
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT HEURISTICS GENERATION FOR SOLVING
COMBINATORIAL OPTIMIZATION PROBLEMS USING
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies exploited Large Language Models (LLMs) to autonomously gen-
erate heuristics for solving Combinatorial Optimization Problems (COPs), by
prompting LLMs to first provide search directions and then derive heuristics ac-
cordingly. However, the absence of task-specific knowledge in prompts often
leads LLMs to provide unspecific search directions, obstructing the derivation of
well-performing heuristics. Moreover, evaluating the derived heuristics remains
resource-intensive, especially for those semantically equivalent ones, often requir-
ing unnecessary resource expenditure. To enable LLMs to provide specific search
directions, we propose the Hercules algorithm, which leverages our designed Core
Abstraction Prompting (CAP) method to abstract the core components from elite
heuristics and incorporate them as prior knowledge in prompts. We theoretically
prove the effectiveness of CAP in reducing unspecificity and provide empirical re-
sults in this work. To reduce the required computing resources for evaluating the
derived heuristics, we propose few-shot Performance Prediction Prompting (PPP),
a first-of-its-kind method for the Heuristic Generation (HG) task. PPP leverages
LLMs to predict the fitness values of newly derived heuristics by analyzing their
semantic similarity to previously evaluated ones. We further develop two tailored
mechanisms for PPP to enhance predictive accuracy and determine unreliable pre-
dictions, respectively. The use of PPP makes Hercules more resource-efficient
and we name this variant Hercules-P. Extensive experiments across various HG
tasks, COPs, and LLMs demonstrate that Hercules outperforms the state-of-the-
art LLM-based HG algorithms, while Hercules-P excels at minimizing computing
resources. In addition, we illustrate the effectiveness of CAP, PPP, and the other
proposed mechanisms by conducting relevant ablation studies.

1 INTRODUCTION

Heuristic algorithms have long been a preferred approach for solving Combinatorial Optimization
Problems (COPs) (Rego et al., 2011). To automate the derivation of heuristics for a given COP,
Heuristic Generation (HG) methods have attracted significant attention (Burke et al., 2013). Early
HG methods predominantly employ Evolutionary Computation (EC) algorithms to derive heuris-
tics. However, these methods focus on the exploration and exploitation in the micro search space
composed of the predefined modules, often resulting in limited performance (Ye et al., 2024a).

Recently, the emergence of Large Language Models (LLMs) has facilitated the autonomous deriva-
tion of heuristics, eliminating the need for manually defining the search space (Liu et al., 2023a;
2024a; van Stein & Bäck, 2024). In addition, compared to conventional EC algorithms, LLMs ben-
efit from a broader search space by leveraging their mega-size training corpora, resulting in elevated
performance (Yang et al., 2024; Ma et al., 2024; Liu et al., 2024b). Specifically, these LLM-based
HG methods exploit LLMs to provide search directions, which are then used to derive (novel) off-
spring heuristics (Romera-Paredes et al., 2024). These produced heuristics are subsequently eval-
uated using COP instances to determine their fitness values, with the better-performing heuristics
carried over to the next iteration. For example, Liu et al. (2023a) proposed prompting methods that
emulate crossover and mutation operators as search strategies, thereby implicitly providing search
directions. To let LLMs offer more explicit search directions, Ye et al. (2024a) proposed Reflection

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The [function_name] is a part of [algorithm] for solving [problem]. Summarize the core components of these functions that
potentially influence the performance of the algorithm: [code][code][code][code][code]

Below are two functions. The second version performs better than the first one. [Worse code][Better code]. Below are some core
components of functions.[components]. Reflect on why the second performs better than the first, considering these components.

Core components: 1. Penalty Calculation: The approaches employ varying strategies to calculate penalties or desirability, such as
using ratios of distances (to related edges), normalizing values. 2. …

Normalize penalties relative to overall distance.

(a) Search directions produced using RP
Below are two [function_name] functions for [problem], where the second version performs better than the first one. [Worse
code][Better code]. You respond with some hints for designing better heuristics.

Understand problem specifics, favor shorter paths, avoid zero division, normalize heuristic values, test and iterate.

(a)(b)

(b) Search directions produced using CAP

Figure 1: Illustration of the search directions produced using RP and CAP for the task described
in Section 4.1. When RP prompts LLMs (GPT-4o-mini used in this example) for search directions
directly, the LLMs may respond with unspecific directions (highlighted in blue). Different from RP,
our CAP enhances the quality of the produced search directions by first prompting the LLMs to
abstract the core components as prior knowledge in a zero-shot manner (highlighted in red).

def select_next_node(current_node: int, destination_node: int,
unvisited_nodes: set, distance_matrix: np.ndarray) -> int:

c1, c2, c3, c4 = 0.4, 0.3, 0.2, 0.1
scores = {}
for node in unvisited_nodes:

other_nodes = list(unvisited_nodes - {node})
mean_distance = np.mean(distance_matrix[node, other_nodes])
std_distance = np.std(distance_matrix[node, other_nodes])
destination_distance = distance_matrix[destination_node][node]
lookahead_score = c1 * distance_matrix[current_node][node] –

c2 * mean_distance + c3 * std_distance - c4 * destination_distance
scores[node] = lookahead_score

next_node = min(scores, key=scores.get)
return next_node

def select_next_node(current_node: int, destination_node: int,
unvisited_nodes: set, distance_matrix: np.ndarray) -> int:

c1, c2, c3, c4 = 0.4, 0.3, 0.2, 0.1
scores = {}
for node in unvisited_nodes:

other_nodes = list(unvisited_nodes - {node})
mean_distance = np.mean(distance_matrix[node, other_nodes])
std_distance = np.std(distance_matrix[node, other_nodes])
lookahead_score = c1 * distance_matrix[current_node][node]

- c2 * mean_distance + c3 * std_distance –
c4 * distance_matrix[destination_node][node]

scores[node] = lookahead_score
next_node = min(scores, key=scores.get)
return next_node

(a) (b)

Figure 2: Illustration of two heuristics with identical semantics, produced by LLMs (GPT-3.5-turbo
used in this example) for the task described in Section 4.2. Code snippets with literal equivalence
are highlighted in blue, while those with semantic equivalence are highlighted in pink.

Prompting (RP), which requires LLMs to reflect on the relative performance of the produced heuris-
tics and provide insights as search directions. These directions are then used to derive heuristics
with expected elevated performance in subsequent crossover and mutation promptings.

These existing LLM-based HG methods face two key challenges. Firstly, when prompting LLMs
to provide search directions (e.g., reflections on the relative performance of heuristics), the lack
of task-specific knowledge in prompts often leads to over-generalized, unspecific directions that
hinder the derivation of high-performance heuristics. As illustrated in Figure 1(a), the produced
search directions “Understand problem specifics” and “test and iterate” are vague, over-general,
and lack actionable steps required for heuristic generation. Consequently, they contribute little to
the derivation of high-performance heuristics. In contrast, other elements of the produced search
directions are more specific. For example, “normalize heuristic values” provides an actionable step
that can be directly applied to derive heuristics. Therefore, it is essential to reduce unspecificity
in the produced search directions. Secondly, during the search process, LLM-based HG methods
often derive numerous heuristics, some of which may be semantically or even literally identical, as
illustrated in Figure 2. Reevaluating these heuristics using COP instances (i.e., conventional fitness
evaluation method) not only wastes computing resources but also significantly prolongs the search
process (Chen et al., 2024). In particular, these heuristics often involve numerous linear operations
and conditional branches, which GPUs cannot efficiently accelerate (Wachowiak et al., 2017). In
addition, providing LLMs with all historical heuristics to avoid deriving semantically similar ones is
impractical. This approach may compel LLMs to derive overly random or unviable heuristics, while
significantly increasing the cost of context tokens.

To better address the first challenge, we propose Heuristic Generation Using Large Language
Models (Hercules), which exploits our proprietary, straightforward yet effective Core Abstraction
Prompting (CAP) method to reduce unspecificity in the produced search directions and thus en-
able the derivation of high-performance heuristics. Specifically, CAP directs an LLM to abstract
the core components from the top-k heuristics (i,e., elite heuristics) in the current population and
then provide more specific search directions based on these components (see Section 3.1). Notably,
as illustrated in Figure 1(b), CAP operates in a zero-shot manner, abstracting the core components

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

without providing any examples to guide this abstraction process, which leads to significant savings
in context token costs. To couple with CAP, we introduce a rank-based selection mechanism that
increases the likelihood of selecting high-performance heuristics as parents (used in the following
crossover and mutation promptings), rather than relying on random selection (Ye et al., 2024a).
Meanwhile, by incorporating the concept of information gain, we theoretically prove that CAP can
reduce unspecificity in the produced search directions in Appendix A.

To better address the second challenge, we propose Hercules-P, which integrates CAP with our
novel Performance Prediction Prompting (PPP) method. PPP operates in a few-shot manner by pre-
senting LLMs with a small set of previously evaluated heuristics as examples and prompting LLMs
to predict the fitness values of the newly produced heuristics based on their semantic similarity to
the presented examples (see Section 3.2). Therefore, PPP reduces the number of heuristics that re-
quire evaluation using COP instances. Generally speaking, to enhance the predictive accuracy of
PPP, we can either increase the number of examples or enhance their quality. However, collect-
ing numerous heuristic examples along with their corresponding performance is resource-intensive.
This contradicts to the primary purpose of incorporating PPP, which is to reduce resource expendi-
ture during the search process. Moreover, unlike Neural Architecture Search (NAS), which benefits
from extensive benchmarks (Ying et al., 2019; Qiu et al., 2023), the HG task lacks benchmarks with
pre-evaluated heuristics. Therefore, we opt to provide higher-quality examples through a tailored
example selection mechanism, termed EXEMPLAR, which favors distinct parent heuristics with
superior performance as examples. Meanwhile, to determine unreliable predictions, we develop the
Confidence Stratification (ConS) mechanism that requires the LLM to provide confidence levels for
the predicted fitness values, thereby facilitating the identification of heuristics that need reevalua-
tion. In summary, PPP reduces the resource expenditure in heuristic evaluations while maintaining
population diversity, making it effective for tasks with a border search space. To the best of our
knowledge, our work proposes the first LLM-based performance predictor for the HG task.

To assess the performance of the proposed Hercules and Hercules-P algorithms, we conduct exten-
sive experiments on four HG tasks (see Section 4). The experimental results demonstrate that Her-
cules outperforms the state-of-the-art (SOTA) LLM-based HG algorithms across diverse HG tasks,
COPs, and LLMs, without significantly increasing context or generation token costs. By incorpo-
rating PPP, Hercules-P significantly reduces the overall search time by 7%∼59% when compared to
Hercules, while achieving on-par performance on the gain metric. Finally, ablation studies validate
the effectiveness of the proposed rank-based selection mechanism, EXEMPLAR, and ConS.

The key contributions of this work are as follows.

i) We propose the zero-shot CAP method, which reduces unspecificity in the LLM-produced search
directions, enabling the derivation of high-performance heuristics. We also provide the theoretical
proof of CAP’s effectiveness in reducing unspecificity by utilizing the concept of information gain.

ii) We propose the few-shot PPP method, a first-of-its-kind LLM-based performance predictor
specifically designed for HG tasks. PPP predicts the performance of newly produced heuristics by
analyzing their semantic similarity to previously evaluated ones. Moreover, we develop two novel
mechanisms: EXEMPLAR and ConS, which significantly enhance the overall performance of PPP.

iii) The experimental results demonstrate that our proposed Hercules achieves SOTA performance
across diverse HG tasks, COPs, and LLMs, while Hercules-P excels at reducing resource expendi-
ture. Finally, ablation study results validate the effectiveness of all proposed methods.

2 RELATED WORK

In this section, we review the relevant literature.

