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ABSTRACT

In the digital age, ensuring the correctness, safety, and reliability of software
through formal verification is paramount, particularly as software increasingly
underpins critical infrastructure. Formal verification, split into theorem proving
and model checking, provides a feasible and reliable path. Unlike theorem prov-
ing, which yields notable advances, model checking has been less focused due
to the difficulty of automatic program modeling. To fill this gap, we introduce
MODEL-BENCH, a benchmark and an accompanying pipeline for evaluating and
improving LLMs’ program modeling capability by modeling Python programs
into verification-ready model checking specifications checkable by its accompa-
nying model checker. MODEL-BENCH comprises 400 Python programs derived
from three well-known benchmarks (HumanEval, MBPP, and LiveCodeBench).
Our extensive experiments reveal significant limitations in LLMs’ program mod-
eling and further provide inspiring directions.

1 INTRODUCTION

In an era when software defines everything, daily life is mediated by code across healthcare, finance,
and critical infrastructure. A single defect can trigger outages, breaches, or safety incidents, making
correctness, safety, and reliability the bedrock of a resilient digital society. While software testing
can reveal the presence of bugs, it cannot prove their absence; formal verification, when grounded in
precise specifications, can provide machine-checkable guarantees. Technically, formal methods split
into two main approaches: theorem proving, which establishes properties via logical derivations in
proof assistants or automated provers, and model checking (Clarke, 1997), which decides property
satisfaction by exhaustively exploring a system’s state space against temporal specifications.

Recent progress has concentrated on LLM-assisted theorem proving (e.g., autoformalization (Wu
et al., 2022; Jiang et al., 2024), proof generation (Yang et al., 2023), and premise selection and
retrieval), yielding notable advances. By contrast, model checking has been less focused, largely
due to the automodeling bottleneck: it is difficult to derive accurate and tractable behavioral models
from programs automatically. Though there are a few attempts to model formal properties from
requirements (Cao et al., 2025a), modeling formal models for programs has rarely been explored.

However, automatically constructing such models from code is technically challenging and underex-
plored. Dynamic languages like Python exhibit rich runtime behavior (e.g., mutable aliasing, higher-
order functions, third-party libraries, async/await) that must be abstracted to a finite but faithful state
space. Useful models are expected to keep a soundness and precision trade-off: too concrete and
model checkers do not scale; too abstract and properties become vacuous or unsound.

This gap motivates our work, MODEL-BENCH, a benchmark and an accompanying pipeline for
evaluating and improving LLMs’ program modeling capability by modeling Python programs into
verification-ready TLA+ (Temporal Logic of Actions, a formal language for model checking) (Lam-
port, 2002) specifications checkable by its accompanying model checker TLC (Yu et al., 1999).
MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (i.e.
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LiveCodeBench (Jain et al., 2024))
by normalization, simplification, and rewrite. The benchmark covers progressively difficult settings,
from easy to medium, and then to hard. These programs are covered by a total of 1,639 test cases,
ensuring a rigorous evaluation.
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Our extensive experiments reveal significant limitations in LLMs’ program modeling: only 66.25%
runnable and 49.55% state similarity under in-context learning at best. We also propose a code
transformation approach to facilitate LLMs modeling and yield promising complementary improve-
ments. Finally, we showed that the modeling difficulty is not reliably correlated with algorithmic
difficulty but with nested loops and data-structure complexity. Our contribution includes:

• Significance. We proposed MODEL-BENCH, a benchmark and an accompanying pipeline for
evaluating and improving LLMs’ program modeling capability by modeling Python programs
into verification-ready TLA+

• Novelty. Besides introducing MODEL-BENCH, we also demonstrate a way to improve the LLMs’
program modeling capability via code transformation.

• Evaluation. We conduct extensive experiments that yield several instructive findings. Our
analysis of bad cases also provides directions for future improvement.

2 RELATED WORK

Automated Formal Verification While there exist various approaches and techniques for auto-
mated formal verification that generates program specifications from natural language (Cosler et al.,
2023; Zhai et al., 2020; Giannakopoulou et al., 2020), our MODEL-BENCH primarily focuses on
specification generation based on the programming language. In recent years, there also has been a
growing interest in applying LLMs to assist program verification (Lin et al., 2024; Ling et al., 2023;
Wang et al., 2023; Huang et al., 2024; Jiang et al., 2022). These works focus on using LLMs for the-
orem proving or domain-specific modeling. For example, Zhou (Zhou, 2025) introduces a two-stage
proof generation method that combines LLMs with Retrieval-Augmented Generation. Additionally,
frameworks such as CryptoFormalEval (Curaba et al., 2024), AVRE (Yang & Wang, 2024), and
Mao et al. (Mao et al., 2025) have designed specialized automated modeling and verification ar-
chitectures for specific domains, such as cryptographic protocols and 5G communication protocols.
Our MODEL-BENCH represents the first LLM-based, general-purpose research effort focused on
generating model specifications directly from source code.

