
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN LARGE LANGUAGE MODELS MODEL PROGRAMS
FORMALLY?

Anonymous authors
Paper under double-blind review

ABSTRACT

In the digital age, ensuring the correctness, safety, and reliability of software
through formal verification is paramount, particularly as software increasingly
underpins critical infrastructure. Formal verification, split into theorem proving
and model checking, provides a feasible and reliable path. Unlike theorem prov-
ing, which yields notable advances, model checking has been less focused due
to the difficulty of automatic program modeling. To fill this gap, we introduce
MODEL-BENCH, a benchmark and an accompanying pipeline for evaluating and
improving LLMs’ program modeling capability by modeling Python programs
into verification-ready model checking specifications checkable by its accompa-
nying model checker. MODEL-BENCH comprises 400 Python programs derived
from three well-known benchmarks (HumanEval, MBPP, and LiveCodeBench).
Our extensive experiments reveal significant limitations in LLMs’ program mod-
eling and further provide inspiring directions.

1 INTRODUCTION

In an era when software defines everything, daily life is mediated by code across healthcare, finance,
and critical infrastructure. A single defect can trigger outages, breaches, or safety incidents, making
correctness, safety, and reliability the bedrock of a resilient digital society. While software testing
can reveal the presence of bugs, it cannot prove their absence; formal verification, when grounded in
precise specifications, can provide machine-checkable guarantees. Technically, formal methods split
into two main approaches: theorem proving, which establishes properties via logical derivations in
proof assistants or automated provers, and model checking (Clarke, 1997), which decides property
satisfaction by exhaustively exploring a system’s state space against temporal specifications.

Recent progress has concentrated on LLM-assisted theorem proving (e.g., autoformalization (Wu
et al., 2022; Jiang et al., 2024), proof generation (Yang et al., 2023), and premise selection and
retrieval), yielding notable advances. By contrast, model checking has been less focused, largely
due to the automodeling bottleneck: it is difficult to derive accurate and tractable behavioral models
from programs automatically. Though there are a few attempts to model formal properties from
requirements (Cao et al., 2025a), modeling formal models for programs has rarely been explored.

However, automatically constructing such models from code is technically challenging and underex-
plored. Dynamic languages like Python exhibit rich runtime behavior (e.g., mutable aliasing, higher-
order functions, third-party libraries, async/await) that must be abstracted to a finite but faithful state
space. Useful models are expected to keep a soundness and precision trade-off: too concrete and
model checkers do not scale; too abstract and properties become vacuous or unsound.

This gap motivates our work, MODEL-BENCH, a benchmark and an accompanying pipeline for
evaluating and improving LLMs’ program modeling capability by modeling Python programs into
verification-ready TLA+ (Temporal Logic of Actions, a formal language for model checking) (Lam-
port, 2002) specifications checkable by its accompanying model checker TLC (Yu et al., 1999).
MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (i.e.
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LiveCodeBench (Jain et al., 2024))
by normalization, simplification, and rewrite. The benchmark covers progressively difficult settings,
from easy to medium, and then to hard. These programs are covered by a total of 1,639 test cases,
ensuring a rigorous evaluation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Our extensive experiments reveal significant limitations in LLMs’ program modeling: only 66.25%
runnable and 49.55% state similarity under in-context learning at best. We also propose a code
transformation approach to facilitate LLMs modeling and yield promising complementary improve-
ments. Finally, we showed that the modeling difficulty is not reliably correlated with algorithmic
difficulty but with nested loops and data-structure complexity. Our contribution includes:

• Significance. We proposed MODEL-BENCH, a benchmark and an accompanying pipeline for
evaluating and improving LLMs’ program modeling capability by modeling Python programs
into verification-ready TLA+

• Novelty. Besides introducing MODEL-BENCH, we also demonstrate a way to improve the LLMs’
program modeling capability via code transformation.

• Evaluation. We conduct extensive experiments that yield several instructive findings. Our
analysis of bad cases also provides directions for future improvement.

2 RELATED WORK

Automated Formal Verification While there exist various approaches and techniques for auto-
mated formal verification that generates program specifications from natural language (Cosler et al.,
2023; Zhai et al., 2020; Giannakopoulou et al., 2020), our MODEL-BENCH primarily focuses on
specification generation based on the programming language. In recent years, there also has been a
growing interest in applying LLMs to assist program verification (Lin et al., 2024; Ling et al., 2023;
Wang et al., 2023; Huang et al., 2024; Jiang et al., 2022). These works focus on using LLMs for the-
orem proving or domain-specific modeling. For example, Zhou (Zhou, 2025) introduces a two-stage
proof generation method that combines LLMs with Retrieval-Augmented Generation. Additionally,
frameworks such as CryptoFormalEval (Curaba et al., 2024), AVRE (Yang & Wang, 2024), and
Mao et al. (Mao et al., 2025) have designed specialized automated modeling and verification ar-
chitectures for specific domains, such as cryptographic protocols and 5G communication protocols.
Our MODEL-BENCH represents the first LLM-based, general-purpose research effort focused on
generating model specifications directly from source code.

Formal Verification Benchmarks The formal specification benchmarks offer a standard, well-
defined set of problems, providing a shared challenge that helps build a community of practice
among researchers. For formal theorem proving, a recent survey (Li et al., 2024) summarized the
existing datasets. NL-PS (Ferreira & Freitas, 2020) first builds a natural language premise selection
dataset source from ProofWiki. Similarly, NaturalProofs (Welleck et al., 2021) further incorporates
data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it,
NaturalProofs-Gen (Welleck et al., 2022) contains around 14.5k theorems for informal proof gen-
eration. Moreover, FM-bench (Cao et al., 2025b) constructed 18k high-quality instruction-response
pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+).
For model checking, there are few benchmarks and datasets. FM-bench (Cao et al., 2025b) includes
benchmarks in TLA+ that evaluates the LLMs’ ability to turn informal language to formal specifi-
cation. So MODEL-BENCH takes the first step in auto modeling from programs with LLMs.

