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ABSTRACT

Real-world image super-resolution (SR) tasks often do not have paired datasets,
which limits the application of supervised techniques. As a result, the tasks are
usually approached by unpaired techniques based on Generative Adversarial
Networks (GANs), which yield complex training losses with several regularization
terms, e.g., content or identity losses. We theoretically investigate optimization
problems which arise in such models and find two surprizing observations. First,
the learned SR map is always an optimal transport (OT) map. Second, we
theoretically prove and empirically show that the learned map is biased, i.e., it does
not actually transform the distribution of low-resolution images to high-resolution
ones. Inspired by these findings, we propose an algorithm for unpaired SR which
learns an unbiased OT map for the perceptual transport cost. Unlike the existing
GAN-based alternatives, our algorithm has a simple optimization objective
reducing the need for complex hyperparameter selection and an application of
additional regularizations. At the same time, it provides a nearly state-of-the-art
performance on the large-scale unpaired AIM19 dataset.

1 INTRODUCTION

Figure 1: Super-resolution of a squirrel using
Bicubic upsample, OTS (ours) and DASR
(Wei et al., 2021) methods (4×4 upsample,

370×800 crops).

The problem of image super-resolution (SR) is to
reconstruct a high-resolution (HR) image from its
low-resolution (LR) counterpart. In many modern
deep learning approaches, SR networks are trained in
a supervised manner by using synthetic datasets con-
taining LR-HR pairs (Lim et al., 2017, M4.1); (Zhang
et al., 2018b, M4.1). For example, it is common to
create LR images from HR with a simple downscal-
ing, e.g., bicubic (Ledig et al., 2017, M3.2). However,
such an artificial setup barely represents the practical
setting, in which the degradation is more sophisti-
cated and unknown (Maeda, 2020). This obstacle
suggests the necessity of developing methods capa-
ble of learning SR maps from unpaired data without
considering prescribed degradations.
Contributions. We study the unpaired image SR task and its solutions based on Generative Adver-
sarial Networks (Goodfellow et al., 2014, GANs) and analyse them from the Optimal Transport (OT,
see (Villani, 2008)) perspective.

1. We investigate the GAN optimization objectives regularized with content losses, which are
common in unpaired image SR methods (M5, M4). We prove that the solution to such objectives is
always an optimal transport map. We theoretically and empirically show that such maps are biased
(M7.1), i.e., they do not transform the LR image distribution to the true HR image distribution.

2. We provide an algorithm to fit an unbiased OT map for perceptual transport cost (M6.1) and apply
it to the unpaired image SR problem (M7.2). We establish connections between our algorithm
and regularized GANs using integral probability metrics (IPMs) as a loss (M6.2).

Our algorithm solves a minimax optimization objective and does not require extensive hyperparameter
search, which makes it different from the existing methods for unpaired image SR. At the same time,
the algorithm provides a nearly state-of-art performance in the unpaired image SR problem (M7.2).
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Notation. We use X ,Y to denote Polish spaces and P(X ),P(Y) to denote the respective sets of
probability distributions on them. We denote by Π(P,Q) the set of probability distributions on X ×Y
with marginals P and Q. For a measurable map T : X → Y , we denote the associated push-forward
operator by T#. The expression ∥ · ∥ denotes the usual Euclidean norm if not stated otherwise. We
denote the space of Q-integrable functions on Y by L1(Q).

2 UNPAIRED IMAGE SUPER-RESOLUTION TASK

In this section, we formalize the unpaired image super-resolution task that we consider (Figure 2).

Figure 2: The task of super-resolution we
consider.

Let P and Q be two distributions of LR and HR
images, respectively, on spacesX and Y , respec-
tively. We assume that P is obtained from Q via
some unknown degradation. The learner has ac-
cess to unpaired random samples from P and Q.
The task is to fit a map T : X → Y satisfying
T#P = Q which inverts the degradation.

We highlight that the image SR task is theoretically ill-posed for two reasons.

1. Non-existence. The degradation filter may be non-injective and, consequently, non-invertible.
This is a theoretical obstacle to learn one-to-one SR maps T .

2. Ambiguity. There might exist multiple maps satisfying T#P = Q but only one inverting the
degradation. With no prior knowledge about the correspondence between P and Q, it is unclear
how to pick this particular map.

The first issue is usually not taken into account in practice. Most existing paired and unpaired SR
methods learn one-to-one SR maps T , see (Ledig et al., 2017; Lai et al., 2017; Wei et al., 2021).

The second issue is typically softened by regularizing the model with the content loss. In the
real-world, it is reasonable to assume that HR and the corresponding LR images are close. Thus, the
fitted SR map T is expected to only slightly change the input image. Formally, one may require the
learned map T to have the small value of

Rc(T )
def
=

∫
Y
c
(
x, T (x)

)
dP(x), (1)

where c : X × Y → R+ is a function estimating how different the inputs are. The most popular
example is the ℓ1 identity loss, i.e, formulation (1) for X = Y = RD and c(x, y) = ∥x− y∥1.

More broadly, lossesRc(T ) are typically called content losses and incorporated into training objec-
tives of methods for SR (Lugmayr et al., 2019a, M3.4), (Kim et al., 2020, M3) and other unpaired
tasks beside SR (Taigman et al., 2016, M4), (Zhu et al., 2017, M5.2) as regularizers. They stimulate
the learned map T to minimally change the image content.

3 BACKGROUND ON OPTIMAL TRANSPORT

In this section, we give the key concepts of the OT theory (Villani, 2008) that we use in our paper.

Primal form. For two distributions P ∈ P(X ) and Q ∈ P(Y) and a transport cost c : X × Y → R,
Monge’s primal formulation of the optimal transport cost is as follows:

Cost(P,Q)
def
= inf

T#P=Q

∫
X
c
(
x, T (x)

)
dP(x), (2)

where the minimum is taken over the measurable functions (transport maps) T : X → Y that map P
to Q, see Figure 3a. The optimal T ∗ is called the optimal transport map.

Note that (2) is not symmetric, and this formulation does not allow mass splitting, i.e., for some P,Q
there may be no map T that satisfies T#P = Q. Thus, (Kantorovitch, 1958) proposed the relaxation:

Cost(P,Q)
def
= inf

π∈Π(P,Q)

∫
X×Y

c(x, y)dπ(x, y), (3)

where the minimum is taken over the transport plans π, i.e., the measures on X ×Y whose marginals
are P and Q (Figure 3b). The optimal π∗ ∈ Π(P,Q) is called the optimal transport plan.
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(a) Monge’s formulation of OT. (b) Kantorovich’s formulation of OT.
Figure 3: Monge’s and Kantorovich’s formulations of Optimal Transport.

With mild assumptions on the transport cost c(x, y) and distributions P, Q, the minimizer π∗ of
(3) always exists (Villani, 2008, Theorem 4.1) but might not be unique. If π∗ is of the form
[id, T ∗]#P ∈ Π(P,Q) for some T ∗, then T ∗ is an optimal transport map that minimizes (2).