Formal Verification Benchmarks The formal specification benchmarks offer a standard, well-
defined set of problems, providing a shared challenge that helps build a community of practice
among researchers. For formal theorem proving, a recent survey (Li et al., 2024) summarized the
existing datasets. NL-PS (Ferreira & Freitas, 2020) first builds a natural language premise selection
dataset source from ProofWiki. Similarly, NaturalProofs (Welleck et al., 2021) further incorporates
data from Stacks and textbooks, resulting in a dataset with roughly 25k examples. Adapted from it,
NaturalProofs-Gen (Welleck et al., 2022) contains around 14.5k theorems for informal proof gen-
eration. Moreover, FM-bench (Cao et al., 2025b) constructed 18k high-quality instruction-response
pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+).
For model checking, there are few benchmarks and datasets. FM-bench (Cao et al., 2025b) includes
benchmarks in TLA+ that evaluates the LLMs’ ability to turn informal language to formal specifi-
cation. So MODEL-BENCH takes the first step in auto modeling from programs with LLMs.

3 BENCHMARK CONSTRUCTION

3.1 DATA PROCESSING

The workflow of data processing for MODEL-BENCH is illustrated in Figure 1.

Data Sources MODEL-BENCH originates from three Python benchmarks for LLM evaluation: Hu-
manEval, MBPP and LiveCodeBench. We select them because they are the most widely known and
commonly used function-level benchmarks. All of them provide problem-wise testcases, allowing
MODEL-BENCH to validate the correctness of the generated TLA+ models.

Fetching and Normalization The workflow begins with the data collection, where we download
all three raw datasets from Hugging Face(HumanEval, MBPP, LiveCodeBench) (hug, 2016). The
code solutions in Python and the corresponding test cases are extracted from the raw datasets. In
order to standardize our benchmark and ensure consistent evaluation, each problem is de-duplicated,
normalized and combined into an isolated Python file with a function and test assertions.
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Fetch raw data from Hugging Face Normalize

Prompt

Solution

Tests

Remove Invalid libraries

Execute

Prompt derivation

The format of the raw data varies across benchmarks

Rewrite language features

gpt-4o

Any instance of failed rewriting will be discarded

Figure 1: Overview of Data Processing

Simplification and rewrite Our focus is on how LLMs abstract and model the core program logic
rather than translating every line of code with complex high-level syntax. However, Python is a pro-
gramming language equipped with rich built-in libraries and modern language features that cannot
be easily expressed in modeling languages like TLA+. For built-in libraries, we eliminate all Python
code that imports libraries other than typing and math. Having LLMs continuously generate
code for all complex dependencies and their nested dependencies would deviate from our research
focus. We retain typing because its usage does not affect the code logic in any way and these
dependencies can be completely ignored during modeling. We also keep math since it contains
convenient mathematical functions that are typically simple and commonly used.

For language features, we identify those that require treatment: multiple function declarations, recur-
sion, list comprehension, slice operations, classes, lambda expressions, and generators. Instead of
directly discarding these programs, we perform preprocessing and instructing LLMs to equivalently
rewrite all programs with these features using the prompt shown in Figure 12. Only after multiple
rewriting attempts were problems that still fail to run or meet the requirements discarded. Finally, we
exclude Python problems involving variables with complex types beyond None, Number, String,
and their derived List, Tuple, Dict and Iter, as these types are difficult to represent in TLA+.
Our statistics show that this filtering only eliminates a negligible portion of Python problems. Sub-
sequently, the Python problem files undergo execution to verify their functionality and accuracy,
with all problematic files that fail this verification process being eliminated. The code must also be
acceptable and processable by our code transformer.

Prompt derivation For each filtered Python code, we derive three variants of the prompts from the
same template shown in Figure 15: original code supplemented with two examples, original code
without examples, and transformed code (Section 3.2) with two examples. The prompt template
contains fixed domain knowledge of TLA+ and instructions of common mistakes (Lu et al., 2024).
The examples are TLA+ models manually crafted from Python programs, designed to provide max-
imum reference value for LLMs.

3.2 CODE TRANSFORMATION

One significant distinction between Python (or other modern high-level programming languages)
and TLA+ lies in their fundamental execution models. TLA+ models are essentially state machines
that explicitly describe all possible program behaviors as a set of flat, discrete events (actions), rep-
resenting program execution as a sequence of state transitions triggered by these actions. Previous
research has indicated that LLMs excel more at imitation and pattern recognition rather than com-
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def sum_even(arr): 
    n = len(arr)            
    i = 0                   
    s = 0                   
    while i < n:            
        if arr[i] % 2 == 0: 
            s += arr[i]     
        i += 1              
    return s               

def sum_even(arr): 
    n: any 
    i: any 
    s: any 
    ret: any 
    pc = 0 
    while True: 
        if pc == 0 and True: 
            pc = 2 
            n = len(arr)                          
            i = 0                                 
            s = 0                                 
            arr, ret = arr, ret 
        if pc == 2 and True: 
            pc = 3 
            arr, i, n, ret, s = arr, i, n, ret, s 
        if pc == 3 and i < n:                     
            pc = 5 
            arr, i, n, ret, s = arr, i, n, ret, s 
        if pc == 3 and not i < n:                 
            pc = 4 
            ret = s                               
            return                                
        if pc == 4 and True: 
            pc = 1 
            arr, i, n, ret, s = arr, i, n, ret, s 
        if pc == 5 and not arr[i] % 2 == 0:       
            pc = 6 
            i += 1                                
            arr, n, ret, s = arr, n, ret, s 
        if pc == 5 and arr[i] % 2 == 0:           
            pc = 7 
            s += arr[i]                           
            arr, i, n, ret = arr, i, n, ret 
        if pc == 7 and True: 
            pc = 6 
            i += 1                                
            arr, n, ret, s = arr, n, ret, s 
        if pc == 6 and True: 
            pc = 3 
            arr, i, n, ret, s = arr, i, n, ret, s 