3 BENCHMARK CONSTRUCTION

3.1 DATA PROCESSING

The workflow of data processing for MODEL-BENCH is illustrated in Figure 1.

Data Sources MODEL-BENCH originates from three Python benchmarks for LLM evaluation: Hu-
manEval, MBPP and LiveCodeBench. We select them because they are the most widely known and
commonly used function-level benchmarks. All of them provide problem-wise testcases, allowing
MODEL-BENCH to validate the correctness of the generated TLA+ models.

Fetching and Normalization The workflow begins with the data collection, where we download
all three raw datasets from Hugging Face(HumanEval, MBPP, LiveCodeBench) (hug, 2016). The
code solutions in Python and the corresponding test cases are extracted from the raw datasets. In
order to standardize our benchmark and ensure consistent evaluation, each problem is de-duplicated,
normalized and combined into an isolated Python file with a function and test assertions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Fetch raw data from Hugging Face Normalize

Prompt

Solution

Tests

Remove Invalid libraries

Execute

Prompt derivation

The format of the raw data varies across benchmarks

Rewrite language features

gpt-4o

Any instance of failed rewriting will be discarded

Figure 1: Overview of Data Processing

Simplification and rewrite Our focus is on how LLMs abstract and model the core program logic
rather than translating every line of code with complex high-level syntax. However, Python is a pro-
gramming language equipped with rich built-in libraries and modern language features that cannot
be easily expressed in modeling languages like TLA+. For built-in libraries, we eliminate all Python
code that imports libraries other than typing and math. Having LLMs continuously generate
code for all complex dependencies and their nested dependencies would deviate from our research
focus. We retain typing because its usage does not affect the code logic in any way and these
dependencies can be completely ignored during modeling. We also keep math since it contains
convenient mathematical functions that are typically simple and commonly used.

For language features, we identify those that require treatment: multiple function declarations, recur-
sion, list comprehension, slice operations, classes, lambda expressions, and generators. Instead of
directly discarding these programs, we perform preprocessing and instructing LLMs to equivalently
rewrite all programs with these features using the prompt shown in Figure 12. Only after multiple
rewriting attempts were problems that still fail to run or meet the requirements discarded. Finally, we
exclude Python problems involving variables with complex types beyond None, Number, String,
and their derived List, Tuple, Dict and Iter, as these types are difficult to represent in TLA+.
Our statistics show that this filtering only eliminates a negligible portion of Python problems. Sub-
sequently, the Python problem files undergo execution to verify their functionality and accuracy,
with all problematic files that fail this verification process being eliminated. The code must also be
acceptable and processable by our code transformer.

Prompt derivation For each filtered Python code, we derive three variants of the prompts from the
same template shown in Figure 15: original code supplemented with two examples, original code
without examples, and transformed code (Section 3.2) with two examples. The prompt template
contains fixed domain knowledge of TLA+ and instructions of common mistakes (Lu et al., 2024).
The examples are TLA+ models manually crafted from Python programs, designed to provide max-
imum reference value for LLMs.

3.2 CODE TRANSFORMATION

One significant distinction between Python (or other modern high-level programming languages)
and TLA+ lies in their fundamental execution models. TLA+ models are essentially state machines
that explicitly describe all possible program behaviors as a set of flat, discrete events (actions), rep-
resenting program execution as a sequence of state transitions triggered by these actions. Previous
research has indicated that LLMs excel more at imitation and pattern recognition rather than com-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

def sum_even(arr):
 n = len(arr)
 i = 0
 s = 0
 while i < n:
 if arr[i] % 2 == 0:
 s += arr[i]
 i += 1
 return s

def sum_even(arr):
 n: any
 i: any
 s: any
 ret: any
 pc = 0
 while True:
 if pc == 0 and True:
 pc = 2
 n = len(arr)
 i = 0
 s = 0
 arr, ret = arr, ret
 if pc == 2 and True:
 pc = 3
 arr, i, n, ret, s = arr, i, n, ret, s
 if pc == 3 and i < n:
 pc = 5
 arr, i, n, ret, s = arr, i, n, ret, s
 if pc == 3 and not i < n:
 pc = 4
 ret = s
 return
 if pc == 4 and True:
 pc = 1
 arr, i, n, ret, s = arr, i, n, ret, s
 if pc == 5 and not arr[i] % 2 == 0:
 pc = 6
 i += 1
 arr, n, ret, s = arr, n, ret, s
 if pc == 5 and arr[i] % 2 == 0:
 pc = 7
 s += arr[i]
 arr, i, n, ret = arr, i, n, ret
 if pc == 7 and True:
 pc = 6
 i += 1
 arr, n, ret, s = arr, n, ret, s
 if pc == 6 and True:
 pc = 3
 arr, i, n, ret, s = arr, i, n, ret, s

Entry

n = len(arr)
i = 0
s = 0

Exit

While test

return s

Not(i < n) i < n

i += 1

Not(arr[i] % 2 == 0) s += arr[i]

arr[i] % 2 == 0

Input Python Code

Control-flow Graph Transformed Code

Figure 2: Overview of Code Transformation

Table 1: Data Statistics of MODEL-BENCH

Source Origin Libraries Language Features Types Execution
HumanEval 164 156 139 122 105
MBPP 427 356 334 309 262
LiveCodeBench 92 73 55 48 33
Total 683 595(-12.9%) 528 (-11.2%) 479 (-9.2%) 400 (-16.5%)

plex reasoning. To investigate the effectiveness of this approach, we lower Python programs into a
representation more closely aligned with TLA+ models.

