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ABSTRACT

As Al becomes more personal, e.g., Agentic Al, there is an increasing need for
personalizing models for various use cases. Personalized federated learning (PFL)
enables each client to collaboratively leverage other clients’ knowledge for better
adaptation to the task of interest, without privacy risks. Despite its potential, exist-
ing PFL methods remain confined to rather simplified scenarios where data and
models are the same across clients. To move towards realistic scenarios, we propose
FedMosaic, a method that jointly addresses data and model heterogeneity with a
task-relevance-aware model aggregation strategy to reduce parameter interference,
and a dimension-invariant module that enables knowledge sharing across hetero-
geneous architectures without huge computational cost. To mimic the real-world
task diversity, we propose a multi-modal PFL benchmark spanning 40 distinct
tasks with distribution shifts over time. The empirical study shows that FedMosaic
outperforms the state-of-the-art PFL methods, excelling in both personalization
and generalization capabilities under challenging, realistic scenarios.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) with billions of parameters often employ centralized
training on massive, heterogeneous datasets using high-performance computing resources (Hurst et al.|
2024; |Yang et al.} [2024a; Team et al.,|2024). Such centralized training raises significant concerns
about data privacy and high transmission costs (Alvi et al., [2022; Yang et al.,|2023). Moreover, as
the demand for personalization grows, further fine-tuning is essential to adapt these centrally trained
general-purpose models to individual user preferences (Lau et al., 2024} |Zhang, [2024).

To address both privacy and personalization, personalized federated learning (PFL) (Smith et al.,
2017) has emerged as a decentralized alternative. Recent PFL methods demonstrate that collabora-
tively leveraging knowledge from other clients significantly improves personalization to the task of
interest (Scott et al., [2024; | Xie et al., [2024). Unfortunately, despite its potential, most PFL studies
overlook the heterogeneity inherent in real-world clients (Zhang et al., | 2024b; |Bujotzek et al., [2025)),
where clients typically have distinct models depending on their computational resources (i.e., model
heterogeneity) and deal with highly personalized data (i.e., data heterogeneity), as in agentic Al.

Although some recent work addresses client heterogeneity, it mostly considers either model hetero-
geneity (Fang et al., [2023; Wu et al.,2024a; |Yi et al.| 2023)) or data heterogeneity (Chen et al.,2024;
Xie et al.,2024; Tamirisa et al.,2024). Some tackle both, but in less realistic, simplified setups, e.g.,
assigning each client a model with different LoRA (Hu et al. 2022) adapter ranks while keeping the
base architecture identical (Cho et al.l 2024} Bai et al.,[2024), or lacking data heterogeneity by simply
splitting a single dataset into non-i.i.d. partitions (L1 & Wang, [2019; |Alam et al., 2022).

As a realistic setup tackling both challenges, illustrated in Fig. [T} we consider (i) data heterogeneity,
where clients tackle highly personalized tasks, and (i) model heterogeneity, where clients employ
models of different families (e.g., Llama-based (Grattafiori et al., 2024)- vs. Qwen-based (Yang et al.|
2024a) MLLMs) and scales (e.g., 1B vs. 3B). To mimic the real-world data heterogeneity, we first
introduce DRAKE, a comprehensive benchmark for multi-modal PFL with 40 diverse tasks. Unlike
prior works that simulate heterogeneity via non-i.i.d. splits of a single dataset (Xie et al.,[2024; [Long
et al.,|2024; Morafah et al.|[2024)), our benchmark assigns each client a distinct multi-modal task (e.g.,
visual question answering or visual reasoning), while also incorporating temporal distribution shifts
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Figure 1: Overview of the heterogeneous personalized federated learning scenarios. L; refers to
the local model for the 7., client. Clients focus on different tasks (i.e., data heterogeneity) where new
data are encountered continuously. In addition to data heterogeneity, model architectures may differ
across clients (i.e., model heterogeneity) due to differences in hardware constraints.

inherent in the real world. To the best of our knowledge, this is the first benchmark for multi-modal
FL that considers data heterogeneity, as well as distribution shifts.

To address the real-world challenge, we propose FedMosaic that jointly addresses both data and model
heterogeneity in the realistic scenario. Under data heterogeneity, naive model averaging (McMahan
et al., 2017) often degrades performance (Wu et al., 2024cj |Yadav et al.| 2023) due to interference
between models trained on unrelated tasks. To mitigate the interference, inspired by the fact that
models trained on similar tasks have less conflict (Gurulingan et al.,|[2022)), we propose RELevance-
guided Aggregation (RELA), which constructs a customized global model for each client based on
task-relatedness. This enables related clients to share knowledge more effectively.

Under model heterogeneity, aggregating model weights is infeasible since it requires identical
architectures across clients (Fan et al.} 2024). Although federated distillation (FD) has been proposed
to aggregate heterogeneous models’ knowledge using logits from public data (Xie et al.| 2024; Li
et al.l 2024e)), domain discrepancies between public and client data hinder effective knowledge
transfer (Wang et al., [2023)), and logit extraction is computationally expensive (Malladi et al., 2023)),
especially for large models. Instead, we propose PQ-LoRA, which incorporates dimension-invariant
modules P € R"™" and Q € R", whose dimensions depend only on low-rank size r, while
independent of hidden dimension, making them shareable among heterogeneous models.

‘We summarize our contributions as follows:

* Proposing DRAKE, a comprehensive multi-modal federated learning benchmark.

* Proposing RELA, a model aggregation strategy that promotes selective knowledge sharing among
models learning relevant tasks only, addressing data heterogeneity.

* Proposing PQ-LoRA, shareable across heterogeneous models, addressing model heterogeneity.

2 RELATED WORK

Personalized Federated Learning. Federated learning aims to train a strong global model in a
distributed manner while preserving privacy by sharing model weights instead of raw data (Yurdem
et al.,[2024; |Hu et al., [2024)). With the growing importance of model personalization, which allows
large foundation models to adapt to individual user preferences, contexts, and needs (Zhang et al.,
2024c]), personalized federated learning (PFL) (Smith et al.,|2017) has emerged. PFL aims to train a
personalized model on each client’s local data by leveraging shared knowledge from other clients to
enhance both personalization and generalization while preserving privacy (Xie et al., 2024)).

Data Heterogeneity. Prior work simulates data heterogeneity by partitioning a single image classifi-
cation dataset (e.g., MNIST (Deng| |2012)) into non-i.i.d. subsets per client. However, such label-skew
fails to capture real-world data heterogeneity (Borazjani et al.,|2025)), where clients tackle different
tasks across vision and language domains (Madni et al., 2024). Recent work (Chen et al., [2024)
moves beyond label skew by assigning different VQA datasets to clients, but remains confined to
a single task type and single-image inputs. In contrast, our proposed benchmark, DRAKE, spans a
broader range of multi-modal tasks, including VQA, visual reasoning, and visual relation, covering
single- and multi-image inputs, while also modeling temporal distribution shifts within each client,
reflecting the evolving and non-stationary nature of real-world data (Garg et al., 2024)).

Model Heterogeneity. Federated distillation (FD) transfers knowledge across heterogeneous models
by sharing logits on public data. FedMD (L1 & Wang}||2019) and PerAda (Xie et al.,|2024) average
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logits from local models, while FedMKT (Fan et al.}2025)) uses those with the lowest loss. However,
public-client domain gaps limit transferability (Wang et al.,[2023)), and logit sharing introduces both
privacy risks (Lyu et al.l 2022) and high computational cost for large models (Malladi et al.l 2023|).

Recent works address the limitations of FD through direct model aggregation for heterogeneous
models under LoRA-based fine-tuning. HETLORA (Cho et al.,2024) and FLEXLORA (Bai et al.,
2024)) handle varying LoRA ranks through zero-padding/truncation and SVD-based redistribution, re-
spectively. Although they address the varying rank sizes, both assume (i) identical hidden dimensions
and (ii) uniform depths across clients, limiting their applicability to heterogeneous architectures that
differ in both dimensions and depths (Yaol[2024). In contrast, our proposed PQ-LoRA accommodates
both dimensional and depth heterogeneity, enabling more general heterogeneous setups.

3 PRELIMINARIES

Low-Rank Adaptation (LoRA). LoRA (Hu et al., [2022)) assumes that fine-tuning updates lie in
a low-rank space. Building on this assumption, LoRA constrains the weight update AW for a
pre-trained weight matrix W,, € R% *41 through low rank decomposition using matrices A € R"*9
and B € R4 X" where the rank r < min(do, d). During training, only A and B are updated, while
W, remains frozen. With LoRA, the original output ho = W,h; € R for an input hidden state
h; € R% is modified by incorporating the low-rank update as ho = (W, +AW)h; = (W,+BA)h;.

Problem Statement of Personalized Federated Learning. We consider a PFL setup with NV clients,
where each client ¢ € [IN] has a local dataset D;. Reflecting real-world scenarios where data arrives

incrementally (Seo et al.| 20245 2025)), we assume that each client receives a continuous stream of
(@) @) @ , @)

samples (z7”,y; ), (5 ,Ys ), - - -. Given a set of model architectures W = {W7,..., Wk}, each
client ¢ selects its local pre-trained model W(W-) = V(4), based on its hardware constraints, where
V is a mapping function V' : {1,..., N} — W. For efficiency, each client trains and shares only

its local LoRA adapter L;, while freezing W, ;y. Let f(W(;,), Li, z) denote the forward pass that
outputs logits for input z, and let the loss function be £( f (W, ;y, L;, x),y). The empirical loss for
client i over its local dataset D; can be defined as J;(L;) = ﬁ S eaen: L Wiy, Lis ), ).

The objective of PFL is then formulated as mingz, . 1} % Zi\; Ji(L;).

4 PROPOSED METHOD

To address the real-world heterogeneities, i.e., data heterogeneity and model heterogeneity, that hinder
client collaborations in personalized federated learning, we propose FedMosaic, illustrated in Fig. [2]
comprising of: RELA (RELevance-guided Aggregation) and PQ-LoRA. RELA mitigates data
heterogeneity by restricting knowledge sharing to local models trained on related tasks, thus reducing
interference during aggregation (i.e., merging by parameter averaging). Under model heterogeneity,
model aggregation becomes infeasible. To aggregate different models, we introduce PQ-LoRA,
which incorporates shareable modules P € R"*", () € R" in LoRA, whose dimensions depend only
on low-rank size r, not on the hidden dimension size. We provide a pseudocode in Sec.[A.2§]

4.1 RELEVANCE-GUIDED AGGREGATION

Model aggregation builds a single model that excels in multiple tasks without accessing raw data (Wei
et al.,2025). It is thus widely used to construct a shared global model in federated learning. However,
naively averaging models trained on different tasks often causes parameter interference (Yadav
et al., 2023} |Yang et al., |2024b)). Recent work shows that models solving similar tasks share more
transferable knowledge with fewer conflicts (Gurulingan et al.|[2022). Motivated by this, we replace
the uniform averaging with a relevance-guided strategy that assigns a higher aggregation weight to
clients with closer task relations, providing each client with a customized global model.

Client-Wise Gradient g;. To measure task relevance between clients, we calculate the similarity of
client-wise gradients. Formally, we calculate g;, the gradient for iy, client as follows:

g9i = EZCDi [vWeé(Z)] ) (1)
where D; is iy, client’s data stream, ¢ refers to the loss function, z C D; is a mini-batch, and W is a
small-scale frozen pre-trained model W. For efficiency, we (i) use gradients from a small-scale frozen
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Figure 2: Overview of proposed FedMosaic. On every round, the local PQ-LoRA L; fine-tuned
during local training and the sanitized last layer gradient g; are uploaded from the ¢y, client to server.
The last layer gradient g is extracted from the small pre-trained model W, which is then EMA
updated to g and then compressed to g, sequentially. Note that the gradient computation is performed
every m iterations. In server, the sanitized gradients g; are used to measure client task relevance and
to build customized global PQ-LoRA G, which is distributed and kept frozen. h and W), denote the
hidden state input and the pre-trained weight, respectively. 3 is a learnable gating parameter that
balances the output from the global and local models, and || is the number of layers in the model.

pre-trained model W that provides sufficient representativeness with reduced overhead (Lee et al.,
2024), and (ii) compute only the last-layer gradient, as preceding layers’ gradients are proportional to
it based on the chain rule (Seo et al.} 2025). Moreover, we compute the gradient g; every m batch
iterations rather than every batch, thus incurring negligible additional cost, as shown in Sec.[A.§]
Note that we measure gradients from a frozen pre-trained model, not the actual training model. This
is because in heterogeneous PFL, clients train on diverse tasks, and gradient similarities from models
trained on heterogeneous data may not capture task similarity (Tang et al.,|2020; |[Evans et al.| 2024).

Decayed Client-Wise Gradient §;. However, g; may not reflect learned task relevance under shifting
data distributions, as it is an expectation over the entire data stream D; (Eq. E]), i.e., unweighted
average of gradients across all time points, ignoring forgetting of the model over time. Consequently,
client 1 learning A — B and client 2 learning B — A yield the same g;, despite retaining different
knowledge due to catastrophic forgetting (McCloskey & Cohen, |1989; Ratclitf], [1990). To reflect
the model knowledge shifts under distribution shifts, we introduce decayed gradient g;, computed
using the exponential moving average (EMA) of past gradients, inspired by the exponential decay of
knowledge in forgetting (Mahto et al., 2021} |Chien et al., 2021} |Seo et al.,|2025). Formally, for the 4,
client, §;(t) with EMA ratio « at timestep ¢ is defined recursively as:

9i(t) = (1 —a)-gi(t — 1) + - gi(), @
where g;(t) = V., £(z;) is the gradient vector for the given batch z; C D; at timestep ¢.

Sanitized Client-Wise Gradient g,. Transmitting EMA-aggregated gradients (i.e., §;) rather than
per-sample gradients mitigates gradient-based privacy attacks, as gradient mixing (i.e., aggregating)
increases resistance to gradient inversion (Mo et al.| 2021). We further prevent privacy risks by
transmitting sanitized gradient g; through: (i) adding Gaussian noise € to g; and (ii) applying gradient
compression (i.e., randomly selecting only N, % of the gradient vector dimensions from g; € R?), as
randomly sampled dimensions can approximate full-gradient distributions (Li et al.,[2023b) while
making gradient inversion substantially more difficult than using full gradients (Zhu et al.,[2019) and
simultaneously reducing transmission costs (detailed in Sec.[A.9). Formally, g; is defined as:

gi(t) = M © (gi(t) + pe), €~ N(0,14) 3)
where M € {0, 1} is the binary mask for random subsampling and y denotes the noise scale.