Dual form. The dual form (Villani, 2003) of OT cost (3) is as follows:

Cost(P,Q) = sup
f

[ ∫
X
f c(x)dP(x) +

∫
Y
f(y)dQ(y)

]
; (4)

here sup is taken over all f ∈L1(Q), and f c(x)= inf
y∈Y

[
c(x, y)−f(y)

]
is the c-transform of f .

4 RELATED WORK

UNPAIRED IMAGE SUPER-RESOLUTION. Existing approaches to unpaired image SR mainly solve
the problem in two steps. One group of approaches learn the degradation operation at the first step
and then train a super-resolution model in a supervised manner using generated pseudo-pairs, see
(Bulat et al., 2018; Fritsche et al., 2019). Another group of approaches (Yuan et al., 2018; Maeda,
2020) firstly learn a mapping from real-world LR images to “clean” LR images, i.e., HR images,
downscaled using predetermined (e.g., bicubic) operation, and then a mapping from “clean" LR
to HR images. Most methods are based on CycleGAN (Zhu et al., 2017), initially designed for
the domain transfer task, and utilize cycle-consistency loss. Methods are also usually endowed
with several other losses, e.g. content (Kim et al., 2020, M3), identity (Wang et al., 2021, M3.2) or
perceptual (Lugmayr et al., 2019a, M3.4).
OPTIMAL TRANSPORT IN GENERATIVE MODELS. The majority of existing OT-based generative
models employ OT cost as the loss function to update the generative network, e.g., see (Arjovsky
et al., 2017). These methods are out of scope of the present paper, since they do not compute OT maps.
Existing methods to compute the OT map approach the primal (2), (3) or dual form (4). Primal-form
methods (Lu et al., 2020; Xie et al., 2019; Bousquet et al., 2017; Balaji et al., 2020) optimize complex
GAN objectives such as (5) and provide biased solutions (M5, M7.1). For a comprehensive overview
of dual-form methods, we refer to (Korotin et al., 2021). The authors conduct an evaluation of OT
methods for the quadratic cost c(x, y) = ∥x− y∥2. According to them, the best performing method
is ⌊MM:R⌉. It is based on the variational reformulation of (4), which is a particular case of our
formulation (12). Extensions of ⌊MM:R⌉ appear in (Rout et al., 2022; Fan et al., 2021).

5 BIASED OPTIMAL TRANSPORT IN GANS

Figure 4: Illustration of Lemma 1. The
solution Tλ of (5) is an OT map from P to
Tλ
#P. In general, Tλ

#P ̸= Q (Thm. 1).

In this section, we establish connections between GAN
methods regularized by content losses (1) and OT.
Such GANs are popular in a variety of tasks beside
SR, e.g., style transfer (Huang et al., 2018). The the-
oretical analysis in this section holds for these tasks
as well. However, since we empirically demonstrate
the findings on a practically important SR problem,
we keep the corresponding notation throughout M5. A
common approach to solve the unpaired SR via GANs
is to define a loss function D : P(Y) × P(Y) → R+ and train a generative neural network T via
minimizing

inf
T :X 7→Y

[
D(T#P,Q) + λRc(T )

]
. (5)

The term D(T#P,Q) ensures that the generated distribution T#P of SR images is close to the true
HR distribution Q; the second termRc(T ) is the content loss (1). For convenience, we assume that
D(Q,Q) = 0 for all Q ∈ P(Y). Two most popular examples ofD are the Jensen–Shannon divergence
(Goodfellow et al., 2014), i.e., the vanilla GAN loss, and the Wasserstein-1 loss (Arjovsky & Bottou,
2017). In unpaired SR methods, the optimization objectives are typically more complex than (5). In
addition to the content or identity loss (1), several other regularizations are usually introduced, see M4.
In Appendix F, we show that the learning objectives of popular SR methods can be represented as (5).
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For a theoretical analysis, we stick to the basic formulation regularized with generic content loss
(5). It represents the simplest and straightforward SR setup. We prove the following lemma, which
connects the solution Tλ of (5) and optimal maps for transport cost c(x, y).
Lemma 1 (The solution of the regularized GAN is an OT map). Assume that λ > 0 and the minimizer
Tλ of (5) exists. Then Tλ is an OT map between P and Qλ def

= Tλ
#P for cost c(x, y), i.e., it minimizes

inf
T#P=Qλ

Rc(T ) = inf
T#P=Qλ

∫
X
c
(
x, T (x)

)
dP(x).

Proof. Assume that Tλ is not an optimal map between P and Tλ
#P. Then there exists a more optimal

T † satisfying T †
#P = Tλ

#P andRc(T
†) < Rc(T

λ). We substitute this T † to (5) and derive

D(T †
#P,Q) + λRc(T

†) = D(Tλ
#P,Q) + λRc(T

†) < D(Tλ
#P,Q) + λRc(T

λ),

which is a contradiction, since Tλ is a minimizer of (5), but T † provides the smaller value.

Our Lemma 1 states that the minimizer Tλ of a regularized GAN problem is always an OT map
between P and the distribution Qλ generated by the same Tλ from P. However, below we prove that
Qλ ̸= Q, i.e., Tλ does not actually produce the distribution of HR images (Figure 4). To begin with,
we state and prove the following auxiliary result.
Lemma 2 (Reformulation of the regularized GAN via distributions). Under the assumptions of
Lemma 1, let X = Y be a compact subset of RD with negligible boundary. Let P ∈ P(X ) be
absolutely continuous, Q∈P(Y) and c(x, y)=∥x− y∥p with p > 1. Then (5) is equivalent to

inf
Q′∈P(Y)

F(Q′)
def
= inf

Q′∈P(Y)

[
D(Q′,Q) + λ · Cost(P,Q′)

]
, (6)

and the solutions of (5) and (6) are related as Qλ = Tλ
#P, where Qλ is the minimizer of (6).

Proof. We derive
inf

T :X 7→Y

[
D(T#P,Q) + λRc(T )

]
= inf

T :X 7→Y

[
D(T#P,Q) + λ

∫
X
c
(
x, T (x)

)
dP(x)

]
= (7)

inf
T :X 7→Y

[
D(T#P,Q) + λ · Cost(P, T#P)

]
= inf

Q′∈P(Y)

[
D(Q′,Q) + λ · Cost(P,Q′)

]
. (8)

In transition from (7) to (8), we use the definition of OT cost (2) and our Lemma 1, which states that
the minimizer Tλ of (5) is an OT map, i.e.,

∫
X c

(
x, Tλ(x)

)
dP(x) = Cost(P, Tλ

#P). The equality in
(8) follows from the fact that P is abs. cont. and c(x, y) = ∥x− y∥p: for all Q′ ∈ P(Y) there exists
a (unique) solution T to the Monge OT problem (2) for P,Q′ (Santambrogio, 2015, Thm. 1.17).