Entry

n = len(arr)
i = 0
s = 0

Exit

While test

return s

Not(i < n) i < n

i += 1

Not(arr[i] % 2 == 0) s += arr[i]

arr[i] % 2 == 0

Input Python Code

Control-flow Graph Transformed Code

Figure 2: Overview of Code Transformation

Table 1: Data Statistics of MODEL-BENCH

Source Origin Libraries Language Features Types Execution
HumanEval 164 156 139 122 105
MBPP 427 356 334 309 262
LiveCodeBench 92 73 55 48 33
Total 683 595(-12.9%) 528 (-11.2%) 479 (-9.2%) 400 (-16.5%)

plex reasoning. To investigate the effectiveness of this approach, we lower Python programs into a
representation more closely aligned with TLA+ models.

The overview of our code transformation is shown in Figure 2. It starts with converting Python pro-
grams into control-flow graphs(CFG), where node represent basic blocks, and edges denote either
conditional or unconditional jumps between blocks. Each basic block contains a sequence of consec-
utively executed instructions, which naturally corresponds to actions in TLA+ specifications. This
structural similarity enables us to bridge the gap between the two representations while preserving
the behavior of the original program.

The transformation process involves several key steps: (1) CFG construction. We construct a CFG
from the Python program’s abstract syntax tree. Control flow statements (if/else, while/for,
break/continue) are identified to partition the code into basic blocks, while recording transition
conditions between blocks. Then we assign unique numerical identifiers to each node in the CFG.
(2) Code generation. We generate the transformed code following a state machine pattern. All
variables are declared at the beginning, followed by introducing a pc variable to track the current
state. The main structure is a while loop, containing if statements for each node, controlled by
pc and transition conditions. (3) Finally, we also lower Python strings to number arrays based on
characters’ ASCII values because the strings in TLA+ are immutable.

3.3 DATA STATISTICS

The data statistics of MODEL-BENCH are shown in Table 1. In particular, it presents a detailed
breakdown of the number of reserved problems in each stage of data processing. Our filtering pro-
cess resulted in the elimination of approximately 41.4% of the initial dataset, comprising 26.2% from
HumanEval, 65.5% from MBPP, and 8.3% from LiveCodeBench. The sequential filtering stages ex-
hibited rates of 12.9%, 11.2%, 9.2%, and 16.5% respectively, representing reasonable attrition levels
for maintaining data quality.
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4 EXPERIMENT DESIGN

We instruct LLMs to model the program across three prompt settings, conducting three sampling
trials for each. In these trials, LLMs self-correct via error feedback and iterative multi-turn chats.
We also perform post-processing on the models generated by LLMs (Section A.1). The processed
models are evaluated using TLC (Yu et al., 1999) and two metrics (Section 4.1.1).

4.1 EVALUATION DESIGN

Evaluation Preparation. We employ GPT-4o to generate a model for each Python program.
Through manual verification and refinement, we obtain oracle models. These models serve as the
ground truth for evaluating the similarity (defined below) of models generated by LLMs.

4.1.1 EVALUATION METRICS

Runnable@k: derived from Pass@k (Chen et al., 2021), a popular metric in LLM evaluation:

Runnable@k = E

[
1−

(
n− c

k

)
/

(
n

k

)]
(1)

Here, we define it as the proportion of models that TLC checks without failures at least once within
k generated models. For each problem, n solutions are sampled from an LLM, and c of n solutions
are correct. Considering the time and cost, we set n to 3 and k to 1, 2, 3 for each model sampling.

Similarity: Previous research has demonstrated that LLMs may not strictly adhere to prompts (Liu
et al., 2023). To verify whether the LLM-generated models align with the original programs rather
than being complete rewrites, we introduce a similarity metric. This metric measures the proportion
of identical states between two state transition sequences, formally defined as:

Similarity(Mo,Mg) =
|{s|s ∈ States(Mo) ∩ States(Mg)}|

|States(Mo)|
(2)

where Mo denotes oracle models, Mg denotes LLMs-generated models, and States(P ) denotes
the set of all states observed during the execution of model M with TKC, formally defined as the
union of all states at each time step t:

States(M) =
⋃
t

State(M, t) (3)

Each state at time t is defined as the set of variable-value pairs:

State(M, t) = {(v, val(v, t)) | v ∈ V ars(M)} (4)

Here, V ars(M) represents the set of variables in model M , val(v, t) denotes the value of variable
v at step t, and States(M) is the set of all states in models M ’s execution trace.

Two states State1 and State2 are considered sufficiently similar, if and only if the proportion of
variable values in Stateg that also exist in Stateo is greater than or equal to a threshold θ ∈ [0, 1].
Formally,

|{ (vg, valg(vg, tg)) ∈ Stateg | ∃(vo, valo(vo, to)) ∈ Stateo, valg(vg, tg) = valo(vo, to) }|
|Stateg|

≥ θ (5)

We set the threshold θ to 1.0 to ensure that all variable-value pairs in the state of the generate
model must be present in the state of the oracle model, i.e., no discrepancies or noise. Note that
higher Runnable@k doesn’t mean higher similarity. This metric represents a compromise, given the
challenge of fully assessing whether the execution process and semantics of the program and the
model are entirely aligned.