2.1 LLM-BASED HEURISTIC GENERATION ALGORITHMS

Conventional EC-based HG algorithms search for the optimal combination of the predefined heuris-
tic modules (Keller & Poli, 2007), which often limits their performance. In contrast, LLM-based
HG algorithms eliminate the need for predefining the search space, liberating researchers from man-
ual customization and enabling the derivation of high-performance heuristics (Zhang et al., 2024;
Wu et al., 2024a; Huang et al., 2024). Specifically, these algorithms begin with a seed heuristic to
prompt LLMs to derive multiple heuristics as the initial population (Liu et al., 2023a; 2024a; Ye
et al., 2024a). Each heuristic is then evaluated using a set of COP instances, with its performance

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

serving as its fitness value. During the iterative process, certain heuristics are selected as parents and
presented to LLMs to derive (novel) offspring heuristics. This approach emulates the concepts of
crossover and mutation, while implicitly providing search directions for the LLMs to derive heuris-
tics. In addition, certain studies exploit LLMs to provide explicit search directions for deriving
well-performing heuristics (Ye et al., 2024a). However, these LLM-based HG algorithms overlook
the issue of unspecificity in LLM responses (see Figure 1(a)), which can lead to unspecific search
directions that do not contribute to discovering high-performance heuristics.

Similar challenges are observed in tasks such as arithmetic and symbolic reasoning, making it crucial
to evoke LLM reasoning through a multi-step process and incorporate task-specific knowledge (Yu
et al., 2024; Jiang et al., 2024; Lv et al., 2024). For example, Wei et al. (2022) proposed Chain-
of-Thought (CoT) prompting, which directs LLMs to emulate the given examples in completing
a multi-step solution process, leading to more accurate answers. Subsequently, Zheng et al. (2024)
proposed the few-shot Step-back Prompting (SP), which exploits the given examples to enable LLMs
to abstract high-level principles and then apply these principles in reasoning. In a similar multi-
step fashion, we propose CAP to mitigate unspecificity in the produced search directions for better
solving HG tasks. However, unlike CoT and SP, CAP operates in a zero-shot manner, because it
abstracts the core components without any examples to guide the abstraction process.

2.2 LLM-BASED PERFORMANCE PREDICTION METHODS

In the field of NAS, performance predictors, typically Deep Neural Networks, are widely used to
reduce search costs by predicting the performance of candidate architectures (Baker et al., 2017;
Wu et al., 2021). These predictors model neural architectures as graphs, where nodes represent
subnets and edges represent the connections between subnets (Chu et al., 2023; Liu et al., 2022).
The graphs are then encoded into vectors, and the mapping between these vectors and the corre-
sponding performance metrics is learned. Recently, Jawahar et al. (2024) and Chen et al. (2024)
proposed LLM-based predictors for predicting the performance of neural architectures. Specifi-
cally, they employed examples of architectures and corresponding performance metrics to prompt
LLMs, leveraging semantic similarity to predict the performance of newly searched architectures.

In the context of HG, conventional performance predictors may struggle to accurately evaluate
heuristics due to the difficulty in modeling these diverse and complex heuristics as graph structures.
However, the LLM-based predictor presents a promising alternative by eliminating the need for
explicit heuristic modeling. Consequently, this paper leverages LLMs to predict the performance
of heuristics for effectively solving HG tasks. However, unlike (Jawahar et al., 2024) and (Chen
et al., 2024), which relied on a larger number of examples, our PPP emphasizes the use of only the
higher-quality examples to improve predictive performance (see Section 3.2 for more details).

2.3 NEURAL COMBINATORIAL OPTIMIZATION SOLVERS

Neural Combinatorial Optimization (NCO) refers to a class of Neural Network solvers that either
independently solve COPs or collaborate with heuristic algorithms (Bengio et al., 2021; Wu et al.,
2022; 2024b; Bogyrbayeva et al., 2024). To enable the derivation of insights from historical COP
instances and efficiently handle batches of instances in parallel, researchers have recently developed
numerous NCO solvers (Kwon et al., 2020; Lu et al., 2020; Hudson et al., 2022; Chen et al., 2023;
Kim et al., 2024; Dernedde et al., 2024). However, these NCO solvers still face several challenges.
Two of the most prominent ones are how to improve their generalization capabilities (Zhou et al.,
2023; Xiao et al., 2024; Hottung et al., 2024) and their performance on large-scale COPs (Hou
et al., 2023; Sun & Yang, 2023; Min et al., 2023; Ye et al., 2024b). Recently, Wang et al. (2024)
proposed a distance-aware heuristic algorithm designed to enhance the generalization ability of NCO
solvers trained on small-scale COPs for solving large-scale COPs. To assess the effectiveness of the
proposed Hercules and Hercules-P algorithms, we apply them to improve the performance of two
classic NCO solvers on both small-scale and large-scale COPs in Section 4.4.

3 HEURISTIC GENERATION WITH HERCULES AND HERCULES-P

The illustrations of Hercules and Hercules-P are schematically presented in Figure 3. In this section,
we first introduce CAP, which is designed to provide more specific search directions for deriving
heuristics. We then prove that CAP can reduce unspecificity of the produced search directions.
Finally, we present the design of PPP, along with tailored EXEMPLAR and ConS mechanisms.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ConS

LLM #CAP

PPP

LLM #crossover
LLM #Mutation

Heuristics

Heuristics

Heuristics

Initiation

LLM #CAP

CAP Mutation

Crossover

Selection

Evaluation

COP instances

Hercules

Hercules-P

EXEMPLAR

Direction

Heuristic

Prediction

LegendIterative Optimization

Operator involving LLMs

Figure 3: Overview of the proposed Hercules and Hercules-P algorithms. Hercules exploits CAP to
provide specific search directions, which are then used to guide LLMs in deriving high-performance
heuristics. In Hercules, the performance of all derived heuristics on a set of COP instances deter-
mines their respective fitness values. In contrast, Hercules-P evaluates only a subset of the produced
heuristics with COP instances, while the rest are assessed using the proposed PPP method.

3.1 CORE ABSTRACTION PROMPTING (CAP)
As aforementioned, when LLMs are tasked with providing search directions, they often generate di-
rections that lack specificity for heuristic derivation. As illustrated in the RP example in Figure 1(a),
certain directions, such as “Understand problem specifics” and “test and iterate”, lack relevance to
heuristic derivation and fail to derive well-performing heuristics.

In this case and many others, providing prior knowledge in prompts can help LLMs reduce un-
specificity in their responses, leading to more focused, specific search directions. To achieve this,
we propose the zero-shot CAP method, which can abstract the core components from the top-k
heuristics in the current population without additional guidance. Because the core components are
essential for heuristic performance (Xue et al., 2016; Liu et al., 2024a), leveraging them enables
LLMs to provide more specific search directions. As shown in Figure 1(b), the suggested direction
“Normalize penalties relative to overall distance” may lead to more effective heuristic generation
(see Appendix B for more comparative examples of search directions produced by RP and CAP).
In addition, CAP abstracts the core components once per iteration, instead of abstracting distinct
components separately for crossover and elitist mutation operators. Consequently, this approach
helps prevent a significant increase in context and generation token costs compared to RP (see Ta-
ble 2). The details about the adopted crossover and elitist mutation operators, along with other EC
definitions, are presented in Appendix C.

In the field of information theory, the advantage of CAP can be quantified using the concept of in-
formation gain. In the prior study (Hu et al., 2024), information gain was defined as the reduction
in entropy between two states. Extending this concept, we use information gain to quantify entropy
reduction in scenarios with and without abstraction, facilitating the assessment of CAP in reduc-
ing unspecificity. Specifically, the entropy without abstraction (i.e., the core components are not
presented to LLMs) in the tth iteration is defined as follows:

H(Ωt) = −
∑

i:ωi∈Ωt

p(ωi|Ωt) log p(ωi|Ωt), (1)

where ωi denotes a direction belonging to the set of all possible directions Ωt.

When the core components are used as prior knowledge in prompts, an LLM can provide more
specific, subdivided search directions either based on one of these core components or disregarding
all core components. Consequently, the set of all possible directions, Ωt, can be partitioned into
mutually exclusive subsets, Ωj , where

⋃k
j=0 Ωj = Ωt. Here, when j ∈ {0, 1, . . . , k − 1}, Ωj

represents the subset of directions associated with the jth core component (for simplicity, we assume
a one-to-one correspondence between core components and heuristics), while j = k corresponds to
the subset of directions independent of any core component.

Assuming that the produced direction belongs to the jth subset (j ∈ {0, 1, . . . , k}) after providing
the core components, the remaining entropy is defined as follows:

H(Ωj) = −
∑

i:ωi∈Ωj

p(ωi|Ωj) log p(ωi|Ωj). (2)

Then, the entropy with abstraction (i.e., the expected remaining entropy) is defined as∑k
j=0 pjH(Ωj), where pj denotes the probability that the search direction belongs to the jth subset,

i.e., pj = p(Ωj)/p(Ωt). Thus, the information gain from abstracting the core components in the tth
iteration (the entropy reduction without and with abstraction) is defined as follows:

IG(Ωt) = H(Ωt)−
∑k

j=0
pjH(Ωj). (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

PPP
Here are some example codes and their corresponding performance scores that you can refer to for prediction: [example_A,
score_A],. . ., [example_B, score_B]. Here is a code that you need to predict: [code].
Predict the performance of the given code by comparing its semantic meaning with the provided example codes. In addition, provide
a confidence level for this code, indicating the degree of semantic similarity to the most relevant example code. The performance
score should be a float within the range [score_A, score_B], the confidence number should be a float within the range [0,1].

[score=10.75, confidence=0.8]

Figure 4: Illustration of the prediction process using the proposed PPP method. By analyzing the
semantic similarity between the heuristics to be predicted and the previously evaluated ones, LLMs
can respond with a performance score for each heuristic with an associated confidence level.

As proven in Appendix A, (3) simplifies to the following expression, ranging from (0, log (k + 1)]:

IG(Ωt) = −
∑k

j=0
pj log pj . (4)

Therefore, in theory, providing the core components as prior knowledge in prompts can reduce
unspecificity in LLM responses and yield more specific search directions, subsequently leading to
heuristics with higher performance.

To fine-search the space with high-quality heuristics, we adopt a rank-based selection mechanism.
Specifically, the probability of selecting the ith heuristic as a parent is computed as follows:

p(xi) =
1

rank(xi) +N

/∑N

j=1

1

rank(xj) +N
, (5)

where N denotes the population size, and rank(·) returns the rank of the associated fitness value in
the ascending order. In addition, Hercules adopts the core components of the top-k heuristics as prior
knowledge during the first λ percent of iterations (λ ∈ [0,1]). In the later iterations, following (Zhan
et al., 2009; Yang et al., 2018; Zhang et al., 2021; 2015), to better preserve population diversity,
Hercules directly applies the core components of the parent heuristics as prior knowledge to provide
search directions, bypassing the abstraction process of elite heuristics.