Using the sanitized client-wise gradients {1, . .., g } from N clients, we construct a client-relevence
matrix S € RV*Y  where Sij = co08(gi, §j). The customized global module for the iy, client, G;, is
then constructed by weighted aggregation of local modules £ = {Ly, ..., Ly} as follows:

ocos(3:.,37) /7

G, = 7L7 ij = ’ )
, gwj gy Wij SN eeos(andn) /7 v

where 7 denotes the softmax temperature and cos(+, -) denotes cosine similarity.
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4.2 PQ-LoRA

. hO —— —
LoRA matrices A € R"™4 and B € Rdox" e — /®\B
depend on model-specific hidden dimensions Pretr_airr:ed - / FE==QcR
d; and do, preventing direct aggregation across | '°9 dtsxd o _T Wy "’XDP eR™
different models. To enable knowledge shar- |Wr €R“™| /)  greas 7
ing among heterogeneous architectures, we in- by ~d_—* -~
troduce PQ-LoRA, which inserts dimension- (a) Conventional LoRA (b) PQ-LoRA

invariant modules P € R™*" and ) € R" be-
tween A and B. Their dimensions depend only Figure 3: Illustration of (a) Conventional LoRA
on the low-rank r, making them shareable across and (b) PQ-LoRA. While A and B are trainable
heterogeneous models. We illustrate a compar- in conventional LoRA, PQ-LoRA freezes both,
ison of PQ-LoRA with conventional LoRA in updating only the dimension-invariant modules
Fig. 3] Formally, PQ-LoRA outputs ho as: P € R™" and Q € R" during training.

ho = Wyhy + B(PAh; + Q) 5)

for input hidden states iy and pre-trained weight W,,. After local training on each client, the P and
@ modules are aggregated and shared between heterogeneous clients for knowledge sharing.

Although P and () are shareable across heterogeneous architectures having different dimensions, two
main challenges hinder their aggregation: (i) depth heterogeneity - heterogeneous architectures often
differ in depth, making it non-trivial to determine which layers across models should be aggregated;
and (ii) weight misalignment - interpolating weights with different optimization trajectories can
degrade performance (Jordan et al., 2023} |Stoica et al.| 2025)). We address these challenges with two
strategies: (i) block-wise aggregation, which aligns layers at the same relative depth, and (ii) weight
alignment, ensuring heterogeneous models share the same initialization. For simplicity, we consider
aggregating two heterogeneous models, though it naturally extends to multiple heterogeneous models.

4.2.1 BLOCK-WISE AGGREGATION
Llama-1B vs. Llama-3B

fn
o

To decide which layers of heterogeneous models should

share knowledge, we measure layer-wise representation 5 1;‘
alignment between two MLLMs, W; and W, of different =, 08
depths using CKA (Kornblith et al., 2019). We observe E 8
high similarity between layers at similar relative depths, g 06
i.e., approximately linear alignment (Fig.[). Accordingly, £ *
we divide each model into N blocks linearly and attach a z 0.4

2 4 6 8 101214 16 18 20 22 24 26 28
Llama-3B layers

Figure 4: Layer-wise similarity be-
tween Llama-1B and Llama-3B mea-

gl | g k19 Ne 1 sured with CKA. The diagonal bright-
I, = { ' LNBJ o A=L54%...,0B (6) estband shows the strongest alignment

PQ-LoRA to each block’s final layer, enabling cross-model
sharing at relevant depths. The attachment layer index I},
of the k-th PQ-LoRA in a |W|-layer model is defined as:

|[W| for k= Npg. between layers at similar relative depths
(e.g., Llama-1B layer 8 - Llama-3B
4.2.2 WEIGHT ALIGNMENT IN PQ-LORA layer 14).

We then align the N number of PQ-LoRA modules at

layer indices Z; = {I{,..., I} } inmodel M; and Z; = {I{,..., I } in model M;. For simplicity,
we describe the alignment for a single pair X = ({F;,Q;, A;, B}, {P;,Q;,A;, B;}), which is
generalized across all Np pairs.

Motivated by findings that models fine-tuned from the same initialization share optimization paths
and can be merged without interference (Wortsman et al.| [2022afb}; ' Yadav et al.,[2023)), we set the pair
X to share a common initialization. Dimension-invariant modules, P;, P; € R™*" and Q;, Q; € R",

. . . . () )
can share the same weight directly, but dimension-dependent modules, A; € R4, A; € Rr>df’

and B; € RS X' B; € R4S’ *7_cannot due to dimension mismatches. Although only P and () are
shared between heterogeneous models M; and M, A and B should also be aligned, as they affect
the output ho (Eq. E[) and optimization trajectories. Therefore, we align A;, A; and B;, B}, ensuring
aligned representations for the same input, even in parameter spaces with different dimensions.
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Aligning A Matrices. We first align 4, € R"™%%" and Aj € R =47 using L2 loss in the shared
r-dimensional space with publicly available data D,,. For D,,, we use a subset of the MLLMs’ pre-

training data, as detailed in Sec. In particular, we use the smaller model A; (where dgi) < dgj ))
as the pivot model by freezing it and updating the larger model A; to minimize the L2 loss on r-
dimensional representations obtained from D,,, as min 4, ‘D—ll > (@yep, I(Ai(x) — A;(z) |3, where

A(z) denotes r-dimensional feature extracted by A for input x.

Aligning B Matrices. We then align B; and B;. Since their output dimensions differ (dg) #* d(oj)),
L2 loss is inapplicable. Instead, we employ canonical correlation analysis (CCA) (De Bie et al.|
2005)), which finds projection matrices maximizing the correlation between two feature sets. Using

. () o)
m public data {(zx,yx)}i, C D,, we extract output features H; € R"*% and H; € R"*4%

from B; and B;, then find projection matrices II; € R %" and II; € R4S’ %7 which project
them to the maximally correlated space of dimension r (i.e., H;1I; ~ H;I1;). We project B; to the
shared maximally correlated space, i.e., (II;)” - B;, and subsequently bring it to B; space by inverse
projection, as B; = (I1;1)T - (1I;)7 - B;, where II;" denotes the pseudo-inverse of IT;.

During the alignment of A and B, we enforce orthogonality in A and B to maximize the expressive
capacity (i.e., span) of PQ-LoRA weight updates, following Theorem [I] We provide details of
enforcing orthogonality in Sec.[A.5|and the proof of Theorem I]in Sec.[A.2]

Theorem 1. If the column vectors of matrix B € R *" are orthogonal and the row vectors of matrix
A € R4 gre orthogonal, then the span of the weight update space of PQ-LoRA, span{ AW}, has
r? dimension, which is the maximum possible dimension under frozen B and A.

In addition, our method does not incur much computational cost since (i) PQ-LoRA aligning is
performed once before federated training to establish a shared initialization, (ii) it is required only for
heterogeneous model-type pairs (since some clients may share the same architecture). After aligning
A and B, we update shareable modules P and (), while freezing A and B during local training to
preserve alignment. We provide theoretical justification for this freezing approach in Sec.[A.T} This
freezing design also reduces the communication cost of PQ-LoRA relative to conventional LoRA, as
it requires communication of only P, ) modules. See Sec.[A.9]for details of communication costs.

After receiving the aggregated PQ-LoRA (i.e., global PQ-LoRA) by RELA at each communication
round, clients freeze it during training to preserve global knowledge and update only the local model
for personalization. Specifically, at the [y, layer, given an input hidden state /& ;, we combine the output
of the local LoRA (i.e., hy), the frozen global LoRA (i.e., h¢g), and the pre-trained weights (i.e.,
Wphr), by adaptively balancing them using a learnable gating parameter 3. With sigmoid-normalized

balancing parameter 5 = o(3), the output hidden state ho is computed as follows:
ho = Wyhr + (1= B)hr, + Bhe. ™

5 DRAKE BENCHMARK

We propose a novel multi-modal FLL benchmark, called DRAKE, with three key merits: (i) Task
heterogeneity: Each client handles distinct multi-modal tasks (e.g., visual reasoning, VQA), while
existing benchmarks merely assign non-i.i.d. subsets from a single dataset. (ii) Dynamic distribution:
Client datasets contain progressive tasks (e.g., encountering new visual concepts), simulating real-
world temporal distribution shifts. To the best of our knowledge, DRAKE is the first benchmark
supporting multi-modal federated learning under distribution shifts. (iii) Generalizability Evaluation:
DRAKE incorporates unseen task data to evaluate the generalizability of FL. models. We summarize
the comparison with existing FL benchmarks in Tab. [l DRAKE consists of three training task
subgroups, i.e., VQA, visual relation, and multi-modal reasoning, and two unseen task subgroups,
comprising 40 heterogeneous tasks sourced from 19 different multi-modal datasets, totaling 375k
images and 274k questions, illustrated in Fig.[5] Please refer to Sec.[A.24]for more details.

6 EXPERIMENTS

6.1 SETUPS

Models. To simulate model heterogeneity in federated MLLM training, we employ LLaVA-1.5 (Liu
et al.,|2023b)) variants. For LLM of LLaVA, we employ various sizes of Llama-3 (Grattafiori et al.,
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Multi-Data  Distribution ~ Multi-Image Multi- Unseen a
Dataset Sources Shifts Support Modalities ~ Evaluation : -é K
Split-CIFAR (ICML 2021) x x x x @), Sontextdependent | yigualLanguage
NonlID-50 (ICML 2021) x x x g v VoualReasoning T oa”
LEAF-FCL (ICLR 2023) X X X Visual Figurative Multi-modal Image Quality _.-*"
MNIST-Shuffle (ICLR 2024) X X X X “*+.. Understanding Reasoning Tasks Y
HC-FMTL (CVPR 2024) X X X x e o
Fed-SNI (NewrlPSW 2023) x , x X e Federated Training ' |;°-.Q|
FEDLEGAL (ACL 2023) X X X I.I Tasks
Fed-Aya (NeurIPS 2024) X X X X e G |
Fed-FLAN (NeurlPS 2024 x : x x S voa VoA
HFLB (AAAI2024) x X X e - DRAKE o R
DRAKE (Ours) Relation *®
Tasks s Q
Table 1: Comparison of FL benchmarks across key di- ouimee ., Joordomain
. ; X ) Relation QA - Unseen ., oA
mensions: Multi-Data Sources (using diverse datasets @ Tasks m
vs. non-i.i.d. splits of a single dataset), Distribution ﬁ o
Shifts (evolving client data distributions), Multi-Image Fashion Relaion % L &g e
i i i i 7 NewVisual | NewTask
Support' (handhpg multiple images per 1r}put), gn(} Unseen S tmm o NewDs
Evaluation (testing on tasks unseen during training). See
Sec.[A.25]for the detailed comparisons. Figure 5: Overview of DRAKE.

2024) (Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B) and Qwen-2.5 (Yang et al.| 2024a)) (Qwen2.5-
0.5B, Qwen2.5-1.5B, Qwen2.5-3B). We use the Llama-3 series for text-only benchmarks.

Metrics. We report A;,s;, the accuracy at the end of training, and Aayc (Koh et al.|, [2022)), which
computes the area under the accuracy curve by measuring accuracy at each evaluation period to
capture intermediate performance. All experiments use five rounds of evaluation intervals and are
averaged over three different random seeds, with standard deviations reported.

Benchmarks. We evaluate FedMosaic on multi-modal PFL benchmarks: HFLB (Chen et al., [2024)
and our proposed DRAKE. Our evaluation covers PFL-Static (i.e., i.i.d. client data distributions)
and the more realistic PFL-Dynamic setup (i.e., intra-client distribution shifts with four incremental
tasks). For PFL-Dynamic on HFLB, we partition client data by question types (e.g., color, shape,
count, and size). We also evaluate on text-only PFL benchmarks, i.e., Fed-Scope (Kuang et al., 2024)),
Fed-Aya (Singh et al.,2024)), and Fed-LLM-Large that we combined Fed-LLM (Ye et al.,[2024) and
Fed-FLAN (Long et al., [2024). See Sec.[A.6|for the details of experiment setup.

Baselines. We compare FedMosaic with SOTA PFL methods: DITTO (Li et al.,[2021)), FedSim (Pil+
lutla et al.| [2022), FedIT (Zhang et al.,[2024a)), TAKFL (Morafah et al.,[2024), FedDPA (Long et al.|
2024), FedDAT (Chen et al.,|2024)), PerAda (Xie et al.,[2024), and FedMKT (Fan et al.,[2025)). We
also compare with supervised fine-tuning (SFT), where clients train independently without knowledge
sharing and often outperforming FL. methods under data heterogeneity (Ghari & Shenl 2024)).

6.2 QUANTITATIVE ANALYSIS

In all experiments, we evaluate each client’s model on its own task (i.e., ‘Self’) and on other
clinets’ tasks (i.e., ‘Others’), reporting average performance across clients. ‘Self” performance shows
personalization, while ‘Others’ indicates generalizability. Although personalization is PFL’s main
goal, generalization ability is also crucial for continual personalization, as it enables rapid adaptation
to new tasks in the future during training (Finn et al.| 2017} Rao et al.| 2023).

Heterogeneous Multi-Modal Clients. We evaluate FedMosaic in multi-modal heterogeneous PFL-
Dynamic and -Static setups, where clients employ different architectures (LLaVA-Llama3-1B or 3B).
As shown in Tab. [2]and Tab. 3] FedMosaic consistently outperforms baselines on both clients’ own
tasks (‘Self’) and others’ tasks (‘Others’) under static and dynamic distributions. HFLB’s single VQA
task with single-image inputs converges faster than DRAKE, yielding smaller gaps among baselines.

Note that Tab. 2]reports the average performance across all clients. Local client training (SFT) can
suffice for simpler tasks (Mosbach et al.,[2021; Wozniak et al., 2024), e.g., single-image VQA (clients
2, 3 in Tab. [5)), making average improvements appear small. In contrast, FedMosaic significantly
enhances personalization for complex multi-image tasks (clients 5, 7, 9 in Tab. [5)) through effective
knowledge sharing. See Sec[A.16|for additional per-client results and Sec.[A.24]for task descriptions.

