	Introduction
	Related work
	Method
	Standard backpropagation
	Reversible architectures
	A parallelizable approach: PETRA

	Numerical experiments
	Classification accuracy
	Technical details

	Conclusion
	Memory usage by stage
	Quality of Gradient Approximation and Delays in Depth

