

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN LARGE LANGUAGE MODELS MODEL PROGRAMS FORMALLY?

Anonymous authors

Paper under double-blind review

ABSTRACT

In the digital age, ensuring the correctness, safety, and reliability of software through formal verification is paramount, particularly as software increasingly underpins critical infrastructure. Formal verification, split into theorem proving and model checking, provides a feasible and reliable path. Unlike theorem proving, which yields notable advances, model checking has been less focused due to the difficulty of automatic program modeling. To fill this gap, we introduce MODEL-BENCH, a benchmark and an accompanying pipeline for evaluating and improving LLMs' program modeling capability by modeling Python programs into verification-ready model checking specifications checkable by its accompanying model checker. MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (HumanEval, MBPP, and LiveCodeBench). Our extensive experiments reveal significant limitations in LLMs' program modeling and further provide inspiring directions.

1 INTRODUCTION

In an era when software defines everything, daily life is mediated by code across healthcare, finance, and critical infrastructure. A single defect can trigger outages, breaches, or safety incidents, making correctness, safety, and reliability the bedrock of a resilient digital society. While software testing can reveal the presence of bugs, it cannot prove their absence; formal verification, when grounded in precise specifications, can provide machine-checkable guarantees. Technically, formal methods split into two main approaches: *theorem proving*, which establishes properties via logical derivations in proof assistants or automated provers, and *model checking* (Clarke, 1997), which decides property satisfaction by exhaustively exploring a system's state space against temporal specifications.

Recent progress has concentrated on LLM-assisted theorem proving (e.g., autoformalization (Wu et al., 2022; Jiang et al., 2024), proof generation (Yang et al., 2023), and premise selection and retrieval), yielding notable advances. By contrast, model checking has been less focused, largely due to the automodeling bottleneck: it is difficult to derive accurate and tractable behavioral models from programs automatically. Though there are a few attempts to model formal properties from requirements (Cao et al., 2025a), modeling formal models for programs has rarely been explored.

However, automatically constructing such models from code is technically challenging and underexplored. Dynamic languages like Python exhibit rich runtime behavior (e.g., mutable aliasing, higher-order functions, third-party libraries, `async/await`) that must be abstracted to a finite but faithful state space. Useful models are expected to keep a soundness and precision trade-off: too concrete and model checkers do not scale; too abstract and properties become vacuous or unsound.

This gap motivates our work, MODEL-BENCH, a benchmark and an accompanying pipeline for evaluating and improving LLMs' program modeling capability by modeling Python programs into verification-ready TLA+ (Temporal Logic of Actions, a formal language for model checking) (Lamport, 2002) specifications checkable by its accompanying model checker TLC (Yu et al., 1999). MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (*i.e.* HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LiveCodeBench (Jain et al., 2024)) by normalization, simplification, and rewrite. The benchmark covers progressively difficult settings, from easy to medium, and then to hard. These programs are covered by a total of 1,639 test cases, ensuring a rigorous evaluation.

Our extensive experiments reveal significant limitations in LLMs' program modeling: only 66.25% runnable and 49.55% state similarity under in-context learning at best. We also propose a code transformation approach to facilitate LLMs modeling and yield promising complementary improvements. Finally, we showed that the modeling difficulty is not reliably correlated with algorithmic difficulty but with nested loops and data-structure complexity. Our contribution includes:

- **Significance.** We proposed MODEL-BENCH, a benchmark and an accompanying pipeline for evaluating and improving LLMs' program modeling capability by modeling Python programs into verification-ready TLA+
- **Novelty.** Besides introducing MODEL-BENCH, we also demonstrate a way to improve the LLMs' program modeling capability via code transformation.
- **Evaluation.** We conduct extensive experiments that yield several instructive findings. Our analysis of bad cases also provides directions for future improvement.

2 RELATED WORK

Automated Formal Verification While there exist various approaches and techniques for automated formal verification that generates program specifications from natural language (Cosler et al., 2023; Zhai et al., 2020; Giannakopoulou et al., 2020), our MODEL-BENCH primarily focuses on specification generation based on the programming language. In recent years, there also has been a growing interest in applying LLMs to assist program verification (Lin et al., 2024; Ling et al., 2023; Wang et al., 2023; Huang et al., 2024; Jiang et al., 2022). These works focus on using LLMs for theorem proving or domain-specific modeling. For example, Zhou (Zhou, 2025) introduces a two-stage proof generation method that combines LLMs with Retrieval-Augmented Generation. Additionally, frameworks such as CryptoFormalEval (Curaba et al., 2024), AVRE (Yang & Wang, 2024), and Mao et al. (Mao et al., 2025) have designed specialized automated modeling and verification architectures for specific domains, such as cryptographic protocols and 5G communication protocols. Our MODEL-BENCH represents the first LLM-based, general-purpose research effort focused on generating model specifications directly from source code.

Formal Verification Benchmarks The formal specification benchmarks offer a standard, well-defined set of problems, providing a shared challenge that helps build a community of practice among researchers. **For formal theorem proving**, a recent survey (Li et al., 2024) summarized the existing datasets. NL-PS (Ferreira & Freitas, 2020) first builds a natural language premise selection dataset source from ProofWiki. Similarly, NaturalProofs (Welleck et al., 2021) further incorporates data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it, NaturalProofs-Gen (Welleck et al., 2022) contains around 14.5k theorems for informal proof generation. Moreover, FM-bench (Cao et al., 2025b) constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+). **For model checking**, there are few benchmarks and datasets. FM-bench (Cao et al., 2025b) includes benchmarks in TLA+ that evaluates the LLMs' ability to turn informal language to formal specification. So MODEL-BENCH takes the first step in auto modeling from programs with LLMs.

3 BENCHMARK CONSTRUCTION

3.1 DATA PROCESSING

The workflow of data processing for MODEL-BENCH is illustrated in Figure 1.

Data Sources MODEL-BENCH originates from three Python benchmarks for LLM evaluation: HumanEval, MBPP and LiveCodeBench. We select them because they are the most widely known and commonly used function-level benchmarks. All of them provide problem-wise testcases, allowing MODEL-BENCH to validate the correctness of the generated TLA+ models.