The overview of our code transformation is shown in Figure 2. It starts with converting Python pro-
grams into control-flow graphs(CFG), where node represent basic blocks, and edges denote either
conditional or unconditional jumps between blocks. Each basic block contains a sequence of consec-
utively executed instructions, which naturally corresponds to actions in TLA+ specifications. This
structural similarity enables us to bridge the gap between the two representations while preserving
the behavior of the original program.

The transformation process involves several key steps: (1) CFG construction. We construct a CFG
from the Python program’s abstract syntax tree. Control flow statements (if/else, while/for,
break/continue) are identified to partition the code into basic blocks, while recording transition
conditions between blocks. Then we assign unique numerical identifiers to each node in the CFG.
(2) Code generation. We generate the transformed code following a state machine pattern. All
variables are declared at the beginning, followed by introducing a pc variable to track the current
state. The main structure is a while loop, containing if statements for each node, controlled by
pc and transition conditions. (3) Finally, we also lower Python strings to number arrays based on
characters’ ASCII values because the strings in TLA+ are immutable.

3.3 DATA STATISTICS

The data statistics of MODEL-BENCH are shown in Table 1. In particular, it presents a detailed
breakdown of the number of reserved problems in each stage of data processing. Our filtering pro-
cess resulted in the elimination of approximately 41.4% of the initial dataset, comprising 26.2% from
HumanEval, 65.5% from MBPP, and 8.3% from LiveCodeBench. The sequential filtering stages ex-
hibited rates of 12.9%, 11.2%, 9.2%, and 16.5% respectively, representing reasonable attrition levels
for maintaining data quality.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 EXPERIMENT DESIGN

We instruct LLMs to model the program across three prompt settings, conducting three sampling
trials for each. In these trials, LLMs self-correct via error feedback and iterative multi-turn chats.
We also perform post-processing on the models generated by LLMs (Section A.1). The processed
models are evaluated using TLC (Yu et al., 1999) and two metrics (Section 4.1.1).

4.1 EVALUATION DESIGN

Evaluation Preparation. We employ GPT-4o to generate a model for each Python program.
Through manual verification and refinement, we obtain oracle models. These models serve as the
ground truth for evaluating the similarity (defined below) of models generated by LLMs.

4.1.1 EVALUATION METRICS

Runnable@k: derived from Pass@k (Chen et al., 2021), a popular metric in LLM evaluation:

Runnable@k = E

[
1−

(
n− c

k

)
/

(
n

k

)]
(1)

Here, we define it as the proportion of models that TLC checks without failures at least once within
k generated models. For each problem, n solutions are sampled from an LLM, and c of n solutions
are correct. Considering the time and cost, we set n to 3 and k to 1, 2, 3 for each model sampling.

Similarity: Previous research has demonstrated that LLMs may not strictly adhere to prompts (Liu
et al., 2023). To verify whether the LLM-generated models align with the original programs rather
than being complete rewrites, we introduce a similarity metric. This metric measures the proportion
of identical states between two state transition sequences, formally defined as:

Similarity(Mo,Mg) =
|{s|s ∈ States(Mo) ∩ States(Mg)}|

|States(Mo)|
(2)

where Mo denotes oracle models, Mg denotes LLMs-generated models, and States(P) denotes
the set of all states observed during the execution of model M with TKC, formally defined as the
union of all states at each time step t:

States(M) =
⋃
t

State(M, t) (3)

Each state at time t is defined as the set of variable-value pairs:

State(M, t) = {(v, val(v, t)) | v ∈ V ars(M)} (4)

Here, V ars(M) represents the set of variables in model M , val(v, t) denotes the value of variable
v at step t, and States(M) is the set of all states in models M ’s execution trace.

Two states State1 and State2 are considered sufficiently similar, if and only if the proportion of
variable values in Stateg that also exist in Stateo is greater than or equal to a threshold θ ∈ [0, 1].
Formally,

|{ (vg, valg(vg, tg)) ∈ Stateg | ∃(vo, valo(vo, to)) ∈ Stateo, valg(vg, tg) = valo(vo, to) }|
|Stateg|

≥ θ (5)

We set the threshold θ to 1.0 to ensure that all variable-value pairs in the state of the generate
model must be present in the state of the oracle model, i.e., no discrepancies or noise. Note that
higher Runnable@k doesn’t mean higher similarity. This metric represents a compromise, given the
challenge of fully assessing whether the execution process and semantics of the program and the
model are entirely aligned.

5 EVALUATION

We use nucleus sampling (Holtzman et al., 2019) in line with recent works (Cao et al., 2024b;
Du et al., 2023; Cao et al., 2024a; Yu et al., 2024). All solution samples are randomly generated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Overall Results on MODEL-BENCH

Model Runnable@1 (%) Runnable@2 (%) Runnable@3 (%) Avg Similarity (%) Avg Fixes
Original Code / Few-shot

DeepSeek-V3 51.75 61.33 66.25 49.55 0.78
DeepSeek-V2.5 44.33 53.50 57.75 46.17 0.78
Qwen3-32B 39.50 53.08 60.75 52.03 1.07
Qwen3-14B 29.75 41.50 49.25 43.60 1.23
DeepSeek-R1-Distill-Qwen-32B 21.00 30.42 36.50 30.15 1.38
Qwen3-8B 16.00 24.75 31.00 22.84 1.90
Gemma-3-12b-it 7.92 12.17 15.00 21.14 1.40
Llama-3.1-8B-Instruct 4.33 7.33 10.00 5.39 2.87

Average 26.82 35.51 40.81 33.86 1.43
Original Code / Zero-shot

DeepSeek-V3 37.92 52.92 61.00 4.38 2.29
DeepSeek-V2.5 12.75 21.17 27.25 3.08 2.68
Qwen3-32B 18.08 29.75 37.75 11.90 2.49
Qwen3-14B 1.17 1.33 1.50 0.00 4.71
DeepSeek-R1-Distill-Qwen-32B 1.08 1.17 1.25 0.00 5.00
Qwen3-8B 1.00 1.00 1.00 0.00 5.00
Gemma-3-12b-it 1.00 1.00 1.00 0.00 5.00
Llama-3.1-8B-Instruct 1.00 1.00 1.00 0.00 5.00