3.2 PERFORMANCE PREDICTION PROMPTING (PPP)
Semantic features have demonstrated significant merits in software engineering tasks, e.g., iden-
tifying the defective code regions (Liu et al., 2023b), due to their influence on the overall code
performance. Motivated by this concept, we propose the few-shot PPP method, which leverages
LLMs to predict the performance of newly produced heuristics by analyzing their semantic similar-
ity to previously evaluated ones, as shown in Figure 4. To achieve higher predictive accuracy with
a small number of Ne examples, we propose an example selection mechanism called EXEMPLAR,
which operates on a principle similar to providing a more relevant, well-defined knowledge base
in retrieval-augmented generation (Gao et al., 2023). Specifically, EXEMPLAR selects the histor-
ically best and worst heuristics, i.e., xlb and xub, respectively, as prediction boundaries (assuming
the goal of the HG task is to derive the heuristic with the minimum fitness value), while prioritizing
parent heuristics with better performance (i.e., lower fitness value). Parent heuristics with better
performance are typically more complex and richer in semantic features than those with inferior
performance, highly likely leading to higher prediction accuracy. In addition, any heuristic with the
same fitness value as a previously selected example will not be chosen as an example. Because if
LLMs encounter multiple examples sharing the same fitness value, their predictions may become
biased towards this common fitness value, potentially overlooking semantic features. If each exam-
ple has a distinct fitness value, LLMs can more effectively leverage semantic features to predict the
performance of the new heuristics. The set of examples Pe is selected as follows:
Pe = {xlb, xub | xlb = arg min

x∈Ph

f(x), xub = arg max
x∈Ph

f(x)} ∪ {x | arg top(Ne-2)
x∈Pt

f(x)},

Pt = {x ∈ Pp \ {xlb, xub} | f(xi) 6= f(xj),∀i 6= j},
(6)

where Ph and Pp denote the set of all historical heuristics and the set of parent heuristics selected
from the current iteration according to (5) to produce offspring, respectively, and f(·) denotes the
fitness evaluation function, introduced in the following paragraph. EXEMPLAR selects the set Pe

for each iteration.

Nevertheless, LLMs cannot always accurately predict the performance of each heuristic. To miti-
gate the potential impact of incorrect predictions, we propose the Confidence Stratification (ConS)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Hercules-P for Deriving Heuristics
Input: Maximum iteration number T
Output: Best heuristic xbest

1 //Omitting Steps 5, 10, and 11 makes Hercules-P fall back to the original Hercules algorithm
2 Initialize and evaluate population P; the number of current iteration t = 0
3 while t < T do
4 Select parent heuristics set Pp according to (5) //Rank-based selection
5 Select heuristic examples set Pe for PPP according to (6) //EXEMPLAR
6 if t ≤ λ · T then Provide search directions using core components of elite heuristics //CAP ;
7 else Provide search directions using core components of parent heuristics;
8 Derive heuristics using crossover based on the produced search directions
9 Derive heuristics using elitist mutation based on the produced search directions

10 Predict the fitness values of newly produced heuristics //PPP
11 Determine fitness values f(·) according to (7) //ConS
12 Update P and xbest with new heuristics

mechanism. Other than the LLM-predicted fitness value ξi, ConS prompts an LLM to provide a cor-
responding confidence level φi ∈ [0, 1] based on the degree of semantic similarity between xi and
the most similar examples in Pe. Subsequently, based on φi, ConS selectively accepts the predicted
fitness values of certain heuristics, while others are reevaluated using COP instances. Intuitively, we
implement the following design. For heuristic xi, if φi is sufficiently high, ConS deems ξi accurate.
If φi is moderately high, only the top-ranked candidates in this category should be trusted to directly
adopt ξi without reevaluation, reflecting the degraded confidence level. For low φi values, they can
only be directly adopted if ξi is greater than a predetermined threshold. Because for these heuristics
with an acceptable yet sub-par performance score and a not-too-low confidence level, it is intuitive
to deem them having inferior performance, without the need for precise predictions (Xu et al., 2021).
Specifically, we heuristically define this threshold gauging the known prediction boundaries, i.e., lbt
and ubt. When φi is extremely low, ξi is deemed unreliable and the corresponding heuristic must be
reevaluated. Such design is implemented as follows to define the fitness function f(xi):

f(xi) =


ξi, φi ≥ 1− δ,
ξi, 1− 2δ ≤ φi < 1− δ ∧ xi ∈ arg top(mt)

x∈Pc

φ(x),

ξi, 1− 3δ ≤ φi < 1− 2δ ∧ ξi > lbt + 3δ(ubt − lbt),
F(xi), otherwise,

(7)

where δ ∈ [0, 1/3] denotes a predefined interval to distinguish the performance range of the pro-
duced heuristics (a smaller δ value means ConS only accepts the predicted scores with the highest
confidence), Pc denotes the set of heuristics whose φi values lie within the [1− 2δ, 1− δ) interval,
and F(·) denotes the conventional fitness evaluation function, which uses COP instances to evaluate
heuristics. Furthermore, we gradually decrease the number of heuristics that do not require reeval-
uation in Pc after each iteration. Specifically, we set an acceptance threshold mt = bα · βt · Noc,
where α, β ∈ (0, 1), and No denotes the number of the produced heuristics in the current iteration.

The pseudocode of Hercules-P is presented in Algorithm 1, and its source code is available online1.

4 EXPERIMENTAL RESULTS

This section presents extensive experimental results on various HG tasks, COPs, and LLMs to as-
sess the performance of both Hercules and Hercules-P. Please refer to Appendices D, E, F, and G
for the experimental setups with predefined hyperparameter values, additional experimental results,
prompts used in this paper, and the produced heuristics, respectively.

4.1 DERIVING PENALTY HEURISTICS FOR GLS TO SOLVE TSP
In this subsection, we exploit Hercules and Hercules-P to derive penalty heuristics for Guided Local
Search (GLS) to solve the Travelling Salesman Problem (TSP). The seed function is human-designed
heuristic KGLS (Arnold & Sörensen, 2019). We choose three LLM-based HG algorithms as bench-
marking models, namely Random, EoH (Liu et al., 2024a), and ReEvo (Ye et al., 2024a). Random is

1https://anonymous.4open.science/r/ICLR-12808

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of different GLS algorithms on TSP
Algorithm Type Gain (%) (n = 100) Gain (%) (n = 200)

KGLS-Random GLS+Llama3-70b -137.13 0.47
KGLS-EoH (ICML’24) GLS+Llama3-70b -369.10 5.82

KGLS-ReEvo (NeurIPS’24) GLS+Llama3-70b -661.69 2.19
KGLS-Hercules-P (ours) GLS+Llama3-70b -218.91 4.71
KGLS-Hercules (ours) GLS+Llama3-70b -12.48 3.42

KGLS-Random GLS+GPT-4o-mini 63.64 3.44
KGLS-EoH (ICML’24) GLS+GPT-4o-mini 25.53 5.62

KGLS-ReEvo (NeurIPS’24) GLS+GPT-4o-mini -280.79 2.45
KGLS-Hercules-P (ours) GLS+GPT-4o-mini 71.05 7.46
KGLS-Hercules (ours) GLS+GPT-4o-mini 42.98 11.10

Table 2: Search cost comparison of different LLM-based HG algorithms on TSP
Algorithm Gain (%) Time (m) Context Token (k) Generation Token (k) G

PT-4o-m
ini

KGLS-Random 3.44±1.20 28.5±2.2 0.2 19.4
KGLS-EoH (ICML’24) 5.62±1.83 37.2±7.2 43.5 26.2

KGLS-ReEvo (NeurIPS’24) 2.45±10.93 37.7±12.2 95.5 42.0
KGLS-Hercules-P (ours) 7.46±5.36 23.6±3.0 143.4 31.2
KGLS-Hercules (ours) 11.10±0.69 30.6±1.4 95.8 33.3

a straightforward method that derives heuristics directly using LLMs without incorporating search
directions and is commonly used as a baseline model in NAS studies (Li & Talwalkar, 2020). In
addition, unless specified otherwise, for the performance of LLM-based HG algorithms, namely
Random, EoH, ReEvo, Hercules-P, and Hercules, we report the average performance of three in-
dependent runs, following the prior study (Ye et al., 2024a). The average gains of the heuristics
produced by these algorithms are presented in Table 1, where n denotes the problem scale. The gain
measure is calculated as 1-(the performance of the LLM-produced heuristics)/(the performance of
the original KGLS). In addition, in Appendix E.1, the performance of these derived heuristics is
compared with SOTA algorithms LKH3 (Helsgaun, 2017) and EAX (Nagata & Kobayashi, 2013).

As shown in Table 1, for the 200-node TSP, the heuristics produced by Hercules using GPT-4o-
mini outperform those produced by the other HG algorithms, yielding the best performance gain
of 11.1%. In addition, when GPT-4o-mini is adopted, the average gain of Hercules-P drops by
only 3.64% comparing to Hercules, securing the second-best performance. EoH ranks at the third
place in the gain metric. The experimental results shown in Table 1 highlight that the choice of
LLM significantly impacts the performance of the produced heuristics. Nevertheless, Hercules and
Hercules-P consistently outperform ReEvo across all node scales, regardless of the LLM in use.

Table 2 presents the search cost comparison of LLM-based HG algorithms across four metrics,
namely gain (identical to the bottom-right cell of Table 1), search time, context token, and generation
token. The results show that Hercules yields better gains without substantially increasing the costs
of context and generation tokens, compared to ReEvo. Moreover, ReEvo and EoH spend longer
search time when compared to the others, likely due to their ineffective search directions, which
cause the LLM to derive complex but suboptimal heuristics. The std value of 10.93 for ReEvo
further underscores this issue. On the other hand, Hercules-P reduces the overall search time to 77%
(23.6/30.6) of that required by Hercules. Although Hercules-P uses approximately 1.5 times more
context tokens than Hercules and ReEvo, it does not significantly increase the cost of generation
tokens, which are typically more expensive (OpenAI). This makes Hercules-P ideal for environments
with limited computing resources. Notably, Random utilizes only 0.2k context tokens, because of
its simple prompts used for heuristic generation. However, this simplicity limits its ability to derive
well-performing heuristics.

4.2 DERIVING CONSTRUCTIVE HEURISTICS TO SOLVE TSP

To assess the generalization capabilities of Hercules and Hercules-P across different HG tasks, we
employ them in this subsection to derive constructive heuristics, which sequentially select unvisited
nodes for solving real-world TSPLIB benchmarks (Reinelt, 1991). The seed function is genetic
programming hyper-heuristic (Duflo et al., 2019). As shown in Table 3, Hercules achieves the
highest average gain of 4.87% across eighteen TSPLIB instances, followed by EoH with the average
gain of 4.8%. In contrast, both Random and ReEvo perform poorly, yielding negative gains on
average, i.e., failing to improve the performance of the seed function.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of different constructive heuristic algorithms on TSPLIB
instances Random EoH ReEvo Hercules-P Hercules
(total number) (ICML’24) (NeurIPS’24) (ours) (ours)

G
PT-3.5-turbo

n < 101 (4) -3.92 16.68 1.18 14.16 10.52
101 ≤ n ≤ 500 (9) -3.80 -0.60 -1.17 0.71 2.25
n > 500 (5) -5.73 5.32 0.46 0.95 5.18

Avg. Gain (%) (18) -4.49 4.80 -0.16 3.42 4.87

Table 4: Performance comparison of different ACO algorithms on BPP and MKP
Algorithm Type BPP (Gain (%)), LLM: Llama3.1-405b MKP (Gain (%)), LLM: Gemma2-27b

n = 120 n = 500 n = 1, 000 n = 120 n = 500 n = 1, 000

ACO+Random ACO+LLM 0.00 ±0.00 -0.09±0.04 0.00±0.04 1.24±0.03 3.21±1.17 4.01±1.59

ACO+EoH (ICML’24) ACO+LLM 0.14±0.12 0.16±0.35 0.38±0.53 1.61±0.48 4.42±1.10 5.81±1.40

ACO+ReEvo (NeurIPS’24) ACO+LLM 0.66±0.50 1.49±0.25 2.01±0.34 1.59±0.72 4.67±0.95 6.31±0.38

ACO+Hercules-P (ours) ACO+LLM 0.08±0.08 1.47±0.16 2.04±0.16 1.44±0.38 4.73±0.90 6.14±1.21

ACO+Hercules (ours) ACO+LLM 0.84±0.14 1.64±0.17 2.19±0.20 1.99±0.50 6.40±0.97 8.22±1.17