Fetching and Normalization The workflow begins with the data collection, where we download all three raw datasets from Hugging Face(HumanEval, MBPP, LiveCodeBench) (hug, 2016). The code solutions in Python and the corresponding test cases are extracted from the raw datasets. In order to standardize our benchmark and ensure consistent evaluation, each problem is de-duplicated, normalized and combined into an isolated Python file with a function and test assertions.

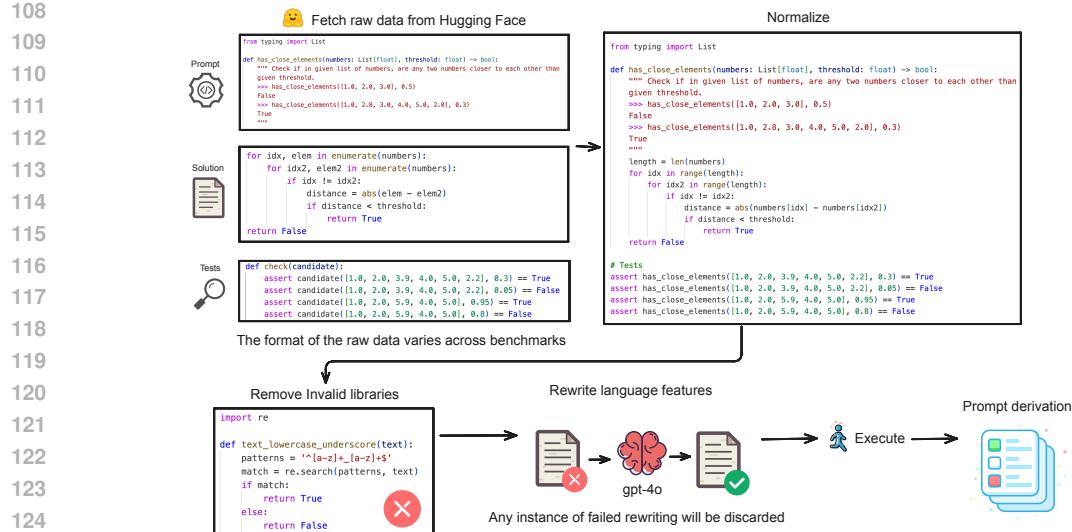


Figure 1: Overview of Data Processing

Simplification and rewrite Our focus is on how LLMs abstract and model the core program logic rather than translating every line of code with complex high-level syntax. However, Python is a programming language equipped with rich built-in libraries and modern language features that cannot be easily expressed in modeling languages like TLA+. For built-in libraries, we eliminate all Python code that imports libraries other than `typing` and `math`. Having LLMs continuously generate code for all complex dependencies and their nested dependencies would deviate from our research focus. We retain `typing` because its usage does not affect the code logic in any way and these dependencies can be completely ignored during modeling. We also keep `math` since it contains convenient mathematical functions that are typically simple and commonly used.

For language features, we identify those that require treatment: multiple function declarations, recursion, list comprehension, slice operations, classes, lambda expressions, and generators. Instead of directly discarding these programs, we perform preprocessing and instructing LLMs to equivalently rewrite all programs with these features using the prompt shown in Figure 12. Only after multiple rewriting attempts were problems that still fail to run or meet the requirements discarded. Finally, we exclude Python problems involving variables with complex types beyond `None`, `Number`, `String`, and their derived `List`, `Tuple`, `Dict` and `Iter`, as these types are difficult to represent in TLA+. Our statistics show that this filtering only eliminates a negligible portion of Python problems. Subsequently, the Python problem files undergo execution to verify their functionality and accuracy, with all problematic files that fail this verification process being eliminated. The code must also be acceptable and processable by our code transformer.

Prompt derivation For each filtered Python code, we derive three variants of the prompts from the same template shown in Figure 15: original code supplemented with two examples, original code without examples, and transformed code (Section 3.2) with two examples. The prompt template contains fixed domain knowledge of TLA+ and instructions of common mistakes (Lu et al., 2024). The examples are TLA+ models manually crafted from Python programs, designed to provide maximum reference value for LLMs.

3.2 CODE TRANSFORMATION

One significant distinction between Python (or other modern high-level programming languages) and TLA+ lies in their fundamental execution models. TLA+ models are essentially state machines that explicitly describe all possible program behaviors as a set of flat, discrete events (*actions*), representing program execution as a sequence of state transitions triggered by these actions. Previous research has indicated that LLMs excel more at imitation and pattern recognition rather than com-

162

163

164

165

166 Input Python Code

```
def sum_even(arr):
    n = len(arr)
    i = 0
    s = 0
    while i < n:
        if arr[i] % 2 == 0:
            s += arr[i]
        i += 1
    return s
```

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

plex reasoning. To investigate the effectiveness of this approach, we *lower* Python programs into a representation more closely aligned with TLA+ models.

The overview of our code transformation is shown in Figure 2. It starts with converting Python programs into control-flow graphs(CFG), where node represent basic blocks, and edges denote either conditional or unconditional jumps between blocks. Each basic block contains a sequence of consecutively executed instructions, which naturally corresponds to actions in TLA+ specifications. This structural similarity enables us to bridge the gap between the two representations while preserving the behavior of the original program.

The transformation process involves several key steps: (1) CFG construction. We construct a CFG from the Python program’s abstract syntax tree. Control flow statements (`if/else`, `while/for`, `break/continue`) are identified to partition the code into basic blocks, while recording transition conditions between blocks. Then we assign unique numerical identifiers to each node in the CFG. (2) Code generation. We generate the transformed code following a state machine pattern. All variables are declared at the beginning, followed by introducing a `pc` variable to track the current state. The main structure is a while loop, containing if statements for each node, controlled by `pc` and transition conditions. (3) Finally, we also lower Python strings to number arrays based on characters’ ASCII values because the strings in TLA+ are immutable.

3.3 DATA STATISTICS

The data statistics of MODEL-BENCH are shown in Table 1. In particular, it presents a detailed breakdown of the number of reserved problems in each stage of data processing. Our filtering process resulted in the elimination of approximately 41.4% of the initial dataset, comprising 26.2% from HumanEval, 65.5% from MBPP, and 8.3% from LiveCodeBench. The sequential filtering stages exhibited rates of 12.9%, 11.2%, 9.2%, and 16.5% respectively, representing reasonable attrition levels for maintaining data quality.