Average 9.25 13.67 16.47 2.42 4.02
Transformed Code / Few-shot

DeepSeek-V3 43.50 51.75 56.00 68.54 0.71
DeepSeek-V2.5 39.92 48.17 52.25 61.55 0.84
Qwen3-32B 33.42 45.42 53.25 62.64 0.68
Qwen3-14B 26.08 37.08 44.25 57.67 1.48
DeepSeek-R1-Distill-Qwen-32B 24.00 35.08 41.25 52.95 1.69
Qwen3-8B 16.83 25.42 31.50 50.19 1.75
Gemma-3-12b-it 7.42 10.67 12.50 39.31 2.00
Llama-3.1-8B-Instruct 5.50 8.83 11.75 40.71 2.47

Average 24.58 32.80 37.84 54.20 1.45

with a temperature of 0.7 (Wen et al., 2024), which is the default temperature of ChatGPT. Due to
computational constraints, only the Gemma and Llama models are run on our local server equipped
with two NVIDIA RTX 6000 Ada GPUs (each with 48GB of graphic memory). The remaining
models are executed through the SiliconFlow API sil (2023).

The research questions (RQs) were designed as follows:

• RQ1. Overall Performance. We first show the overall performance of the studied LLMs on
MODEL-BENCH. We use three sets of prompts to generate modelings for all Python code. The
comprehensive results are displayed with multiple metrics.

• RQ2. Effectiveness of Code Transformation. The transformed code (Section 3.2) more closely
resembles the form of a TLA+ model. We thus explore how this approach affects different LLMs.

• RQ3. Impact of Source Code Syntactic Complexity. Research indicated that the accuracy of
code generated by LLMs is negatively correlated with code complexity (Sepidband et al., 2025).
So we aim to explore the relationship between the performance of LLMs in automated modeling
and the complexity of the code involved.

• RQ4. Bad Case Analysis. We analyze bad cases with syntactic or semantic errors due to various
issues and identify the limitations of LLMs in TLA+ automated modelings.

5.1 RQ1: OVERALL PERFORMANCE

The overall performance of the studied LLMs on MODEL-BENCH is shown in Table 2, which lists
various metrics for TLA+ models generated by each studied model under three prompt settings
(Section 3.1). Metrics include TLC Runnable@k, average state similarity between the TLA+ models
and oracle models, as well as the average number of fixes under Runnable@1 (Section 4.1.1). To

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

better visualize the results, we use darker background colors to indicate larger values. Only models
that pass TLC verification have the opportunity to calculate state similarity with oracle models.

Generally, across all prompt settings, DeepSeek-V3 demonstrates the best performance, followed
by DeepSeek-V2.5 and Qwen3-32B, achieving Runnable@1 of 51.75%, 44.33%, and 39.50%, re-
spectively. These three models also have the top-3 highest average similarities and lowest average
fix counts, indicating they can generate models that pass verification within fewer iterations.

Finding 1: The Top-3 performing LLMs are DeepSeek-V3, DeepSeek-V2.5, and Qwen3-32B
among the studied LLMs, achieving Runnable@1 rates of 51.75%, 44.33%, and 39.50%, respec-
tively. Their performance rankings remain consistent across all three prompt settings.

Comparing few-shot and zero-shot results, all models demonstrate significantly better performance
with few-shot prompt than with zero-shot, averagely improving 17.57% (26.82% - 9.25%) in
Runnable@1 and 31.44%(33.86% - 2.42%) in similarity. Particularly, DeepSeek-V2.5 showed a
31.58% improvement (44.33% - 12.75%) in Runnable@1. With few-shot prompt, the three lowest-
ranking models achieve a breakthrough from near 0 Runnable@1, with Llama-3.1-8B-Instruct im-
proving to 4.33%, Gemma-3-12b-it reaching 7.92%, and Qwen3-8B achieving 16.00%. For higher-
ranked models, few-shot prompt also reduces the average number of fix attempts and increases the
average state similarity. For example, DeepSeek-V2.5’s average fix attempts decrease by 1.90 (from
2.68 to 0.78), while its average state similarity improves by 46.47% (from 3.08% to 49.55%).

Finding 2: The enhancement of few-shot learning for automatic modeling tasks is substantial.
Notably, with zero-shot, models such as Gemma-3-12b-it, Llama-3.1-8B-Instruct, DeepSeek-R1-
Distill-Qwen-32B, Qwen3-14B, and Qwen3-8B all demonstrate a nearly 0 Runnable@1 rate.

In addition, by comparing the Runnable@1 rates of all models, we observe that the automatic mod-
eling task from Python to TLA+ exhibits high discriminability. This finding suggests that when ap-
plying this technique in actual industrial production, employing more powerful models often yields
significant improvements.

5.2 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

In RQ2, we primarily compare the results of original Python code and transformed Python code in
a few-shot setting. By comparing the data in Table 2, we observe that for all models, code trans-
formation leads to a decrease in Runnable@k, but significantly improves similarity. For instance,
in the case of the DeepSeek-V3 model, similarity increases by 18.99% (68.54% - 49.55%), while
Runnable@3 decreases by only 10.25% (66.25% - 56.00%). This indicates that code transformation
indeed provides LLMs with references that are easier to follow and translate. We hypothesize that
the decline in Runnable@k can be attributed to two main factors: (1) It reduces instances where
LLMs bypass TLC by completely restructuring the program. (2) Code transformation increases
code length, making the “lost in the middle” (Liu et al., 2023) phenomenon more likely to occur.