Table 5: Performance comparison of different NCO solvers on TSP and CVRP

Algorithm Type TSP (Gain (%)) CVRP (Gain (%))
n = 200 n = 500 n = 1, 000 n = 200 n = 500 n = 1, 000

POMO+Random NCO+GPT-4o-mini 3.05 -18.90 -35.10 3.07 1.14 2.86
POMO+EoH (ICML’24) NCO+GPT-4o-mini 2.19 1.42 1.47 0.48 -1.83 0.27

POMO+ReEvo (NeurIPS’24) NCO+GPT-4o-mini 2.38 -5.24 -2.78 0.34 -14.20 -3.01
POMO+Hercules-p (ours) NCO+GPT-4o-mini -0.10 -4.81 -3.58 -0.57 -3.29 -0.57
POMO+Hercules (ours) NCO+GPT-4o-mini 2.49 6.62 16.43 1.53 1.22 1.59

LEHD+Random NCO+GPT-4o-mini 9.93 8.83 5.44 1.72 2.33 1.68
LEHD+EoH (ICML’24) NCO+GPT-4o-mini 10.67 7.73 6.09 6.62 3.57 0.47

LEHD+ReEvo (NeurIPS’24) NCO+GPT-4o-mini 6.94 -1.78 1.56 10.19 4.97 0.70
LEHD+Hercules-p (ours) NCO+GPT-4o-mini 9.55 7.53 6.89 4.44 2.45 0.75
LEHD+Hercules (ours) NCO+GPT-4o-mini 7.46 6.64 5.14 14.37 7.90 2.33

4.3 DERIVING HEURISTIC MEASURES FOR ACO TO SOLVE BPP AND MKP

In this subsection, we exploit Hercules and Hercules-P to derive heuristic measures for Ant Colony
Optimization (ACO) applied to the Bin Packing Problem (BPP) and Multiple Knapsack Prob-
lem (MKP). The seed function is a conventional ACO algorithm (Dorigo et al., 2006). We adopt
Llama3.1-405b to solve BPP while adopt Gemma2-27b to solve MKP. This is because Llama3.1-
405b fails to improve the seed function of MKP regardless of which LLM-based HG algorithm is
executed. As shown in Table 4, Hercules outperforms the other algorithms across all COPs and
LLMs, with particularly strong performance observed when solving the 1,000-scale MKP, achiev-
ing an 8.22% gain. In addition, when using Llama3.1-405b, Random fails to derive superior heuris-
tics compared to the original ACO, while EoH achieves only a modest improvement, falling short
when compared to the more substantial gains obtained by ReEvo, Hercules-P, and Hercules. In Ap-
pendix E.2, we further assess the performance of Hercules under varying ACO hyper-parameters.

4.4 RESHAPING ATTENTION SCORES FOR NCO TO SOLVE TSP AND CVRP

Recently, Wang et al. (2024) demonstrated that reshaping attention scores can enhance the general-
ization performance of NCO solvers trained on small-scale COPs for solving large-scale COPs. To
assess the effectiveness of Hercules and Hercules-P on NCO solvers, following (Ye et al., 2024a),
we select DAR (Wang et al., 2024) as the seed function for TSP and the vanilla POMO (Kwon et al.,
2020) and LEHD (Luo et al., 2023) as seed functions for Capacitated Vehicle Routing Problem
(CVRP). As shown in Table 5, Random outperforms the other four LLM-based HG algorithms on
certain tasks. A plausible reason for this is that the LLM corpora may lack sufficient knowledge of
emerging NCO domains, thus limiting the performance of the other four LLM-based HG algorithms.
Nevertheless, the heuristics derived by Hercules outperform the corresponding seed functions across
a wider range of tasks compared to Random. For example, Hercules performs better than Random
on the 500- and 1,000-node scales for the TSP-POMO task. In addition, Appendix E.3 presents addi-
tional results of these LLM-based HG algorithms, when the adopted LLM is GLM-4-0520. Finally,
Appendix E.4 provides a detailed comparison on search time across these five LLM-based HG algo-
rithms. The experimental results show that Hercules-P achieves the shortest search time across all
NCO tasks. For example, it solves the 1,000-node CVRP-LEHD task in roughly five hours, which is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Ablation study results on different design choices
Algorithm Gain (%) Algorithm Gain (%) Algorithm Gain (%) Algorithm Gain (%)

G
PT-4o-m

ini
w/o CAP 3.12 Hercules (λ = 0.5) 5.96 w/o ConS -4.06 Hercules-P (δ = 0.2) 7.01
w/o rank-based selection 8.49 Hercules (λ = 0.9) 8.90 w/o EXEMPLAR -0.30 Hercules-P (δ = 0.3) 6.21

Hercules (λ = 1) 5.60

Hercules (w/o PPP) 11.10 Hercules (λ = 0.7) 11.10 Hercules-P 7.46 Hercules-P (δ = 0.1) 7.46

approximately 41% of the time needed by Hercules. Across all tasks, Hercules-P effectively reduces
the search time by 7%∼59% when compared to Hercules.

4.5 ABLATION STUDIES

In this subsection, we conduct ablation studies to investigate the effectiveness of the design choices
of Hercules and Hercules-P, and present the results in Table 6. The adopted HG task is deriving
penalty heuristics for GLS to solve TSPs (see Section 4.1). Specifically, w/o CAP refers to the
setting using RP to provide search directions, w/o rank-based selection refers to the setting that ran-
domly selects parent heuristics, w/o ConS refers to the setting that PPP assumes all predictions are
accurate, and w/o EXEMPLAR refers to the setting that heuristic examples are randomly selected
from the current population. For all the other experiments presented in this paper, λ = 0.7 is applied
for Hercules, and δ = 0.1 is applied for Hercules-P. As shown in Table 6, when CAP is omitted, the
gain decreases by 7.98%, further demonstrating that CAP produces more specific search directions.
In addition, the proposed rank-based selection mechanism significantly contributes to the superior
performance of Hercules. For Hercules-P, ConS effectively determines unreliable predictions, pre-
venting them from negatively affecting the derivation of high-performance heuristics. Finally, when
EXEMPLAR is omitted, the gain decreases by 7.76%, mainly due to the associated degradation in
predictive accuracy (elaborated in the following paragraph).

w w/o w/o1
1

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy 0.59

0.33
0.22

1
w/ EXEMPLAR
w/ EXEMPLAR-U
w/o EXEMPLAR

Figure 5: Ablation
study on different EX-
EMPLAR variants.

We further present the predictive accuracy of PPP with and without EX-
EMPLAR, both of which are executed ten times, aiming to perform mean-
ingful statistical tests. In addition, we include w/ EXEMPLAR-U as an
additional setting, where EXEMPLAR is able to select heuristics with
identical fitness values. To assess whether different versions of EXEM-
PLAR can accurately predict the fitness values of the produced heuristics,
we need to set a quantifying measure. Specifically, we intuitively deem a
prediction accurate if the absolute error between the predicted fitness value
and the true fitness value is less than δ · (ubt − lbt). As shown in Figure 5,
the inclusion of EXEMPLAR improves the median of predictive accuracy
by 26% and 37% (both significantly different: p =0.048 and 0.004) when
compared to w/ EXEMPLAR-U and w/o EXEMPLAR, respectively. In
addition, the Pearson correlation coefficient analysis reveals a correlation
coefficient of 0.39, indicating a moderate linear relationship between the
predicted and true values. The one-way ANOVA test results yield a p-value of 0.6, suggesting that
the mean difference between the predicted and true values is not statistically significant. It is im-
perative to clarify that although the proposed PPP may seem less accurate in predicting heuristic
performance, the values shown in Figure 5 are determined by a strict measure of fitness values as
afore-defined and they do not exhibit a strong correlation with the overall performance of Hercules-
P, because many produced heuristics are reevaluated (see ConS in Section 3.2). As discussed in
Sections 4.1 and 4.4, Hercules-P reduces search time by 7%∼59% when compared to Hercules,
while achieving on-par gain. We strongly believe that PPP is highly beneficial for HG tasks that re-
quire rapid solutions, e.g., deriving heuristics for the dynamic, near-real-time allocation of resources
in 5G mobile edge cloud networks (Laboni et al., 2024). We plan to extend PPP by integrating it
with other methods, such as beam search, to further enhance its predictive accuracy.

5 CONCLUSION

To derive well-performing heuristics, we propose Hercules, which exploits our proprietary CAP to
abstract the core components from elite heuristics, to produce more specific search directions. In
addition, we introduce Hercules-P, a resource-efficient variant that integrates CAP with our novel
PPP. PPP exploits previously evaluated heuristics to predict the performance of newly produced
ones, thereby reducing the required computing resources for heuristic evaluations. The experimental
results demonstrate the effectiveness of Hercules, Hercules-P, and all our designed mechanisms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Florian Arnold and Kenneth Sörensen. Knowledge-guided local search for the vehicle routing prob-
lem. Computers & Operations Research, 105:32–46, 2019.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In the International Conference on Learning Representations,
pp. 1–18, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: A methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Dauletbayev.
Machine learning to solve vehicle routing problems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 25(6):4754–4772, 2024.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Op-
erational Research Society, 64(12):1695–1724, 2013.

Jinbiao Chen, Zizhen Zhang, Zhiguang Cao, Yaoxin Wu, Yining Ma, Te Ye, and Jiahai Wang.
Neural multi-objective combinatorial optimization with diversity enhancement. In Proceedings
of the Advances in Neural Information Processing Systems, pp. 39176–39188, 2023.

Lin Chen, Fengli Xu, Nian Li, Zhenyu Han, Meng Wang, Yong Li, and Pan Hui. Large language
model-driven meta-structure discovery in heterogeneous information network. In Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 307–318, 2024.

Xiangxiang Chu, Shun Lu, Xudong Li, and Bo Zhang. Mixpath: A unified approach for one-
shot neural architecture search. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5972–5981, 2023.

Tim Dernedde, Daniela Thyssens, Sören Dittrich, Maximilian Stubbemann, and Lars Schmidt-
Thieme. MOCO: A learnable meta optimizer for combinatorial optimization, 2024. arXiv:
2402.04915.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4):28–39, 2006.

Gabriel Duflo, Emmanuel Kieffer, Matthias R Brust, Grégoire Danoy, and Pascal Bouvry. A GP
hyper-heuristic approach for generating TSP heuristics. In Proceedings of IEEE International
Parallel and Distributed Processing Symposium Workshops, pp. 521–529, 2019.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2023. arXiv:
2312.10997.

Keld Helsgaun. An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling
Salesman and Vehicle Routing Problems: Technical report. 2017.

André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies
for neural combinatorial optimization, 2024. arXiv: 2402.14048.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In the International Confer-
ence on Learning Representations, pp. 1–37, 2023.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He,
Pang Wei Koh, and Bryan Hooi. Uncertainty of thoughts: Uncertainty-aware planning enhances
information seeking in large language models. In the International Conference on Learning Rep-
resentations Workshop on Large Language Model (LLM) Agents, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhehui Huang, Guangyao Shi, and Gaurav S. Sukhatme. Can large language models solve robot
routing?, 2024. arXiv: 2403.10795.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. In the International Conference on
Learning Representations, pp. 1–20, 2022.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, and Dujian Ding. LLM per-
formance predictors are good initializers for architecture search. In the Findings of the Association
for Computational Linguistics, pp. 10540–10560, 2024.

Zhuoxuan Jiang, Haoyuan Peng, Shanshan Feng, Fan Li, and Dongsheng Li. LLMs can find mathe-
matical reasoning mistakes by pedagogical chain-of-thought. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3439–3447, 2024.

R. E. Keller and R. Poli. Linear genetic programming of parsimonious metaheuristics. In Proceed-
ings of the IEEE Congress on Evolutionary Computation, pp. 4508–4515, 2007.