As shown in Tab[3] not only do clients using smaller models (i.e., LLaVA-Llama3.2-1B) benefit from
knowledge sharing through PFL, but larger models (i.e., LLaVA-Llama3.2-3B) also see significant
gains. We attribute this to (i) RELA accurately measuring task relevance under distribution shifts,
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DRAKE-Dynamic HFLB-Dynamic
Self Others Self Others
Method Apast T Apvc T Alast T Aavc T Apast T Apve T Agast T Anvc T
SFT 65.79+£0.20 57.62+0.26 47.664+0.13 46.67+0.11 79.99+0.66 77.14+0.35 61.66+0.56 61.43+0.14
DITTO (ICML 2021) 59.914+0.18 54.16+0.06 47.45+0.36 46.70£0.10 79.10+0.11 76.05+0.08 61.86+0.82 61.43+0.08
FedSim (ICML 2022) 63.98+1.19 56.42+0.70 47.04+0.16 46.15+0.17 79.90+0.09 76.47+0.01 59.92+0.54 59.56+0.13
FedIT (ICASSP 2024) 66.11+0.27 57.86+0.27 47.63£0.16 46.62+£0.04 79.87+0.50 77.04+0.38 61.73£0.54 61.45+0.18

TAKFL (NeurIPS 2024) 64.54+0.85 56.19+£0.98 47.3840.06 46.47+0.14 79.76+0.06 76.86+0.04 61.42+0.44 61.22+0.10
FedDPA (NeurlPS 2024) 63.344+0.23  55.74+0.38 47.614+0.21 46.64+£0.20 70.06+0.24 77.10+£0.36  61.584+0.27 61.19+0.09
FedDAT (AAAI 2024) 58.47+1.10 54.38+£0.28 48914+042 47.78+£0.18 79.61+042 77.43£1.02 64.15+0.08 64.51+0.13

PerAda (CVPR 2024) 59.75+1.06 54.48+0.13 47.30+0.45 46.72+£0.03 79.03+0.01  75.92+0.01 61.76+0.80 61.39+0.06
FedMKT (COLING 2025) 61.384+0.18 55.45+0.31 47.50+0.07 46.68+£0.08 79.484+0.01 76.57+0.06 61.54+0.61 61.41£0.19
FedMosaic (Ours) 67.861+0.51 59.83+0.16 51.161+0.04 49.36+0.08 80.80+0.26 78.43+0.14 67.07+0.25 66.02+0.16

Table 2: Quantitative comparison in heterogeneous PFL. ‘Self’ denotes evaluation on a client’s
own data, while ‘Others’ denotes evaluation on data from other clients. In DRAKE, 4 clients use
LLaVA-Llama3.2-1B and 6 clients use LLaVA-Llama3.2-3B, while in HFLB, 3 clients use LLaVA-
Llama3.2-1B and 6 clients use LLaVA-Llama3.2-3B. SFT refers to supervised fine-tuning on each
client’s data without cross-client knowledge sharing.

Self Others Self Others
Method Alast T Aavc T Alast T Apve T Method Alast T Aavc T Alast T Aave T

SFT 68.50+0.42 63.8440.27 47.91£0.39 47.56+0.23 SFT 68.604+0.57 61.334+1.03 48.34+0.18 47.53+0.22
DITTO 63.67+1.50 59.17+£1.25 48.2240.09 47.65+0.03 DITTO 66.77+£0.96  60.67+0.77 49.04+£0.63 48.33+0.53
FedSim 66.75+0.56 61.70£0.60 46.93+0.25 46.76+0.02 FedSim 66.65+0.26 59.49+0.17 46.77+0.29 46.42+0.10
FedIT 68.71+0.04  63.894+0.55 47.91£0.22 47.60+0.17 FedIT 68.72+0.97 60.88+0.81 48.22+0.17 47.25+0.22
TAKFL 67.2840.01 62.42+0.36 47.554+0.23 47.51£0.07 TAKFL 67.77+£0.46  60.13£0.32 48.1840.07 47.51+0.14
FedDPA 66.09+1.51  61.364+0.14  47.93+0.30 47.69+0.11 FedDPA 67.38+0.58  60.204+0.40 48.40+£0.22 47.32+0.33
FedDAT 61.2840.07 57.92+0.02 49.3740.02 48.78+0.04 FedDAT 66.084+0.95 60.00£0.22 50.054+0.02 49.10£0.11
PerAda 63.67+1.01 59.03£1.19 48.13+0.03 47.60+0.05 PerAda 64.861+0.51 58.73+£0.48 47.894+0.70 47.45+0.45
FedMKT 65.81+1.09 60.37+1.16 47.19+0.86 46.44+1.49 FedMKT 65.44+091 59.18+0.62 48.09+0.41 47.51+0.18

FedMosaic ~ 70.10+0.53  64.64+0.40 51.57+0.24 50.42+0.12 FedMosaic ~ 70.67+0.61 63.51+£0.40 52.31+0.15 50.60+0.26

Table 3: Quantitative comparison in PFL on Table 4: Quantitative comparison in cross-

DRAKE-static. 4 clients use LLaVA-Llama3.2- family PFL on DRAKE-dynamic. 3 clients use

1B, 6 clients use LLaVA-Llama3.2-3B. LLaVA-Llama3.2-3B, 4 use LLaVA-Qwen2.5-
1.5B, 3 use LLaVA-Qwen2.5-3B.

Self Ajast / Aauc
LLaVA-Llama3.2-1B LLaVA-Llama3.2-3B
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
SFT 76.45/59.87 58.10/54.35 66.63/59.57 62.85/53.16 62.00/61.51 76.56/66.88 62.59/54.63 68.54/59.65 65.92/51.93 58.30/54.61
FedMosaic  77.42/60.45 58.50/55.26 66.71/59.60 63.13/55.84 68.87/63.60 77.61/69.80 69.19/56.66 70.54/58.93 70.68/54.09 59.21/55.32
Gain +0.97/+40.57 +0.40/+0.91 +0.08/+0.04 +0.27/+2.67 +6.86/+2.09 +1.05/+2.93 +6.61/+2.03 +2.00/-0.72 +4.76/+2.16 +0.91/+0.71

Table 5: Per-client ‘Self’ performance of FedMosaic vs. SFT in a heterogeneous PFL-Dynamic
setup on DRAKE. The Gain row shows positive gain of FedMosaic in blue, negative in red against
SFT. Clients 1-4 use LLaVA-Llama3.2-1B, while Clients 5-10 use LLaVA-Llama3.2-3B.

reducing interference during aggregation, and (ii) PQ-LoRA enabling effective knowledge transfer
between heterogeneous architectures, allowing smaller and larger models to mutually benefit.

We also emphasize that FedMosaic significantly outperforms baselines in generalization (‘Others’),
which is crucial under distribution shifts where new, unseen tasks continuously emerge. This enhanced
generalizability enables faster adaptation and accelerates future personalization, as shown in Fig. [

Cross-family Heterogeneity. Beyond varying model sizes within the same family (e.g., LLaVA-
Llama-1B/3B), we further simulate cross-family heterogeneity (e.g., Qwen- vs. Llama-based
MLLMs). Tab. ] shows FedMosaic consistently outperforms baselines under cross-family het-
erogeneity, highlighting its generality. See Sec.[A.T4]for additional cross-family experiments.

Fast Adaptation Evaluation. In real-world scenarios, unseen tasks continuously emerge, making
rapid adaptation crucial for future personalization. We evaluate adaptation speed by initializing
models with each PFL method’s aggregated model and fine-tuning on unseen tasks for 200 iterations.
Fig.[6]shows that while sufficient training eventually yields similarly high performance regardless
of initialization, models initialized with FedMosaic achieve high performance within few steps,
highlighting enhanced generalizability through effective knowledge sharing in heterogeneous PFL.

Large-Scale Evaluation of Heterogeneous PFL in LLMs. Beyond multi-modal PFL, we evaluate
FedMosaic in heterogeneous PFL for LLM training (i.e., text-only NLP domain). Tab. [6] shows
FedMosaic significantly outperforms baselines in both ‘Self’ and ‘Others’, consistent with our
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Figure 6: Comparison of adaptation speed. We use DRAKE’s unseen tasks as downstream tasks.
Random init starts from randomly initialized models, while other baselines are initialized from
aggregated local models trained on DRAKE using each respective FL baseline.

Self Others *SFT  ©DITTO ®FedSIM ®PerADA & TAKFL
Method Apast T Apue T Apast T Apve T FedDPA ®FedDAT ®FedMKT @FedMosaic (Ours)
SFT 18.03+0.52  17.11+0.56  14.18+0.69  13.70+0.35 ®
FedSim (ICML 2022) 16294046  16.57+0.26 12.62+0.08 12.60+0.10 __ 68 —8 ®
FedIT (ICASSP 2024) 17.10+£0.20  16.83+0.37 14.03+£0.49 13.68+0.32 xX J70 LEss s
TAKFL (NeurIPS 2024) 14.04+0.21 16.37+0.82 11.36+0.13  12.57+0.06 = 67 €
FedDPA (NeurIPS 2024) 17.60+0.25 16.66+0.42 13.98+0.05 13.66+0.07 q{:\u 66 ja % 8
FedDAT (AAAI 2024) 17.06+0.13  15.83+0.03 13.72+0.04 13.02+0.01 * 8 8
PerAda (CVPR 2024) 18.83+0.80 17.32+0.85 14.66+0.05 13.79+0.05 65
FedMKT (COLING 2025)  17.340.14 17.03£0.08 14.38+0.01 13.89:0.02 10 15 50 55
FedMosaic (Ours) 20.87+0.13  19.07+0.30 15.714+0.14 14.77+0.11 Relative FLOPs to SFT

Figure 7: Accuracy and relative FLOPs

Table 6: Large-Scale Experiments with 52 heteroge- in DRAKE-Dynamic.

neous LLMs (Llama-1B/3B) on Fed-LL.M-Large.

DRAKE Fed-Scope
Self Others Self Others
Method Atast T Anvc T Atast T Anvc T Atast T Anuc T Atast T Anvc T
Vanilla 66.10£0.27 57.87+0.27 47.63+0.16 46.62+0.04 25.06£1.36 28.89+0.66 25.86+0.94 27.944+0.44
(+) PQ-LoRA 66.99+0.77 58.39+0.38 51.33+£0.06 48.78+0.03 28.474+0.52 31.64+0.21 30.85£1.37 32.27+0.82

(+) PQ-LoRA &RELA (Ours)  67.86+0.51 59.83+0.16 51.16+0.04 49.36+0.08 30.58+0.84 32.68+0.64 31.01+1.46 32.50+0.62

Table 7: Ablations for proposed components of FedMosaic in heterogeneous PFL. ‘Vanilla’
aggregates homogeneous local models within each model type by averaging them with equal weights.

MLLM-FL benchmark results. This experiment involves 52 clients, highlighting the scalability of
FedMosaic to large client populations and its applicability in real-world deployments.

Computation and Communication Cost Analysis. We compare accuracy and relative FLOPs in
Fig.[7] FedMosaic demonstrates higher personalization performance with computation comparable to
SFT. See Sec.[A-8|and Sec.[A9|for detailed analyses of computation and communication costs.

Additional Experiments. Additional results include: heterogeneous PFL with LLaVA-Llama3.2-
1B/3B/8B (Sec[ATT), LLaVA-Qwen2.5 variants (Sec[A.T3), text-only benchmarks (Sec. [A.T3),
homogeneous PFL setup (Sec.[A12)), extended fast adaptation evaluations (Sec. [A.23)), comparison
of RELA with similarity-aware aggregation methods (Sec.[A:22)), and client model selection details
(Sec.[A3) and configurations (Sec.[A7). We further provide hyperparameter analysis Sec. % ,
effect of weight alignment in PQ-LoRA (Sec.[A-ZT)), effect of client model assignment (Sec. [A.4),
effect of decayed client-wise gradient g in RELA (Sec.[A.19), and limitations (Sec. [A-26).

Ablation Study. We ablate FedMosaic to investigate each proposed component’s benefit, and
summarize the results in Tab. [/} Our observations indicate that each component significantly enhances
both the personalization (‘Self’) and the generalization (‘Others’) performance. Specifically, PQ-
LoRA enhances generalization by transferring knowledge across heterogeneous architectures, while
RELA improves personalization by promoting knowledge sharing among relevant-task models only.

7 CONCLUSION

We address both data heterogeneity and model heterogeneity in PFL while prior works tackle only
one challenge or both under simplified assumptions. For that, we propose FedMosaic, which handles
both forms of heterogeneity through two components: RELA and PQ-LoRA. Moreover, to better
reflect real-world data heterogeneity in PFL scenarios, we introduce DRAKE, a comprehensive
multi-modal FL benchmark capturing task heterogeneity and distribution shifts. Extensive evaluation
shows FedMosaic achieves superior personalization compared to local training, while improving
generalizability and few-shot adaptation capabilities essential for future personalization.
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REPRODUCIBILITY STATEMENT

We take reproducibility in deep learning very seriously and highlight some of the contents of the
manuscript that might help to reproduce our work. We will definitely release our implementation of
the proposed method in Sec. [}, benchmark in Sec. [5] and the data splits and the baselines used in our
experiments in Sec. [f]in a public repository.

THE USE OF LARGE LANGUAGE MODELS

We use large language models (LLMs) to support labor-intensive and mistake-prone work. Specif-
ically, we use LLMs (e.g., GPT-4) to categorize samples from a single dataset into multiple tasks
based on keywords or topics, to assess generation quality in specific benchmarks using LLMs, and to
detect grammatical errors during writing.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

This document provides a comprehensive overview of the technical appendices

Theoretical Foundations

Section Theoretical justification for freezing matrices A and B in PQ-LoRA, proving
that this approach achieves zero aggregation error in federated learning.

Section [A.2; Proof of Theorem [I] showing that orthogonal initialization of A and B
maximizes the representational capacity of PQ-LoRA.

Implementation Details

Section[A.3; Details on client model selection methodology in heterogeneous PFL scenarios.
Section[A.4} Consistency of FedMosaic over diverse random heterogeneous PFL scenarios.

Section[A.5} In-depth explanation of PQ-LoRA, including initialization with orthogonal
sets, weight alignment, and orthogonality-enforcing post-processing.

Section Comprehensive description of experimental configurations, including model
architecture details, benchmark specifications, evaluation metrics, and hyperparameter
settings.

Section Summary of client model configuration of all heterogeneous PFL experiments.

Section [A.8: Comparative analysis of memory and computational costs across various
baselines.

Section[A.9F Comparative analysis of communication (transmission) cost of FedMosaic.

Section[A.T10; Empirical analysis supporting block-wise aggregation through CKA similarity
measurements across heterogeneous models.

Section[A.28} Detailed algorithms for the FedMosaic framework, including initialization,
alignment, and training procedures.

Extended Experimental Results

Section [A.T1} Results with more diverse heterogeneous PFL scenarios, including experi-
ments with three different model architectures.

Section[A.12: Experimental results in homogeneous PFL setups.

Section [A.13; Experimental results ins heterogeneous PFL scenarios using Qwen-based
LLaVA models.

Section[A.14: Additional experiments on various cross-family heterogeneous PFL setups.

Section [A.15; Results on the text-only benchmark, complementing our Fed-LLM-Large
experiments.

Section[A.16; Detailed client-wise accuracy analysis for both homogeneous and heteroge-
neous PFL setups.

Section[A.23} Extended evaluation of fast adaptation capabilities on additional unseen tasks.

Ablation Studies

Section[A.17; Analysis of the choice (i.e., type and size) of public data Dp for PQ-LoRA
alignment.

Section [A.I8} Analysis of how the change of various hyperparameters introduced in
FedMosaic affects performance.

Section Ablation study on RELA, comparing different strategies for measuring task
similarity.

Section [A.20; Analysis on the size of W for RELA in terms of computational cost and
performance in a PFL setup.
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* Section Investigation of the effects of weight alignment in PQ-LoRA.

* Section [A.22} Discussion of RELA and existing similarity-based model aggregation in
federated learning and multi-task learning.

Limitations/Future Work and Benchmark Details

* Section[A.24: Comprehensive description of our proposed DRAKE benchmark, including
task categories, dataset sources, client configuration, and comparison with existing FL
benchmarks.