In the following Theorem, we prove that, in general, Qλ ̸= Q for the minimizer Qλ of (6).
Theorem 1 (The distribution solving the regularized GAN problem is always biased). Under the
assumptions of Lemma 2, assume that the first variation (Santambrogio, 2015, Definition 7.12) of
the functional Q′ 7→ D(Q′,Q) at the point Q′ = Q exists and is equal to zero. This means that
D(Q+ ϵ∆Q) = D(Q,Q) + o(ϵ) for every signed measure ∆Q of zero total mass and ϵ ≥ 0 such
that Q+ ϵ∆Q ∈ P(Y). Then, if P ̸= Q, then Q′ = Q does not deliver the minimum to F .

Before proving Theorem 1, we highlight that the assumption about the vanishing first variation of
Q′ 7→ D(Q′,Q) at Q′ = Q is reasonable. In Appendix A, we prove that this assumption holds for
the popular GAN discrepancies D(Q′,Q), e.g., f -divergences (Nowozin et al., 2016), Wasserstein
distances (Arjovsky et al., 2017), and Maximum Mean Discrepancies (Li et al., 2017).

Proof. Let ∆Q = P − Q denote the difference measure of P and Q. It has zero total mass and
∀ϵ ∈ [0, 1] it holds that Q+ϵ∆Q = ϵP+(1−ϵ)Q is a mixture distribution of probability distributions
P and Q. As a result, for all ϵ ∈ [0, 1], we have

F(Q+ ϵ∆Q) = D(Q+ ϵ∆Q,Q) + λ · Cost(P,Q+ ϵ∆Q) =

D(Q,Q) + o(ϵ) + λ · Cost(P, ϵP+ (1− ϵ)Q) ≤ (9)
o(ϵ) + λ · ϵ · Cost(P,P) + λ · (1− ϵ) · Cost(P,Q) = o(ϵ) + λ · (1− ϵ) · Cost(P,Q) = (10)

λ · Cost(P,Q)︸ ︷︷ ︸
=F(Q)

−λ · ϵ · Cost(P,Q)︸ ︷︷ ︸
>0

+o(ϵ),

where in transition from (9) to (10), we use D(Q,Q) = 0 and exploit the convexity of the OT cost
(Villani, 2003, Theorem 4.8). In (10), we use Cost(P,P) = 0. We see that F(Q+ϵ∆Q) is smaller
then F(Q) for sufficiently small ϵ > 0, i.e., Q′=Q does not minimize F .
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Corollary 1. Under the assumptions of Theorem 1, the solution Tλ of regularized GAN (5) is biased,
i.e., it does not satisfy Tλ

#P = Q and does not transform LR images to true HR ones.

Additionally, we provide a toy example that further illustrates the issue with the bias.

Example 1. Consider X = Y = R1. Let P = 1
2δ0 + 1

2δ2, Q = 1
2δ1 + 1

2δ3 be distributions
concentrated at {0, 2} and {1, 3}, respectively. Put c(x, y) = |x− y| to be the content loss. Also, let
D to be the OT cost for |x− y|2. Then for λ = 0 there exist two maps between P and Q that deliver
the same minimal value for (5), namely T (0) = 1, T (2) = 3 and T (0) = 3, T (2) = 1. For λ > 0,
the optimal solution of the problem (5) is unique, biased and given by T (0) = 1− λ

2 , T (2) = 3− λ
2 .

Proof. Let T (0) = t0 and T (2) = t2. Then T#P = 1
2δt0 +

1
2δt2 , and now (5) becomes

min
t0,t2

[
min

{1
2
(t0 − 1)2 +

1

2
(t2 − 3)2;

1

2
(t0 − 3)2 +

1

2
(t2 − 1)2

}
+ λ

{1
2
|0− t0|+

1

2
|2− t2|

}]
,

where the second term is Rc(T ) and the first term is the OT cost D(T#P,Q) expressed as the
minimum over the transport costs of two possible transport maps t0 7→ 1; t2 7→ 3 and t0 7→ 3; t2 7→ 1.
The minimizer can be derived analytically and equals t0 = 1− λ

2 , t2 = 3− λ
2 .

In Example 1, Tλ
#P = Qλ never matches Q exactly for λ > 0. In M7.1, we conduct an evaluation of

maps obtained via minimizing objective (5) on the synthetic benchmark by (Korotin et al., 2021). We
empirically demonstrate that the bias exists and it is indeed a notable practical issue.

Remarks. Throughout this section, we enforce additional assumptions on (5), e.g., we restrict our
analysis to content losses c(·, ·), which are powers of Euclidean norms ∥ · ∥p. This is needed to make
the derivations concise and to be able to exploit the available results in OT. We think that the provided
results hold under more general assumptions and leave this question open for future studies.

6 UNBIASED OPTIMAL TRANSPORT SOLVER

In M6.1, we derive our algorithm to compute OT maps. Importantly, in M6.2, we detail its differences
and similarities with regularized GANs, which we discussed in M5. Our algorithm is suitable for
general costs and generalizes the OT algorithm for the quadratic cost by (Rout et al., 2022).

6.1 MINIMAX OPTIMIZATION ALGORITHM

We derive a minimax optimization problem to recover the optimal transport map from P to Q. We
expand the dual form (4). To do this, we first note that∫
X
f c(x)dP(x) =

∫
X

inf
y∈Y
{c(x, y)− f(y)} dP(x) = inf

T :X→Y

∫
X

{
c
(
x, T (x)

)
− f

(
T (x)

)}
dP(x). (11)

Here we replace the optimization over points y ∈ Y with an equivalent optimization over the
functions T : X → Y . This is possible due to the Rockafellar interchange theorem (Rockafellar,
1976, Theorem 3A). Substituting (11) to (4), we have

Cost(P,Q) = sup
f

inf
T :X→Y

[ ∫
Y
f(y)dQ(y) +

∫
X

{
c
(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

]
(12)

We denote the expression under the sup inf by L(f, T ). Now we show that by solving the saddle
point problem (12) one can obtain the OT map T ∗.
Lemma 3 (OT maps solve the saddle point problem). Assume that the OT map T ∗ between P,Q for
cost c(x, y) exists. Then, for every optimal potential f∗ ∈ arg supf

[
infT :X→Y L(f, T )

]
of (12),

T ∗ ∈ arg inf
T :X→Y

∫
X

{
c
(
x, T (x)

)
− f

(
T (x)

)}
dP(x). (13)

Proof. Since f∗ is optimal, we have infT :X→Y L(f∗, T ) = Cost(P,Q). We use T ∗
#P = Q and the

change of variables y = T ∗(x) to derive
∫
X f∗(T ∗(x)

)
dP =

∫
Y f∗(y)dQ. Substituting this equality

into (12), we obtain L(f∗, T ∗) =
∫
X c

(
x, T ∗(x)

)
dP(x) = Cost(P,Q), i.e., (13) holds.