Hyeonah Kim, Minsu Kim, Sungsoo Ahn, and Jinkyoo Park. Symmetric replay training: Enhancing
sample efficiency in deep reinforcement learning for combinatorial optimization. In Proceedings
of the International Conference on Machine Learning, pp. 24110–24136, 2024.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Proceedings of
the Advances in Neural Information Processing Systems, pp. 21188–21198, 2020.

Nadia Motalib Laboni, Sadia Jahangir Safa, Selina Sharmin, Md. Abdur Razzaque, Md. Mustafizur
Rahman, and Mohammad Mehedi Hassan. A hyper heuristic algorithm for efficient resource
allocation in 5g mobile edge clouds. IEEE Transactions on Mobile Computing, 23(1):29–41,
2024.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Proceedings of Uncertainty in Artificial Intelligence, pp. 367–377, 2020.

Fei Liu, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Algorithm evolution using large lan-
guage model, 2023a. arXiv: 2311.15249.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
mode. In Proceedings of the International Conference on Machine Learning, pp. 32201–32223,
2024a.

Jingyu Liu, Jun Ai, Minyan Lu, Jie Wang, and Haoxiang Shi. Semantic feature learning for software
defect prediction from source code and external knowledge. Journal of Systems and Software,
204:111753, 2023b.

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In the International Conference on Learning Representations,
pp. 1–33, 2024b.

Yuqiao Liu, Yehui Tang, Zeqiong Lv, Yunhe Wang, and Yanan Sun. Bridge the gap between archi-
tecture spaces via a cross-domain predictor. In Proceedings of the Advances in Neural Information
Processing Systems, pp. 13355–13366, 2022.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In the International Conference on Learning Representations, pp. 1–15, 2020.

Fu Luo, Xin Li, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Proceedings of the Advances in Neural
Information Processing Systems, pp. 8845–8864, 2023.

Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine high-
lighting: Reducing knowledge hallucination in large language models. In Proceedings of the
International Conference on Machine Learning, pp. 32612–32642, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Guojun Peng, Zhiguang Cao, Yining Ma, and Yue-Jiao
Gong. LLaMoCo: Instruction tuning of large language models for optimization code generation,
2024. arXiv: 2403.01131.

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling
salesman problem. In Proceedings of the Advances in Neural Information Processing Systems,
pp. 47264–47278, 2023.

Yuichi Nagata and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS Journal on Computing, 25(2):346–363,
2013.

OpenAI. https://openai.com/api/pricing/.

Zhengzhong Qiu, Wei Bi, Dong Xu, Hua Guo, Hongwei Ge, Yanchun Liang, Heow Pueh Lee,
and Chunguo Wu. Efficient self-learning evolutionary neural architecture search. Applied Soft
Computing, 146:110671, 2023.

César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling salesman problem
heuristics: Leading methods, implementations and latest advances. European Journal of Opera-
tional Research, 211(3):427–441, 2011.

Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA journal on computing, 3:
376–384, 1991.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 625:468–475, 2024.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Opti-
mization. In Proceedings of the Advances in Neural Information Processing Systems, pp. 3706–
3731, 2023.

Niki van Stein and Thomas Bäck. Llamea: A large language model evolutionary algorithm for
automatically generating metaheuristics, 2024. arXiv: 2405.20132.

Mark P. Wachowiak, Mitchell C. Timson, and David J. DuVal. Adaptive particle swarm optimization
with heterogeneous multicore parallelism and GPU acceleration. IEEE Transactions on Parallel
and Distributed Systems, 28(10):2784–2793, 2017.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping: Enhance
generalization of neural solver for large-scale vehicle routing problems, 2024. arXiv: 2401.06979.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Pro-
ceedings of the Advances in Neural Information Processing Systems, pp. 24824–24837, 2022.

Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen, Mengchen Liu, Ye Yu, Zhangyang Wang,
Zicheng Liu, Mei Chen, and Lu Yuan. Stronger NAS with weaker predictors. In Proceedings of
the Advances in Neural Information Processing Systems, pp. 28904–28918, 2021.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap, 2024a. arXiv: 2401.10034.

Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L.
Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle routing
problems: A comprehensive survey with perspectives, 2024b. arXiv: 2406.00415.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE Transactions on Neural Networks and Learning Systems,
33(9):5057–5069, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yubin Xiao, Di Wang, Xuan Wu, Yuesong Wu, Boyang Li, Wei Du, Liupu Wang, and You Zhou.
Improving generalization of neural vehicle routing problem solvers through the lens of model
architecture, 2024. arXiv: 2406.06652.

Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling Jui, Chunjing Xu, and Chang Xu. ReNAS:
Relativistic evaluation of neural architecture search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4411–4420, 2021.

Bing Xue, Mengjie Zhang, Will N. Browne, and Xin Yao. A survey on evolutionary computation
approaches to feature selection. IEEE Transactions on Evolutionary Computation, 20(4):606–
626, 2016.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In the International Conference on Learning Repre-
sentations, pp. 1–42, 2024.

Qiang Yang, Wei-Neng Chen, Jeremiah Da Deng, Yun Li, Tianlong Gu, and Jun Zhang. A level-
based learning swarm optimizer for large-scale optimization. IEEE Transactions on Evolutionary
Computation, 22(4):578–594, 2018.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo
Parkand, and Guojie Song. Large language models as hyper-heuristics for combinatorial opti-
mization. In Proceedings of the Advances in Neural Information Processing Systems, 2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 20284–20292, 2024b.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards reproducible neural architecture search. In Proceedings of the International
Conference on Machine Learning, pp. 7105–7114, 2019.

Junchi Yu, Ran He, and Zhitao Ying. Thought propagation: An analogical approach to complex rea-
soning with large language model. In the International Conference on Learning Representations,
pp. 1–27, 2024.

Zhi-Hui Zhan, Jun Zhang, Yun Li, and Henry Shu-Hung Chung. Adaptive particle swarm opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6):
1362–1381, 2009.

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. Correlation coefficient-based recombina-
tive guidance for genetic programming hyperheuristics in dynamic flexible job shop scheduling.
IEEE Transactions on Evolutionary Computation, 25(3):552–566, 2021.

Jianming Zhang, Weifeng Pan, Jingjing Wu, and Jing Wang. Top-k elites based oppositional differ-
ential evolution. Int. J. Wire. Mob. Comput., 8(2):166–174, 2015.

Rui Zhang, Fei Liu, Xi Lin, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang. Understanding the
importance of evolutionary search in automated heuristic design with large language models. In
Proceedings of the International Conference on Parallel Problem Solving From Nature, pp. 185–
202, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
In the International Conference on Learning Representations, pp. 1–38, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In Proceedings of the International Conference on
Machine Learning, pp. 42769–42789, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DERIVATION OF INFORMATION GAIN FORMULA IN CAP

Proposition 1. The information gain from abstracting core components is equal to:

IG(Ωt) = −
k∑

j=0

pj log pj ∈ (0, log(k + 1)]. (8)

Proof.

IG(Ωt) = H(Ωt)− p0H(Ω0)− · · · − pkH(Ωk)

= −
∑

i:ωi∈Ωt

p(ωi|Ωt) log p(ωi|Ωt)

+ p0

∑
i:ωi∈Ω0

p(ωi|Ω0) log p(ωi|Ω0) + . . .

+ pk
∑

i:ωi∈Ωk

p(ωi|Ωk) log p(ωi|Ωk)

=
∑

i:ωi∈Ω0

p(ωi|Ω0) [log p(ωi|Ω0)− log p(ωi|Ωt)] + . . .

+
∑

i:ωi∈Ωk

p(ωi|Ωk) [log p(ωi|Ωk)− log p(ωi|Ωt)]

According to the conditional probability, pj · p(ωi|Ωj) = p(ωi|Ωt),∀j ∈ {0, 1, · · · , k}. Thus, the
jth term simplifies to the following expression:∑

i:ωi∈Ωj

p(ωi|Ωj) [log p(ωi|Ωj)− log p(ωi|Ωt)]

=
∑

i:ωi∈Ωj

p(ωi|Ωj) log
p(ωi|Ωj)

p(ωi|Ωt)

= −
∑

i:ωi∈Ωj

p(ωi|Ωj) log pj

= −pj log pj

Therefore, we conclude that:

IG(Ωt) = −
k∑

j=0

pj log pj . (9)

When ∀j ∈ {0, 1, · · · , k}, pj = 1
k+1 , IG(Ωt) reaches its maximum value of log(k + 1). When

∃j ∈ {0, 1, · · · , k} s.t. pj = 1, IG(Ωt) reaches its minimum value of 0. However, due to the
diverse nature of LLM training corpora, the LLM will not consistently provide the same direc-
tion. Therefore, by abstracting core components, the unspecificity (entropy) can decrease within the
(0, log(k + 1)] interval.

B THE SEARCH DIRECTIONS PRODUCED BY RP AND CAP

In this section, we present additional search directions produced by RP (Ye et al., 2024a) and CAP
(our method) across various HG tasks, COPs and LLMs. Additionally, all produced unspecific
search directions are highlighted in blue. For example, GPT-4o-mini frequently suggests the term
“edge clustering”, when performing RP. This direction ”edge clustering” is frequently applied in
tasks like recommendation systems, where it helps identify patterns in user interactions and prefer-
ences. However, it is not commonly used in heuristic algorithms for solving COPs and is, therefore,
considered unspecific.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Direction 1: The produced search directions for deriving penalty heuristics to solve TSP

The LLM used to provide search directions is GPT-4o-mini.
RP:

Consider edge_clustering, incorporate historical_edge_frequencies, and adapt penalties dynamically based on
current path exploration.

CAP:

Focus on relative edge scoring, incorporate multiple factors like connectivity and distance, and enhance
normalization techniques.

The LLM used to provide search directions is Llama-3-70b.
RP:

Normalize and symmetrize heuristics; consider the_opposite (not including an edge) for more effective
penalties.

CAP:

Focus on relative edge costs (e.g., proximity concept) rather than absolute deviations from average distance.

Direction 2: The produced search directions for deriving constructive heuristics to solve TSP

The LLM used to provide search directions is GPT-3.5-turbo.
RP:

Use sorted future nodes by distance, limit look-ahead steps, and minimize total future score.

CAP:

Simplify heuristic by focusing on coefficients for better node selection efficiency.

Direction 3: The produced search directions for deriving ACO heuristic measures to solve BPP

The LLM used to provide search directions is Llama3.1-405b.
RP:

Consider non-linear relationships between demand ratios and heuristics, and experiment with different
sparsification thresholds for better performance.

CAP:

Simplification and normalization of demand values can lead to more effective heuristics, reducing
computational complexity.

Direction 4: The produced search directions for deriving ACO heuristic measures to solve MKP

The LLM used to provide search directions is Gemma2-27b.
RP:

Focus on item value density, consider weight imbalance across dimensions, and refine sparsity thresholds.

CAP:

Consider the interaction between dimensionality constraints and item value across dimensions.

Direction 5: The produced search directions for reshaping attention scores of POMO to solve TSP

The LLM used to provide search directions is GPT-4o-mini.
RP:

Incorporate dynamic adjustment of K based on node density. Use heuristics from successful_TSP_solutions as
weight modifiers. Explore edge_clustering to reduce focus on distant nodes.

CAP:

Prioritize distance quantiles, and apply exponential decay for promising edges while suppressing undesirable
ones more effectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Direction 6: The produced search directions for reshaping attention scores of POMO to solve CVRP

The LLM used to provide search directions is GPT-4o-mini.
RP:

Incorporate route_clustering, demand distribution analysis, and consider multi-vehicle interactions for
enhanced heuristics.

CAP:

Emphasize vectorization over loops for performance. Enhance demand penalties to better reflect capacity
constraints. Normalize distances effectively to balance contributions.