5 EVALUATION

We use nucleus sampling (Holtzman et al., 2019) in line with recent works (Cao et al., 2024b;
Du et al., 2023; Cao et al., 2024a; Yu et al., 2024). All solution samples are randomly generated

5
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Table 2: Overall Results on MODEL-BENCH

Model Runnable@1 (%) Runnable@2 (%) Runnable@3 (%) Avg Similarity (%) Avg Fixes
Original Code / Few-shot

DeepSeek-V3 51.75 61.33 66.25 49.55 0.78
DeepSeek-V2.5 44.33 53.50 57.75 46.17 0.78
Qwen3-32B 39.50 53.08 60.75 52.03 1.07
Qwen3-14B 29.75 41.50 49.25 43.60 1.23
DeepSeek-R1-Distill-Qwen-32B 21.00 30.42 36.50 30.15 1.38
Qwen3-8B 16.00 24.75 31.00 22.84 1.90
Gemma-3-12b-it 7.92 12.17 15.00 21.14 1.40
Llama-3.1-8B-Instruct 4.33 7.33 10.00 5.39 2.87

Average 26.82 35.51 40.81 33.86 1.43
Original Code / Zero-shot

DeepSeek-V3 37.92 52.92 61.00 4.38 2.29
DeepSeek-V2.5 12.75 21.17 27.25 3.08 2.68
Qwen3-32B 18.08 29.75 37.75 11.90 2.49
Qwen3-14B 1.17 1.33 1.50 0.00 4.71
DeepSeek-R1-Distill-Qwen-32B 1.08 1.17 1.25 0.00 5.00
Qwen3-8B 1.00 1.00 1.00 0.00 5.00
Gemma-3-12b-it 1.00 1.00 1.00 0.00 5.00
Llama-3.1-8B-Instruct 1.00 1.00 1.00 0.00 5.00

Average 9.25 13.67 16.47 2.42 4.02
Transformed Code / Few-shot

DeepSeek-V3 43.50 51.75 56.00 68.54 0.71
DeepSeek-V2.5 39.92 48.17 52.25 61.55 0.84
Qwen3-32B 33.42 45.42 53.25 62.64 0.68
Qwen3-14B 26.08 37.08 44.25 57.67 1.48
DeepSeek-R1-Distill-Qwen-32B 24.00 35.08 41.25 52.95 1.69
Qwen3-8B 16.83 25.42 31.50 50.19 1.75
Gemma-3-12b-it 7.42 10.67 12.50 39.31 2.00
Llama-3.1-8B-Instruct 5.50 8.83 11.75 40.71 2.47

Average 24.58 32.80 37.84 54.20 1.45

with a temperature of 0.7 (Wen et al., 2024), which is the default temperature of ChatGPT. Due to
computational constraints, only the Gemma and Llama models are run on our local server equipped
with two NVIDIA RTX 6000 Ada GPUs (each with 48GB of graphic memory). The remaining
models are executed through the SiliconFlow API sil (2023).

The research questions (RQs) were designed as follows:

• RQ1. Overall Performance. We first show the overall performance of the studied LLMs on
MODEL-BENCH. We use three sets of prompts to generate modelings for all Python code. The
comprehensive results are displayed with multiple metrics.

• RQ2. Effectiveness of Code Transformation. The transformed code (Section 3.2) more closely
resembles the form of a TLA+ model. We thus explore how this approach affects different LLMs.

• RQ3. Impact of Source Code Syntactic Complexity. Research indicated that the accuracy of
code generated by LLMs is negatively correlated with code complexity (Sepidband et al., 2025).
So we aim to explore the relationship between the performance of LLMs in automated modeling
and the complexity of the code involved.

• RQ4. Bad Case Analysis. We analyze bad cases with syntactic or semantic errors due to various
issues and identify the limitations of LLMs in TLA+ automated modelings.

5.1 RQ1: OVERALL PERFORMANCE

The overall performance of the studied LLMs on MODEL-BENCH is shown in Table 2, which lists
various metrics for TLA+ models generated by each studied model under three prompt settings
(Section 3.1). Metrics include TLC Runnable@k, average state similarity between the TLA+ models
and oracle models, as well as the average number of fixes under Runnable@1 (Section 4.1.1). To
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better visualize the results, we use darker background colors to indicate larger values. Only models
that pass TLC verification have the opportunity to calculate state similarity with oracle models.

Generally, across all prompt settings, DeepSeek-V3 demonstrates the best performance, followed
by DeepSeek-V2.5 and Qwen3-32B, achieving Runnable@1 of 51.75%, 44.33%, and 39.50%, re-
spectively. These three models also have the top-3 highest average similarities and lowest average
fix counts, indicating they can generate models that pass verification within fewer iterations.

Finding 1: The Top-3 performing LLMs are DeepSeek-V3, DeepSeek-V2.5, and Qwen3-32B
among the studied LLMs, achieving Runnable@1 rates of 51.75%, 44.33%, and 39.50%, respec-
tively. Their performance rankings remain consistent across all three prompt settings.