Our Lemma 3 states that one can solve a saddle point problem (12) and extract an OT map T ∗ between
P,Q from the optimal pair (f∗, T ∗). Analogous result but only for the (Q-embedded) quadratic cost
can be found in (Rout et al., 2022). For general P,Q, the arg infT set for an optimal f∗ might contain
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Algorithm 1: OT solver to compute the OT map between P and Q for transport cost c(x, y).
Input :distributions P,Q accessible by samples; mapping network Tθ : X → Y;

potential fω : X → R; transport cost c : X × Y → R; number KT of inner iters;
Output :approximate OT map (Tθ)#P ≈ Q;
repeat

Sample batches X ∼ P, Y ∼Q;
Lf ← 1

|Y |
∑
y∈Y

fω(y)− 1
|X|

∑
x∈X

fω
(
Tθ(x)

)
;

Update ω by using ∂Lf

∂ω to maximize Lf ;
for kT = 1, 2, . . . ,KT do

Sample batch X ∼ P;
LT ← 1

|X|
∑
x∈X

[
c
(
x, Tθ(x)

)
− fω

(
Tθ(x)

)]
;

Update θ by using ∂LT

∂θ to minimize LT ;

until not converged;

not only OT map T ∗ but other functions as well. However, our experiments (M7) show that this is
not a serious issue in practice. To solve the optimization problem (12), we approximate the potential
f and map T with neural networks fω and Tθ, respectively. We train the networks with stochastic
gradient ascent-descent by using random batches from P,Q.
The practical optimization procedure is detailed in Algorithm 1. We call this procedure an Optimal
Transport Solver (OTS).

6.2 REGULARIZED GANS VS. OPTIMAL TRANSPORT SOLVER

In this subsection, we discuss similarities and differences between our optimization objective (12)
and the objective of regularized GANs (5). We establish an intriguing connection between GANs that
use integral probability metrics (IPMs) as D. A discrepancy D :P(Y)×P(Y)→R+ is an IPM if

D(Q1,Q2)= sup
f∈F

[∫
Y
f(y)dQ2(y)−

∫
Y
f(y)dQ1(y)

]
, (14)

where the maximization is performed over some certain class F of functions (discriminators)
f : Y → R. The most popular example of D is the Wasserstein-1 loss (Arjovsky & Bottou, 2017),
where F is a class of 1-Lipschitz functions. For other IPMs, see (Mroueh et al., 2017, Table 1).

Substituting (14) to (5) yields the saddle-point optimization problem for the regularized IPM GAN:

inf
T :X→Y

[
sup
f∈F

{∫
Y
f(y)dQ(y)−

∫
X
f
(
T (x)

)
dP(x)

}
+ λ

∫
X
c
(
x, T (x)

)
dP(x)}

]
= inf

T :X→Y
sup
f∈F

[ ∫
Y
f(y)dQ(y) +

∫
X

{
λ · c

(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

]
. (15)

We emphasize that the expression inside (15) for λ = 1 is similar to the expression in OTS optimiza-
tion (12). Below we highlight the key differences between (12) and (15).

First, in OTS the map T is a solution to the inner optimization problem, while in IPM GAN the
generator T is a solution to the outer problem. Swapping infT and supf is prohibited and, in general,
yields a different problem, e.g., 1=infx supy cos(x+y) ̸= supy infx cos(x+y)=−1.

Second, in OTS the optimization over potential f is unconstrained, while in IPM GAN it must belong
to F , some certain restricted class of functions. For example, when D is the Wasserstein-1 (W1)
IPM, one has to use an additional penalization, e.g., the gradient penalty (Gulrajani et al., 2017). This
further complicates the optimization and adds hyperparameters which have to be carefully selected.

Third, the optimization of IPM GAN requires selecting a parameter λ that balances the content loss
Rc and the discrepancy D. In OTS for all costs λ · c(x, y) with λ > 0, the OT map T ∗ is the same.

To conclude, even for λ = 1, the IPM GAN problem does not match that of OTS. Table 1
summarizes the differences and the similarities between OTS and regularized IPM GANs.
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Optimal Transport Solver (Ours) Regularized IPM GAN

Minimax
optimization

objective

sup
f

inf
T :X→Y

[ ∫
Y f(y)dQ(y)+∫

X

{
c
(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

] inf
T :X→Y

sup
f∈F

[ ∫
Y f(y)dQ(y)+∫

X

{
λ · c

(
x, T (x)

)
− f

(
T (x)

)}
dP(x)

]
Transport map T

(generator)
T ∗ solves the inner problem (for optimal f∗);

it is an OT map from P to Q (Lemma 3)
T ∗ solves the outer problem;

it is a biased OT map (M5, M7.1)

Potential f
(discriminator) Unconstrained f ∈ L1(Q)

Constrained f ∈ F ⊂ L1(Q)
A method to impose the constraint is needed.

Regularization
weight λ N/A Hyperparameter choice required

Table 1: Comparison of the optimization objectives of OTS (ours) and regularized IPM GAN.

7 EVALUATION

In M7.1, we assess the bias of regularized IPM GANs by using the Wasserstein-2 benchmark (Korotin
et al., 2021). In M7.2, we evaluate our method on the large-scale unpaired AIM-19 dataset from
(Lugmayr et al., 2019b). In Appendix D, we test it on the CelebA dataset (Liu et al., 2015). The code
is written in PyTorch. We list the hyperparameters for Algorithm 1 in Table 4 of Appendix C.
Neural network architectures. We use WGAN-QC’s (Liu et al., 2019) ResNet (He et al., 2016)
architecture for the potential fω . In M7.1, where input and output images have the same size, we use
UNet1 (Ronneberger et al., 2015) as a transport map Tθ. In M7.2, the LR input images are 4× 4 times
smaller than HR, so we use EDSR network (Lim et al., 2017).

Transport costs. In M7.1, we use the mean squared error (MSE), i.e., c(x, y) = ∥x−y∥2

dim(Y) . It is
equivalent to the quadratic cost but is more convenient due to the normalization. In M7.2, we consider
c(x, y) = b(Up(x), y), where b is a cost between the bicubically upsampled LR image xup = Up(x)
and HR image y. We test b defined as MSE and the perceptual cost using features of a pre-trained
VGG-16 network (Simonyan & Zisserman, 2014), see Appendix C for details.

7.1 ASSESSING THE BIAS IN REGULARIZED GANS

In this section, we empirically confirm the insight of M5 that the solution Tλ of (5) may not satisfy
Tλ
#P = Q. Note if Tλ

#P = Q, then by our Lemma 1, we conclude that Tλ ≡ T ∗, where T ∗ is an OT
map from P to Q for c(x, y). Thus, to access the bias, it is reasonable to compare the learned map
Tλ with the ground truth OT map T ∗ for P, Q.

For evaluation, we use the Wasserstein-2 benchmark (Korotin et al., 2021). It provides high-
dimensional continuous pairs P, Q with an analytically known OT map T ∗ for the quadratic cost
c(x, y) = ∥x− y∥2. We use their “Early" images benchmark pair. It simulates the image deblurring
setup, i.e., X = Y is the space of 64× 64 RGB images, P is blurry faces, Q is clean faces satisfying
Q = T ∗

#P, where T ∗ is an analytically known OT map, see the 1st and 2nd lines in Figure 5.