* Section[A.25} Comparison between DRAKE and existing FL benchmarks.
* Section[A.26;: Discussion of limitations and potential directions for future work.

* Section[A.27;: Impact statement addressing the broader implications of our research.

A.1 THEORETICAL JUSTIFICATION FOR FREEZING A AND B IN PQ-LORA

Recap of PQ-LoRA. PQ-LoRA consists of LORA matrices A € Rr*dr B e Rdoxr, along with
shareable modules P € R™*", Q € R". PQ-LoRA outputs ho for the given input A as:

ho :th[+B(PAh[+Q), (8)
where W, refers to the pre-trained weight.

For simplicity, we assume that Q = 0 € R", i.e., ho = BPAhy, and prove under the homogeneous
FL setup, but can easily extend to () # 0 and the heterogeneous FL setup.

Definition (Aggregation Error ). We first define the aggregation error §. In an FL setup with V
clients, the server aggregates client updates AW; = B; P; A; for i € [N]. With FedAvg aggregation,
the ‘ideal’ aggregation AW* (Sun et al.| 2024} Guo et al., 2025)) should be:

1
AW* = —(BiP1As + ByPyAs + -+ + By Py Ay). ©)

However, we cannot perform ‘ideal’ aggregation in FL, since W* cannot be decomposed into trainable
parameters, i.e., B, P, and A, on client sides (Guo et al.,[2025)). In other words, although W* can be
computed on the server, it cannot be redistributed as trainable parameters on the client side. As a
result, instead of directly averaging AW; for i € [N], we average the trainable parameters separately

and obtain the practical update AW™ as:

- 1 1 1
w130 (320) (v 24)

To this end, we define the aggregation error 6 = |AW™* — AW* |. During local training, we update
shareable modules P and (), while freezing A and B to preserve alignment. This way, we minimize
the aggregation error d, following Theorem [2]

Theorem 2. If we freeze A € R"™*% and B € R X", aggregation error § = 0.

Proof of Theorem 2l
Proof. If A is frozen after alignment, then A = A3 = Ay = --- = Apy. Similarly, freezing B
implies B = By = B == By . Under this condition, both the ideal update AW™* (Eq. E]) and
the practical update AW™ (Eq. can be simplified to:
B 1 Y
AW* = AW* = B (N ;Pl) A, (11)
Thus, § = 0. ]
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A.2 PROOF OF THEOREM[I]

Proof. For simplicity, we assume that () = 0 € R".
The weight update for PQ-LoRA is given by:

AW = BPA, (12)
where B € R¥oX" P e R"™" A € R™*%,

We can decompose the matrix P using scalar values and basis vectors as follows:

P:iip,-j “eiel (13)

i=1 j=1

where P;; refers to the scalar value of (i, j) position of matrix P, and e; and e; refers to the standard
basis vector in R".

Substituting Eq[T3]into Eq[T2] we get:

AW = BPA=B ZP,-]- ee] | A= Z Py - (Be;) - (e} A). (14)
%, 4,7

Since Be; = b; € R%° (4, column of B), ejTA = a} € R (jm row of A), we can simplify Eq.
as:
AW =" Py - biaj. (15)

%,
Therefore, representation space of AW, denoted as Sp(, is defined as:

Spq =span{bia; | i,j=1,...,1}. (16)

Since both {by,ba,...,b.} C R and {aT,al,... al} C R form orthogonal sets, their outer
products {b;a; }; ;_, are linearly independent.

Therefore, the representation space Spg has the maximum possible dimension:

dim(SpQ) = 7”2. (17)

O

To satisfy Eq[T7] it is sufficient for the column vectors of B and the row vectors of A to form linearly
independent sets, even if they are not strictly orthogonal. However, compared to initialization with
linearly independent vectors, orthogonal initialization offers additional advantages, such as faster (Hu
et al.| [2020) and stable (Nowak et al., 2024)) convergence. Therefore, motivated by both the practical
advantages and the theoretical justification provided in Theorem [I} we initialize A and B with
orthogonal sets.

A.3 DETAILS OF CLIENT MODEL SELECTION IN THE HETEROGENEOUS PFL SCENARIO

In the heterogeneous PFL scenarios, we assign each client’s model based on supervised fine-tuning
(SFT) performance on their respective tasks. Specifically, clients are assigned larger models when
these models exhibit significantly better SFT performance than smaller ones. Conversely, when the
performance difference between model sizes is negligible, we allocate smaller models to maximize
computational efficiency, as larger models require substantially more computational resources. We
summarize the SFT performance of each LLaVA-Llama3 variant model and the resulting client-wise
model allocation in Tab.

21



Under review as a conference paper at ICLR 2026

DRAKE
Model Client 1 Client2 Client3 Client4 Client5 Client6 Client7 Client8 Client9 Client 10

LLaVA-Llama3.2-1B  78.43 57.98 65.05 62.53 63.15 63.35 47.56 51.68 53.07 50.95
LLaVA-Llama3.2-3B  79.33 59.01 66.75 63.33 66.00 76.15 63.40 68.21 63.08 57.32

Allocated Model LLaVA-Llama3.2-1B LLaVA-Llama3.2-3B

HFLB
Model Client 1 Client2 Client3 Client4 Client5 Client6 Client7 Client8 Client9

LLaVA-Llama3.2-1B  79.78 98.18 51,23 80.73 71.58 80.48 71.64 76.45 89.45
LLaVA-Llama3.2-3B  80.33 97.32 52.85 81.85 73.84 82.75 74.47 79.50 91.50

Allocated Model LLaVA-Llama3.2-1B LLaVA-Llama3.2-3B

Table 8: Per-client SFT performance of different LLaVA-Llama3 model variants. We assign
the larger model (i.e., LLaVA-Llama-3.2-3B) to clients whose SFT performance shows a substantial
gain, while the smaller model (i.e., LLaVA-Llama-3.2-1B) is assigned otherwise.

A.4 EFFECT OF CLIENT MODEL ASSIGNMENT

To validate whether FedMosaic consistently achieves strong performance regardless of the specific
model assigned to each client, we conduct experiments with varying ratios of LLaVA-1B and LLaVA-
3B models, where model assignments are randomly determined in each run. In Table[0] we summarize
the PFL results of supervised fine-tuning (SFT) and FedMosaic across diverse heterogeneous PFL
scenarios, each corresponding to a different configuration of client model selections in the DRAKE-
dynamic benchmark. We observe that FedMosaic consistently outperforms SFT with minimal
performance variance across heterogeneous setups, demonstrating its robustness to the composition
of client models.

Self Others
Scenario Method Alast T Aavc T Alast T Aavc T
SFT 65.57+0.83 57.46+0.44 47.80+0.17 46.80+0.10
3x 1B Clients / 7x3B Clients FedMosaic 67.024+0.34 58.85+0.15 51.55+0.31 49.62+0.04
A (FedMosaic- SFT) +1.45 +1.39 +3.75 +2.82
SFT 64.084+0.77 56.61+0.42 46.82+0.44 46.244+0.23
4x 1B Clients / 6x3B Clients FedMosaic 66.284+0.23 58.47+0.17 51.20+0.40 49.26+0.29
A (FedMosaic- SFT) +2.20 +1.86 +4.38 +3.02
SFT 63.724+0.77 56.61+£0.16 46.70+0.07 45.9940.06
5x 1B Clients / 5x3B Clients FedMosaic 65.34+0.21 58.25+0.17 51.08+0.23 49.0740.25
A (FedMosaic- SFT) +1.62 +1.64 +4.38 +3.08
SFT 63.494+0.93 56.02+0.28 46.63+0.07 45.63+0.02
6x 1B Clients / 4x 3B Clients FedMosaic 65.754+0.54 57.96+0.18 50.57+0.23 48.654+0.18
A (FedMosaic- SFT) +2.26 +1.94 +3.94 +3.02
SFT 62.724+0.19 55.54+0.02 45.54+0.22 44.83+0.07
7x 1B Clients / 3x 3B Clients FedMosaic 65.40+0.53 57.56+0.07 49.41+0.18 47.5440.08
A (FedMosaic- SFT) +2.68 +2.02 +3.87 +2.71

Table 9: Effect of heterogeneous PFL scenarios on DRAKE-Dynamic. We change the number of
LLaVA-Llama3.2-1B and LLaVA-Llama3.2-3B models and randomly assign the model size of each
client. The ‘4x 1B Clients / 6 x3B Clients’ scenario here is different with the client model selection
in Tab. 8}

A.5 MORE DETAILS OF PQ-LORA

As discussed in Sec[4.2.2] we enforce orthogonality on the A and B matrices to maximize the capacity
of PQ-LoRA, following TheorenfI] This is achieved through (i) initializing A and B with orthogonal
sets, (ii) weight alignment, and (iii) orthogonality-enforcing post-processing.
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Initialization with Orthogonal Set. We initialize row vectors of A € R"*% and column vectors
of B € R4 %" with an orthogonal set, as follows:

AAT =1,, B'B=1,, (18)

where I, refers to the r X r identity matrix.

Weight Alignment. For B; and B;, we align them using canonical correlation analysis (CCA), as
follows:
B; = (I, H)T - (IL)" - By, (19)

where II; and II; are projection matrices that project B; and B; into to the maximally correlated space,
respectively. During alignment, B; remains orthogonal because B; is initialized with orthogonal
vectors, and the projection in Eq. [I9] preserves this orthogonality.

However, during the alignment of A; and A; in Sec.[4.2.2] orthogonality can be disrupted due to L2
loss training. To prevent significant deviation from orthogonality, we add a regularization term to the
objective function of A alignment as follows:

2

.1
min ot > Ai@) — A @3+ A AT A =T (20)
TP @y)eD,
where || - || denotes the Frobenius norm. Despite the regularization, A; may not strictly satisfy

orthogonality. Therefore, to ensure exact orthogonality, we perform an additional post-processing
step.

Orthogonality-Enforcing Post-processing. To enforce orthogonality in A;, we apply orthogonal
projection. Specifically, we aim to find the closest orthogonal matrix A} from A; by minimizing the
Frobenius norm, as follows:
min ||4; — AY||F. 21
i 145 = 45 en
This optimization can be efficiently solved using the Singular Value Decomposition (SVD). We
compute the SVD of A:

where U € R™%", 3 € R™%41_and V € Rarxdr,

The closest orthogonal matrix A7 is then given by:
As=UVT. (23)

As aresult, we get A; and B, initialized with orthogonal sets and kept frozen during alignment, and
A;f and Bj, which are aligned with A; and B; while maintaining orthogonality.

A.6 DETAILS OF EXPERIMENTAL SETUPS

Models. To employ LLaVA-Llama3 variant models (i.e., LLaVA-Llama3.2-1B, LLaVA-Llama3.2-
3B, LLaVA-Llama3.1-8B) and LLaVA-Qwen2.5 variant models (i.e., LLaVA-Qwen2.5-0.5B, LLaVA-
Qwen2.5-1.5B, and LLaVA-Qwen2.5-3B) in heterogeneous PFL scenarios, we instruction-tune them
on LLaVA-Instruct-158K (Liu et al.,[2023b), following the original LLaVA training setup (Liu et al.|
2023b). We summarize the performance of the instruction-tuned variants in Tab. [[0]and Tab. [T1] We
use Llama-3 base models for text-only benchmarks.

Benchmarks. We evaluate FedMosaic on Multi-modal FL. benchmarks, such as our proposed
DRAKE and HFLB, and LLM-FL benchmarks, such as Fed-Scope and Fed-Aya, and Fed-LLM-
Large. We summarize the details of benchmarks in Tab. @ As shown in the table, unlike HFLB,
which focuses solely on VQA tasks, DRAKE covers diverse task types and involves more images per
sample due to its multi-image inputs. In DRAKE-Dynamic, each client learns four tasks, where all
data samples are randomly mixed in PFL-Static, while the samples from each task are introduced
incrementally in PFL-Dynamic. We provide more details of DRAKE in Sec.
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VQAv2 GQA VizWiz SciQA TextVQA
Model (Goyal et al.}2017)  (Hudson & Manning{[2019)  (Gurari et al.|[2018)  (Lu et al.||2022)  (Singh et al.|{[2019)
LLaVA-1.5-7B 78.5 62.0 50.0 66.8 58.2
LLaVA-Llama3.2-1B 75.3 59.7 453 67.3 49.0
LLaVA-Llama3.2-3B 78.7 62.6 453 75.7 55.8
LLaVA-Llama3.1-8B 79.8 64.2 47.6 76.4 57.9
LLaVA-Qwen2.5-0.5B 71.8 56.5 37.3 58.1 434
LLaVA-Qwen2.5-1.5B 75.3 59.3 40.9 69.5 51.8
LLaVA-Qwen2.5-3B 772 61.4 50.9 74.1 54.7

Table 10: Zero-Shot performance of instruction-tuned LLaVA-1.5 variants on academic-task-
oriented benchmarks. We use the CLIP ViT-L/336px model as the vision encoder for all variants.

POPE MME MMBench SEED-Bench LLaVA-Wild MM- Vet
Model (Lietal.]2023c) (Fuetal.2023a) (Liuetal.}2024) (Lietal.}2023a) (Liuetal.;2023b) (Yu et al.|2023)
LLaVA-1.5-7B 85.9 1510.7 64.3 58.6 65.4 31.1
LLaVA-Llama3.2-1B 85.0 1338.1 61.3 57.8 59.6 28.7
LLaVA-Llama3.2-3B 86.1 1446.5 70.9 62.5 67.0 345
LLaVA-Llama3.1-8B 86.3 1486.1 72.5 64.1 73.7 32.7
LLaVA-Qwen2.5-0.5B 86.2 1251.9 53.6 53.1 55.0 23.1
LLaVA-Qwen2.5-1.5B 86.4 1376.4 66.8 60.6 60.0 279
LLaVA-Qwen2.5-3B 87.2 1447.6 71.4 63.2 66.7 33.1

Table 11: Zero-Shot performance of instruction-tuned LLaVA-1.5 variants on instruction-
following benchmarks. We use the CLIP ViT-L/336px model as the vision encoder for all variants.

HFLB includes 7 VQA datasets, where we assign them into 9 clients by partitioning GQA |[Hudson
& Manning| (2019)) into three clients based on the QA types (e.g., Yes/No, 2 Multi-choice, and 4
Multi-choice). We further split each assigned dataset into four tasks to allow experiments on the
PFL-Dynamic setup. We use keywords in questions or GPT to categorize each sample, where the
details are provided in Tab.

To simulate PFL in NLP, we modify existing sets (i.e., Fed-Aya and Fed-Scope) and compose larger
mixtures (i.e., Fed-LLM-Large) to increase task variety and heterogeneity across clients. Specifically,
Fed-Aya is composed of 12 different languages equally sampled from different language families. We
further separate the tasks based on the topic of the QA using GPT-4. Fed-Scope (Kuang et al.| [2024)
includes coding, mathematics, and general capability datasets, where each client learns either one of
the three datasets. Fed-LLM-Large is a large-scale text-only benchmark designed for personalized
federated learning. To diversify the personal tasks among clients, we combined tasks from three
sources, Fed-ChatbotIT and Fed-aya from Fed-LLM (Ye et al., [2024), and Fed-FLAN [Long et al.
(2024). This results in 52 clients and 2 tasks per client, where each client fine-tunes on either
instruction following tasks from different sources or in different languages (note that all other
benchmarks have 4 tasks per client).