Figure 3: Venn Diagram of Ensemble based on Runnable@3

Figure 3 illustrates the complementary effects of the two prompt settings based on Runnable@3.
More results are demonstrated in Figure 7. Assembling the results from both prompt settings proves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

to be effective, e.g., for Qwen3-32B, prompting with transformed code yields an additional 13.75%
runnable TLA+ models from Python programs, compared that with the original code alone.

Finding 3: Code transformation significantly improves similarity while only leads to a small
decrease in Runnable@k. It can still serve as a complementary technique for all models when
combined with original code prompting, increasing the total number of runnable models.

5.3 RQ3: IMPACT OF SOURCE CODE SYNTACTIC COMPLEXITY

Figure 4: Relationship between Runnable@1 and Code Complexity

This section aims to explore the relationship between the performance of LLMs in automated mod-
eling and the complexity of the code involved. We calculate cyclomatic complexity with the Radon
library which is also used by previous work (Sepidband et al., 2025), max loop depth, and the num-
ber of variables for each original Python code in advance. We group all problems according to these
metrics separately and calculate the proportion of samples in each group that successfully passed the
TLC check based on the Runnable@1 results across all models. Figure 4 illustrates the relationship
between these complexity metrics and modeling success rates.

We also collect difficulty ratings for Python programs from LiveCodeBench, where these ratings
correspond to the difficulty of the problems rather than the complexity of the code. Figure 4 shows
the Runnable@k of all models across the three original problem difficulty distributions.

Finding 4: Python programs with higher syntactic complexity, i.e., those exhibiting higher cy-
clomatic complexity, larger loop depth, and a greater number of variables, demonstrate lower
Runnable@k as well as similarity when automatically translated into TLA+ models using LLMs.

5.4 RQ4: BAD CASE ANALYSIS

This section discusses cases that cannot pass TLC verification, including scenarios where the gen-
erated TLA+ model contains compilation errors, runtime errors, or fails to satisfy assertion proper-
ties. Since TLC categorizes errors in a coarse-grained manner via exit codes, we can only roughly
determine the cause through manual judgment. These kind of failures also demonstrates that the
difference between Python and TLA+ makes automated modeling and code translation hard. More
bad cases are demonstrated in Section A.3.2

5.4.1 COMPILATION ERROR

Compilation errors indicate that, as a result of insufficient training data or inadequate contextual
information, LLMs fail to produce TLA+ code that is syntactically or semantically correct.

Compilation Error 1: Unknown Operator. Figure 5 shows an error caused by the absence of
sort function, which is a built-in function existing in Python. Although we can make LLMs
aware of this issue through multiple rounds of chat, such iterative interactions may also continuously
introduce new unknown operators. The differences in built-in libraries between the two languages
further increase the difficulty of automatic modeling.

5.4.2 RUNTIME ERROR

Runtime errors are another type of result stemming from LLMs’ lack of attention to differences
between languages. Unlike compilation errors, correcting such errors requires LLMs to have a
deeper understanding of language specifications.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

def sort_third(l):
 """This function takes a list l and returns a list l' such that
 l' is identical to l in the indices that are not divisible by three,
 while its values at the indices that are divisible by three are equal
 to the values of the corresponding indices of l, but sorted.
 >>> sort_third([1, 2, 3])
 [1, 2, 3]
\
 result = []
 third_indices = []

 for i in range(len(l)):
 if i % 3 == 0:
 third_indices.append(l[i])
 result.append(None) # Placeholder for sorting later
 else:
 result.append(l[i])

 third_indices.sort()

 third_index = 0
 for i in range(len(result)):
 if result[i] is None:
 result[i] = third_indices[third_index]
 third_index += 1

 return result

--------------------------- MODULE SortThird ----------------------------
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC
VARIABLES l, result, third_indices, i, third_index, ret, initl, pc
vars == <<l, result, third_indices, i, third_index, ret, initl, pc>>

Init == * ...

SortThird ==
 * ...
 \/ /\ pc = 4
 /\ pc' = 9
 /\ third_indices' = Sort(third_indices)
 /\ i' = 0
 /\ third_index' = 0
 /\ result' = result
 /\ initl' = initl
 /\ ret' = ret
 /\ l' = l

Next == SortThird

Spec ==
 /\ Init
 /\ [][Next]_vars

Assertion == * ...
===

Figure 5: Compilation Error 1. Unknown Operator

Runtime Error 1: One-based Array Index. Figure 6 shows the error of array index out of bounds.
In the Python code, initializing i as 1 leads to the first iteration accessing dp[0]. However, in
TLA+, array indices start from 1, which means that dp[0] is an invalid access. One-based ar-
rays are uncommon in most programming languages. Although we explicitly mentioned this in the
prompt, LLMs still get lost in the middle of long contexts.

def lengthOfLongestSubsequence(nums, sum):
 n = len(nums)
 dp = []
 for i in range(n + 1):
 dp.append([-1] * (sum + 1))

 for i in range(n + 1):
 dp[i][0] = 0

 for i in range(1, n + 1):
 for j in range(1, sum + 1):
 dp[i][j] = dp[i - 1][j]
 if j >= nums[i - 1] and dp[i - 1][j - nums[i - 1]] != -1:
 dp[i][j] = max(1 + dp[i - 1][j - nums[i - 1]], dp[i][j])

 return dp[n][sum]

assert lengthOfLongestSubsequence([1, 1, 5, 4, 5], 3) == -1

---------------- MODULE LengthOfLongestSubsequence ------------------
* ...

Init == * ...