To quantify the learned maps from P to Q, we use PSNR, SSIM, LPIPS (Zhang et al., 2018a), FID
(Heusel et al., 2017) metrics. Similar to (Wei et al., 2021), we use the AlexNet-based (Krizhevsky
et al., 2012) LPIPS. FID and LPIPS are practically the most important since they better correlate with
the human perception of the image quality. We include PSNR, SSIM as popular evaluation metrics,
but they are known to badly measure perceptual quality (Zhang et al., 2018a; Nilsson & Akenine-
Möller, 2020). Due to this, higher PSNR, SSIM values do not necessarily mean better performance.
We calculate metrics using scikit-image for SSIM and open source implementations for PSNR2,
LPIPS3 and FID4. In this section, we additionally use the L2-UVP (Korotin et al., 2021, M4.2) metric.

On the benchmark, we compare OTS (12) and IPM GAN (5). We use MSE as the content loss c(x, y).
In IPM GAN, we use the Wasserstein-1 (W1) loss with the gradient penalty λGP = 10 (Gulrajani
et al., 2017) as D. We do 10 discriminator updates per 1 generator update and train the model for
15K generator updates. For fair comparison, the rest hyperparameters match those of our algorithm.

1github.com/milesial/Pytorch-UNet
2github.com/photosynthesis-team/piq
3github.com/richzhang/PerceptualSimilarity
4github.com/mseitzer/pytorch-fid
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Figure 5: Comparison of OTS (ours), regularized IPM GAN on the Wasserstein-2 benchmark. The
1st line shows blurry faces x ∼ P, the 2nd line, clean faces y = T ∗(x), where T ∗ is the OT map

from P to Q. Next lines show maps from P to Q fitted by the methods.

Metrics/
Method

Regularized IPM GAN (WGAN-GP, λGP = 10) OTS
(ours)λ = 0 λ = 10−1 λ = 100 λ = 101 λ = 102 λ = 103 λ = 104 λ = 105

L2-UVP ↓ 25.2% 16.7% 17.7% 12.0% 4.0% 14.0% 28.5% 30.5% 1.4%
FID↓ 57.24 46.23 40.04 42.89 24.25 187.95 332.7 334.7 15.65

PSNR↑ 17.90 19.76 19.34 20.81 25.58 19.91 16.90 16.52 30.02
SSIM↑ 0.565 0.655 0.656 0.689 0.859 0.702 0.520 0.498 0.933
LPIPS↓ 0.135 0.093 0.099 0.081 0.031 0.172 0.429 0.446 0.013

Table 2: Quantitative evaluation of restoration maps fitted by the regularized IPM GAN,
OTS (ours) using the Wasserstein-2 images benchmark (Korotin et al., 2021).

We train the regularized WGAN-GP with various coefficients of content loss λ ∈ {0, 10−1, . . . , 105}
and show the learned maps Tλ and the map T̂ obtained by OTS in Figure 5.
Results. The performance of the regularized IPM GAN significantly depends on the choice of the
content loss value λ. For high values λ ≥ 103, the learned map is close to the identity as expected.
For small values λ ≤ 101, the regularization has little effect, and WGAN-GP solely struggles to fit a
good restoration map. Even for the best performing λ = 102 all metrics are notably worse than for
OTS. Importantly, OTS decreases the burden of parameter searching as there is no parameter λ.

7.2 LARGE-SCALE EVALUATION

For evaluating our method at a large-scale, we employ the dataset by (Lugmayr et al., 2019b) of AIM
2019 Real-World Super-Resolution Challenge (Track 2). The train part contains 800 HR images
with up to 2040 pixels width or height and 2650 unpaired LR images of the same shape. They are
constructed using artificial, but realistic, image degradations. We quantitatively evaluate our method
on the validation part of AIM dataset that contains 100 pairs of LR-HR images.
Baselines. We compare OTS on AIM dataset with the bicubic upsample, FSSR (Fritsche et al., 2019)
and DASR (Wei et al., 2021) methods. FSSR method is the winner of AIM 2019 Challenge; DASR is
a current state-of-the-art method for unpaired image SR. Both methods utilize the idea of frequency
separation and solve the problem in two steps. First, they train a network to generate LR images.
Next, they train a super-resolution network using generated pseudo-pairs. Differently to FSSR, DASR
also employs real-world LR images for training SR network taking into consideration the domain gap
between generated and real-world LR images. Both methods utilize several losses, e.g., adversarial
and perceptual, either on the entire image or on its high/low frequency components. For testing FSSR
and DASR, we use their official code and pretrained models.
Implementation details. We train the networks using 128×128 HR, 32×32 LR random patches of im-
ages augmented via random flips, rotations. We conduct separate experiments using EDSR as the trans-
port map and either MSE or perceptual cost, and denote them as OTS (MSE), OTS (VGG) respectively.
Metrics. We calculate PSNR, SSIM, LPIPS, FID. FID is computed on 32×32 patches of LR test
images upsampled by the method in view w.r.t. random patches of test HR. We use 50k patches to
compute FID. The other metrics are computed on the entire upsampled LR test and HR test images.

8
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Figure 6: Qualitative results of OTS (ours), bicubic upsample, FSSR and DASR
on AIM 2019 dataset (350×350 crops).

Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicubic upsample 178.59 22.39 0.613 0.688

OTS (MSE) 139.17 19.73 0.533 0.456

OTS (VGG) 89.04 20.96 0.605 0.380

FSSR 53.92 20.83 0.514 0.390

DASR 124.09 21.79 0.577 0.346

Table 3: Comparison of OTS (ours) with FSSR, DASR
on AIM19 dataset. The 1st, 2nd, 3rd best results are

highlighted in green, blue and underlined, respectively.

Experimental results are given in Table 3,
Figure 6. The results show that the usage
perceptual cost function in OTS boosts
performance. According to FID, OTS with
perceptual cost function beats DASR. On the
other hand, it outperforms FSSR in PSNR,
SSIM and, importantly, LPIPS. Note that
bicubic upsample outperforms all the methods,
according only to PSNR and SSIM, which
have issues stated in M7.1. According to visual
analysis, OTS with the perceptual cost better
deals with noise artifacts. Additional results
are given in Appendix E. We also demonstrate the bias issue of FSSR and DASR in Appendix B.

8 DISCUSSION

Significance. Our analysis connects content losses in GANs with OT and reveals the bias issue.
Content losses are used in a wide range of tasks besides SR, e.g., in the style transfer and domain
adaptation tasks. Our results demonstrate that GAN-based methods in all these tasks may a priori
lead to biased solutions. In certain cases it is undesirable, e.g., in medical applications (Bissoto
et al., 2021). Failing to learn true data statistics (and learning biased ones instead), e.g., in the
super-resolution of MRI images, might lead to a wrong diagnosis made by a doctor due to SR
algorithm drawing inexistent details on the scan. Thus, we think it is essential to emphasize and
alleviate the bias issue, and provide a way to circumvent this difficulty.
Potential Impact. We expect our OT approach to improve the existing applications of image super-
resolution. Importantly, it has less hyperparameters, uses smaller number of neural networks than
many existing methods (see Table 5 in Appendix C for comparison), and is end-to-end — this should
simplify its usage in practice. Besides, our method is generic and presumably can be applied to other
unpaired learning tasks as well. Studying such applications is a promising avenue for the future work.
Limitations. Our method fits a one-to-one optimal mapping (transport map) for super-resolution
which, in general, might not exist. Besides, not all optimal solutions of our optimization objective are
guaranteed to be OT maps. Moreover, our method requires solving the saddle point problem. Thus, it
might encounter training issues similar to those of the GAN-based approaches. These limitations
suggest the need for further theoretical analysis and improvement of our method for optimal transport.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with applications in
generative modeling and domain adaptation. Advances in Neural Information Processing Systems,
33:12934–12944, 2020.