Comparing few-shot and zero-shot results, all models demonstrate significantly better performance
with few-shot prompt than with zero-shot, averagely improving 17.57% (26.82% - 9.25%) in
Runnable@1 and 31.44%(33.86% - 2.42%) in similarity. Particularly, DeepSeek-V2.5 showed a
31.58% improvement (44.33% - 12.75%) in Runnable@1. With few-shot prompt, the three lowest-
ranking models achieve a breakthrough from near 0 Runnable@1, with Llama-3.1-8B-Instruct im-
proving to 4.33%, Gemma-3-12b-it reaching 7.92%, and Qwen3-8B achieving 16.00%. For higher-
ranked models, few-shot prompt also reduces the average number of fix attempts and increases the
average state similarity. For example, DeepSeek-V2.5’s average fix attempts decrease by 1.90 (from
2.68 to 0.78), while its average state similarity improves by 46.47% (from 3.08% to 49.55%).

Finding 2: The enhancement of few-shot learning for automatic modeling tasks is substantial.
Notably, with zero-shot, models such as Gemma-3-12b-it, Llama-3.1-8B-Instruct, DeepSeek-R1-
Distill-Qwen-32B, Qwen3-14B, and Qwen3-8B all demonstrate a nearly 0 Runnable@1 rate.

In addition, by comparing the Runnable@1 rates of all models, we observe that the automatic mod-
eling task from Python to TLA+ exhibits high discriminability. This finding suggests that when ap-
plying this technique in actual industrial production, employing more powerful models often yields
significant improvements.

5.2 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

In RQ2, we primarily compare the results of original Python code and transformed Python code in
a few-shot setting. By comparing the data in Table 2, we observe that for all models, code trans-
formation leads to a decrease in Runnable@k, but significantly improves similarity. For instance,
in the case of the DeepSeek-V3 model, similarity increases by 18.99% (68.54% - 49.55%), while
Runnable@3 decreases by only 10.25% (66.25% - 56.00%). This indicates that code transformation
indeed provides LLMs with references that are easier to follow and translate. We hypothesize that
the decline in Runnable@k can be attributed to two main factors: (1) It reduces instances where
LLMs bypass TLC by completely restructuring the program. (2) Code transformation increases
code length, making the “lost in the middle” (Liu et al., 2023) phenomenon more likely to occur.

Figure 3: Venn Diagram of Ensemble based on Runnable@3

Figure 3 illustrates the complementary effects of the two prompt settings based on Runnable@3.
More results are demonstrated in Figure 7. Assembling the results from both prompt settings proves

7
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to be effective, e.g., for Qwen3-32B, prompting with transformed code yields an additional 13.75%
runnable TLA+ models from Python programs, compared that with the original code alone.

Finding 3: Code transformation significantly improves similarity while only leads to a small
decrease in Runnable@k. It can still serve as a complementary technique for all models when
combined with original code prompting, increasing the total number of runnable models.

5.3 RQ3: IMPACT OF SOURCE CODE SYNTACTIC COMPLEXITY

Figure 4: Relationship between Runnable@1 and Code Complexity

This section aims to explore the relationship between the performance of LLMs in automated mod-
eling and the complexity of the code involved. We calculate cyclomatic complexity with the Radon
library which is also used by previous work (Sepidband et al., 2025), max loop depth, and the num-
ber of variables for each original Python code in advance. We group all problems according to these
metrics separately and calculate the proportion of samples in each group that successfully passed the
TLC check based on the Runnable@1 results across all models. Figure 4 illustrates the relationship
between these complexity metrics and modeling success rates.

We also collect difficulty ratings for Python programs from LiveCodeBench, where these ratings
correspond to the difficulty of the problems rather than the complexity of the code. Figure 4 shows
the Runnable@k of all models across the three original problem difficulty distributions.

Finding 4: Python programs with higher syntactic complexity, i.e., those exhibiting higher cy-
clomatic complexity, larger loop depth, and a greater number of variables, demonstrate lower
Runnable@k as well as similarity when automatically translated into TLA+ models using LLMs.

5.4 RQ4: BAD CASE ANALYSIS

This section discusses cases that cannot pass TLC verification, including scenarios where the gen-
erated TLA+ model contains compilation errors, runtime errors, or fails to satisfy assertion proper-
ties. Since TLC categorizes errors in a coarse-grained manner via exit codes, we can only roughly
determine the cause through manual judgment. These kind of failures also demonstrates that the
difference between Python and TLA+ makes automated modeling and code translation hard. More
bad cases are demonstrated in Section A.3.2

5.4.1 COMPILATION ERROR

Compilation errors indicate that, as a result of insufficient training data or inadequate contextual
information, LLMs fail to produce TLA+ code that is syntactically or semantically correct.

Compilation Error 1: Unknown Operator. Figure 5 shows an error caused by the absence of
sort function, which is a built-in function existing in Python. Although we can make LLMs
aware of this issue through multiple rounds of chat, such iterative interactions may also continuously
introduce new unknown operators. The differences in built-in libraries between the two languages
further increase the difficulty of automatic modeling.

5.4.2 RUNTIME ERROR

Runtime errors are another type of result stemming from LLMs’ lack of attention to differences
between languages. Unlike compilation errors, correcting such errors requires LLMs to have a
deeper understanding of language specifications.