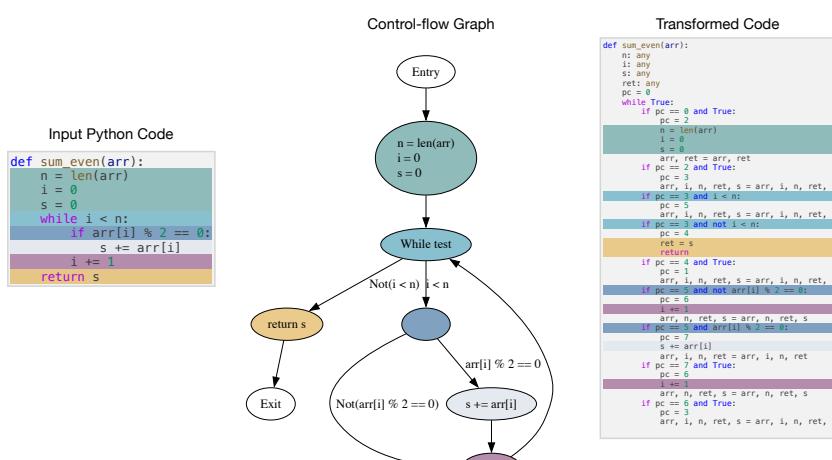


Figure 2: Overview of Code Transformation

Table 1: Data Statistics of MODEL-BENCH

Source	Origin	Libraries	Language Features	Types	Execution
HumanEval	164	156	139	122	105
MBPP	427	356	334	309	262
LiveCodeBench	92	73	55	48	33
Total	683	595(-12.9%)	528 (-11.2%)	479 (-9.2%)	400 (-16.5%)

216 4 EXPERIMENT DESIGN
217

218 We instruct LLMs to model the program across three prompt settings, conducting three sampling
219 trials for each. In these trials, LLMs self-correct via error feedback and iterative multi-turn chats.
220 We also perform post-processing on the models generated by LLMs (Section A.1). The processed
221 models are evaluated using TLC (Yu et al., 1999) and two metrics (Section 4.1.1).
222

223 4.1 EVALUATION DESIGN
224

225 **Evaluation Preparation.** We employ GPT-4o to generate a model for each Python program.
226 Through manual verification and refinement, we obtain oracle models. These models serve as the
227 ground truth for evaluating the similarity (defined below) of models generated by LLMs.
228

229 4.1.1 EVALUATION METRICS
230

231 **Runnable@ k :** derived from Pass@ k (Chen et al., 2021), a popular metric in LLM evaluation:
232

$$233 \text{Runnable}@k = \mathbb{E} \left[1 - \binom{n-c}{k} / \binom{n}{k} \right] \quad (1)$$

234 Here, we define it as the proportion of models that TLC checks without failures at least once within
235 k generated models. For each problem, n solutions are sampled from an LLM, and c of n solutions
236 are correct. Considering the time and cost, we set n to 3 and k to 1, 2, 3 for each model sampling.
237

238 **Similarity:** Previous research has demonstrated that LLMs may not strictly adhere to prompts (Liu
239 et al., 2023). To verify whether the LLM-generated models align with the original programs rather
240 than being complete rewrites, we introduce a similarity metric. This metric measures the proportion
241 of identical states between two state transition sequences, formally defined as:
242

$$243 \text{Similarity}(M_o, M_g) = \frac{|\{s \in \text{States}(M_o) \cap \text{States}(M_g)\}|}{|\text{States}(M_o)|} \quad (2)$$

244 where M_o denotes oracle models, M_g denotes LLMs-generated models, and $\text{States}(P)$ denotes
245 the set of all states observed during the execution of model M with TKC, formally defined as the
246 union of all states at each time step t :

$$247 \text{States}(M) = \bigcup_t \text{State}(M, t) \quad (3)$$

248 Each state at time t is defined as the set of variable-value pairs:
249

$$251 \text{State}(M, t) = \{(v, \text{val}(v, t)) \mid v \in \text{Vars}(M)\} \quad (4)$$

252 Here, $\text{Vars}(M)$ represents the set of variables in model M , $\text{val}(v, t)$ denotes the value of variable
253 v at step t , and $\text{States}(M)$ is the set of all states in models M 's execution trace.
254

255 Two states State_1 and State_2 are considered **sufficiently similar**, if and only if the proportion of
256 variable values in State_g that also exist in State_o is greater than or equal to a threshold $\theta \in [0, 1]$.
257 Formally,

$$258 \frac{|\{(v_g, \text{val}_g(v_g, t_g)) \in \text{State}_g \mid \exists(v_o, \text{val}_o(v_o, t_o)) \in \text{State}_o, \text{val}_g(v_g, t_g) = \text{val}_o(v_o, t_o)\}|}{|\text{State}_g|} \geq \theta \quad (5)$$

260 We set the threshold θ to 1.0 to ensure that all variable-value pairs in the state of the generate
261 model must be present in the state of the oracle model, i.e., no discrepancies or noise. Note that
262 higher Runnable@ k doesn't mean higher similarity. This metric represents a compromise, given the
263 challenge of fully assessing whether the execution process and semantics of the program and the
264 model are entirely aligned.
265

266 5 EVALUATION
267

268 We use nucleus sampling (Holtzman et al., 2019) in line with recent works (Cao et al., 2024b;
269 Du et al., 2023; Cao et al., 2024a; Yu et al., 2024). All solution samples are randomly generated