Direction 7: The produced search directions for reshaping attention scores of LEHD to solve TSP

The LLM used to provide search directions is GPT-4o-mini.
RP:

Incorporate edge_connectivity to prioritize clusters. Consider spatial locality using coordinates for
refinement. Adaptively adjust weights based on current_solution_state.

CAP:

Use logarithmic scaling for distances, increase top-K selection, and implement normalization for better
convergence and stability.

Direction 8: The produced search directions for reshaping attention scores of LEHD to solve CVRP

The LLM used to provide search directions is GPT-4o-mini.
N=200
RP:

Utilize matrix operations for demand calculations to enhance efficiency. Introduce adaptive penalties based
on demand-to-capacity ratios. Explore additional features, like clustering of nodes, to improve routing
logic.

CAP:

Focus on vectorized operations, minimize nested loops, penalize exceeding capacity more effectively, and
integrate distance-demand balancing.

N=500

RP:

Consider integrating real-time clustering and demand_forecasting for optimized routing. Explore adaptive
penalties and multi-objective criteria.

CAP:

Prioritize vectorized operations, minimize nested loops, reward feasible short connections, and enhance
penalties for exceeding capacities.

N=1,000
RP:

Incorporate vehicle_utilization_metrics. Explore clustering techniques. Include demand prioritization based
on proximity. Optimize candidate edge selection dynamically. Use adaptive penalties for infeasible
edges. Consider adding multiple objectives in assessment.

CAP:

Incorporate vectorized calculations, normalize scores, and prioritize low-distance/high-demand paths for
improved efficiency and effectiveness.

C THE ADOPTED CROSSOVER, ELITIST MUTATION OPERATORS, AND
OTHER EC DEFINITIONS

For Hercules and Hercules-P, each heuristic code snippet denotes an individual within the popu-
lation. Notably, these individuals are not restricted by any predefined encoding format, apart from
complying with a specified function signature (see Appendix F). Parent heuristics refer to the heuris-
tics selected according to 5. They are utilized during the crossover and mutation processes to derive
offspring heuristics. Elite heuristics denote the top-k heuristics selected based on corresponding
fitness values within the current iteration. During population initialization, we employ a simple
prompt proposed by Ye et al. (2024a) to guide the LLM in randomly deriving the initial population.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For consistency, we adopt the crossover and mutation operators from the prior study (Ye et al.,
2024a) in all the experiments presented in this paper. Specifically, for the adopted crossover oper-
ator, two distinct parent heuristics are selected according to (5). Subsequently, the relative fitness
values of these two heuristics determine which one serves as the primary learning exemplar for
deriving an offspring heuristic. The employed mutation operator is elitist mutation, which derives
multiple heuristics based on the historically best heuristic, aiming to produce high-performance
ones. The prompting formats for both the crossover and elitist mutation operators, as well as the
other promptings (e.g., CAP and PPP) used in this paper are shown in Appendix F.

D DETAILED HYPER-PARAMETERS AND EXPERIMENTAL SETUPS

Hyper-parameters In Table 7, we present the hyper-parameters of Hercules and Hercules-P. In
addition, following the prior study (Ye et al., 2024a), the temperature of the LLM is added by 0.3 to
enhance the diversity of the initial population.

Hardware We comprehensively evaluate the performance of all algorithms, using a computer
equipped with an Intel(R) Xeon(R) W-2235 CPU.

Table 7: Parameters of Hercules and Hercules-P
Parameter Value

LLM temperature 1
Population size N 15
CAP coefficients k, λ 5, 0.7
Maximum number of evaluations 100
Crossover rate 1
Mutation rate 0.5
ConS coefficients δ, α, β 0.1, 0.5, 0.8

To ensure a fair comparison, we adopt the parameter configurations of all seed functions (e.g., KGLS
parameters) as specified in the prior study (Ye et al., 2024a), which also documented the definitions
of all HG tasks used in this paper. In addition, following the prior study (Ye et al., 2024a), the
performance metric for TSP and CVRP is the gap, which is defined as the relative difference in
the “average length” between corresponding heuristics and LKH3 (Helsgaun, 2017). For BPP and
MKP, the performance metrics are the number of bins used and the total profit, respectively. Finally,
for all experiments in this paper, we exploit the training and test datasets to derive well-performing
heuristics and assess the final derived heuristics, respectively. Specifically, during the search process,
the performance of heuristics on the training datasets determines their fitness values. The heuristic
with the best performance on the training dataset is selected as the final derived heuristic. We
then further assess the performance of all final derived heuristics on test datasets and report the
experimental results in Section 4. In the following part of this section, we present the details of
training datasets and test datasets of all HG tasks.

Generating Penalty Heuristics for Guided Local Search During the search process, the perfor-
mance of newly produced heuristics is evaluated using a training dataset comprising the number of
20 TSP instances, each with 200 nodes. Subsequently, we assess the performance of the final derived
heuristics on two test datasets and report the results. Both test datasets contain 64 TSP instances, but
differ in node scale, with one consisting of 100-node instances and the other of 200-node instances.
All instances in both training and test datasets are uniformly distributed.

Generating Constructive Heuristics During the search process, the performance of newly pro-
duced heuristics is evaluated on a training dataset comprising the number of 64 TSP instances, each
with 50 nodes, following a uniform distribution. Subsequently, the performance of the final derived
heuristics on TSPLIB instances is reported in Table 3.

Generating Heuristic Measures for Ant Colony Optimization For BPP, during the search pro-
cess, the performance of heuristics is evaluated on the training dataset consisting of 30 instances
with 500 items each. The three test datasets each consist of 1,000 instances, with 120, 500, and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1,000 items, respectively. The bin capacity across all instances is fixed at 150, and item sizes are
uniformly sampled from the range [20, 100].

For MKP, the training dataset includes 30 instances, each with 120 items. The three test datasets
each consist of 1,000 instances, with 120, 500, and 1,000 items, respectively. Both item values and
weights are uniformly sampled from the range [0, 1].

Reshaping Attention Scores for Neural Combinatorial Optimization For TSP-POMO and
CVRP-POMO tasks, during the search process, the performance of newly produced heuristics is
evaluated on a training dataset comprising 64 instances, each with 200 nodes. Subsequently, we re-
port the performance of the final derived heuristics on three test datasets of different scales, namely
200-node, 500-node, and 1,000-node scales. Each test dataset contains 64 instances. All instances
are uniformly distributed. In addition, for CVRP-POMO, customer locations are uniformly sampled
within the unit square, and customer demands are drawn from the discrete set {1, 2, . . . , 9}, each
vehicle’s capacity is set to 50, and the depot is centrally located in the unit square.

For the TSP-LEHD task, during the search process, the performance of newly produced heuristics
is evaluated on a training dataset consisting of 64 instances, each with 200 nodes. Subsequently,
we report the performance of the final derived heuristics on three test datasets, namely 200-node,
500-node, and 1,000-node datasets, each containing 64 instances. Both the training and test datasets
are sourced from (Luo et al., 2023). For the CVRP-LEHD task, following the prior study (Ye
et al., 2024a), we apply LLM-based HG algorithms to derive heuristics for three training datasets,
corresponding to problem sizes of n = 200, 500, and 1, 000, respectively. Subsequently, we assess
these final derived heuristics on the corresponding scale test datasets and report the experimenatl
results. The training dataset for n = 200 consists of 64 instances, while those for n = 500 and
n = 1, 000 contain 32 instances each. All test datasets consist of 64 instances. In addition, all the
training and test datasets are sourced from (Luo et al., 2023).

E ADDITIONAL EXPERIMENT RESULTS

E.1 COMPARISON OF THE DERIVED HEURISTICS AND SOTA ALGORITHMS

In this subsection, we present the gap for various algorithms, where gap denotes the relative differ-
ence in the “average length” between corresponding heuristics and LKH3 (Helsgaun, 2017). For
these LLM-based HG algorithms, we report the average gap of heuristics derived from GPT-4o-
mini. As shown in Table 8, Hercules outperforms EAX (Nagata & Kobayashi, 2013), achieving a
gap of 0.237% relative to LKH3.

Table 8: Performance comparison of different heuristic algorithms on 200-node TSP
Algorithm Gap (%)

LKH3 (Helsgaun, 2017) -
EAX (Nagata & Kobayashi, 2013) 4.859
KGLS (Arnold & Sörensen, 2019) 0.267

KGLS+Random 0.258
KGLS+EoH (ICML’24) 0.251

KGLS+ReEvo (NeurIPS’24) 0.260
KGLS+Hercules-P (ours) 0.247
KGLS+Hercules (ours) 0.237

E.2 ABLATION STUDY ON DIFFERENT ACO HYPER-PARAMETER

In this subsection, to further assess the robustness of Hercules under varying ACO hyper-parameters,
we reduce the population size of ACO from 20 to 10. The adopted LLM is Llama3.1-405b. As
shown in Table 9, the experimental results demonstrate that even under this more stringent condi-
tion, Hercules consistently outperforms Random, EoH, and ReEvo, achieving a gain of 0.93%. In
addition, Table 9 includes the execution times of ACO and LLM-derived ACO variants. The experi-
mental results indicate that LLM-derived ACO variants do not significantly increase execution time,
compared with the original ACO.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Ablation study results on different ACO hyper-parameter

Algorithm BPP (n = 120)
Gain (%) Time (s)

ACO - 261
ACO+Random -0.60 263

ACO+EoH (ICML’24) 0.25 264
ACO+ReEvo (NeurIPS’24) 0.20 268

ACO+Hercules-P (ours) 0.46 264
ACO+Hercules (ours) 0.59 267

E.3 ADDITIONAL EXPERIMENTS OF RESHAPING ATTENTION SCORES FOR NCO

In this subsection, following the prior study (Ye et al., 2024a), we adopt GLM-4-0520 as LLM to
further assess the performance of Hercules for solving large-scale TSP LEHD task. In addition, it is
important to emphasize that in the experiments conducted for this subsection, the fitness evaluation
function during the search process is tailored to the problem size of the corresponding test dataset,
ensuring consistency between the scales used for searching and testing. As shown in Table 10,
Hercules achieves the best performance on datasets with 200 and 500 nodes, whereas Hercules-P
outperforms on the 1,000-node scale, achieving a gain of 11.72% over the seed function.

Table 10: Performance comparison of different LLM-based HG algorithms on TSP LEHD task

Algorithm Type TSP (Gain (%))
n = 200 n = 500 n = 1, 000

LEHD+Random NCO+GLM-4-0520 8.48 8.36 7.70
LEHD+EoH (ICML’24) NCO+GLM-4-0520 10.84 9.47 8.06

LEHD+ReEvo (NeurIPS’24) NCO+GLM-4-0520 10.13 8.70 6.97
LEHD+Hercules-p (ours) NCO+GLM-4-0520 9.98 8.80 11.72
LEHD+Hercules (ours) NCO+GLM-4-0520 11.06 9.24 8.16

E.4 SEARCH TIME COMPARISON OF DIVERSE LLM-BASED HG ALGORITHMS

In Table 11, we present the search time of different LLM-based HG algorithms across diverse NCO
tasks. As shown in Table 11, Hercules-P outperforms the other LLM-based HG algorithms in terms
of search time, while Random ranks at the second place. On these NCO tasks, Hercules-P reduce
the search time by 48%, 7%, 31%, 27%, 38%, and 59%, respectively, when compared to Hercules.
This reduction in search time is especially significant for large-scale COPs, where search can extend
to several hours. In these cases, incorporating PPP demonstrates highly effective in reducing the
resource expenditure.