Benchmark # of Images  # of Questions  # of clients  # of rounds R # of local steps Task types

DRAKE 357K 274K 10 20 100 Visual Relation, Multi-modal Reasoning, VQA
HFLB 217K 314K 9 20 100

Fed-Scope - 30K 5 20 30 General Capability, Mathematics, Coding
Fed-Aya - 36K 8 20 50 Question-Answering in 12 Languages
Fed-LLM-Large - 31K 52 4 10 Instruction Following

Table 12: Benchmark details and federated learning configurations.

Metrics. We measured the accuracy metrics, A;,5; and Aayc, based on the correct choice for multi-
choice questions and the correct tokens compared to the ground-truth answer for the open-ended
questions. For Fed-Aya, we used GPT to rate the generated response compared to the given ground-
truth response. We use the same prompt template shown in Fig. [§| from the original paper (Singh
et al.,[2024)). For Fed-Scope, we follow the evaluation process of the original paper (Kuang et al.|
2024) and use MMLU (Hendrycks et al., |2020), GSM8K (Cobbe et al.,[2021)), and HumanEval (Chen
et al., 2021) benchmarks to evaluate general capability, math and coding skills, respectively. For
Fed-LLM-Large, we use Rouge-L (Lin, [2004)) metric as it is commonly used metric to assess LLM
generation quality compared to ground-truth (Long et al., 2024; |Li et al., [2024c).
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Client 1 Client 2 Client 3
GQA (Hudson & Manning|[2019) GQA (Hudson & Manning|[2019) GQA (Hudson & Manning|[2019)
: Yes/No : Four-choice : Two-choice
o Attribute o Attribute o Attribute
e Relation e Relation e Relation
e Object o Category e Category
e Global e Global e Global
Client 4 Client 5 Client 6
Abstract VQA (Antol et al.|[2015) SNLI-VE (Xie et al.{[2019) COCOQA (Ren et al.|2015)
o Attribute e Action e Object
o Number o Scene Context & Obj Relations o Number
e Yes/No e Object-Centric e Color
o Others e Commonsense e Location
Client 7 Client 8 Client 9

NLVR2 (Suhr et al.|[2019)

o Presupposition Negation Universal
o Spatial Comparative

o Cardinality Existential

o Coordination Coreference

VizWiz (Gurari et al.| 2018)

e Food, Brand, and Label Identification
o Color and Type Identification

o Optical Character Recognition

o General Object Identification

AQUA (Garcia et al.|[2020)

o “standing” keyword

® “sit” keyword

e “wear”, “hold”, “walk”, “talk” keywords
o Other keywords

Table 13: Per-client task configuration of HFLB. Datasets are partitioned into question-type subsets
using keyword rules or GPT judgement.

[Instruction]

Please act as an impartial judge and evaluate the quality of the response provided by an Al
assistant to the user question displayed below. A good answer should follow these rules:

1. It should be in the same language as the question.

2. It should answer the request in the instruction.

3. It should be factually and semantically comprehensible.

4. It should be grammatically correct and fluent.

Begin your evaluation by providing a short explanation. Be as objective as possible.
After providing your explanation, you must rate the response on a scale of 1 to 10 by
strictly following this format: “[ [rating]]”, for example: “Rating: [[5]]”. A
human-annotated answer is given for reference.

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

[Reference]
{reference}

Figure 8: Prompt template used in GPT-4 judge.

Implementation Details and Hyperparameters. We set the batch size to 4, the learning rate for
PQ-LoRA to 5 x 1072, and for other parameters to 2 X 10—5. We use the Constant LR scheduler
and the AdamW optimizer (Loshchilov & Hutter, [2019) for all datasets. We use the LoRA rank
r of 128 attached to all linear layers in the LLM backbone. For LLM experiments, we set the
learning rate to 3 x 10~* and the LoRA rank to 16. For federated learning, we set the total number
of communication rounds R to 20, with the local training step of 100. For a fair comparison, we
adjust the local training step for each baseline and FedMosaic to use the same computational cost as
SFT, following (Seo et al.,2025). For the PFL-Dynamic setup, we employ memory-only training,
where newly encountered samples are added to episodic memory, and training batches are retrieved
solely from memory, following (Koh et al.l 2023} [Seo et al., [2024; [2025). For episodic memory,
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we adopt a memory-infinite setup (Prabhu et al.| 2023} Seo et al.| |2025)), assuming all data can be
stored in memory, reflecting that memory cost is not a bottleneck in real-world scenarios. For 7, the
softmax temperature parameter used in RELA, we use 0.5 in all experiments. For «, the EMA ratio
of client-wise gradient in Eq. |2} we use 0.5 in all experiments. For ), the loss balancing coefficient
between the L2 loss and the regularization term in Eq. we use 0.5. For Ny, gradient sampling
ratio for sanitized gradient g;, we use 40%. For y, the noise scale applied to €, we set = 107
We set N, the number of layers employing PQ-LoRA, to 4 in all experiments. See Sec. [A.18]for
detailed hyperparameter analysis.

Federated distillation baselines (i.e., TAKFL, PerAda, and FedMKT) share knowledge between
heterogeneous models via logits, while FedMosaic employs PQ-LoRA. For the other baselines, we
combine them with Fed-ET (Cho et al.,|2022), which aggregates models among homogeneous clients.
For W, a small-scale pre-trained MLLM used for calculating client-wise gradients in RELA, we
adopt the smallest model among all client models. For example, in Table [I6] where clients have
three different types of heterogeneous architectures (i.e., LLaVA-Llama3.2-1B, LLaVA-Llama3.2-3B,
and LLaVA-Llama3.1-8B), we employ LLaVA-Llama3.2-1B as W for all clients. This choice
ensures computational efficiency and maintains gradient dimension consistency for cosine similarity
calculation. Note that we can employ a lighter W (e.g., reduced size or lower-bit quantization) to
further decrease the computation overhead of gradient calculation in RELA, as detailed in Sec.

All experiments are executed in Python 3.10, on four Ubuntu 20.04 machines, with § NVIDIA RTX
A6000 GPUs each. Each experiment runs on a single RTX A6000 GPU in a day.

A.7 CLIENT MODEL CONFIGURATIONS

We summarize the model configurations for each PFL experiment, including model types and
their counts, in Tab. @ For experiments on multi-modal benchmarks, we use LLaVA-Llama3 or
LLaVA-Qwen2.5 variants, while for text-only benchmarks, we use Llama-3 variants.

LLaVA-Llama3 LLaVA-Qwen2.5 Llama-3

Benchmark Experiment 1B 38 8B 05B 15B 3B 1B 3B 8B
4 6 0 0 0 o - - -
3 6 0 0 0 o - - -
4 6 0 0 0 o - - -
0 3 0 0 4 3 - - -
Tab.|[/[DRAKE-Dynamic 4 6 0 0 0 0 - - -
Tab.[T6|]DRAKE 3 5 2 0 0 o - - -
Multi-modal ~ Tab.[T7[DRAKE-Homo 0 10 0 0 0 0 - - -
Tab.|l”/|HFLB-Homo 0 9 0 0 0 0 - - -
Tab.|IS|DRAKE-Homo 0 0 0 0 0 10 - - -
Tab.|IS|DRAKE-Hetero 0 0 0 3 2 5 - - -
Tab.|I9|Llama 3B / Qwen 1.5B 0 6 0 0 4 0 - - -
Tab.|19|Llama 1B / 3B / Qwen 1.5B 2 5 0 0 3 0 - - -
All other analysis / ablation experiments 4 6 0 0 0 0 - - -
Tab. |6|Fed-LLM-Large-Dynamic - - - - - - 26 26 0
Text-only Tab.|/|Fed-Scope-Static - - - - - -0 3 2
Tab. [20|Fed-aya-Dynamic - - - - - - 4 4 0
Tab. [20|Fed-Scope-Static - - - - - - 0 3 2

Table 14: Client model configuration details for each experiment. Counts per model family/size.

A.8 COMPARISON OF COMPUTATIONAL AND MEMORY COSTS

We compare the computational cost C and memory cost M of various baselines and summarize
the results in Tab. Following (Seo et al., |2025), we measure computational cost in FLOPs per
iteration and memory cost in Bytes. Specifically, for each baseline, we report the relative FLOPs and
relative Bytes in comparison to supervised fine-tuning (SFT), which only requires a single forward
and backward pass without any extra computation and memory overhead.

Comparison of Computational Cost C. We first compare the computational cost of FL. methods.
PerAda (Xie et al.l 2024)) incurs approximately twice the computational cost compared to other
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Memory Cost M Computational Cost C
Methods Overhead Type Relative M to SFT Overhead Type Relative C to SFT
SFT - 1.000 - 1.000
DITTO (ICML 2021) Dual Adapter 1.052 Double Forward/Backward 2.000
FedSim (ICML 2022) Dual Adapter 1.052 Double Forward 1.487
FedIT (ICASSP 2024) - 1.000 - 1.000
TAKFL (NeurIPS 2024) - 1.000 Distill Logit Extract 1.294
PerAda (CVPR 2024) Dual Adapter 1.052 Double Forward/Backward & Logit Extraction 2.294
FedDAT (AAAI 2024) Triple Adapter 1.104 Double Forward/Backward 2.564
FedDPA (NeurIPS 2024) Dual Adapter 1.052 Double Forward/Backward 2.051
FedMKT (COLING 2025)  Public data Logit Share 1.002 Logit Extraction 1.574

Last Layer Gradient Compute &

FedMosaic (Ours) PQ-LoRA 1.053 Client-wise Similarity Compute

1.098

Table 15: Comparison of memory and computational costs. FedMosaic incurs additional computa-
tional and memory costs compared to SFT, but only by approximately 5.3% and 9.8%, respectively.

baselines, since it sequentially updates both the personalized adapter and the local adapter. Similarly,
FedDAT (Chen et al., 2024} independently optimizes the local adapter and the dual adapter teacher
(DAT), which also results in a double computational cost. FedMKT, PerAda, and TAKFL perform
knowledge distillation and transfer using logits (e.g., from public data), which introduces additional
forward computation for logit extraction.

Our proposed FedMosaic incurs a minor additional 1R§Iative Computational Cost vs. Num Clients
computational cost due to (i) gradient computation ’ — = SFT
from the frozen pre-trained model used for measuring @ ' —— FedMosaic (W; = LLaVA-Llama-1B)

13 FedMosaic (W = LLaVA-Qwen-0.5B 4bit)

task similarity and (ii) dual adapter structure, but this
overhead amounts to only approximately 9.8% more
FLOPs. The reason for the small increase in compu-
tation is that (i) we apply 60% gradient compression
for similarity calculation in RELA, (ii) we only use
the last layer gradient of the small-scale pre-trained 09770 160 300 500 1000
frozen model, and (iii) we perform gradient computa- Number of Clients

tion once every 10 batch iterations rather than on all  Figure 9: Relative Computational Cost to
batches for computational efficiency, as mentioned in  SFT ys. Number of clients of FedMosaic.
Sec.[4.1l Note that while FedMosaic also introduces

a dual adapter structure, i.e., maintaining the local adapter and the global adapter separately, similar
to PerAda, FedDAT, and FedDPA, we optimize the dual-adapter at once using a learnable balancing
parameter in PQ-LoRA, which adaptively balances local and global output. In contrast, the baselines
separately optimize each adapter, thus incurring a double computational cost. Thanks to these designs,
the relative overhead remains approximately at 10% even under large-scale client setups (e.g., 1000
clients), as shown by the blue line in Fig.[9] Finally, the cost can be further reduced by adopting
smaller or quantized W, as discussed in Sec.[A.20] For example, using a LLaVA-Qwen-0.5B-4bit
model as W reduces the overhead to approximately 5% with 1000 clients (yellow line in Fig.[9),
while achieving performance comparable to LLaVA-Llama-1B (Sec. [A.20).

Relative Cost C to SFT
N

Comparison of Memory Cost M. We then compare the memory cost of FL methods. FedMKT
incurs a marginal additional memory overhead, as it requires storing logits from clients for knowledge
aggregation. DITTO, FedSim, PerAda, FedDAT, FedDPA, as well as FedMosaic employ a dual
adapter structure, which maintains both local and global adapters separately, to preserve global
knowledge. It incurs additional memory cost, but since we adopt the LoRA adapter (Hu et al., [2022),
which occupies significantly less memory compared to pre-trained weights (Q1 et al.l 2024), the dual
adapter only consumes about 5% additional memory cost compared to using a single LoRA adapter.

A.9 DETAILS OF COMMUNICATION COSTS IN FEDMOSAIC

The only additional transmission in FedMosaic compared to Vanilla in Tab.[/|(i.e., FedMosaic w/o
RELA and w/o PQ-LoRA) is a single EMA-updated gradient vector per client, adding 8.6% overhead
compared to sending only local LoRA parameters. However, as mentioned in Sec. d.1] we apply
gradient compression by randomly selecting only N;% of the client-specific gradient vectors, thereby
reducing communication costs. With N, = 40%, the communication overhead drops to 3.4%.
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Communication Costs vs. Num Clients

Moreover, while baselines transmit full LoRA mod-  FedAvg

ules (i.e., A € R"™*% and B € R4*") across all layers, 60001 . FedMosaic (N,= 100%) /
FedMosaic freezes A and B in PQ-LoRA layers and ~+FedMosaic (N,= 40%)
transmits only P € R"*" and ) € R", significantly
reducing 14.3% communication cost. Combining
the marginal overhead from client-specific vectors
with the reduction from PQ-LoRA, FedMosaic con- 3000
sequently achieves 10.9% lower communication cost 200 300 400
than even the most efficient baseline (i.e., FedAvg), Number of Clients

regardless of the number of clients, ensuring scal- Figure 10: Communication Cost vws. Num-
ability and communication efficiency (Blue line in  p.. ¢ cliénts of FedMosaic

Fig.[10).