Next ==
 \/ /\ pc = 6
 /\ i >= n + 1
 /\ pc' = 7
 /\ i' = 1
 * ...
 \/ /\ pc = 12
 /\ j < sum + 1
 /\ pc' = 14
 /\ j' = j + 1
 /\ dp' = [dp EXCEPT ![i] = [dp[i] EXCEPT ![j+1] = dp[i-1][j+1]]]
 /\ UNCHANGED <<n, initsum, i, sum, nums, initnums, ret>>
===

Figure 6: Runtime Error 1. One-based Array Index

5.4.3 ASSERTION ERROR

Assertion errors occur not because LLMs omit the logic in the Python code. This stands in contrast
to the two types of errors discussed earlier, as the essence of these errors is rooted in this excessive
fidelity to the source code.

Assertion Error 1: Omission of Function-call. Figure 11 demonstrates the reason behind the
assertion error. The LLMs fail to include the .lower() function-call in Python, which leads to the
test cases not passing.

6 CONCLUSION

In this paper, we introduce MODEL-BENCH, a benchmark and an accompanying pipeline for eval-
uating and improving LLMs’ program modeling capability by modeling Python programs into
verification-ready model checking specifications checkable by its accompanying model checker.
MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (Hu-
manEval, MBPP, and LiveCodeBench). Our extensive experiments reveal significant limitations in
LLMs’ program modeling and further provide inspiring directions. We hope MODEL-BENCH could
drive progress in automated formal verification, especially for model checking, and encourage the
development of more sophisticated reasoning capabilities in future LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Hugging face, 2016. URL https://huggingface.co/.

Siliconflow, 2023. URL https://siliconflow.cn.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Cheung, and Chang Xu. Javabench: A bench-
mark of object-oriented code generation for evaluating large language models. In Proceedings of
the 39th IEEE/ACM International Conference on Automated Software Engineering, pp. 870–882,
2024a.

Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. Concerned with data contamination? assessing
countermeasures in code language model. arXiv preprint arXiv:2403.16898, 2024b.

Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda He, Cheng Wen, Le Sun,
Hongyu Zhang, Shengchao Qin, Shing-Chi Cheung, and Cong Tian. From informal to formal –
incorporating and evaluating llms on natural language requirements to verifiable formal proofs,
2025a. URL https://arxiv.org/abs/2501.16207.

Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda He, Cheng Wen, Le Sun,
Hongyu Zhang, Shengchao Qin, et al. From informal to formal–incorporating and evaluating llms
on natural language requirements to verifiable formal proofs. arXiv preprint arXiv:2501.16207,
2025b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Edmund M Clarke. Model checking. In International conference on foundations of software tech-
nology and theoretical computer science, pp. 54–56. Springer, 1997.

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel.
nl2spec: Interactively translating unstructured natural language to temporal logics with large
language models. In International Conference on Computer Aided Verification, pp. 383–396.
Springer, 2023.

Cristian Curaba, Denis D’Ambrosi, Alessandro Minisini, and Natalia Pérez-Campanero Antolı́n.
Cryptoformaleval: Integrating llms and formal verification for automated cryptographic protocol
vulnerability detection. arXiv preprint arXiv:2411.13627, 2024.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Deborah Ferreira and André Freitas. Natural language premise selection: Finding supporting state-
ments for mathematical text. arXiv preprint arXiv:2004.14959, 2020.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. Gener-
ation of formal requirements from structured natural language. In International working confer-
ence on requirements engineering: Foundation for software quality, pp. 19–35. Springer, 2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof
data. arXiv preprint arXiv:2402.08957, 2024.

10

https://huggingface.co/
https://siliconflow.cn
https://arxiv.org/abs/2501.16207

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multi-language diversity benefits autoformalization.
Advances in Neural Information Processing Systems, 37:83600–83626, 2024.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź,
Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
models and automated theorem provers. Advances in Neural Information Processing Systems, 35:
8360–8373, 2022.

Leslie Lamport. Specifying systems, 2002.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving. arXiv preprint arXiv:2404.09939, 2024.

Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao Lu, Zhengying Liu, Linqi Song,
and Xiaodan Liang. Fvel: Interactive formal verification environment with large language models
via theorem proving. Advances in Neural Information Processing Systems, 37:54932–54946,
2024.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive verification of chain-of-thought reasoning. Advances in Neural Information Processing
Systems, 36:36407–36433, 2023.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models.
In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 1509–1520, 2024.

Ziyu Mao, Jingyi Wang, Jun Sun, Shengchao Qin, and Jiawen Xiong. Llm-aided automatic mod-
elling for security protocol verification. In 2025 IEEE/ACM 47th International Conference on
Software Engineering (ICSE), pp. 734–734. IEEE Computer Society, 2025.

Melika Sepidband, Hamed Taherkhani, Song Wang, and Hadi Hemmati. Enhancing llm-
based code generation with complexity metrics: A feedback-driven approach. arXiv preprint
arXiv:2505.23953, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
libraries. arXiv preprint arXiv:2310.00656, 2023.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
Cho. Naturalproofs: Mathematical theorem proving in natural language. arXiv preprint
arXiv:2104.01112, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. Advances in Neural Information
Processing Systems, 35:4913–4927, 2022.

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
Cheung, and Cong Tian. Enchanting program specification synthesis by large language models
using static analysis and program verification. In International Conference on Computer Aided
Verification, pp. 302–328. Springer, 2024.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in neural informa-
tion processing systems, 35:32353–32368, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Jingda Yang and Ying Wang. Toward auto-modeling of formal verification for nextg protocols: A
multimodal cross-and self-attention large language model approach. IEEE Access, 12:27858–
27869, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36:21573–
21612, 2023.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1–12, 2024.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications. In Ad-
vanced research working conference on correct hardware design and verification methods, pp.
54–66. Springer, 1999.

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin
Tan, and Xiangyu Zhang. C2s: translating natural language comments to formal program spec-
ifications. In Proceedings of the 28th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp. 25–37, 2020.