270

271

272

Table 2: Overall Results on MODEL-BENCH

Model	Runnable@1 (%)	Runnable@2 (%)	Runnable@3 (%)	Avg Similarity (%)	Avg Fixes
Original Code / Few-shot					
DeepSeek-V3	51.75	61.33	66.25	49.55	0.78
DeepSeek-V2.5	44.33	53.50	57.75	46.17	0.78
Qwen3-32B	39.50	53.08	60.75	52.03	1.07
Qwen3-14B	29.75	41.50	49.25	43.60	1.23
DeepSeek-R1-Distill-Qwen-32B	21.00	30.42	36.50	30.15	1.38
Qwen3-8B	16.00	24.75	31.00	22.84	1.90
Gemma-3-12b-it	7.92	12.17	15.00	21.14	1.40
Llama-3.1-8B-Instruct	4.33	7.33	10.00	5.39	2.87
Average	26.82	35.51	40.81	33.86	1.43
Original Code / Zero-shot					
DeepSeek-V3	37.92	52.92	61.00	4.38	2.29
DeepSeek-V2.5	12.75	21.17	27.25	3.08	2.68
Qwen3-32B	18.08	29.75	37.75	11.90	2.49
Qwen3-14B	1.17	1.33	1.50	0.00	4.71
DeepSeek-R1-Distill-Qwen-32B	1.08	1.17	1.25	0.00	5.00
Qwen3-8B	1.00	1.00	1.00	0.00	5.00
Gemma-3-12b-it	1.00	1.00	1.00	0.00	5.00
Llama-3.1-8B-Instruct	1.00	1.00	1.00	0.00	5.00
Average	9.25	13.67	16.47	2.42	4.02
Transformed Code / Few-shot					
DeepSeek-V3	43.50	51.75	56.00	68.54	0.71
DeepSeek-V2.5	39.92	48.17	52.25	61.55	0.84
Qwen3-32B	33.42	45.42	53.25	62.64	0.68
Qwen3-14B	26.08	37.08	44.25	57.67	1.48
DeepSeek-R1-Distill-Qwen-32B	24.00	35.08	41.25	52.95	1.69
Qwen3-8B	16.83	25.42	31.50	50.19	1.75
Gemma-3-12b-it	7.42	10.67	12.50	39.31	2.00
Llama-3.1-8B-Instruct	5.50	8.83	11.75	40.71	2.47
Average	24.58	32.80	37.84	54.20	1.45

298

299

300 with a temperature of 0.7 (Wen et al., 2024), which is the default temperature of ChatGPT. Due to
 301 computational constraints, only the Gemma and Llama models are run on our local server equipped
 302 with two NVIDIA RTX 6000 Ada GPUs (each with 48GB of graphic memory). The remaining
 303 models are executed through the SiliconFlow API sil (2023).

304 The research questions (RQs) were designed as follows:

305

- 306 • **RQ1. Overall Performance.** We first show the overall performance of the studied LLMs on
 307 MODEL-BENCH. We use three sets of prompts to generate modelings for all Python code. The
 308 comprehensive results are displayed with multiple metrics.
- 309 • **RQ2. Effectiveness of Code Transformation.** The transformed code (Section 3.2) more closely
 310 resembles the form of a TLA+ model. We thus explore how this approach affects different LLMs.
- 311 • **RQ3. Impact of Source Code Syntactic Complexity.** Research indicated that the accuracy of
 312 code generated by LLMs is negatively correlated with code complexity (Sepidband et al., 2025).
 313 So we aim to explore the relationship between the performance of LLMs in automated modeling
 314 and the complexity of the code involved.
- 315 • **RQ4. Bad Case Analysis.** We analyze bad cases with syntactic or semantic errors due to various
 316 issues and identify the limitations of LLMs in TLA+ automated modelings.

318

319

5.1 RQ1: OVERALL PERFORMANCE

320

321 The overall performance of the studied LLMs on MODEL-BENCH is shown in Table 2, which lists
 322 various metrics for TLA+ models generated by each studied model under three prompt settings
 323 (Section 3.1). Metrics include TLC Runnable@ k , average state similarity between the TLA+ models
 and oracle models, as well as the average number of fixes under Runnable@1 (Section 4.1.1). To

324 better visualize the results, we use darker background colors to indicate larger values. Only models
 325 that pass TLC verification have the opportunity to calculate state similarity with oracle models.
 326

327 Generally, across all prompt settings, DeepSeek-V3 demonstrates the best performance, followed
 328 by DeepSeek-V2.5 and Qwen3-32B, achieving Runnable@1 of 51.75%, 44.33%, and 39.50%, re-
 329 spectively. These three models also have the top-3 highest average similarities and lowest average
 330 fix counts, indicating they can generate models that pass verification within fewer iterations.

331 **Finding 1:** The Top-3 performing LLMs are DeepSeek-V3, DeepSeek-V2.5, and Qwen3-32B
 332 among the studied LLMs, achieving Runnable@1 rates of 51.75%, 44.33%, and 39.50%, respec-
 333 tively. Their performance rankings remain consistent across all three prompt settings.

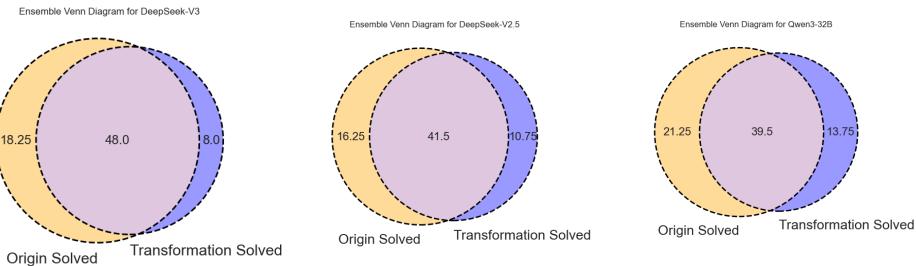
334 Comparing few-shot and zero-shot results, all models demonstrate significantly better performance
 335 with few-shot prompt than with zero-shot, averagely improving 17.57% (26.82% - 9.25%) in
 336 Runnable@1 and 31.44%(33.86% - 2.42%) in similarity. Particularly, DeepSeek-V2.5 showed a
 337 31.58% improvement (44.33% - 12.75%) in Runnable@1. With few-shot prompt, the three lowest-
 338 ranking models achieve a breakthrough from near 0 Runnable@1, with Llama-3.1-8B-Instruct im-
 339 proving to 4.33%, Gemma-3-12b-it reaching 7.92%, and Qwen3-8B achieving 16.00%. For higher-
 340 ranked models, few-shot prompt also reduces the average number of fix attempts and increases the
 341 average state similarity. For example, DeepSeek-V2.5's average fix attempts decrease by 1.90 (from
 342 2.68 to 0.78), while its average state similarity improves by 46.47% (from 3.08% to 49.55%).