Alceu Bissoto, Eduardo Valle, and Sandra Avila. Gan-based data augmentation and anonymization for
skin-lesion analysis: A critical review. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1847–1856, 2021.

Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard
Schoelkopf. From optimal transport to generative modeling: the vegan cookbook. arXiv preprint
arXiv:1705.07642, 2017.

Adrian Bulat, Jing Yang, and Georgios Tzimiropoulos. To learn image super-resolution, use a gan to
learn how to do image degradation first. European Conference on Computer Vision, 09 2018.

Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, and Haomin Zhou. Scalable computation of
monge maps with general costs. arXiv preprint arXiv:2106.03812, 2021.

Manuel Fritsche, Shuhang Gu, and Radu Timofte. Frequency separation for real-world super-
resolution. In IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems,
pp. 5767–5777, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pp. 6626–6637, 2017.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image
translation. In Proceedings of the European conference on computer vision (ECCV), pp. 172–189,
2018.

Leonid Kantorovitch. On the translocation of masses. Management Science, 5(1):1–4, 1958.

Gwantae Kim, Jaihyun Park, Kanghyu Lee, Junyeop Lee, Jeongki Min, Bokyeung Lee, David K.
Han, and Hanseok Ko. Unsupervised real-world super resolution with cycle generative adversarial
network and domain discriminator. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 1862–1871, June 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
Advances in Neural Information Processing Systems, 34, 2021.

10



Under review as a conference paper at ICLR 2023

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, pp. 1097–1105, Red Hook, NY, USA, 2012. Curran
Associates Inc.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep laplacian pyramid
networks for fast and accurate super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 624–632, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4681–4690, 2017.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. MMD GAN:
Towards deeper understanding of moment matching network. In Advances in Neural Information
Processing Systems, pp. 2203–2213, 2017.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 136–144, 2017.

Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein GAN with quadratic transport cost.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 4832–4841, 2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Guansong Lu, Zhiming Zhou, Jian Shen, Cheng Chen, Weinan Zhang, and Yong Yu. Large-scale
optimal transport via adversarial training with cycle-consistency. arXiv preprint arXiv:2003.06635,
2020.

Andreas Lugmayr, Martin Danelljan, and Radu Timofte. Unsupervised learning for real-world super-
resolution. 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp.
3408–3416, 2019a.

Andreas Lugmayr, Martin Danelljan, Radu Timofte, Manuel Fritsche, Shuhang Gu, Kuldeep Purohit,
Praveen Kandula, Maitreya Suin, AN Rajagoapalan, Nam Hyung Joon, et al. Aim 2019 challenge
on real-world image super-resolution: Methods and results. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 3575–3583. IEEE, 2019b.

Shunta Maeda. Unpaired image super-resolution using pseudo-supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 291–300, 2020.

Anton Mallasto, Jes Frellsen, Wouter Boomsma, and Aasa Feragen. (q, p)-Wasserstein GANs:
Comparing ground metrics for Wasserstein GANs. arXiv preprint arXiv:1902.03642, 2019.

Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan. arXiv preprint
arXiv:1711.04894, 2017.

Jim Nilsson and Tomas Akenine-Möller. Understanding ssim. arXiv preprint arXiv:2006.13846,
2020.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training generative neural samplers
using variational divergence minimization. In Advances in neural information processing systems,
pp. 271–279, 2016.

R Tyrrell Rockafellar. Integral functionals, normal integrands and measurable selections. In Nonlinear
operators and the calculus of variations, pp. 157–207. Springer, 1976.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

11



Under review as a conference paper at ICLR 2023

Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport maps.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=5JdLZg346Lw.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu. Equivalence of
distance-based and rkhs-based statistics in hypothesis testing. The annals of statistics, pp. 2263–
2291, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. arXiv
preprint arXiv:1611.02200, 2016.

Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Wei Wang, Haochen Zhang, Zehuan Yuan, and Changhu Wang. Unsupervised real-world super-
resolution: A domain adaptation perspective. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4318–4327, 2021.

Yunxuan Wei, Shuhang Gu, Yawei Li, Radu Timofte, Longcun Jin, and Hengjie Song. Unsupervised
real-world image super resolution via domain-distance aware training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13385–13394,
June 2021.

Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, and Hongyuan Zha. On scalable and efficient
computation of large scale optimal transport. volume 97 of Proceedings of Machine Learning
Research, pp. 6882–6892, Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http:
//proceedings.mlr.press/v97/xie19a.html.

Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yong bing Zhang, Chao Dong, and Liang Lin. Unsupervised
image super-resolution using cycle-in-cycle generative adversarial networks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 814–81409,
2018.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018a.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In ECCV, 2018b.

Yuanbo Zhou, Wei Deng, Tong Tong, and Qinquan Gao. Guided frequency separation network for
real-world super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 428–429, 2020.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

12

https://openreview.net/forum?id=5JdLZg346Lw
https://openreview.net/forum?id=5JdLZg346Lw
http://proceedings.mlr.press/v97/xie19a.html
http://proceedings.mlr.press/v97/xie19a.html


Under review as a conference paper at ICLR 2023

A FIRST VARIATIONS OF GAN DISCREPANCIES VANISH AT THE OPTIMUM

We demonstrate that the first variation of Q′ 7→ D(Q′,Q) is equal to zero at Q′ = Q for common
GAN discrepancies D. This suggests that the corresponding assumption of our Theorem 1 is relevant.

To begin with, for a functional G : P(Y)→ R ∪ {∞}, we recall the definition of its first variation.
A measurable function δG[Q] : Y → R∪{∞} is called the first variation of G at a point Q ∈ P(Y),
if, for every measure ∆Q on Y with zero total mass (

∫
Y 1d∆Q(y) = 0),

G(Q+ ϵ∆Q) = G(Q) + ϵ

∫
Y
δG[Q](y)d∆Q(y) + o(ϵ) (16)

for all ϵ ≥ 0 such that Q + ϵ∆Q is a probability distribution. Here for the sake of simplicity we
suppressed several minor technical aspects, see (Santambrogio, 2015, Definition 7.12) for details.
Note that the first variation is defined up to an additive constant.

Now we recall the definitions of three most popular GAN discrepancies and demonstrate that their first
variation is zero at an optimal point. We consider f -divergences (Nowozin et al., 2016), Wasserstein
distances (Arjovsky et al., 2017), and Maximum Mean Discrepancies (Li et al., 2017).