Table 11: Search time comparison of different LLM-based HG algorithms on diverse HG tasks

Time (m)

Algorithm Random EoH ReEvo Hercules-P Hercules
Task (ICML’24) (NeurIPS’24) (ours) (ours)

TSP-POMO 15.95 18.17 17.89 11.50 22.12
CVRP-POMO 16.86 30.54 29.57 9.51 10.28
TSP-LEHD 30.58 39.55 37.25 28.72 41.43
CVRP-LEHD (n = 200) 45.73 67.27 61.58 31.20 42.80
CVRP-LEHD (n = 500) 149.31 224.01 215.61 110.28 178.01
CVRP-LEHD (n = 1, 000) 639.83 854.25 854.71 310.98 757.67

F PROMPTS USED IN HERCULES AND HERCULES-P

Prompts used for Hercules or Hercules-P can be categorized as problem-specific prompts and gen-
eral prompts. This section provides a detailed overview of the used general prompts, while problem-
specific prompts (including the heuristic description, COP description, seed function, and function
signature) are documented in the prior study (Ye et al., 2024a).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt 9: System prompt for elitist mutation and crossover operators.

You are an expert in the domain of optimization heuristics. Your task is to design heuristics that can
effectively solve optimization problems.
Your response outputs Python code and nothing else. Format your code as a Python code string:
"‘‘‘python ... ‘‘‘".

Prompt 10: System prompt for abstracting core components.

You are an expert in the domain of automatic heuristics algorithm design. Your task is to give some hints for
Large Language Model evolutionary framework to evolve better heuristic methods.

Prompt 11: System prompt for providing search directions.

You are an expert in the domain of optimization heuristics. Your task is to give hints to design better
heuristics.

Prompt 12: System prompt for predicting heuristic performance.

You are an expert in the domain of heuristics evaluation. Your task is to predict the performance of
heuristics.

Prompt 13: User prompt for population initialization.

{task_description}

{seed_function}

Refer to the format of a trivial design above. Be very creative and give ‘{func_name}_v2‘. Output code only and
enclose your code with Python code block: ‘‘‘python ... ‘‘‘.

Prompt 14: User prompt for abstracting core components.

The {func_name} function is a part of {alg} for solving {pro}.
{func_desc}

Below are five {func_name} functions:
[code_0]
{code_0}

[code_1]
{code_1}

[code_2]
{code_2}

[code_3]
{code_3}

[code_4]
{code_4}

Summarize the key code components of these functions that potentially influence the effectiveness and
performance of the algorithm, using less than 200 words.

Prompt 15: User prompt for providing short-term search directions.

Below are two {func_name} functions for {problem_desc}
{func_desc}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

You are produced with two code versions below, where the second version performs better than the first one.

[Worse code]
{worse_code}

[Better code]
{better_code}

Below are some core components of the previous {func_name} functions.

[component]
{component}

Reflect about why the second code performs better than the first, considering the core components.
Only output some hints on designing better {func_name} functions base your reflections, using less than
20 words.

Prompt 16: User prompt for providing long-term search directions.

Below is your prior long-term search directions on designing heuristics for {problem_desc}
{prior_direction}

Below are some newly gained insights.
{new_direction}

Below are some core components of the previous {func_name} functions.

[component]
{component}

Write constructive hints for designing better heuristics, based on prior search directions, new insights, and
the core components, using less than 50 words.

Prompt 17: User prompt for crossover.

{task_description}

[Worse code]
{function_signature0}
{worse_code}

[Better code]
{function_signature1}
{better_code}

[direction]
{short_term_direction}

[Improved code]
Please write an improved function ‘{function_name}_v2‘, according to the search directions. Output code only
and enclose your code with Python code block: ‘‘‘python ... ‘‘‘.

Prompt 18: User prompt for elitist mutation.

{task_description}

[Prior direction]
{long-term_direction}

[Code]
{function_signature1}
{elitist_code}

[Improved code]
Please write a mutated function ‘{function_name}_v2‘, according to the search directions. Output code only
and enclose your code with Python code block: ‘‘‘python ... ‘‘‘.

Prompt 19: User prompt for predicting heuristic performance.

The {func_name} function is a part of {alg}, which is used to solve {pro}.
{func_desc}
Here are some example codes and their corresponding performance scores that you can refer to for
predicting heuristic functions:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

[example code 0]
{code_0}
[performance score of example code 0]
{score_0}

[example code 1]
{code_1}
[performance score of example code 1]
{score_1}

[example code 2]
{code_2}
[performance score of example code 2]
{score_2}

[example code 3]
{code_3}
[performance score of example code 3]
{score_3}

[example code 4]
{code_4}
[performance score of example code 4]
{score_4}

[example code 5]
{code_5}
[performance score of example code 5]
{score_5}

[example code 6]
{code_6}
[performance score of example code 6]
{score_6}

[example code 7]
{code_7}
[performance score of example code 7]
{score_7}

[example code 8]
{code_8}
[performance score of example code 8]
{score_8}

[example code 9]
{code_9}
[performance score of example code 9]
{score_9}

Here are some codes that you need to predict:
[code_10]
{code_10}

[code_11]
{code_11}

[code_12]
{code_12}

[code_13]
{code_13}

[code_14]
{code_14}

[code_15]
{code_15}

[code_16]
{code_16}

[code_17]
{code_17}

[code_18]
{code_18}

[code_19]
{code_19}
Predict the performance of the above codes by comparing their semantic meanings with the produced example
codes. Provide a performance score and a confidence number based on your evaluation for each code. The
performance score should be a float within the range [{score_0}, {score_1}], where a lower score indicates a
better-performing heuristic. The confidence number should be a float within the range [0,1], indicating how
similar the semantics of the code is to the most similar example code. Note that you can only give a confidence
level = 1 if the code is semantically identical to the produced example code. Output only the performance score
and confidence number of these codes that need to be predicted, strictly adhering to the following format. No
other words and punctuation should be included in the output.
’’’code_10: score, confidence,
code_11: score, confidence,
code_12: score, confidence,
code_13: score, confidence,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

code_14: score, confidence,
code_15: score, confidence,
code_16: score, confidence,
code_17: score, confidence,
code_18: score, confidence,
code_19: score, confidence’’’

G LLM-DERIVED HEURISTICS

G.1 HEURISTICS PRODUCED BY EOH

In this subsection, we present three final EoH-derived heuristics using Llama3.1-405b for solving
BPP. It can be seen that, when Llama3.1-405b is is adopted, EoH cannot derive intricate heuristics,
which is why it performs poorly in solving BPP.

EoH 1: The ACO heuristic measure produced by Hercules using Llama3.1-405b for solving BPP.

def EoH_1(demand: np.ndarray, capacity: int) -> np.ndarray:
demand_ratio = demand / capacity
return np.tile(np.power(demand_ratio, 2), (demand.shape[0], 1)) * (1 - demand_ratio[:, np.newaxis])

def EoH_2(demand: np.ndarray, capacity: int) -> np.ndarray:
demand_ratio = demand / capacity
return np.tile(demand_ratio, (demand.shape[0], 1)) * (1 - demand_ratio[:, np.newaxis])

def EoH_3(demand: np.ndarray, capacity: int) -> np.ndarray:
residual_capacity = capacity - demand[:, None]
return (demand[None, :] <= residual_capacity) / (1 + np.abs(residual_capacity - demand[None, :]))

G.2 HIGH-PERFORMANCE HEURISTICS PRODUCED BY HERCULES

In this subsection, we present the best heuristics produced by Hercules for all tasks.

Heuristic 1: The high-performance GLS heuristic produced by Hercules using GPT-4o-mini for
solving TSP.
def heuristic(distance_matrix: np.ndarray) -> np.ndarray:

n = distance_matrix.shape[0]
heuristics_scores = np.zeros_like(distance_matrix)

Penalty function for edges based on both distance and connectivity
for i in range(n):

for j in range(n):
if i != j:

Increase penalty for longer distances
heuristics_scores[i, j] = distance_matrix[i, j]

Reduce score if this edge is part of a densely connected horizon
connections = np.sum(distance_matrix[i] < distance_matrix[i, j]) - 1 # excluding itself
heuristics_scores[i, j] *= (1 + connections * 0.1) # penalizing connected edges more

return heuristics_scores

Heuristic 2: The high-performance constructive heuristic produced by Hercules using GPT-3.5-turbo
for solving TSP.
def heuristic(current_node: int, destination_node: int, unvisited_nodes: set, distance_matrix: np.ndarray) ->

int:
"""Select the next node to visit from the unvisited nodes with look-ahead mechanism."""

def calculate_look_ahead_score(node, next_node):
if len(unvisited_nodes) == 1:

return 0
lookahead_nodes = unvisited_nodes - {next_node}
min_lookahead_distance = min([distance_matrix[node][i] for i in lookahead_nodes if i != node])
return -0.1 * min_lookahead_distance

c1, c2, c3, c4 = 0.4, 0.3, 0.2, 0.1
scores = {}
for node in unvisited_nodes:

all_distances = [distance_matrix[node][i] for i in unvisited_nodes if i != node]
average_distance_to_unvisited = np.mean(all_distances)
std_dev_distance_to_unvisited = np.std(all_distances)
lookahead_score = calculate_look_ahead_score(current_node, node)
score = c1 * distance_matrix[current_node][node] - c2 * average_distance_to_unvisited + c3 *

std_dev_distance_to_unvisited - c4 * distance_matrix[destination_node][node] + lookahead_score
scores[node] = score

next_node = min(scores, key=scores.get)
return next_node

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Heuristic 3: The high-performance ACO heuristic measure produced by Hercules using Llama3.1-
405b for solving BPP.
def heuristic(demand: np.ndarray, capacity: int) -> np.ndarray:

"""
This function calculates the heuristics for the Bin Packing Problem (BPP).
Parameters:
demand (np.ndarray): A 1D array representing the sizes of the items.
capacity (int): The capacity of each bin.
Returns:
np.ndarray: A 2D array where heuristics[i][j] represents how promising it is to put item i and item j in

the same bin.
"""
Calculate the complementarity of each pair of items
The complementarity is the difference between the capacity and the sum of the demands of the two items
complementarity = capacity - np.add.outer(demand, demand)

Apply exponential decay to the complementarity values
This reduces the dominance of large values and emphasizes the importance of small values
decayed_complementarity = np.exp(-complementarity / capacity)

Normalize the demand values to be between 0 and 1
normalized_demand = demand / demand.max()

Calculate the heuristic value for each pair of items
The heuristic value is the product of the normalized demands and the decayed complementarity
heuristics = np.outer(normalized_demand, normalized_demand) * decayed_complementarity

Sparsify the matrix by setting unpromising elements to zero
Here, we consider elements with a value less than 0.5 as unpromising
heuristics[heuristics < 0.5] = 0

return heuristics

Heuristic 4: The high-performance ACO heuristic measure produced by Hercules using Gemma2-
27b for solving MKP.
def heuristic(prize: np.ndarray, weight: np.ndarray) -> np.ndarray:

prize_per_unit_weight = prize / np.sum(weight, axis=1)
max_weight_ratios = np.max(weight / np.expand_dims(np.sum(weight, axis=1), axis=1), axis=1)
density_score = prize_per_unit_weight * (1 - max_weight_ratios)

Weight Magnitude Awareness
weight_magnitude = np.sum(weight, axis=1)
magnitude_bonus = np.exp(-weight_magnitude / np.max(weight_magnitude))

Distribution Awareness with Adaptive IQR
density_percentile_75 = np.percentile(density_score, 75)
density_percentile_25 = np.percentile(density_score, 25)
iqr = density_percentile_75 - density_percentile_25
adaptive_iqr_window = 0.3 * iqr
distribution_factor = np.where(density_score > density_percentile_75, 1.2,

np.where(density_score > density_percentile_75 - adaptive_iqr_window, 1, 0.5))