343 **Finding 2:** The enhancement of few-shot learning for automatic modeling tasks is substantial.
 344 Notably, with zero-shot, models such as Gemma-3-12b-it, Llama-3.1-8B-Instruct, DeepSeek-R1-
 345 Distill-Qwen-32B, Qwen3-14B, and Qwen3-8B all demonstrate a nearly 0 Runnable@1 rate.

346 In addition, by comparing the Runnable@1 rates of all models, we observe that the automatic mod-
 347eling task from Python to TLA+ exhibits high discriminability. This finding suggests that when ap-
 348plying this technique in actual industrial production, employing more powerful models often yields
 349 significant improvements.

350 5.2 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

351 In RQ2, we primarily compare the results of original Python code and transformed Python code in
 352 a few-shot setting. By comparing the data in Table 2, we observe that for all models, code trans-
 353 formation leads to a decrease in Runnable@ k , but significantly improves similarity. For instance,
 354 in the case of the DeepSeek-V3 model, similarity increases by 18.99% (68.54% - 49.55%), while
 355 Runnable@3 decreases by only 10.25% (66.25% - 56.00%). This indicates that code transformation
 356 indeed provides LLMs with references that are easier to follow and translate. We hypothesize that
 357 the decline in Runnable@ k can be attributed to two main factors: (1) It reduces instances where
 358 LLMs bypass TLC by completely restructuring the program. (2) Code transformation increases
 359 code length, making the “lost in the middle” (Liu et al., 2023) phenomenon more likely to occur.



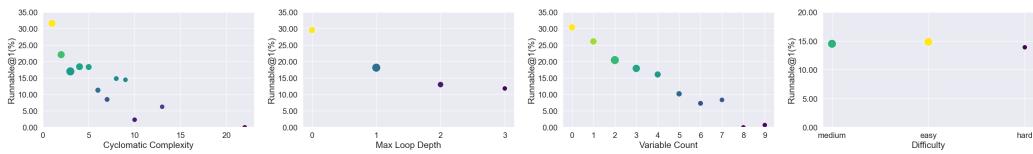
378 Figure 3: Venn Diagram of Ensemble based on Runnable@3

379 Figure 3 illustrates the complementary effects of the two prompt settings based on Runnable@3.
 380 More results are demonstrated in Figure 7. Assembling the results from both prompt settings proves

378 to be effective, *e.g.*, for Qwen3-32B, prompting with transformed code yields an additional 13.75%
 379 runnable TLA+ models from Python programs, compared that with the original code alone.
 380

381 **Finding 3:** Code transformation significantly improves similarity while only leads to a small
 382 decrease in Runnable@ k . It can still serve as a complementary technique for all models when
 383 combined with original code prompting, increasing the total number of runnable models.

385 5.3 RQ3: IMPACT OF SOURCE CODE SYNTACTIC COMPLEXITY



388
 389
 390
 391
 392
 393
 394
 Figure 4: Relationship between Runnable@1 and Code Complexity

395 This section aims to explore the relationship between the performance of LLMs in automated mod-
 396 eling and the complexity of the code involved. We calculate cyclomatic complexity with the Radon
 397 library which is also used by previous work (Sepidband et al., 2025), max loop depth, and the num-
 398 ber of variables for each original Python code in advance. We group all problems according to these
 399 metrics separately and calculate the proportion of samples in each group that successfully passed the
 400 TLC check based on the Runnable@1 results across all models. Figure 4 illustrates the relationship
 401 between these complexity metrics and modeling success rates.

402 We also collect difficulty ratings for Python programs from LiveCodeBench, where these ratings
 403 correspond to the difficulty of the problems rather than the complexity of the code. Figure 4 shows
 404 the Runnable@ k of all models across the three original problem difficulty distributions.

406 **Finding 4:** Python programs with higher syntactic complexity, *i.e.*, those exhibiting higher cy-
 407 clomatic complexity, larger loop depth, and a greater number of variables, demonstrate lower
 408 Runnable@ k as well as similarity when automatically translated into TLA+ models using LLMs.

410 5.4 RQ4: BAD CASE ANALYSIS

412 This section discusses cases that cannot pass TLC verification, including scenarios where the gen-
 413 erated TLA+ model contains compilation errors, runtime errors, or fails to satisfy assertion proper-
 414 ties. Since TLC categorizes errors in a coarse-grained manner via exit codes, we can only roughly
 415 determine the cause through manual judgment. These kind of failures also demonstrates that the
 416 difference between Python and TLA+ makes automated modeling and code translation hard. More
 417 bad cases are demonstrated in Section A.3.2

418 5.4.1 COMPILATION ERROR

420 Compilation errors indicate that, as a result of insufficient training data or inadequate contextual
 421 information, LLMs fail to produce TLA+ code that is syntactically or semantically correct.

423 **Compilation Error 1: Unknown Operator.** Figure 5 shows an error caused by the absence of
 424 *sort* function, which is a built-in function existing in Python. Although we can make LLMs
 425 aware of this issue through multiple rounds of chat, such iterative interactions may also continuously
 426 introduce new unknown operators. The differences in built-in libraries between the two languages
 427 further increase the difficulty of automatic modeling.

428 5.4.2 RUNTIME ERROR

430 Runtime errors are another type of result stemming from LLMs’ lack of attention to differences
 431 between languages. Unlike compilation errors, correcting such errors requires LLMs to have a
 deeper understanding of language specifications.

Figure 5: Compilation Error 1. Unknown Operator

Runtime Error 1: One-based Array Index. Figure 6 shows the error of array index out of bounds. In the Python code, initializing `i` as 1 leads to the first iteration accessing `dp[0]`. However, in TLA+, array indices start from 1, which means that `dp[0]` is an invalid access. One-based arrays are uncommon in most programming languages. Although we explicitly mentioned this in the prompt, LLMs still get lost in the middle of long contexts.

```

def lengthOfLongestSubsequence(nums, sum):
    n = len(nums)
    dp = []
    for i in range(n + 1):
        dp.append([-1] * (sum + 1))

    for i in range(n + 1):
        dp[i][0] = 0

    for i in range(1, n + 1):
        for j in range(1, sum + 1):
            dp[i][j] = dp[i - 1][j]
            if j >= nums[i - 1] and dp[i - 1][j - nums[i - 1]] != -1:
                dp[i][j] = max(1 + dp[i - 1][j - nums[i - 1]], dp[i][j])

    return dp[n][sum]

assert lengthOfLongestSubsequence([1, 1, 5, 4, 5], 3) == -1