Yuhao Zhou. Retrieval-augmented tlaps proof generation with large language models. arXiv preprint
arXiv:2501.03073, 2025.

A APPENDIX

A.1 POST PROCESSING

Given the limited availability of training data for TLA+ compared to mainstream programming lan-
guages, we observe that LLMs tend to make trivial but patterned errors (see below). To ensure
more meaningful observations, we conduct post-processing for every generated output. In particu-
lar, the post-processing consists of three steps: (1) Import all built-in modules. We automatically
incorporate all built-in TLA+ modules through the EXTENDS keyword, ensuring access to funda-
mental operators and definitions required for formal specification. (2) Define null model values. To
achieve better correspondence with Python, we introduce None and Null as model values in the
specifications. (3) Complete unchanged variables. We implement comprehensive handling of the
UNCHANGED variables to ensure that each action’s resulting state is complete.

These post-processing steps effectively eliminate common errors that would otherwise impede the
validity of our experimental results. This approach allows us to focus on evaluating the substantive
aspects of the LLMs’ ability to generate formal specifications.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Studied Large Language Models

Model Family Model Size Time
DeepSeek DeepSeek-V3(Liu et al., 2024b) 685B Dec, 2024
DeepSeek DeepSeek-V2.5(Liu et al., 2024a) 236B May, 2024
Qwen Qwen3-8B(Yang et al., 2025) 8.19B May, 2025
Qwen Qwen3-14B(Yang et al., 2025) 14.8B May, 2025
Qwen Qwen3-32B(Yang et al., 2025) 32.8B May, 2025
Qwen DeepSeek-R1-Distill-Qwen-32B 32.8B July, 2024
Gemma Gemma-3-12B-it(Team et al., 2025) 12.2B March, 2025
Llama Llama-3.1-8B-Instruct(Dubey et al., 2024) 8.03B July, 2024

A.2 STUDIED LARGE LANGUAGE MODELS

The studied LLMs are listed in Table 3. We focus on recent LLMs released after 2024. We primar-
ily choose the DeepSeek and Qwen model families, which are the strongest open-source models ac-
cording to public leaderboards. We specifically include Qwen3-8B, Qwen3-14B, and Qwen3-32B to
evaluate how model performance scales with different parameter count within the same family. We
incorporate Gemma and Llama to ensure model diversity. Note that we deliberately exclude GPT-
series models from OpenAI to ensure fairness, as our later comparison between LLM-generated
TLA+ models and oracle models relies on human-corrected outputs based on GPT’s generations.

A.3 EVALUATION SUPPLEMENT

A.3.1 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

Figure 7: Venn Diagram of Ensemble based on Runnable@3

A.3.2 RQ4: BAD CASE ANALYSIS

Compilation Error 2: Unexpected Token. Figure 8 shows an error caused by invalid string con-
catenation operator. Python uses + to concatenate two string while TLA+ should use \o. LLMs lack
this knowledge, so it generate unexpected tokens as a result.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

def finalString(s: str) -> str:
 while "i" in s:
 index = s.index("i")

 first = ""
 for j in range(index - 1, -1, -1):
 first += s[j]

 second = ""
 for j in range(index + 1, len(s)):
 second += s[j]

 s = first + second
 return s

assert finalString('poiinter') == 'ponter'

--------------------------- MODULE FinalString ----------------------------
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC
VARIABLES s, init_s, ret, pc, first, index, j, second
vars == <<s, init_s, ret, pc, first, index, j, second>>

Init == * ...

FinalString ==
 * ...
 \/ /\ pc = 9
 /\ j >= LenS
 /\ pc' = 10
 /\ s' = first @ second
 /\ UNCHANGED <<first, index, j, init_s, second>>
* ...
===

Figure 8: Compilation Error 2. Unexpected Token

Runtime Error 2: Indexing String. Figure 9 illustrates the error that occurs when attempting
to index the string ALPHABET in TLA+. While in Python, programmers can access individual
characters in a string using array-like indexing, this operation is invalid in TLA+, causing runtime
errors.

def encrypt(s):
 """Create a function encrypt that takes a string as an argument and
 returns a string encrypted with the alphabet being rotated.
 The alphabet should be rotated in a manner such that the letters
 shift down by two multiplied to two places.
 For example:
 encrypt('hi') returns 'lm'
 encrypt('asdfghjkl') returns 'ewhjklnop'
 encrypt('gf') returns 'kj'
 encrypt('et') returns 'ix'
 """
 d = 'abcdefghijklmnopqrstuvwxyz'
 out = ''
 for c in s:
 if c in d:
 out += d[(d.index(c)+2*2) % 26]
 else:
 out += c
 return out

--------------------------- MODULE Encrypt ----------------------------
EXTENDS Naturals, Integers, Sequences, TLC
CONSTANTS MaxLen
VARIABLES s, i, out, pc, ret
vars == <<s, i, out, pc, ret>>

ALPHABET == "abcdefghijklmnopqrstuvwxyz"
Init ==
 /\ s = << "h", "i" >>
 /\ i = 1
 /\ out = <<>>
 /\ pc = 0
 /\ ret = <<>>

IndexInAlphabet(c) == CHOOSE pos \in 1..LenAlphabet : ALPHABET[pos] = c

* …

===

Figure 9: Runtime Error 2. Indexing String

Assertion Error 2: Constant Loop Count. Figure 10 illustrates a case where LLMs directly use
the constant MaxLen, which originally intends to constrain the initial variable search space, as
the maximum loop count for traversing an array under arbitrary inputs. The correct way is to use
Len(arr).

def can_arrange(arr):
 """Create a function which returns the largest index of an element
which
 is not greater than or equal to the element immediately preceding it.
If
 no such element exists then return -1. The given array will not
contain
 duplicate values.