Case 1 (f -divergence). Let f : R+ → R be a convex and differentiable function satisfying f(1) = 0.
The f -divergence between Q′,Q ∈ P(Y) is defined by

Df (Q′,Q)
def
=

∫
Y
f

(
dQ′(y)

dQ(y)

)
dQ(y). (17)

The divergence takes finite value only if Q′ ≪ Q, i.e., Q′ is absolutely continuous w.r.t. Q. Vanilla
GAN loss (Goodfellow et al., 2014) is a case of f -divergence (Nowozin et al., 2016, Table 1).

We define G(Q′)
def
= Df (Q′,Q). For Q′ = Q and some ∆Q such that Q+ ϵ∆Q ∈ P(Y) we derive

G(Q+ ϵ∆Q) =

∫
Y
f

(
dQ(y)

dQ(y)
+ ϵ

d∆Q(y)

dQ(y)

)
dQ(y) =

∫
Y
f

(
1 + ϵ

d∆Q(y)

dQ(y)

)
dQ(y) (18)

=

∫
Y
f(1)dQ(y) +

∫
Y
f ′(1)

d∆Q(y)

dQ(y)
dQ(y) + o(ϵ) = G(Q) +

∫
Y
f ′(1)d∆Q(y) + o(ϵ), (19)

where in transition from (18) to (19), we consider the Taylor series w.r.t. ϵ at ϵ = 0. We see that
δG[Q](y) ≡ f ′(1) is constant, i.e., the first variation of Q′ 7→ Df (Q′,Q) vanishes at Q′ = Q.

Case 2 (Wasserstein distance). If in OT formulation (3) the cost function c(x, y) equals ∥x − y∥p

with p ≥ 1, then
[
Cost(P,Q)

]1/p
is called the Wasserstein distance (Wp). Generative models which

use Wp
p as the discrepancy are typically called the Wasserstein GANs (WGANs). The most popular

case is p = 1 (Arjovsky et al., 2017; Gulrajani et al., 2017), but more general cases appear in related
work as well, see (Liu et al., 2019; Mallasto et al., 2019).

The first variation of G(Q′)
def
= Wp

p(Q′,Q) at a point Q′ is given by G[Q′](y) = (f∗)c(y), where
f∗ is the optimal dual potential (provided it is unique up to a constant) in (4) for a pair (Q′,Q),
see (Santambrogio, 2015, M7.2). Our particular interest is to compute the optimal potential (f∗)c at
Q′ = Q. We recall (4) and use Wp

p(Q,Q) = 0 to derive

Wp
p(Q,Q) = 0 = sup

f

[ ∫
X
f c(y′)dQ′(y′) +

∫
Y
f(y)dQ(y)

]
.

One may see that f∗ ≡ 0 attains the supremum (its c-transform (f∗)c is also zero). Thus, if (f∗)c ≡ 0
is a unique potential (up to a constant), the first variation of Q′ 7→Wp

p(Q′,Q) at Q′=Q vanishes.

Case 3 (Maximum Mean Discrepancy). Let k : Y × Y → R be a positive definite symmetric kernel.
The (square) of the Maximum Mean Discrepancy between Q′,Q is given by

MMD2
k(Q′,Q)

def
=

∫
Y×Y

k(y1, y2)d
[
(Q−Q′)× (Q−Q′)

]
(y1, y2)

=

∫
Y×Y

k(y1, y2)d(Q′ ×Q′)(y1, y2)− 2

∫
Y×Y

k(y1, y2)d(Q′ ×Q)(y1, y2) + Const(Q) (20)
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see (Sejdinovic et al., 2013, Equation 3.3). The first variation of the quadratic in Q′ term is given by
y 7→ 2 ·

∫
Y k(y, y2)dQ′(y2), see (Santambrogio, 2015, M7.2). The second term is linear in Q′ and

its first variation is simply y 7→ (−2) ·
∫
Y k(y, y2)dQ(y2). When Q′ = Q, the sum of these terms is

zero. That is, the first variation of the functional Q′ 7→ MMD2
k(Q′,Q) vanishes at Q′ = Q.

B ASSESSING THE BIAS OF METHODS ON AIM19 DATASET

Dataset Test HR Test LR Bicubic OTS (VGG) FSSR DASR

Variance 0.24
±0.01

0.17
±0.01

0.15
±0.02

0.20
±0.03

0.17
±0.02

0.15
±0.02

Figure 7: Color palettes and their variance for Test HR, LR datasets and solutions of
Bicubic Upscale, OTS, FSSR, DASR methods on AIM19.

We additionally demonstrate the bias issue by comparing color palettes of HR images and super-
resolution results of different methods, see Figure 7. We construct palettes by choosing random image
pixels from dataset images and representing them as an RGB point cloud in [0, 1]3 ⊂ R3. Figure 7
shows that OTS (d) captures large contrast of HR (a) images (variance of its palette), while FSSR
(e), DASR (f), Bicubic Upscale (c) palettes are less contrastive and closer to LR (b). We construct
palettes 100 times to evaluate their average contrast (variance). The metric quantitatively confirms
that our OTS method better captures the contrast of HR dataset, while GAN-based methods (FSSR
and DASR) are notably biased towards LR dataset statistics (low contrast).

C TRAINING DETAILS

Perceptual cost. In 7.2 we test following perceptual cost as b:

b(xup, y)=MSE(xup, y)+1/3 ·MAE(xup, y)+1/50·
∑

k∈{3,8,15,22}

MSE
(
fk(x

up), fk(y)
)
,

where fk denotes the features of the kth layer of a pre-trained VGG-16 network (Simonyan &
Zisserman, 2014), MAE is the mean absolute error MAE(x, y) = ∥x−y∥1

dim(Y) .

Dynamic transport cost. In the preliminary experiments, we used bicubic upsampling as the “Up"
operation. Later, we found that the method works better if we gradually change the upsampling. We
start from the bicubic upsampling. Every kc iterations of fω (see Table 4), we change the cost to
c(x, y) = b

(
T ′
θ(x), y

)
, where T ′

θ is a fixed frozen copy of the currently learned SR map Tθ.
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Hyperparameters. For EDSR, we set the number of residual blocks to 64, the number of features
to 128, and the residual scaling to 1. For UNet, we set the base factor to 64. The training details
are given in Table 4. We provide a comparison of the hyperparameters of FSSR, DASR and OTS
(ours) in Table 5. In contrast to FSSR and DASR, our method does not contain a degradation part.
This helps to notably reduce the amount of tunable hyperparameters.

Optimizer. We employ Adam (Kingma & Ba, 2014).

Computational complexity. Training OTS with EDSR as the transport map and the perceptual
transport cost on AIM 2019 dataset takes ≈ 4 days on a single Tesla V100 GPU.