Dimensionality-Weighted Density Scores (Tighter Coupling and Exponent Tuning)
dimensionality_weights = np.sum(weight > 0, axis=1) / weight.shape[1]
dimensionality_bonus = density_score ** (1 + dimensionality_weights * 2)

Sparsity Penalty
sparsity_penalty = np.where(np.sum(weight > 0, axis=1) < weight.shape[1] , 1.2, 1)

heuristics = density_score * magnitude_bonus * distribution_factor * dimensionality_bonus *
sparsity_penalty

heuristics[heuristics < np.percentile(heuristics, 5)] = 0

return heuristics

Heuristic 5: The high-performance POMO heuristic produced by Hercules using GPT-4o-mini for
solving TSP.
def heuristic(distance_matrix: torch.Tensor) -> torch.Tensor:

"""
heuristics computes a refined heuristic for TSP based on the distance matrix by evaluating edges
and applying adaptive, non-linear transformations for better edge prioritization.
The heuristic incorporates clustering dynamics and balances exploration-exploitation strategies.
"""
distance_matrix[distance_matrix == 0] = 1e5
K = 5 # Top-K nearest neighbors for refined edge selection
alpha = 0.9 # Increased weight for promoting close edges
beta = 0.1 # Reduced weighting factor for penalizing distant edges
epsilon = 1e-5 # Small constant to prevent division by zero

Start with heuristic values based on a transformation of the distance matrix
heu = -distance_matrix.clone()

Find the top-K nearest neighbors
_, indices = torch.topk(distance_matrix, k=K, largest=False, dim=1)

Create masks for top-K edges

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

topk_mask = torch.zeros_like(distance_matrix, dtype=torch.bool)
topk_mask.scatter_(1, indices, True)

Adaptive transformations on selected edges with logarithmic weighting
transformation_term = -alpha * torch.log(1 + distance_matrix[topk_mask])
penalty_term = beta * (1 / (distance_matrix[topk_mask] + epsilon))

Combine results for top-K and retain default penalties elsewhere
heu[topk_mask] = transformation_term + penalty_term

Employ edge clustering insights by grouping nearly equal distances
distance_mean = distance_matrix.mean(dim=1, keepdim=True)
distance_std = distance_matrix.std(dim=1, keepdim=True)
cluster_mask = torch.abs(distance_matrix - distance_mean) < distance_std

Apply a refinement for edges within the same cluster with increased adjustment
heu[cluster_mask] += 0.3 # Increased favor for edges within the same cluster

Additional adjustment for edges based on their proximity to the mean distance
solution_proximity = distance_matrix.mean() # Example proximity metric
adjustment_term = heu - (distance_matrix - solution_proximity)
heu += adjustment_term * 0.15 # Slightly refine penalties based on distance to the mean solution proximity

return heu

Heuristic 6: The high-performance POMO heuristic produced by Hercules using GPT-4o-mini for
solving CVRP.
def heuristic(distance_matrix: torch.Tensor, demands: torch.Tensor) -> torch.Tensor:

"""Enhanced adaptive heuristic function for CVRP with refined scoring aggregation and weight parameters."""

Total vehicle capacity, normalized to the highest demand
vehicle_capacity = demands.max()

Initialize distance scores (negative for minimization)
distance_scores = -distance_matrix.clone()

Compute combined demand interactions with broadcasting
demand_matrix = demands.unsqueeze(1) + demands.unsqueeze(0) # Shape (n, n)

Identify edges exceeding vehicle capacity
exceeding_capacity_mask = demand_matrix > vehicle_capacity

Calculate demand scores with adaptive penalties and strong incentives for valid demands
demand_scores = torch.where(

exceeding_capacity_mask,
-5 * (demand_matrix - vehicle_capacity) ** 2, # Higher penalty for exceeding capacity
3 * (vehicle_capacity - demand_matrix) # Incentive for satisfying demands

)

Combine distance and demand scores with an aggregation weight
alpha = 0.7 # Weight for distance scoring
beta = 0.3 # Weight for demand scoring
combined_scores = alpha * distance_scores + beta * demand_scores

Normalize combined scores for consistent indicator range
combined_scores_normalized = (combined_scores - combined_scores.min()) / (combined_scores.max() -

combined_scores.min() + 1e-10)

return combined_scores_normalized

Heuristic 7: The high-performance LEHD heuristic produced by Hercules using GPT-4o-mini for
solving TSP.
def heuristic(distance_matrix: torch.Tensor) -> torch.Tensor:

"""
Improved heuristics for the TSP utilizing adaptive thresholds, robust statistical measures,
and dynamic edge scoring systems to enhance edge desirability evaluation.
"""
distance_matrix[distance_matrix == 0] = 1e5
N = distance_matrix.size(0)

Calculate mean and robust median as a central tendency measure
mean_distances = distance_matrix.mean(dim=1, keepdim=True)
median_distances = distance_matrix.median(dim=1, keepdim=True).values

Calculate edge scores based on how far they deviate from both mean and median
deviations_from_mean = -(distance_matrix - mean_distances) / (mean_distances + 1e-5)
deviations_from_median = -(distance_matrix - median_distances) / (median_distances + 1e-5)

Initialize heuristic scores with a combination of deviations
heuristics_scores = (deviations_from_mean + deviations_from_median) / 2

Apply dynamic proximity boosts for edges that are closer than a weighted threshold
dynamic_threshold = 0.5 * (mean_distances + median_distances)
proximity_boosts = torch.where(distance_matrix <= dynamic_threshold,

(1 / N * dynamic_threshold - distance_matrix).clamp(min=0),
torch.tensor(0.0, device=distance_matrix.device))

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Update heuristic scores with proximity boosts
heuristics_scores += proximity_boosts

return heuristics_scores

Heuristic 8: The high-performance LEHD heuristic produced by Hercules using GPT-4o-mini for
solving CVRP.
#N=200
def heuristic(distance_matrix: torch.Tensor, demands: torch.Tensor) -> torch.Tensor:

"""An improved heuristic implementation for the Capacitated Vehicle Routing Problem (CVRP) with refined
dynamic penalties and transformations."""

vehicle_capacity = 1.0 # Normalize demands with respect to maximum capacity
num_customers = demands.shape[0]

Create a matrix for combined demand
demand_matrix = demands.unsqueeze(1) + demands.unsqueeze(0) # Shape: [n, n]

Create a mask for viable connections based on vehicle capacity
is_viable = (demand_matrix <= vehicle_capacity).float()

Compute distance scores, avoiding self-distances by adding a large penalty
distance_scores = 1 / (distance_matrix + torch.eye(num_customers) * 1e6)

Calculate promising indicators
promising_indicators = is_viable * distance_scores

Dynamic penalties based on excess demand
excess_demand_penalty = (demand_matrix - vehicle_capacity).clamp(min=0)
penalty_factor = excess_demand_penalty ** 2 / (vehicle_capacity ** 2 + 1e-6)
promising_indicators -= penalty_factor * (distance_scores * 2 - 1)

Clustering for improved route planning with a more responsive threshold
cluster_threshold = 0.3 # Adaptive threshold for clustering based on distance
clusters = (distance_matrix < cluster_threshold).float()
promising_indicators *= clusters

Normalize scores to range between -1 and 1
min_value = promising_indicators.min()
max_value = promising_indicators.max()

if max_value != min_value:
promising_indicators = (promising_indicators - min_value) / (max_value - min_value) * 2 - 1

Enhance promising connections via a non-linear transformation
promising_indicators = promising_indicators ** 3 * torch.sign(promising_indicators + 1e-6) # Added epsilon

for stability

return promising_indicators

#N=500
def heuristic(distance_matrix: torch.Tensor, demands: torch.Tensor) -> torch.Tensor:

"""Enhanced heuristic implementation for Capacitated Vehicle Routing Problem that evaluates edge
desirability."""

num_customers = demands.shape[0]
vehicle_capacity = 1.0 # Normalized capacity

Initialize cost matrix
cost_matrix = distance_matrix.clone()

Calculate total demand and initialize demand density
demand_density = demands / demands.sum()
total_demand_matrix = demands.unsqueeze(1) + demands.unsqueeze(0)

Calibrated penalties for demand violation
penalties = (total_demand_matrix > vehicle_capacity).float() * 3.0 # Increased penalties for more emphasis

Evaluate edge desirability based on demand compatibility and distance
mask_compatible = total_demand_matrix <= vehicle_capacity
mask_incompatible = total_demand_matrix > vehicle_capacity

Adjust cost matrix based on compatibility and added penalties
cost_matrix[1:, 1:] = torch.where(mask_compatible[1:, 1:], -distance_matrix[1:, 1:], distance_matrix[1:,

1:] * penalties[1:, 1:])

For depot connections, favorably adjust edges
cost_matrix[0, 1:] = -distance_matrix[0, 1:] * 0.5 # Strongly favor depot-to-customer
cost_matrix[1:, 0] = -distance_matrix[1:, 0] * 0.5 # Strongly favor customer-to-depot

Return normalized desirability
return cost_matrix

#N=1,000
def heuristic(distance_matrix: torch.Tensor, demands: torch.Tensor) -> torch.Tensor:

n = distance_matrix.shape[0]
vehicle_capacity = 1.0 # normalized vehicle capacity
heuristic_scores = torch.zeros_like(distance_matrix)

Create a mask for valid edges based on capacity constraints (non-self-loops)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

demand_within_capacity = (demands.unsqueeze(1) + demands.unsqueeze(0) <= vehicle_capacity) & (
distance_matrix != 0)

Calculate effective distance score
effective_distances = torch.where(distance_matrix > 0, 1.0 / (distance_matrix + 1e-6), torch.zeros_like(

distance_matrix))

Initialize promising edges
heuristic_scores[demand_within_capacity] = effective_distances[demand_within_capacity]

Assign stronger penalties for infeasible edges
heuristic_scores[˜demand_within_capacity] = -200.0 # Strong penalty for infeasible edges

Scale scores for promising paths using min-max normalization
positive_scores = heuristic_scores[heuristic_scores > 0]

if positive_scores.numel() > 0:
min_positive = positive_scores.min()
max_positive = positive_scores.max()

Normalize to [0, 1]
heuristic_scores[heuristic_scores > 0] = (heuristic_scores[heuristic_scores > 0] - min_positive) / (

max_positive - min_positive)

Apply additional penalties based on demand
demand_excess = demands.unsqueeze(1) - vehicle_capacity
demand_excess[demand_excess < 0] = 0 # No penalty for nodes within capacity
heuristic_scores -= demand_excess * 15.0 # Apply strong penalty for edges leading to high demand

return heuristic_scores

28

	Introduction
	Related Work
	LLM-based Heuristic Generation Algorithms
	LLM-based Performance Prediction Methods
	Neural Combinatorial Optimization Solvers

	Heuristic Generation with Hercules and Hercules-P
	Core Abstraction Prompting (CAP)
	Performance Prediction Prompting (PPP)

	Experimental Results
	Deriving Penalty Heuristics for GLS to Solve TSP
	Deriving Constructive Heuristics to Solve TSP
	Deriving Heuristic Measures for ACO to Solve BPP and MKP
	Reshaping Attention Scores for NCO to Solve TSP and CVRP
	Ablation Studies

	Conclusion
	Derivation of Information Gain Formula in CAP
	The Search Directions Produced by RP and CAP
	The Adopted Crossover, Elitist Mutation Operators, and Other EC Definitions
	Detailed Hyper-parameters and Experimental Setups
	Additional Experiment Results
	Comparison of the Derived Heuristics and SOTA Algorithms
	Ablation Study on Different ACO Hyper-parameter
	Additional Experiments of Reshaping Attention Scores for NCO
	Search Time Comparison of Diverse LLM-based HG Algorithms

	Prompts Used in Hercules and Hercules-P
	LLM-derived Heuristics
	Heuristics Produced by EoH
	High-performance Heuristics Produced by Hercules