A.10 EMPIRICAL ANALYSIS OF BLOCK-WISE AGGREGATION

Costs (GB)
P
o o
o o
o o

To identify layer-wise correspondences between depth-heterogeneous models, we analyze representa-
tion alignment using CKA (Kornblith et al,2019). Specifically, we measure similarity across layers
within the Llama-3 family (1B, 3B, 8B) and the Qwen-2.5 family (0.5B, 1.5B, 3B), as illustrated
in Fig. As shown in the figure, layers with the same relative depth exhibit strong alignment,
indicating approximately linear alignment within both the Llama-3 and Qwen-2.5 families. More-
over, we observe near-linear alignment even across families, i.e., between Llama-3 and Qwen-2.5,
despite weaker linearity than intra-family alignment. This empirical analysis supports our block-wise
aggregation of PQ-LoRA. We provide an illustration of the block-wise PQ-LoRA in Fig.[12]

A.11 EXPERIMENTAL RESULTS IN MORE DIVERSE HETEROGENEOUS PFL SCENARIOS

We evaluate FedMosaic in heterogeneous PFL using three different heterogeneous architectures, i.e.,
LLaVA-Llama3.2-1B, LLaVA-Llama3.2-3B, and LLaVA-Llama3.1-8B, and summarize the results in
Tab.[T6] Consistent with the previous heterogeneous PFL scenario with two different types of archi-
tectures (i.e., LLaVA-Llama3.2-1B and LLaVA-Llama3.2-3B), FedMosaic consistently outperforms
the baselines in both PFL-Dynamic and PFL-Static settings. These results demonstrate that PQ-LoRA
effectively enables knowledge sharing across various heterogeneous architectures, highlighting its
applicability to real-world scenarios where each client possesses individual heterogeneous models.

DRAKE-Dynamic DRAKE-Static
Self Others Self Others
Method Agast T Aavc T Apast T Aavc T Apast T Apve T Agast T Aavc T
SFT 66.41+0.84 59.17+0.64 47.9440.18 47.10+0.19 68.86+2.16 62.30+3.12 47.98+0.27 47.44+0.20
DITTO (ICML 2021) 61.56+0.01 56.36+0.20 48.194+0.26 47.41+0.01 65.48+0.97 60.34+0.32 48.49+0.03 48.09+0.01
FedSim (ICML 2022) 65.00+0.41 58.18+0.46 47.474+0.10 46.61+0.04 67.39+0.32 62.42+0.25 47.08+£0.05 47.10+0.03
FedIT (ICASSP 2024) 66.18+0.22 58.95+0.02 47.544+0.02 46.97+0.01 68.78+0.22 64.07+£0.92 47.34+0.55 47.33+0.29

TAKFL (NeurIPS 2024) 64.73+:0.49 58.33+£0.53 47.85+0.46 47.16+£0.08 68.17+0.75 63.19+£1.21 47.2840.14 46.90£1.00
FedDPA (NeurlPS 2024) 63.26+0.09 57.31+£0.02 48.044+0.26 47.21+£0.07 67.71+0.95 63.03+0.24 48.184+0.53 48.22+0.13
FedDAT (AAAI 2024) 60.43+0.54 56.82+£0.29 49.794+0.21 48.25+0.25 61.97+0.58 57.64+0.45 49.76+0.46 47.99+0.21

PerAda (CVPR 2024) 58.10+2.74 54.84+1.68 46.904+0.22 46.69+£0.21 61.57+0.97 56.22+0.38 45.014+0.37 47.06+0.71
FedMKT (COLING 2025) 63.254+0.05 57.23+0.18 47.884+0.29 47.25+0.15 65.50+0.37 61.12+£0.56 48.274+0.04 47.70+0.31
FedMosaic (Ours) 68.94+0.68 60.96+0.06 52.1840.34 50.11+0.03 70.41+1.27 65.12+1.15 52.67+0.20 50.91+0.70

Table 16: Quantitative comparison in heterogeneous PFL with three different types of models.
‘Self” denotes evaluation on a client’s own data, while *Others’ denotes evaluation on data from other
clients. 3 clients use LLaVA-Llama3.2-1B model, 5 clients use LLaVA-Llama3.2-3B model, and 2
clients use LLaVA-Llama3.1-8B model. SFT refers to supervised fine-tuning on each client’s data
without cross-client knowledge sharing.

A.12 EXPERIMENT RESULTS ON HOMOGENEOUS PFL SETUP

In addition to the heterogeneous PFL scenario (Sec. @I) where both data distributions and model
architectures vary across clients, we also evaluate FedMosaic in a homogeneous PFL setting, where
clients share the same model architecture but have heterogeneous data distributions. We assume all
clients use LLaVA-3B models and summarize the results in Tab[I7l Consistent with results in the
heterogeneous setup, FedMosaic significantly outperforms baselines in generalization ability (i.e.,
‘Others’) and even surpasses SFT in personalization performance (i.e., ‘Self”).
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Figure 11: Layer-wise similarity across model scales measured with CKA. Each heat-map
cell reports the centered-kernel-alignment (CKA) similarity between the hidden representations
of heterogeneous multi-modal LLMs at every pair of layers. Here, lighter colors indicate higher
similarity. (a) For the Llama-3-based heterogeneous models and (b) for the Qwen-2.5-based
heterogeneous models, the brightest (i.e., the highest similarity) band appears roughly along the main
diagonal, indicating that layers with relative depth align most strongly. The near-linear trend supports
our proposed block-wise aggregation, which transfers knowledge from smaller to larger models that
have the same relative depth within the same architectural family.
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Figure 12: Illustration of blockwise PQ-LoRA. When a model has N PQ-LoRA modules, each
block employs PQ-LoRA at its last layer, while the remaining layers adopt conventional LoRA. Each
block contains the same number of layers.

A.13 EXPERIMENT RESULTS ON QWEN-BASED LLAVA

In addition to heterogeneous PFL scenarios with LLaVA-Llama3 variants, we also compare FedMo-
saic with baselines using Qwen-based LLaVA models. Specifically, we use LLaVA-Qwen2.5-0.5B
for the small model and LLaVA-Qwen2.5-3B for the large model. For baselines, we select the top-3
well-performing baselines in heterogeneous PFL scenarios using LLaVA-Llama3 variants, as well as
supervised fine-tuning (i.e., SFT). We summarize the results in Tab. [I8]
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DRAKE-Dynamic HFLB-Dynamic
Self Others Self Others
Method Apgst T Apuc T Aast T Apuc T Apgst T Apue T Apast T Apuc T
SFT 67.57+0.14 59.18+£1.26 49.704+0.02 48.04+1.18 80.26+1.14 77.98+0.49 63.244+0.23  62.90+0.60
DITTO (ICML 2021) 64.09+0.55 57.22+0.01 49.9240.27 49.05+£0.07 79.34+0.41 76.72+0.84 64.10+0.40 63.57+0.06
FedSim (ICML 2022) 67.05+0.98 60.69+0.84 47.944+1.69 47.55+1.14 79.60+0.77 76.93+£0.78 60.85+1.15 60.50+0.82
FedIT (ICASSP 2024) 67.62+0.49  60.35+0.69 49.8440.19 48.95+0.13 79.34+0.59 78.40+1.21 62.51+1.30 62.38+0.96

TAKFL (NeurIPS 2024) 67.02+0.04  59.86+0.36  50.03+0.06 48.85+£0.09 79.45+0.69 77.15+£0.99 63.01+0.66 62.70+0.96
FedDPA (NeurIPS 2024) 66.59+0.86 58.68+£0.71 49.924+0.24 48.81+0.13 80.57+0.62 77.65+£0.61 63.58+0.30 63.02+0.09
FedDAT (AAAI 2024) 61.95+£0.90 57.22+0.45 51.504+0.13 50.28+0.08 79.58+0.53 76.82+1.13 67.33+0.13  66.47+0.29

PerAda (CVPR 2024) 63.78+0.70 57.444+0.16 49.794+0.25 49.10+0.02 78.88+0.96 76.31+1.24 63.35£1.26 63.09+0.56
FedMKT (COLING 2025) 65.20+0.43 58.73+0.12 49.68+0.29 48.84+0.22 79.43+0.69 77.244+0.61 62.66+0.38 62.79+0.86
FedMosaic (Ours) 70.80+0.23 62.18+0.64 53.93+0.36 51.72+0.28 80.75+0.14 78.87+0.20 68.30+0.69 67.46+0.22
DRAKE-Static HFLB-Static
Self Others Self Others

Method Agast T Aauc T Apast T Aave T Agast T Aauc T Ajast T Aave T

SFT 70.56+0.27 66.31+£0.37 50.374+0.04 49.99+0.16 80.89+0.85 80.01+0.12 63.40+0.41 63.09+0.17
DITTO (ICML 2021) 66.19+0.38 62.05+0.69 50.594+0.05 49.95+0.08 80.37+0.37 79.05+£0.25 63.93+0.24 63.52+0.10
FedSim (ICML 2022) 68.65+0.86 63.96+0.78 49.27+0.22 48.85+0.14 80.05+0.01 79.36+0.79 61.22+0.30 61.31£0.12
FedIT (ICASSP 2024) 70.14+£0.03 66.08+0.59 50.094+0.15 49.87+0.26 80.63+1.23 79.97+0.01 63.34+0.11 63.09+£0.04

TAKFL (NeurIPS 2024) 68.75+£0.04 64.39+0.07 49.704+0.16 49.60+£0.03  79.97+0.11 79.41+0.81 63.67+0.39 63.3040.25
FedDPA (NeurlPS 2024) 67.40+2.73  63.71£1.24 50.454+0.38 49.92+0.30 79.99+1.23 79.02+0.35 63.45+0.07 63.11£0.02
FedDAT (AAAI 2024) 64.09+1.16  61.10+0.60 52.204+0.26 51.47+£0.04 79.80+£0.50 78.43+0.68 68.92+0.44 67.6640.27

PerAda (CVPR 2024) 65.64+0.48 61.93+£0.58 50.534+0.02 49.94+0.05 80.25+0.45 79.01+£0.26 64.00+0.13  63.58+0.31
FedMKT (COLING 2025)  67.854+0.92 62.93+1.16 49.23+£1.54 48.77+£1.69 79.85+0.67 79.7240.60 63.844+0.20 63.39:+0.07
FedMosaic (Ours) 72.02+0.37 67.18+0.13 54.21+0.05 52.94+0.05 81.69+0.16 80.54+0.09 68.70+0.26 67.75+0.23

Table 17: Quantitative comparison in homogeneous PFL. ‘Self’ denotes evaluation on a client’s
own data, while *Others’ denotes evaluation on data from other clients. All clients use LLaVA-3B
models. SFT refers to supervised fine-tuning on each client’s data without cross-client knowledge
sharing.

As shown in the table, FedMosaic significantly outperforms baselines in both homogeneous and het-
erogeneous PFL scenarios, consistent with results from LLaVA-Llama3 variants. This demonstrates
that our proposed PQ-LoRA consistently facilitates knowledge sharing across heterogeneous models
and RELA reduces interference during local model aggregation, regardless of architecture.

DRAKE-Homonegeous DRAKE-Heterogeneous
Self Others Self Others
Method Agast T Aauc T Apast T Apve T Agast T Aauc T Ajast T Aave T
SFT 68.79+1.36  59.06+0.18 47.87+0.40 47.10+£0.04 65.79+0.17 58.24+0.14 44.40+0.86 44.06+0.43
FedIT (ICASSP 2024) 68.40+0.07 60.58+0.41 49.704+0.52 48.54+0.07 66.02+0.72 58.26+1.06 44.474+0.30 44.06+0.43

FedDPA (NeurlPS 2024) 66.73+£0.42  60.21£0.47 49.3940.07 48.69+£0.11 65.43+0.64 57.79+£0.08 44.484+0.43 44.53+0.26
FedMKT (COLING 2025) 65.954+0.35 58.81+0.64 49.73+0.09 48.52+0.24 62.85+0.99 56.71+£0.33 44.73+1.35 44.24+0.75
FedMosaic (Ours) 70.38+0.34  62.841+0.23 54.254+0.33 51.85+0.20 67.36+0.21 59.95+0.71 50.431+0.01 48.51+0.29

Table 18: Quantitative comparison in PFL-Dynamic using Qwen-based LLaVA. ‘Self’ de-
notes evaluation on a client’s own data, while ‘Others’ denotes evaluation on data from other
clients. In DRAKE-Homogeneous, all clients use LLaVA-Qwen2.5-3B models, while in DRAKE-
Heterogeneous, 3 clients use LLaVA-Qwen2.5-0.5B model, 2 clients use LLaVA-Qwen2.5-1.5B
model, and 5 client uses LLaVA-Qwen2.5-3B model. SFT refers to supervised fine-tuning on each
client’s data without cross-client knowledge sharing.

A.14 EXPERIMENT RESULTS IN CROSS-FAMILY HETEROGENEOUS PFL SCENARIOS

In addition to Tab.[] we further evaluate FedMosaic under cross-family heterogeneity using clients
with either Qwen- and Llama-based LLaVAs on DRAKE-Dynamic. As shown in Tab. [I9} FedMosaic
consistently outperforms all baselines, demonstrating its generalizability and transferability beyond
the same family heterogeneous models (e.g., LLaVA-Llama-1B, LLaVA-Llama-3B).

A.15 EXPERIMENTAL RESULTS ON TEXT-ONLY BENCHMARKS

In addtion to Fed-LLM-Large (Sec@, we evaluate FedMosaic on other text-only PFL benchmarks,
Fed-Aya and Fed-Scope, and summarize the results in Tab. @ As shown in the table, FedMosaic
outperforms baselines in both personalization and generalization, consistent with results from other
MLLM PFL benchmarks, such as DRAKE and HFLB.
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Llama 3B / Qwen 1.5B Llama 1B/ Llama 3B / Qwen 1.5B
Self Others Self Others
Method Apgst T Apuc T Alast T Apuc T Apgst T Apue T Apast T Apuc T
SFT 68.414+0.39 61.04+0.33 48.48+0.15 47.75£0.07 67.244+0.07 60.42+0.33 47.48+0.02 46.73£0.10
DITTO (ICML 2021) 64.34+0.35  57.724£0.09 48.354+0.38 47.63+£0.22 63.78+0.37 57.11+£0.78 47.884+0.29  47.09+0.09
FedSim (ICML 2022) 66.40+0.94 59.084+0.53 47.32+0.59 46.74+£0.33 65.24+0.21 58.33+0.24 46.73£0.64 46.07+0.41
FedIT (ICASSP 2024) 67.81+0.73  60.46+0.61 48.374+0.24 47.41+0.06 67.21+0.51 60.05+0.07 47.254+0.04 46.62+0.03

TAKFL (NeurIPS 2024) 65.41+0.27 58.52+0.07 47.514+0.62 47.34+£0.32 66.13+1.23 58.47+0.44 47.70+0.83 46.70+0.41
FedDPA (NeurIPS 2024) 65.924+0.49 58.73+£0.01 48.30+0.20 47.41£0.19 65.93+0.20 58.42+0.07 47.674+0.08 46.64+0.05
FedDAT (AAAI 2024) 63.86+1.33  58.41+0.63 50.084+0.34 49.23+0.09 63.16+1.65 57.74+0.78 49.13+0.33  48.16+0.15

PerAda (CVPR 2024) 64.11+0.73  57.89+£0.54 48.524+0.51 47.76+£0.27 62.87+1.89 57.07£0.62 47.544+0.04 46.87+0.01
FedMKT (COLING 2025) 65.384+0.99 58.57+0.16 47.60+0.49 47.29+0.04 64.29+1.34 58.31+0.43 47.13+0.35 46.71+0.37
FedMosaic (Ours) 70.62+0.29  63.33+0.26 52.56+0.08 50.76+0.01 69.64+0.77 62.09+0.51 51.69+0.15 49.85+0.13

Table 19: Quantitative comparison in cross-family heterogeneous PFL on DRAKE-dynamic.
‘Self’ denotes evaluation on a client’s own data, while *Others’ denotes evaluation on data from other
clients. ‘Llama 3B / Qwen 1.5B’ experiment is with 6 clients using LLaVA-Llama3.2-3B model and
4 clients using LLaVA-Qwen2.5-1.5B model, while ‘Llama 1B / Llama 3B / Qwen 1.5B’ experiment
is with 2 clients using LL.aVA-Llama3.2-1B model, 5 clients using LLaVA-Llama3.2-3B model, and
3 clients using LLaVA-Qwen2.5-1.5B model. SFT refers to supervised fine-tuning on each client’s
data without cross-client knowledge sharing.