8
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def sort_third(l): 
    """This function takes a list l and returns a list l' such that 
    l' is identical to l in the indices that are not divisible by three, 
    while its values at the indices that are divisible by three are equal 
    to the values of the corresponding indices of l, but sorted. 
    >>> sort_third([1, 2, 3]) 
    [1, 2, 3] 
\ 
    result = [] 
    third_indices = [] 
     
    for i in range(len(l)): 
        if i % 3 == 0: 
            third_indices.append(l[i]) 
            result.append(None)  # Placeholder for sorting later 
        else: 
            result.append(l[i]) 
     
    third_indices.sort()                                                   
     
    third_index = 0 
    for i in range(len(result)): 
        if result[i] is None: 
            result[i] = third_indices[third_index] 
            third_index += 1 
     
    return result

--------------------------- MODULE SortThird ---------------------------- 
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC 
VARIABLES l, result, third_indices, i, third_index, ret, initl, pc 
vars == <<l, result, third_indices, i, third_index, ret, initl, pc>> 

Init == \* ... 

SortThird == 
  \* ... 
  \/  /\ pc = 4 
      /\ pc' = 9 
      /\ third_indices' = Sort(third_indices)                                 
      /\ i' = 0 
      /\ third_index' = 0 
      /\ result' = result 
      /\ initl' = initl 
      /\ ret' = ret 
      /\ l' = l 

Next == SortThird 

Spec == 
  /\ Init 
  /\ [][Next]_vars 

Assertion == \* ... 
=============================================================================

Figure 5: Compilation Error 1. Unknown Operator

Runtime Error 1: One-based Array Index. Figure 6 shows the error of array index out of bounds.
In the Python code, initializing i as 1 leads to the first iteration accessing dp[0]. However, in
TLA+, array indices start from 1, which means that dp[0] is an invalid access. One-based ar-
rays are uncommon in most programming languages. Although we explicitly mentioned this in the
prompt, LLMs still get lost in the middle of long contexts.

def lengthOfLongestSubsequence(nums, sum): 
    n = len(nums) 
    dp = [] 
    for i in range(n + 1): 
        dp.append([-1] * (sum + 1)) 
     
    for i in range(n + 1): 
        dp[i][0] = 0 
     
    for i in range(1, n + 1):                                              
        for j in range(1, sum + 1): 
            dp[i][j] = dp[i - 1][j]                                        
            if j >= nums[i - 1] and dp[i - 1][j - nums[i - 1]] != -1: 
                dp[i][j] = max(1 + dp[i - 1][j - nums[i - 1]], dp[i][j]) 
     
    return dp[n][sum] 

assert lengthOfLongestSubsequence([1, 1, 5, 4, 5], 3) == -1

---------------- MODULE LengthOfLongestSubsequence ------------------ 
\* ... 

Init == \* ... 

Next == 
  \/ /\ pc = 6 
     /\ i >= n + 1 
     /\ pc' = 7 
     /\ i' = 1                                                                                                      
  \* ... 
  \/ /\ pc = 12 
     /\ j < sum + 1 
     /\ pc' = 14 
     /\ j' = j + 1 
     /\ dp' = [dp EXCEPT ![i] = [dp[i] EXCEPT ![j+1] = dp[i-1][j+1]]]         
     /\ UNCHANGED <<n, initsum, i, sum, nums, initnums, ret>> 
=============================================================================

Figure 6: Runtime Error 1. One-based Array Index

5.4.3 ASSERTION ERROR

Assertion errors occur not because LLMs omit the logic in the Python code. This stands in contrast
to the two types of errors discussed earlier, as the essence of these errors is rooted in this excessive
fidelity to the source code.

Assertion Error 1: Omission of Function-call. Figure 11 demonstrates the reason behind the
assertion error. The LLMs fail to include the .lower() function-call in Python, which leads to the
test cases not passing.

6 CONCLUSION

In this paper, we introduce MODEL-BENCH, a benchmark and an accompanying pipeline for eval-
uating and improving LLMs’ program modeling capability by modeling Python programs into
verification-ready model checking specifications checkable by its accompanying model checker.
MODEL-BENCH comprises 400 Python programs derived from three well-known benchmarks (Hu-
manEval, MBPP, and LiveCodeBench). Our extensive experiments reveal significant limitations in
LLMs’ program modeling and further provide inspiring directions. We hope MODEL-BENCH could
drive progress in automated formal verification, especially for model checking, and encourage the
development of more sophisticated reasoning capabilities in future LLMs.
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A APPENDIX

A.1 POST PROCESSING

Given the limited availability of training data for TLA+ compared to mainstream programming lan-
guages, we observe that LLMs tend to make trivial but patterned errors (see below). To ensure
more meaningful observations, we conduct post-processing for every generated output. In particu-
lar, the post-processing consists of three steps: (1) Import all built-in modules. We automatically
incorporate all built-in TLA+ modules through the EXTENDS keyword, ensuring access to funda-
mental operators and definitions required for formal specification. (2) Define null model values. To
achieve better correspondence with Python, we introduce None and Null as model values in the
specifications. (3) Complete unchanged variables. We implement comprehensive handling of the
UNCHANGED variables to ensure that each action’s resulting state is complete.