 Examples:
 can_arrange([1,2,4,3,5]) = 3
 can_arrange([1,2,3]) = -1
 “""
 ind=-1
 i=1
 while i<len(arr):
 if arr[i]<arr[i-1]:
 ind=i
 i+=1
 return ind

--------------------------- MODULE CanArrange ----------------------------
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC
CONSTANTS MaxLen, MaxValue

* ...

CanArrange ==
 * ...
 \/ (/\ pc = 3
 /\ i <= MaxLen
 /\ pc' = 5
 /\ i' = i
 /\ UNCHANGED <<arr, initarr, ret, ind>>)

Next == CanArrange

Spec ==
 /\ Init
 /\ [][Next]_vars
===

Figure 10: Assertion Error 2. Constant Loop Count

A.4 PROMPT DESIGN

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

def check_if_last_char_is_a_letter(txt):
 '''
 Create a function that returns True if the last character
 of a given string is an alphabetical character and is not
 a part of a word, and False otherwise.
 Note: "word" is a group of characters separated by space.

 Examples:
 check_if_last_char_is_a_letter("apple pie") ➞ False
 check_if_last_char_is_a_letter("apple pi e") ➞ True
 check_if_last_char_is_a_letter("apple pi e ") ➞ False
 check_if_last_char_is_a_letter("") ➞ False
 '''

 check = txt.split(' ')[-1]
 return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122)
else False

----------------------- MODULE CheckIfLastCharIsALetter ---------------------
* ...

Init == * ...

CheckIfLastCharIsALetter ==
 LET IsLetter(c) == /\ Len(c) = 1 /\ 97 <= c[1] /\ c[1] <= 122
 IN
 /\ \/ /\ pc = 0
 /\ check' = check[Len(check)]
 /\ ret' = IsLetter(check')
 /\ pc' = 1
 /\ UNCHANGED <<inittxt, txt>>

* ...
===

Figure 11: Assertion Error 1. Omission of Function-call

Prompt for rewriting code of problems

System Prompt
You are a Python expert. Please refactor the user’s Python code into equivalent code follow-
ing these rules:
1. Avoid using list comprehensions like [x*2 for x in range(5)]. Use traditional for loops
instead.
2. Avoid using slicing operations like array[1:4]. Use loops to access elements individually.
3. Avoid using classes with self references like “class Calculator: def add(self, x, y)”. Use
standalone functions.
4. Avoid using lambda functions like “lambda x: x + 1”. Use regular named functions.
5. Avoid using generator expressions like “(x for x in range(5))”. Use regular loops and lists.
6. Write single, non-recursive functions instead of recursive ones like “def factorial(n):
return n * factorial(n-1)”.
Please output the refactored code directly without any additional explanations.
User Prompt
- Original Python code goes here -

Figure 12: Prompt for Rewriting Code of Problems

Prompt for fix

The TLA+ specification has the following error:
- error message -
Please fix the specification while keeping the same logic.

Figure 13: Prompt for Fixing

Config template for running TLC

CONSTANTS
- constants -
NONE = NONE
NULL = NULL

SPECIFICATION
Spec

INVARIANT
Assertion

CHECK DEADLOCK FALSE

Figure 14: Config Template for Running TLC

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Prompt for generating TLA+ models

Role description
As an expert in TLA+, you are good at understanding and writing TLA+.
TLA+ is a formal specification language used for modeling and verifying concurrent and
distributed systems.

Domain knowledge
1. The logical operators supported by TLA+ include:
/ (and), \/ (or), ∼ (not), => (Implication), <=>
(Bidirectional implication), TRUE, FALSE, \A (Universal
Quantification), \E (Existential Quantification)

2. The set operators supported by TLA+ include:
= (Equality), # (not equal), \union (Union), \intersect
(Intersection), \in (Membership), \notin (Not in), \subseteq
(Subset Equal), \ (Difference).

3. The temporal operators supported by TLA+ include:
[] x > 0
The above code is an example of [] (Always). It means that at all times, the value of
variable x is greater than 0.

<> x = 0
The above code is an example of <> (Eventually). It means that at some point in time, the
value of variable x becomes 0.

4. Built-in keywords and operators in TLA+ include:
MODULE, EXTENDS, CONSTANTS, INSTANCE, VARIABLE, ASSUME,
PROVE, INIT, NEXT, ACTION, SPECIFICATION, IF, ELSE, WITH,
CASE, THEN, LET, IN, CHOOSE, ENABLED, UNCHANGED, DOMAIN.

Based on the information and python code with assertions, give a complete TLA+ model
code in only one single code block without explanations.
The model should initialize a set of all possible states constrained by max or min
CONSTANTs instead of fixed inputs.
1. Use LET keyword if there’s any temporary variable.
2. Each step should define all variables, even though keep them unchange.
3. Since the start index in TLA+ is 1 instead of 0, you may change the corresponding
initialization, checks, and assignment.
4. Don’t declare parameters with same names as variables or constants.
5. Define arrays like arr \in [1..MaxLen -> 0..MaxValue].
If there are assertions in the code, you should also generate a corresponding Assertion
== action.

For example:
- example1 -
- example2 -

Module Name: - module name -
- code -

Figure 15: Prompt for Generating TLA+ Models

16

	INTRODUCTION
	Related Work
	Benchmark Construction
	Data Processing
	Code Transformation
	Data Statistics

	Experiment Design
	Evaluation Design
	Evaluation Metrics

	Evaluation
	RQ1: Overall Performance
	RQ2: Effectiveness of Code Transformation
	RQ3: Impact of Source Code Syntactic Complexity
	RQ4: Bad Case Analysis
	Compilation Error
	Runtime Error
	Assertion Error

	Conclusion
	Appendix
	Post Processing
	Studied Large Language Models
	Evaluation Supplement
	RQ2: Effectiveness of Code Transformation
	RQ4: Bad Case Analysis

	Prompt Design