Fed-Aya Fed-Scope
Self Others Self Others
Method Ajast T Aavc T Agast T Aavc T Agast T Aave T Agast T Aauc T
SFT 2.3440.08 2.174+0.03 2.014+0.02 1.994+0.01 25.21+1.31 29.35+0.61 25.83+1.03 27.304+0.73
FedSim (ICML 2022) 1.994£0.03 1.98+£0.04 1.92+£0.01 1.92+0.03 21.13+0.97 24.03+0.45 15.57+0.87 18.59+0.30
FedIT (ICASSP 2024) 2.274+0.08 2.184+0.02 2.1940.11 2.10+0.04 25.06+1.36 28.89+0.66 25.86+0.94 27.944+0.44

TAKFL (NeurIPS 2024) 2.344+0.12  2.17£0.06  2.1940.10 2.08+£0.03 26.18£1.03 27.84+0.57 28.53+0.33 28.2740.19
FedDPA (NeurIPS 2024) 2.39£0.09 2.27+0.02 2.20£0.05 2.13+0.01 24.93£1.06 27.51+0.55 26.72+0.67 27.69+0.27
FedDAT (AAAT 2024) 2.14+0.14  2.094+0.04 1.984+0.08 1.96+0.04 24.93+£0.55 27.51+£0.28 26.724+0.53 27.6940.33
FedMKT (COLING 2025) 2.31£0.06 2.124+0.05 2.06£0.02 1.96+0.00 24.92+0.96 27.514+0.63 29.55+0.43 30.5740.19

FedMosaic (Ours) 2.51+0.01 2.32+0.03 2.25+0.01 2.174+0.02 30.58+0.84 32.68+0.64 31.01+1.46 32.50+0.62

Table 20: Quantitative comparison of heterogeneous LLM clients on the text-only benchmarks.
In Fed-aya experiment, 4 clients use Llama-3.2-1B and 4 clients use Llama-3.2-3B. In Fed-Scope
experiment, 3 clients use Llama-3.2-3B and 2 clients use Llama-3.1-8B.

A.16 CLIENT-WISE ACCURACY

In addition to reporting the average accuracy across all clients in Sec. [6.2] we report client-wise
accuracy in both homogeneous and heterogeneous PFL setups.

Homogeneous PFL Setups. We first compare client-wise performance in the homogeneous PFL-
Dynamic setups on DRAKE and HFLB, and summarize the results in Tab[21)and Tab22] respectively.
As shown in the tables, personalization performance is improved for all clients compared to SFT (i.e.,
supervised fine-tuning on local data) except Client 8 in Tab. We highlight this result because
SFT is a strong baseline for personalization (Ghari & Shen) 2024), as we also show in Tab.
where it outperforms all baselines except for FedMosaic. Moreover, supervised fine-tuning may be
sufficient for personalization in some tasks (Wozniak et al.,|2024; Mosbach et al.,2021), as seen with
Client 6 in Tab. 21] where there are only marginal improvements compared to SFT. However, for
more challenging tasks, properly leveraging knowledge from other clients significantly improves
personalization, e.g., FedMosaic shows a gain of 8.2% in A, for Client 9 and 6.4% for Client 7, as
well as a 7.1% improvement in Aayc for Client 5. In summary, even though there is only a 1-3%
gain in the average performance across clients, this is because in clients where SFT is sufficient
for personalization, the gain from PFL seems smaller. Consistent with the PFL-Dynamic setup,
FedMosaic outperforms SFT in the PFL-Static scenario, as shown in Tab. @

Heterogeneous PFL Setups. Consistent with the results in the homogeneous PFL setups, FedMo-
saic enhances personalization ability in most clients, as shown in Tab[24]and Tab[25] As shown in the
tables, not only do clients using smaller models (i.e., LLaVA-Llama3.2-1B, LLaVA-Llama3.2-3B)
benefit from knowledge sharing through PFL, but clients with larger models (i.e., LLaVA-Llama3.2-
8B) also see significant improvements, e.g., a 6.5% improvement in A;,¢; and 9.4% improvement
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Aast | Aauc
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
SFT 81.90/62.11 6523/59.28 67.38/60.31 70.28/60.40 63.69/62.07 76.05/67.35 63.40/54.17 66.93/59.31 62.70/52.20 58.16/54.58

FedMosaic ~ 82.73/66.11 67.31/63.76  68.97/62.53 72.60/67.51 68.67/63.58 76.98/68.56 69.83/58.86 70.11/60.08 70.89/54.89 59.88/55.89
Difference  +0.83/+4.01 +4.98/+1.51 +2.08/+4.48 +1.59/+2.23 +2.31/+47.12 +0.93/+1.21 +6.43/+4.69 +3.18/+0.77 +8.19/+42.69 +1.71/+1.31

Table 21: Per-client performance of FedMosaic vs. SFT in a homogeneous PFL-Dynamic setup
on DRAKE. The Difference row shows the performance gain/loss of FedMosaic compared to SFT.
All clients use the LLaVA-Llama3.2-3B model.

Aast | Aauc
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9
SFT 82.28/79.13 96.26/96.59 52.73/50.22 82.16/81.52 72.79/72.93 86.65/84.74 76.04/73.79 81.13/79.83 90.58/83.02

FedMosaic  82.77/79.79  96.60/97.08 52.99/50.88 81.89/81/98 74.31/74.95 88.20/86.55 76.78/74.74 81.94/80.33 90.00/83.25
Difference  +0.49/+0.67 +0.34/+0.48 +0.26/+0.67 -0.27/40.46 +1.52/+2.02 +1.55/+1.81 +0.74/+0.94 +0.81/+0.50 -0.58/+0.23

Table 22: Per-client performance of FedMosaic vs. SFT in a Homogeneous PFL-Dynamic setup
on HFLB. The Difference row shows the performance gain/loss of FedMosaic compared to SFT. All
clients use the LLaVA-Llama3.2-3B model.

Aast | Asuc
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9
SFT 83.09/81.54 96.62/96.70 51.81/51.38 80.62/80.32 72.34/73.66 92.21/90.82 77.56/75.12 82.66/80.74 91.04/89.83

FedMosaic  83.21/81.98 97.96/97.68 53.29/52.24 81.59/81.92 76.20/74.54 92.34/91.13 77.77/75.59 81.80/80.15 91.08/89.99
Difference  +0.12/+0.44  +1.33/40.98 +1.48/+0.86 +0.97/+1.60 +3.86/+0.87 +0.13/+0.31 +0.21/+0.46 -0.86/-0.59 +0.05/+0.16

Table 23: Per-client performance of FedMosaic vs. SFT in a homogeneous PFL-Static setup on
HFLB. The Difference row shows the performance gain/loss of FedMosaic compared to SFT. All
clients use the LLaVA-Llama3.2-3B model.

in Aayc for Client 9 in Tab.[24] We believe this is due to PQ-LoRA effectively sharing knowledge
between heterogeneous architectures, allowing both smaller and larger models to provide meaningful
information to each other.

Atast | Aauc
LLaVA-Llama3.2-1B LLaVA-Llama3.2-3B LLaVA-Llama3.1-8B
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9 Client 10
SFT 77.31/66.56 61.22/57.80 67.59/62.22 77.84/71.02 66.82/57.36 66.56/5691 66.49/64.58 62.06/58.61 64.63/57.17 72.05/69.91
FedMosaic  78.26/67.94  61.35/59.93  67.61/63.08 78.56/74.71 72.35/60.50 71.45/62.36 67.90/65.63 61.88/59.48 71.12/66.58 73.65/70.97
Difference  +0.95/+1.37 +0.13/+2.13  +0.02/+0.85 +0.73/+43.70 +5.53/+3.14 +4.89/+4545 +1.41/+1.05 -0.19/+0.87 +6.49/+9.41 +1.60/+1.05

Table 24: Per-client performance of FedMosaic vs. SFT in a heterogeneous PFL-Static setup
on DRAKE. The Difference row shows the performance gain/loss of FedMosaic compared to SFT.
Clients 1-3 use LLaVA-Llama3.2-1B, Clients 4-8 use LLaVA-Llama3.2-3B, and Clients 9-10 use
LLaVA-Llama3.1-8B.

Aast | Aauc
LLaVA-Llama3.2-1B LLaVA-Llama3.2-3B
Method Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7 Client 8 Client 9
SFT 80.69/77.18 97.41/9525 50.95/47.72 8239/81.49 73.99/73.00 92.10/88.23 76.58/74.19 81.00/79.94 89.32/83.12

FedMosaic  81.69/77.53 96.46/96.18 51.38/47.85 82.70/82.41 74.49/75.09 91.80/88.36 76.95/74.92 82.24/80.25 89.94/83.62
Difference  +1.00/40.36  -0.96/+0.93  +0.43/+40.13  +0.32/+0.92 +0.49/42.08 -0.30/+40.13 +0.36/+0.73 +1.24/+0.31 +0.62/+0.50

Table 25: Per-client performance of FedMosaic vs. SFT in a heterogeneous PFL-Dynamic setup
on HFLB. The Difference row shows the performance gain/loss of FedMosaic compared to SFT.
Clients 1-3 use LLaVA-Llama3.2-1B, while Clients 4-9 use LLaVA-Llama3.2-3B.

A.17 DETAILS OF PUBLIC DATA D,

For the public data D, we use a subset of the MLLM’s pretraining data, as briefly mentioned in
Sec.[#.2.2] Specifically, since our experiments are based on LLaVA, we adopt its instruction tuning
dataset, LLaVA-Instruct-158K (Liu et al.,[2023b), as D,,. For the alignment details, we randomly
sample 5,000 examples from D,, and align PQ-LoRA for 1 epoch using a batch size of 4, a learning
rate of 5 x 107°, and the Adam optimizer with cosine scheduler. To further assess the effect of D,,,
we explore the effect of D,’s size and its distributional alignment with the client data.
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Self Others
Size of D, Ajast T Apvc T Ajast T Apvc T
625 67.25+£0.08 59.174+0.05 51.02+0.04 49.054+0.09
1250 67.97+0.04 59.86+0.16 51.33+0.03 49.58+0.07
2500 68.11+0.06 59.76+0.04 51.35+0.31 49.5240.13
5000 67.96+0.05 59.83+0.15 51.46+0.04 49.56+0.06
10000 67.4440.18 59.34+0.16 51.044+0.16 49.37+0.03

Table 26: Effect of public data D,, size. FedMosaic performs best on moderate-sized datasets (i.e.,
1,250-5,000)

Self Others
Dataset D, Apast T Apvc T Alast T Aavc T
LLaVA-Instruct-158K (Liu et al.;2023b)  67.96£0.05 59.83+0.15 51.46+0.04 49.56+0.06
ChatbotIT (Zheng et al.[[2023) 68.42+0.18 60.17+0.26 51.16+0.22 49.78+0.13
Visual Storytelling (Li et al.|[2024d) 67.904+0.09 59.86+0.12 51.06£0.05 49.414+0.07

Table 27: Effect of domain gap between D, and clients’ data. FedMosaic shows consistent
performance across multiple benchmarks, even on text-only NLP benchmarks (i.e., ChatbotIT).

We first assess the effect of public data size in Tab[26] As shown, using too little data results in
insufficient alignment of PQ-LoRA, leading to degraded performance. Interestingly, using too much
public data also causes slight performance drops, likely due to overfitting to the D,, distribution,
which hinders generalizable alignment to clients’ distributions. Considering this trade-off, we selected
a moderate dataset size (i.e., 5,000 samples).

Next, we assess robustness under domain mismatch between D), and the clients’ distribution. Specifi-
cally, we use ChatbotIT (Zheng et al., [2023) (text-only NLP benchmark) and Visual Storytelling (Li
et al.,|2024d) (multi-sentence outputs) as D,,, both differing from the clients’ multi-modal, short-
answer tasks. To ensure a fair comparison, we fix the size of D), to 5,000 samples. As shown
in Tab. using Visual Storytelling shows comparable performance with LLaVA-Instruct-158K.
Similarly, using text-only NLP benchmark shows performance comparable to (and even surpassing)
LLaVA-Instruct-158K, demonstrating resilience of FedMosaic to distribution misalignment between
D,, and clients’ data.

A.18 HYPERPARAMETER ANALYSIS

Since dataset-specific hyperparameter search is undesirable under distribution shifts (i.e., Dynamic
setup), where future data are unknown, we adopt a single set of hyperparameters across all benchmarks
and setups, determined from the DRAKE-Dynamic setup.

Effect of Communication Rounds R and Local Steps. We analyze the trade-off by varying the
number of communication rounds and local steps under a fixed training budget. As shown in Tab. 28]
more rounds (i.e., fewer local steps per round) degrade personalization (‘Self”). We attribute this
to insufficient local adaptation, which weakens the personalized models and reduces the quality of
shared knowledge during communication, ultimately limiting improvements in generalizability. Con-
versely, significantly reducing rounds (i.e., increasing local steps) improves personalization but harms
generalization (‘Others’) due to limited inter-client knowledge sharing, reducing generalizability. To
balance this trade-off, we adopt a moderate setting with 20 rounds and 100 local steps per round.

Effect of Low Rank r in PQ-LoRA We study how varying the rank r in PQ-LoRA affects
performance, and summarize the results in Fig.[T3] As shown in the figure, while both excessively
high and low values of r lead to degraded performance, a broad range of intermediate values shows
stable performance. While a larger 7 increases shareable capacity (R"*"), it may cause overfitting (Lin
et al.;2024; (Cho et al.| 2024). In contrast, a smaller  helps mitigate overfitting but may introduce
capacity limitations, resulting in suboptimal performance (He et al.,2022). By balancing the trade-off,
we select an adequate low rank r = 128.
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Self Others
Total Rounds  Local Steps per Round Argst T Apuc T Argst T Apuc T
5 400 66.66+0.89 60.21+0.61 47.36+0.13 46.65+0.01
10 200 65.66+0.47 58.58+0.29 47.444+0.03 46.63+0.26
20 100 67.86+0.51 59.83+0.15 51.36+0.04 49.46+0.06
40 50 67.05+0.54 59.4940.11 51.104£0.11 49.4240.02
80 25 66.83+0.38 59.23+0.06 51.16£0.04 49.47+0.21

Table 28: Effect of communication rounds and local steps on DRAKE under Fixed Total
Training Cost (i.e., Total rounds x Local steps per round).