Experiment dim(X ) dim(Y) f T kT lrf lrT
Initial
cost

Total
iters (f )

Cost
update
every

Batch
size

Benchmark
(M7.1) 3 × 64 × 64 3 × 64 × 64

ResNet

UNet 10

10−4 10−4

MSE 10K − 64

Celeba
(MD) 3 × 16 × 16 3 × 64 × 64

Bilinear + UNet 15
Bicubic + MSE

100K 25K 64
EDSR 15 100K 25K 64

AIM-19
(M7.2)

3 × 32 × 32
(patches)

3 × 128 × 128
(patches)

EDSR 15 50K 25K 8
EDSR 10 Bicubic + VGG 50K 20K 8

Table 4: Hyperparameters that we use in the experiments with our Algorithm 1.

Method Degradation part Super-resolution part Total

FSSR

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

4 neural networks;
4 optimizers;
4 schedulers;

2 adversarial losses;
2 content losses (ℓ1+perceptual)

DASR

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

2 neural networks;
2 optimizers;
2 schedulers;

1 adversarial loss;
1 content loss (ℓ1+perceptual)

4 neural networks;
4 optimizers;
4 schedulers;

2 adversarial losses;
2 content losses (ℓ1+perceptual)

OTS
(ours) −

2 neural networks;
2 optimizers;

1 cost (ℓ2+ℓ1+perceptual)

2 neural networks;
2 optimizers;

1 cost (ℓ2+ℓ1+perceptual)

Table 5: Comparison of hyperparameters used in FSSR, DASR and OTS (ours) methods.

D IMAGE SUPER-RESOLUTION OF FACES

We conduct an experiment using CelebA (Liu et al., 2015) faces to test the applicability of OT for
unpaired SR. We test our Algorithm 1 with MSE as the cost and UNet or EDSR as the transport map.

Figure 8: Qualitative results of OTS (ours)
on CelebA.

Method FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic

upsample 130.72 22.73 0.756 0.303

OTS (ours)
UNet 12.32 22.10 0.740 0.058

OTS (ours)
EDSR 15.87 22.33 0.747 0.054

Table 6: Comparison of OTS (ours) with the
bicubic upsampling on CelebA dataset. The 1st
and 2nd best results are highlighted in green and

blue, respectively.

Pre-processing and train-test split. We resize images to 64×64 px. We adopt the unpaired train-test
split from (Rout et al., 2022, M5.2). We split the original HR dataset in 3 parts A, B, C containing
90K, 90K, 22K samples, respectively. We apply the bicubic downsample to each image and obtain
the LR dataset (16×16 faces). For training, we use LR part A, HR part B. For testing, we use parts C.
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Metrics. We compute PSNR, SSIM, LPIPS and FID metrics on the test part, see Table 6.

E ADDITIONAL RESULTS ON AIM19

Figure 9: Additional qualitative results of OTS (ours), bicubic upsample, FSSR and
DASR on AIM 2019 (800×800 crops).
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Figure 10: Additional qualitative results of OTS (ours), bicubic upsample, FSSR and DASR on AIM
2019. The sizes of crops on the 1st and 2nd images are 350×350 and 800×800, respectively.
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F CONNECTION BETWEEN GAN OBJECTIVES AND EQUATION (5)

Typical objectives of GAN-based approaches consist of multiple losses − usually one adversarial
and several content losses. To make the exposition simple, in our paper, we represented all the
content losses as a single loss c(·, ·). Below we provide several examples showing how the objectives
of popular GAN-based approaches to unpaired image SR could be viewed as (5). For all of these
methods, our Lemma 1 applies without any changes. We include in brackets the number of papers
citations according to Google Scholar to show that chosen methods are widely used.

FaceSR (2018, 284 citations) The paper of (Bulat et al., 2018) presents one of the first GAN-based
approaches to unpaired image SR problem. The method is composed of two steps. First, it learns
a degradation between unpaired HR and LR images. Then it employs a second GAN to learn a
supervised mapping between paired generated LR and corresponding HR images. The objective of
the unpaired step (see their Eq. (1)) is as follows:

l = αlpixel︸ ︷︷ ︸
content loss

+ βlGAN.︸ ︷︷ ︸
adversarial loss

Here lpixel is the MSE loss between the generated LR image and downsampled HR. Thus, the objective
of this method exactly follows Equation (5).

CinCGAN (2018, 400 citations) The method of (Yuan et al., 2018) is an other pioneering GAN-based
approach to unpaired image SR problem, which establishes a different to FaceSR group of two-step
methods. First, it uses one CycleGAN to learn a mapping between given noisy LR images and
downsampled HR ("clean LR") images. Then, a second CycleGAN fine-tunes a mapping between
real LR and HR images. The objective for the first GAN (see their Eq. (5)) is as follows:

LLR
total = LLR

GAN︸ ︷︷ ︸
adversarial loss

+w1LLR
cyc + w2LLR

idt + w3LLR
TV︸ ︷︷ ︸

content loss

.

Here LLR
cyc is the cycle-consistency loss5, LLR

idt − l1 identity loss, and LLR
TV − total variation loss.

FSSR (Winner of the AIM Challenge on Real-World SR (Lugmayr et al., 2019b), 2019, 127 citations)
FSSR (Fritsche et al., 2019) method employs a similar to FaceSR strategy. It firstly learns a mapping
between downsampled HR images and given unpaired LR images, and then uses the generated pairs
to learn a supervised SR model. The objective of the unpaired step (see their Eq. (6)) is defined by:

Ld = 0.005Ltex, d︸ ︷︷ ︸
adversarial loss

+Lcol, d + 0.01Lper, d︸ ︷︷ ︸
content loss

,

where the texture (adversarial) loss Ltex, d and the color (l1 identity) loss Lcol, d are applied to low
frequencies of the images, while the perceptual loss Lper, d − to the features of the full images.

DASR (2021, 51 citations) DASR (Wei et al., 2021) structure is also based on the similar to FSSR
principles and its two-step structure. In contrast to FSSR, a SR network is trained in a partially
supervised manner using not only generated, but also real LR images. The objective of the fully
unpaired degradation learning step (see their Eq. (4)) is as follows:

LDSN = αLcon + βLper︸ ︷︷ ︸
content loss

+ γLG
adv.︸ ︷︷ ︸

adversarial loss

Here the adversarial loss LG
adv is defined on high frequencies of the image, while the content Lcon (l1

identity) and the perceptual Lper losses are defined on full images and their features respectively.

ESRGAN-FS (2020, 13 citations) ESRGAN-FS is an other two-step approach based on the principle
of learning the degradation, see (Zhou et al., 2020). The objective of its unpaired degradation learning
step (see their Eq. (4)) is as follows:

Ltotal = λt1 · Llow + λt2 · Lper︸ ︷︷ ︸
content loss

+ λt3 · Lhigh︸ ︷︷ ︸
adversarial loss

.

Here Llow (l1 identity) loss is applied to low frequencies of the images, the perceptual loss Lper − to
the features of the full images, while Lhigh (adversarial loss) − high frequencies of the images.

5LLR
cyc is defined as the MSE loss between given LR image x and G2(G1(x)), where G1 learns to map real

LR images to "clean" ones and G2 learns an opposite mapping. For a fixed G2 this loss can be considered as a
part of the content loss.
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