These post-processing steps effectively eliminate common errors that would otherwise impede the
validity of our experimental results. This approach allows us to focus on evaluating the substantive
aspects of the LLMs’ ability to generate formal specifications.
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Table 3: Studied Large Language Models

Model Family Model Size Time
DeepSeek DeepSeek-V3(Liu et al., 2024b) 685B Dec, 2024
DeepSeek DeepSeek-V2.5(Liu et al., 2024a) 236B May, 2024
Qwen Qwen3-8B(Yang et al., 2025) 8.19B May, 2025
Qwen Qwen3-14B(Yang et al., 2025) 14.8B May, 2025
Qwen Qwen3-32B(Yang et al., 2025) 32.8B May, 2025
Qwen DeepSeek-R1-Distill-Qwen-32B 32.8B July, 2024
Gemma Gemma-3-12B-it(Team et al., 2025) 12.2B March, 2025
Llama Llama-3.1-8B-Instruct(Dubey et al., 2024) 8.03B July, 2024

A.2 STUDIED LARGE LANGUAGE MODELS

The studied LLMs are listed in Table 3. We focus on recent LLMs released after 2024. We primar-
ily choose the DeepSeek and Qwen model families, which are the strongest open-source models ac-
cording to public leaderboards. We specifically include Qwen3-8B, Qwen3-14B, and Qwen3-32B to
evaluate how model performance scales with different parameter count within the same family. We
incorporate Gemma and Llama to ensure model diversity. Note that we deliberately exclude GPT-
series models from OpenAI to ensure fairness, as our later comparison between LLM-generated
TLA+ models and oracle models relies on human-corrected outputs based on GPT’s generations.

A.3 EVALUATION SUPPLEMENT

A.3.1 RQ2: EFFECTIVENESS OF CODE TRANSFORMATION

Figure 7: Venn Diagram of Ensemble based on Runnable@3

A.3.2 RQ4: BAD CASE ANALYSIS

Compilation Error 2: Unexpected Token. Figure 8 shows an error caused by invalid string con-
catenation operator. Python uses + to concatenate two string while TLA+ should use \o. LLMs lack
this knowledge, so it generate unexpected tokens as a result.
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def finalString(s: str) -> str: 
    while "i" in s: 
        index = s.index("i") 
         
        first = "" 
        for j in range(index - 1, -1, -1): 
            first += s[j] 
         
        second = "" 
        for j in range(index + 1, len(s)): 
            second += s[j] 
         
        s = first + second                                                 
    return s 

assert finalString('poiinter') == 'ponter'

--------------------------- MODULE FinalString ---------------------------- 
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC 
VARIABLES s, init_s, ret, pc, first, index, j, second 
vars == <<s, init_s, ret, pc, first, index, j, second>> 

Init == \* ... 

FinalString == 
    \* ... 
    \/ /\ pc = 9 
       /\ j >= LenS 
       /\ pc' = 10 
       /\ s' = first @ second                                                 
       /\ UNCHANGED <<first, index, j, init_s, second>> 
\* ... 
=============================================================================

Figure 8: Compilation Error 2. Unexpected Token

Runtime Error 2: Indexing String. Figure 9 illustrates the error that occurs when attempting
to index the string ALPHABET in TLA+. While in Python, programmers can access individual
characters in a string using array-like indexing, this operation is invalid in TLA+, causing runtime
errors.

def encrypt(s): 
    """Create a function encrypt that takes a string as an argument and 
    returns a string encrypted with the alphabet being rotated.  
    The alphabet should be rotated in a manner such that the letters  
    shift down by two multiplied to two places. 
    For example: 
    encrypt('hi') returns 'lm' 
    encrypt('asdfghjkl') returns 'ewhjklnop' 
    encrypt('gf') returns 'kj' 
    encrypt('et') returns 'ix' 
    """ 
    d = 'abcdefghijklmnopqrstuvwxyz' 
    out = '' 
    for c in s: 
        if c in d: 
            out += d[(d.index(c)+2*2) % 26]                                
        else: 
            out += c 
    return out

--------------------------- MODULE Encrypt ---------------------------- 
EXTENDS Naturals, Integers, Sequences, TLC 
CONSTANTS MaxLen 
VARIABLES s, i, out, pc, ret 
vars == <<s, i, out, pc, ret>> 

ALPHABET == "abcdefghijklmnopqrstuvwxyz" 
Init == 
  /\ s = << "h", "i" >> 
  /\ i = 1 
  /\ out = <<>> 
  /\ pc = 0 
  /\ ret = <<>> 

IndexInAlphabet(c) == CHOOSE pos \in 1..LenAlphabet : ALPHABET[pos] = c        

\* … 

=============================================================================

Figure 9: Runtime Error 2. Indexing String

Assertion Error 2: Constant Loop Count. Figure 10 illustrates a case where LLMs directly use
the constant MaxLen, which originally intends to constrain the initial variable search space, as
the maximum loop count for traversing an array under arbitrary inputs. The correct way is to use
Len(arr).

def can_arrange(arr): 
    """Create a function which returns the largest index of an element 
which 
    is not greater than or equal to the element immediately preceding it. 
If 
    no such element exists then return -1. The given array will not 
contain 
    duplicate values. 