```

```

* * * * * MODULE LengthOfLongestSubsequence * * * * *

\* ...
Init == \* ...
Next ==
  \/\ pc = 6
  \/\ i >= n + 1
  \/\ pc' = 7
  \/\ i' = 1
\* ...
  \/\ pc = 12
  \/\ j < sum + 1
  \/\ pc' = 14
  \/\ i' = j + 1
  \/\ dp' = [dp[i] EXCEPT !(i) = [dp[i] EXCEPT !(j+1) = dp[i-1][j+1]]]
  \/\ UNCHANGED <<, initsum, i, sum, nums, initnums, ret>>

```

Figure 6: Runtime Error 1. One-based Array Index

5.4.3 ASSERTION ERROR

Assertion errors occur not because LLMs omit the logic in the Python code. This stands in contrast to the two types of errors discussed earlier, as the essence of these errors is rooted in this excessive fidelity to the source code.

Assertion Error 1: Omission of Function-call. Figure 11 demonstrates the reason behind the assertion error. The LLMs fail to include the `.lower()` function-call in Python, which leads to the test cases not passing.

6 CONCLUSION

In this paper, we introduce **MODEL-BENCH**, a benchmark and an accompanying pipeline for evaluating and improving LLMs' program modeling capability by modeling Python programs into verification-ready model checking specifications checkable by its accompanying model checker. **MODEL-BENCH** comprises 400 Python programs derived from three well-known benchmarks (HumanEval, MBPP, and LiveCodeBench). Our extensive experiments reveal significant limitations in LLMs' program modeling and further provide inspiring directions. We hope **MODEL-BENCH** could drive progress in automated formal verification, especially for model checking, and encourage the development of more sophisticated reasoning capabilities in future LLMs.

486 REFERENCES
487

488 Hugging face, 2016. URL <https://huggingface.co/>.

489 Siliconflow, 2023. URL <https://siliconflow.cn>.

490

491 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
492 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
493 models. *arXiv preprint arXiv:2108.07732*, 2021.

494 Jialun Cao, Zhiyong Chen, Jiarong Wu, Shing-Chi Cheung, and Chang Xu. Javabench: A bench-
495 mark of object-oriented code generation for evaluating large language models. In *Proceedings of*
496 *the 39th IEEE/ACM International Conference on Automated Software Engineering*, pp. 870–882,
497 2024a.

498 Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. Concerned with data contamination? assessing
499 countermeasures in code language model. *arXiv preprint arXiv:2403.16898*, 2024b.

500

501 Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda He, Cheng Wen, Le Sun,
502 Hongyu Zhang, Shengchao Qin, Shing-Chi Cheung, and Cong Tian. From informal to formal –
503 incorporating and evaluating llms on natural language requirements to verifiable formal proofs,
504 2025a. URL <https://arxiv.org/abs/2501.16207>.

505 Jialun Cao, Yaojie Lu, Meiziniu Li, Haoyang Ma, Haokun Li, Mengda He, Cheng Wen, Le Sun,
506 Hongyu Zhang, Shengchao Qin, et al. From informal to formal–incorporating and evaluating llms
507 on natural language requirements to verifiable formal proofs. *arXiv preprint arXiv:2501.16207*,
508 2025b.

509

510 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
511 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
512 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

513

514 Edmund M Clarke. Model checking. In *International conference on foundations of software tech-
nology and theoretical computer science*, pp. 54–56. Springer, 1997.

515

516 Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel.
517 nl2spec: Interactively translating unstructured natural language to temporal logics with large
518 language models. In *International Conference on Computer Aided Verification*, pp. 383–396.
Springer, 2023.

519

520 Cristian Curaba, Denis D’Ambrosi, Alessandro Minisini, and Natalia Pérez-Campanero Antolín.
521 Cryptoformaleval: Integrating llms and formal verification for automated cryptographic protocol
522 vulnerability detection. *arXiv preprint arXiv:2411.13627*, 2024.

523

524 Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
525 Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
526 ing llms on class-level code generation. *arXiv preprint arXiv:2308.01861*, 2023.

527

528 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
529 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

530

531 Deborah Ferreira and André Freitas. Natural language premise selection: Finding supporting state-
532 ments for mathematical text. *arXiv preprint arXiv:2004.14959*, 2020.

533

534 Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann Schumann. Gen-
535 eration of formal requirements from structured natural language. In *International working confer-
536 ence on requirements engineering: Foundation for software quality*, pp. 19–35. Springer, 2020.

537

538 Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
539 degeneration. *arXiv preprint arXiv:1904.09751*, 2019.

540

541 Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
542 Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof
543 data. *arXiv preprint arXiv:2402.08957*, 2024.

540 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 541 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 542 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

543

544 Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multi-language diversity benefits autoformalization.
 545 *Advances in Neural Information Processing Systems*, 37:83600–83626, 2024.

546

547 Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdż,
 548 Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language
 549 models and automated theorem provers. *Advances in Neural Information Processing Systems*, 35:
 550 8360–8373, 2022.

551

552 Leslie Lamport. Specifying systems, 2002.

553

554 Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
 555 Si. A survey on deep learning for theorem proving. *arXiv preprint arXiv:2404.09939*, 2024.

556

557 Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao Lu, Zhengying Liu, Linqi Song,
 558 and Xiaodan Liang. Fvel: Interactive formal verification environment with large language models
 559 via theorem proving. *Advances in Neural Information Processing Systems*, 37:54932–54946,
 560 2024.

561

562 Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
 563 Deductive verification of chain-of-thought reasoning. *Advances in Neural Information Processing
 564 Systems*, 36:36407–36433, 2023.

565

566 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong
 567 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 568 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a.

569

570 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 571 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 572 arXiv:2412.19437*, 2024b.

573

574 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 575 Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint
 576 arXiv:2307.03172*, 2023.

577

578 Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models.
 579 In *Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engi-
 580 neering*, pp. 1509–1520, 2024.

581

582 Ziyu Mao, Jingyi Wang, Jun Sun, Shengchao Qin, and Jiawen Xiong. Llm-aided automatic mod-
 583 elling for security protocol verification. In *2025 IEEE/ACM 47th International Conference on
 584 Software Engineering (ICSE)*, pp. 734–734. IEEE Computer Society, 2025.

585

586 Melika Sepidband, Hamed Taherkhani, Song Wang, and Hadi Hemmati. Enhancing llm-
 587 based code generation with complexity metrics: A feedback-driven approach. *arXiv preprint
 588 arXiv:2505.23953*, 2025.

589

590 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 591 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 592 report. *arXiv preprint arXiv:2503.19786*, 2025.

593

594 Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
 595 Huang, Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing
 596 libraries. *arXiv preprint arXiv:2310.00656*, 2023.

597

598 Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun
 599 Cho. Naturalproofs: Mathematical theorem proving in natural language. *arXiv preprint
 600 arXiv:2104.01112*, 2021.

594 Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
 595 Grounded mathematical proof generation with language models. *Advances in Neural Information
 596 Processing Systems*, 35:4913–4927, 2022.

597

598 Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi
 599 Cheung, and Cong Tian. Enchanting program specification synthesis by large language models
 600 using static analysis and program verification. In *International Conference on Computer Aided
 601 Verification*, pp. 302–328. Springer, 2024.

602

603 Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
 604 Christian Szegedy. Autoformalization with large language models. *Advances in neural informa-
 605 tion processing systems*, 35:32353–32368, 2022.

606

607 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 608 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 609 arXiv:2505.09388*, 2025.

610

611 Jingda Yang and Ying Wang. Toward auto-modeling of formal verification for nextg protocols: A
 612 multimodal cross-and self-attention large language model approach. *IEEE Access*, 12:27858–
 613 27869, 2024.

614

615 Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
 616 Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
 617 augmented language models. *Advances in Neural Information Processing Systems*, 36:21573–
 618 21612, 2023.

619

620 Hao Yu, Bo Shen, Dezhong Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
 621 iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
 622 pre-trained models. In *Proceedings of the 46th IEEE/ACM International Conference on Software
 623 Engineering*, pp. 1–12, 2024.

624

625 Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications. In *Ad-
 626 vanced research working conference on correct hardware design and verification methods*, pp.
 627 54–66. Springer, 1999.

628

629 Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang, Shiqing Ma, Lin
 630 Tan, and Xiangyu Zhang. C2s: translating natural language comments to formal program spec-
 631 ifications. In *Proceedings of the 28th ACM joint meeting on European software engineering
 632 conference and symposium on the foundations of software engineering*, pp. 25–37, 2020.

633

634 Yuhao Zhou. Retrieval-augmented tlaps proof generation with large language models. *arXiv preprint
 635 arXiv:2501.03073*, 2025.

636

633 A APPENDIX

635 A.1 POST PROCESSING

637 Given the limited availability of training data for TLA+ compared to mainstream programming lan-
 638 guages, we observe that LLMs tend to make trivial but patterned errors (see below). To ensure
 639 more meaningful observations, we conduct post-processing for every generated output. In particu-
 640 lar, the post-processing consists of three steps: (1) Import all built-in modules. We automatically
 641 incorporate all built-in TLA+ modules through the EXTENDS keyword, ensuring access to funda-
 642 mental operators and definitions required for formal specification. (2) Define null model values. To
 643 achieve better correspondence with Python, we introduce `None` and `Null` as model values in the
 644 specifications. (3) Complete unchanged variables. We implement comprehensive handling of the
 645 UNCHANGED variables to ensure that each action’s resulting state is complete.

646 These post-processing steps effectively eliminate common errors that would otherwise impede the
 647 validity of our experimental results. This approach allows us to focus on evaluating the substantive
 aspects of the LLMs’ ability to generate formal specifications.

648

649

Table 3: Studied Large Language Models

650

Model Family	Model	Size	Time
DeepSeek	DeepSeek-V3(Liu et al., 2024b)	685B	Dec, 2024
DeepSeek	DeepSeek-V2.5(Liu et al., 2024a)	236B	May, 2024
Qwen	Qwen3-8B(Yang et al., 2025)	8.19B	May, 2025
Qwen	Qwen3-14B(Yang et al., 2025)	14.8B	May, 2025
Qwen	Qwen3-32B(Yang et al., 2025)	32.8B	May, 2025
Qwen	DeepSeek-R1-Distill-Qwen-32B	32.8B	July, 2024
Gemma	Gemma-3-12B-it(Team et al., 2025)	12.2B	March, 2025
Llama	Llama-3.1-8B-Instruct(Dubey et al., 2024)	8.03B	July, 2024

651

652

653 A.2 STUDIED LARGE LANGUAGE MODELS

654

The studied LLMs are listed in Table 3. We focus on recent LLMs released after 2024. We primarily choose the DeepSeek and Qwen model families, which are the strongest open-source models according to public leaderboards. We specifically include Qwen3-8B, Qwen3-14B, and Qwen3-32B to evaluate how model performance scales with different parameter count within the same family. We incorporate Gemma and Llama to ensure model diversity. Note that we deliberately exclude GPT-series models from OpenAI to ensure fairness, as our later comparison between LLM-generated TLA+ models and oracle models relies on human-corrected outputs based on GPT’s generations.

655

656

657 A.3 EVALUATION SUPPLEMENT

658

659 A.3.1 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

699

```

702     def finalString(s: str) -> str:
703         while "i" in s:
704             index = s.index("i")
705             first = ""
706             for j in range(index - 1, -1, -1):
707                 first += s[j]
708             second = ""
709             for j in range(index + 1, len(s)):
710                 second += s[j]
711             s = first + second
712             return s
713
714     assert finalString('pointer') == 'ponter'
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

```

Figure 8: Compilation Error 2. Unexpected Token

```

----- MODULE FinalString -----
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC
VARIABLES s, init_s, ret, pc, first, index, j, second>
vars == <>s, init_s, ret, pc, first, index, j, second>
Init == \* ...
FinalString ==
  \* ...
  \* pc = 9
  \* j >= LenS
  \* pc = 10
  \* s' = first @ second
  \* UNCHANGED <>first, index, j, init_s, second>
\* ...
----- MODULE FinalString -----