    Examples: 
    can_arrange([1,2,4,3,5]) = 3 
    can_arrange([1,2,3]) = -1 
    “"" 
    ind=-1 
    i=1 
    while i<len(arr):                                                      
      if arr[i]<arr[i-1]: 
        ind=i 
      i+=1 
    return ind

--------------------------- MODULE CanArrange ---------------------------- 
EXTENDS Naturals, Integers, Reals, Sequences, FiniteSets, TLC 
CONSTANTS MaxLen, MaxValue 

\* ... 

CanArrange == 
  \*  ... 
  \/ (/\ pc = 3 
      /\ i <= MaxLen                                                          
      /\ pc' = 5 
      /\ i' = i 
      /\ UNCHANGED <<arr, initarr, ret, ind>>) 

Next == CanArrange 

Spec == 
  /\ Init 
  /\ [][Next]_vars 
=============================================================================

Figure 10: Assertion Error 2. Constant Loop Count

A.4 PROMPT DESIGN
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def check_if_last_char_is_a_letter(txt): 
    ''' 
    Create a function that returns True if the last character 
    of a given string is an alphabetical character and is not 
    a part of a word, and False otherwise. 
    Note: "word" is a group of characters separated by space. 

    Examples: 
    check_if_last_char_is_a_letter("apple pie") ➞ False 
    check_if_last_char_is_a_letter("apple pi e") ➞ True 
    check_if_last_char_is_a_letter("apple pi e ") ➞ False 
    check_if_last_char_is_a_letter("") ➞ False  
    ''' 
  
    check = txt.split(' ')[-1] 
    return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122)   
else False

----------------------- MODULE CheckIfLastCharIsALetter --------------------- 
\* ... 

Init == \* ... 

CheckIfLastCharIsALetter == 
  LET IsLetter(c) == /\ Len(c) = 1 /\ 97 <= c[1] /\ c[1] <= 122               
  IN 
  /\ \/ /\ pc = 0 
        /\ check' = check[Len(check)] 
        /\ ret' = IsLetter(check') 
        /\ pc' = 1 
        /\ UNCHANGED <<inittxt, txt>> 

\* ... 
=============================================================================

Figure 11: Assertion Error 1. Omission of Function-call

Prompt for rewriting code of problems

# System Prompt
You are a Python expert. Please refactor the user’s Python code into equivalent code follow-
ing these rules:
1. Avoid using list comprehensions like [x*2 for x in range(5)]. Use traditional for loops
instead.
2. Avoid using slicing operations like array[1:4]. Use loops to access elements individually.
3. Avoid using classes with self references like “class Calculator: def add(self, x, y)”. Use
standalone functions.
4. Avoid using lambda functions like “lambda x: x + 1”. Use regular named functions.
5. Avoid using generator expressions like “(x for x in range(5))”. Use regular loops and lists.
6. Write single, non-recursive functions instead of recursive ones like “def factorial(n):
return n * factorial(n-1)”.
Please output the refactored code directly without any additional explanations.
# User Prompt
- Original Python code goes here -

Figure 12: Prompt for Rewriting Code of Problems

Prompt for fix

The TLA+ specification has the following error:
- error message -
Please fix the specification while keeping the same logic.

Figure 13: Prompt for Fixing

Config template for running TLC

CONSTANTS
- constants -
NONE = NONE
NULL = NULL

SPECIFICATION
Spec

INVARIANT
Assertion

CHECK DEADLOCK FALSE

Figure 14: Config Template for Running TLC
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Prompt for generating TLA+ models

# Role description
As an expert in TLA+, you are good at understanding and writing TLA+.
TLA+ is a formal specification language used for modeling and verifying concurrent and
distributed systems.

# Domain knowledge
1. The logical operators supported by TLA+ include:
/ (and), \/ (or), ∼ (not), => (Implication), <=>
(Bidirectional implication), TRUE, FALSE, \A (Universal
Quantification), \E (Existential Quantification)

2. The set operators supported by TLA+ include:
= (Equality), # (not equal), \union (Union), \intersect
(Intersection), \in (Membership), \notin (Not in), \subseteq
(Subset Equal), \ (Difference).

3. The temporal operators supported by TLA+ include:
[] x > 0
The above code is an example of [] (Always). It means that at all times, the value of
variable x is greater than 0.

<> x = 0
The above code is an example of <> (Eventually). It means that at some point in time, the
value of variable x becomes 0.

4. Built-in keywords and operators in TLA+ include:
MODULE, EXTENDS, CONSTANTS, INSTANCE, VARIABLE, ASSUME,
PROVE, INIT, NEXT, ACTION, SPECIFICATION, IF, ELSE, WITH,
CASE, THEN, LET, IN, CHOOSE, ENABLED, UNCHANGED, DOMAIN.

Based on the information and python code with assertions, give a complete TLA+ model
code in only one single code block without explanations.
The model should initialize a set of all possible states constrained by max or min
CONSTANTs instead of fixed inputs.
1. Use LET keyword if there’s any temporary variable.
2. Each step should define all variables, even though keep them unchange.
3. Since the start index in TLA+ is 1 instead of 0, you may change the corresponding
initialization, checks, and assignment.
4. Don’t declare parameters with same names as variables or constants.
5. Define arrays like arr \in [1..MaxLen -> 0..MaxValue].
If there are assertions in the code, you should also generate a corresponding Assertion
== action.

For example:
- example1 -
- example2 -

Module Name: - module name -
- code -

Figure 15: Prompt for Generating TLA+ Models
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