```

Figure 9: Runtime Error 2. Indexing String

```

----- MODULE Encrypt -----
EXTENDS Naturals, Integers, Sequences, TLC
CONSTANTS MaxLen
VARIABLES s, i, out, pc, ret
vars == <>s, i, out, pc, ret>
ALPHABET == "abcdefghijklmnopqrstuvwxyz"
Init == \* ...
  \* s = <>"h", "i" >>
  \* i = 1
  \* out = <>>
  \* pc = 0
  \* ret = <>>
IndexInAlphabet(c) == CHOOSE pos \in 1..LenAlphabet : ALPHABET[pos] = c
\* ...
----- MODULE Encrypt -----

```

Figure 9: Runtime Error 2. Indexing String

Runtime Error 2: Indexing String. Figure 9 illustrates the error that occurs when attempting to index the string ALPHABET in TLA+. While in Python, programmers can access individual characters in a string using array-like indexing, this operation is invalid in TLA+, causing runtime errors.

```

----- MODULE CanArrange -----
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC
CONSTANTS MaxLen, MaxValue
VARIABLES arr, ind, i, pc, ret, initarr, indarr, ind>
vars == <>arr, indarr, ret, initarr, ind>
CanArrange ==
  \* ...
  \* ...
  \* pc = 3
  \* i <= MaxLen
  \* pc' = 5
  \* i' = i
  \* UNCHANGED <>arr, initarr, ret, ind>>
Next == CanArrange
Spec ==
  \* Init
  \* [] [Next] _vars
----- MODULE CanArrange -----

```

Figure 10: Assertion Error 2. Constant Loop Count

A.4 PROMPT DESIGN

```

756     def check_if_last_char_is_a_letter(txt):
757         ...
758         Create a function that returns True if the last character
759         of a given string is an alphabetical character and is not
760         a part of a word, and False otherwise.
761         Note: "word" is a group of characters separated by space.
762
763         Examples:
764         check_if_last_char_is_a_letter("apple pie") -> False
765         check_if_last_char_is_a_letter("apple pi e") -> True
766         check_if_last_char_is_a_letter("apple pi e ") -> False
767         check_if_last_char_is_a_letter("") -> False
768
769         check = txt.split(' ')[-1]
770         return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122)
771     else False
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

```

```

----- MODULE CheckIfLastCharIsLetter -----
\* ...
Init == \* ...
CheckIfLastCharIsLetter ==
LET IsLetter(c) == /\ Len(c) = 1 /\ 97 <= c[1] /\ c[1] <= 122
IN
  /\ \* /\ pc = 0
  /\ check' = check[Len(check)]
  /\ ret' = IsLetter(check')
  /\ pc' = 1
  /\ UNCHANGED <<inittxt, txt>>
\* ...
-----
```

Figure 11: Assertion Error 1. Omission of Function-call

Prompt for rewriting code of problems

System Prompt

You are a Python expert. Please refactor the user's Python code into equivalent code following these rules:

1. Avoid using list comprehensions like `[x*2 for x in range(5)]`. Use traditional for loops instead.
2. Avoid using slicing operations like `array[1:4]`. Use loops to access elements individually.
3. Avoid using classes with self references like "class Calculator: def add(self, x, y)". Use standalone functions.
4. Avoid using lambda functions like "lambda x: x + 1". Use regular named functions.
5. Avoid using generator expressions like "(x for x in range(5))". Use regular loops and lists.
6. Write single, non-recursive functions instead of recursive ones like "def factorial(n): return n * factorial(n-1)".

Please output the refactored code directly without any additional explanations.

User Prompt

- Original Python code goes here -

Figure 12: Prompt for Rewriting Code of Problems

Prompt for fix

The TLA+ specification has the following error:

- error message -

Please fix the specification while keeping the same logic.

Figure 13: Prompt for Fixing

Config template for running TLC

CONSTANTS

- constants -

NONE = NONE

NULL = NULL

SPECIFICATION

Spec

INVARIANT

Assertion

CHECK_DEADLOCK FALSE

Figure 14: Config Template for Running TLC

810
 811
 812
 813 **Prompt for generating TLA+ models**
 814
 815 **# Role description**
 816 As an expert in TLA+, you are good at understanding and writing TLA+.
 817 TLA+ is a formal specification language used for modeling and verifying concurrent and
 818 distributed systems.
 819
 820 **# Domain knowledge**
 821 1. The logical operators supported by TLA+ include:
 822 / (and), \vee (or), \neg (not), \Rightarrow (Implication), \Leftrightarrow (Bidirectional implication),
 823 TRUE, FALSE, \forall (Universal Quantification), \exists (Existential Quantification)
 824
 825 2. The set operators supported by TLA+ include:
 826 = (Equality), \neq (not equal), \cup (Union), \cap (Intersection), \in (Membership), \notin (Not in), \subseteq (Subset Equal), \setminus (Difference).
 827
 828 3. The temporal operators supported by TLA+ include:
 829 [] x > 0
 830 The above code is an example of [] (Always). It means that at all times, the value of
 831 variable x is greater than 0.
 832
 833 <> x = 0
 834 The above code is an example of <> (Eventually). It means that at some point in time, the
 835 value of variable x becomes 0.
 836
 837 4. Built-in keywords and operators in TLA+ include:
 838 MODULE, EXTENDS, CONSTANTS, INSTANCE, VARIABLE, ASSUME,
 839 PROVE, INIT, NEXT, ACTION, SPECIFICATION, IF, ELSE, WITH,
 840 CASE, THEN, LET, IN, CHOOSE, ENABLED, UNCHANGED, DOMAIN.
 841
 842 Based on the information and python code with assertions, give a complete TLA+ model
 843 code in only one single code block without explanations.
 844 The model should initialize a set of all possible states constrained by max or min
 845 CONSTANTS instead of fixed inputs.
 846 1. Use LET keyword if there's any temporary variable.
 847 2. Each step should define all variables, even though keep them unchange.
 848 3. Since the start index in TLA+ is 1 instead of 0, you may change the corresponding
 849 initialization, checks, and assignment.
 850 4. Don't declare parameters with same names as variables or constants.
 851 5. Define arrays like arr \in [1..MaxLen -> 0..MaxValue].
 852 If there are assertions in the code, you should also generate a corresponding Assertion
 853 == action.
 854
 855 **For example:**
 856 - example1 -
 857 - example2 -
 858
 859 **Module Name:** - module_name -
 860 - code -
 861
 862
 863

Figure 15: Prompt for Generating TLA+ Models