Effect of Low rank r of PQ-LoRA
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Figure 13: Accuracy on different low rank r values in PQ-LoRA on DRAKE-Dynamic setup.
Extremely low or high ranks degrade performance, but a wide intermediate range maintains stable
accuracy.

Effect of Np in PQ-LoRA  We study the effect of N, the number of layers employing PQ-LoRA,
and summarize the results in Tab In a model W with |W| layers, increasing N g reduces the layers
using conventional LoRA to |[W| — Np. Since PQ-LoRA has fewer trainable parameters (i.e., 7% + 1)
than conventional LoRA (i.e., 7 X (d; + do)), increasing N decreases the total number of learnable
parameters in W, as A € R"*% and B € R *" are frozen, with only P € R"*" and Q € R" being
trainable. Despite the reduced number of parameters, as shown in the SFT performance in the table,
performance remains stable even as Np increases. We attribute this to orthogonal and frozen A and
B, which maximize and preserve the expressiveness of PQ-LoRA (TheorenyI), despite the lower
trainable parameter count.

However, there is a trade-off in N in the PFL setup: increasing Np improves generalizability (e.g.,
Np = 2vs. Ng = 4 in Aayc of ‘Others’ in FedMosaic) but can degrade personalization (e.g.,
Np =4vs. Ng = 8 in Ay and Aayc of ‘Self” in FedMosaic). This is because, while increasing
Np enables heterogeneous models to share knowledge across more layers, the number of trainable
parameters for local training decreases due to the reduction in the number of conventional LoRA
modules. As a result, by balancing this trade-off, we employ a moderate value of N, i.e., Ng = 4.

Self Others
Method Alast T AAUC T Alast T AAUC T
SFT (N = 2) 66.14+£0.02  57.02+0.09 47.75+£0.42 46.02+0.14
SFT (N = 4) 66.24+0.68 57.71+£0.27 47.63£0.15 46.62+0.14
SFT (Np = 8) 66.21+0.62 57.87+0.20 47.86+0.29 46.76+0.20

FedMosaic (Np =2) 68.07+0.10 59.90+0.68 51.07+£0.06 48.784+0.15
FedMosaic (Np =4) 67.86+0.51 59.83+0.16 51.26+0.04 49.36+0.08
FedMosaic (Np = 8) 67.524+0.77 59.39+0.23 51.27+0.27 49.26+0.14

Table 29: Accuracy on different number of blocks (Ng) in PQ-LoRA in heterogeneous PFL-
dynamic setup on DRAKE. Given a model W with |W| layers, using N blocks means that Np
layers adopt PQ-LoRA, while the remaining |W| — Np layers use conventional LoRA.

Effect of Orthogonality-regularization Scale A\ in PQ-LoRA We study how varying the
orthogonality-regularization scale A in PQ-LoRA alignment process (Eq. affects performance, and
summarize the results in Fig. We observe that the ‘Self” performance does not fluctuate on larger A,
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but reduces for small \. This indicates that insufficient weighting of the orthogonality-regularization
term weakens the enforced orthogonality among A matrices from heterogeneous models, thereby
reducing the representational capacity (i.e., Span) of PQ-LoRA, as mentioned in Theorem|[I]

Effect of Orthogonality regularization scale A
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Figure 14: Accuracy on different L2 regularization scale )\ values in PQ-LoRA on DRAKE-
Dynamic setup. Extremely low A\ degrades performance, but a wide intermediate range maintains
stable accuracy.

Effect of Temperature 7 in RELA We analyze the effect of the softmax temperature 7 in RELA
(Eq.[), which controls the aggregation sharpness, i.e., lower 7 focuses aggregation on similar clients,
while higher 7 aggregates weights across more diverse ones. Interestingly, as shown in Fig. [I3] neither
decreasing nor increasing the temperature 7 consistently improves personalization or generalization.
Instead, we observe two trends: (i) Extremely low 7 degrades both personalization and generalization
(ii) Increasing 7 too much reduces personalization, while generalization gradually stabilizes.

This is because low 7 limits the diversity of aggregation, restricting knowledge sharing even among
moderately relevant clients. In contrast, high 7 encourages sharing across dissimilar tasks, which can
reduce personalizability due to the inclusion of unrelated knowledge in the global model. However,
increasing 7 does not continuously improve generalization; it converges after a certain point. We
believe this is because, although a higher 7 promotes aggregation of more diverse knowledge, it also
increases parameter interference (e.g., sign conflicts) when combining models trained on distinct
tasks (Yeh et al., 2023} Ding et al.,|2024)). Consequently, we adopt a moderate temperature of 7 = 0.5
for all experiments.

Effect of Temperature T of RELA
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Figure 15: Accuracy under different temperatures 7 on DRAKE-Dynamic setup. Extremely low
or high temperatures degrade performance, but a wide intermediate range maintains stable accuracy.
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Effect of Gradient sampling ratio N; in RELA We analyze the effect of gradient sampling ratio
N, and summarize the results in Fig.|16] As shown, sampling only a very small number of dimensions
from the decayed client-wise gradient g; to construct the sanitized gradient g; significantly degrades
performance, as it undermines the representativeness and informativeness of the compressed gradient
vector (Li et al.l 2024b)). However, using up to N, = 40% of the gradient dimensions maintains
comparable performance while reducing both communication costs and privacy risks from gradient
inversion. Accordingly, we consistently set Ny = 40% for RELA in all experiments.

Effect of Gradient sampling ratio N,
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Figure 16: Accuracy under different gradient sampling ratio N, on DRAKE-Dynamic setup.
Extremely low gradient sampling ratio degrades performance, but a wide range maintains stable
accuracy.

Effect of decaying EMA ratio o in RELA  We analyze the effect of gradient deacying EMA ratio
o and summarize the results in Fig. Too small « ignores current task information, while too large
o ignores previously learned tasks. Balancing the trade-off, we consistently set & = 0.5 for RELA in
all experiments.

Effect of EMA ratio a of RELA
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Figure 17: Accuracy under different gradient decaying EMA ratio « on DRAKE-Dynamic
setup. Balance between current and old (a = 0.5) shows the best result.

Effect of noise scale ;; in RELA sanitized gradient We also study the noise scale p in sanitized
gradient g (Eq.[3) in RELA and visualize the results in Fig. [I8] We clearly see the decreasing trend in
the results when we increase the noise scale. While stronger random noise enhances privacy by better
concealing sensitive information, excessive noise severely distorts the gradient signal, undermining
the reliable estimation of task relevance based on gradient similarity.

A.19 ABLATION STUDY OF RELA

Our proposed RELA measures task similarity among clients using client-wise gradients to construct a
similarity-aware customized global model for each client. Specifically, for the i-th client, we maintain
a decayed gradient g;, updated via exponential moving average (EMA) from the current gradient g;,
which is computed using the current batch and a small, frozen pre-trained model. Note that we use
the last-layer gradient of the frozen model, not the training model, as mentioned in Sec. 4.1}

We ablate RELA by comparing four aggregation variants: (1) Equal-weight aggregation, which
ignores task similarity and aggregates local models uniformly; (2) Training model gradients, using
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Effect of Noise scale u in Sanitized gradient
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Figure 18: Accuracy under different noise scale ;© on DRAKE-Dynamic setup. Strong noise
distorts the gradient signal, undermining the reliable estimation of task relevance based on gradient
similarity.

current batch gradients from the trainable model; (3) Frozen model gradients, using current batch
gradients from the frozen pre-trained model; and (4) Decayed frozen gradient (i.e., RELA), which
maintains an EMA of gradients from the frozen pre-trained model to capture model knowledge shifts.
We summarize the results in Tab.

As shown in the table, model aggregation considering task similarity measured by client-wise
gradients generally improves the ‘Self” accuracy. This demonstrates the loss of information in Equal-
weight aggregation due to parameter interference. While using gradients from the training model
(‘Training model gradient’) shows improved performance compared to Equal-weight aggregation, it
still suffers from data heterogeneity, as gradient similarities from models trained on heterogeneous
data may not capture actual similarity (Tang et al., [2020; |[Evans et al., 2024)). Using a frozen model’s
gradients from the current batch (‘Frozen model gradients’) can address this limitation, but cannot
reflect model knowledge shifts under distribution shifts, as mentioned in Sec. @ In contrast,
RELA effectively captures task similarity under data heterogeneity with distribution shifts, thus
outperforming other aggregation strategies.

Self
Method Alast T Apvc T
Equal-weight aggregation 66.99+0.77 58.39+0.38
Training model gradients 67.16+0.74 59.38+0.53
Frozen model gradients 67.244+1.27 59.45+0.74

Decayed frozen gradients (RELA) 67.86+£0.51 59.83+0.16

Table 30: Ablation of components in RELA in Heterogeneous PFL-dynamic setup on DRAKE.
‘Equal-weight aggregation’ refers to aggregating local models with equal weight, ‘Training model
gradients’ refers to using gradients from the current batch computed with the training model, ‘Frozen
model gradients’ refers to using gradients from the current batch computed with the frozen pre-trained
model, and ‘Decayed frozen gradients’ refer to EMA-estimated gradients from the frozen model (i.e.,
RELA).

A.20 RELA WITH LIGHTER W

To extract per-client gradients for RELA, we employ the smallest MLLM among all clients’ models
(e.g., LLaVA-1.5-1B). To further reduce the computational overhead of RELA, we can utilize an
even smaller model (e.g., LLaVA-Qwen-0.5B) or apply lower-bit quantization (e.g., 4-bit and 8-bit),
as shown in Tab. [31] The results show that FedMosaic maintains consistent performance even with
smaller models and lower-bit quantization, demonstrating that computational costs can be further
reduced without sacrificing performance.

A.21 DIFFERENT WEIGHT ALIGNMENT METHODS IN PQ-LORA

To ensure shared initialization across heterogeneous architectures, we align A matrices from heteroge-
. . . . . . . /
neous architectures (i.e., A; € R™ % A; € R™%) using L2 loss, and B matrices (i.e., B; € R%*",
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Self Others
Wy Relative computational costs | Ajast T Aave T Alast T Aave T
LLaVA-Llama3.2-1B (16bit) 1.0 67.861+0.51 59.83+£0.15 51.16+0.04 49.36+0.08
LLaVA-Qwen-0.5B (16bit) 0.52 67.84+£0.19 59.42+0.75 51.4040.12 49.374+0.19
LLaVA-Qwen-0.5B (8bit) 0.26 67.36+0.14  59.22+0.43 51.741+0.06 49.56+0.07
LLaVA-Qwen-0.5B (4bit) 0.13 67.23£0.49 59.41£0.13 51.344+0.42 49.431+0.09

Table 31: Effect of W,’s model size and quantization on DRAKE-Dynamic. Relative compu-
tational costs denote the ratio of computation compared to LLaVA-1.5-1B (16-bit). Comparable
performance is maintained with both a smaller model (i.e., 0.5B) and quantized models (i.e., 4-bit,
8-bit).

B; ¢ R X"} using canonical correlation analysis (CCA), as detailed in Sec We ablate the
effects of aligning A and B matrices, and summarize the results in Tab. [32] Note that the results
in the table report the average performance across all clients, which can make the overall average
improvements appear small, as mentioned in Sec. [6.2]

As shown, alignment improves both personalization (‘Self”) and generalization (‘Others’) perfor-
mance. This occurs because aligning both A and B in PQ-LoRA ensures heterogeneous models
share initialization and follow consistent optimization paths, allowing aggregation without weight
interference (Wortsman et al., 2022a3b; [Yadav et al., [2023)). In contrast, misalignment in either
matrix introduces initialization discrepancies between models, leading to weight interference during
aggregation and degrading performance (Jordan et al., 2023 Neyshabur et al., [2020; Stoica et al.}
2025).

Initialization Self Others

A B Alast T Apue T Apast T Apue T

Random Random 67.95+1.71 63.50+0.66 47.71+0.08 47.46+0.05
Random Aligned (CCA) 68.22+1.84 63.594+0.62 47.80+0.06 47.56+0.08
Aligned (L2) Random 68.29+1.57 63.58+0.60 47.724+0.14 47.41+0.04

Aligned (L2) Aligned (CCA) 68.73+1.92 63.82£0.59 48.04-£0.04 47.57+0.08

Table 32: Accuracy on different weight alignment in PQ-LoRA under Heterogeneous PFL-Static
setup on DRAKE. ‘Random’ initializes matrices randomly, while Aligned (L2) and Aligned (CCA)
use matrices aligned by L2 loss and canonical correlation analysis (CCA), respectively.

A.22 COMPARISON WITH SIMILARITY-AWARE MODEL AGGREGATION

Federated Learning We are not the first to try to aggregate client models based on task similarity,
but most existing approaches are not applicable to large language model (LLM) federated learning
scenarios. pFedSim (Tan et al.l |2023) measures the classifier similarity among clients and uses
it for weighted model aggregation, which is infeasible for LLM fine-tuning where the pre-trained
classifier remains frozen. pFedHR (Wang et al.,|2023)) computes similarity between client models
based on the output logits and performs similarity-aware layer stitching. However, its logit extrac-
tions relies on public data, which (as acknowledged by the authors) raises public data sensitivity
concerns: the discrepancy between private and public data may leads to inaccurate similarity estimate.
Flashback (Aljahdali et al., 2024)) conducts dynamic knowledge distillation where teacher logits are
adaptively weighted by client-wise label count, but this method is limited to single-dataset classi-
fication FL tasks. There is also another approach like FEDLAW (Li et al.| 2023d)) that adaptively
aggregates models based on the optimized learnable weights instead of client similarity. However, it
incurs high computational costs and remains highly sensitive to the choice of public data.

RELA, on the contrary, measures the task similarity among clients using sanitized last layer gradients.
These gradients from each private data effectively capture task characteristics with minimal additional
computation and communication cost, while preserving privacy through EMA updates, noise injection,
and gradient compression.

Multi-Task Learning Federated learning (FL) and personalized federated learning (PFL) are
not the only paradigms that learn heterogeneous tasks concurrently. Multi-task learning (MTL)
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trains a single model on multiple tasks simultaneously in a single compute node, not in separate
private nodes as in FL.. MTL methods, such as NBS (Navon et al.,|2022) and Rotograd (Javaloy &
Valera, [2022), leverage inter-task relationships to dynamically weight gradients, thereby mitigating
interference and promoting a balanced update direction across tasks. This is similar to the motivation
of our aggregation method, i.e., RELA, which aims to reduce the interference between multiple
tasks. However, these techniques are not directly applicable to personalized federated learning due
to differing objectives: similarity-aware MTL strategies target generalizability by reshaping task-
specific gradients to improve a single shared model, whereas RELA focuses on personalization. It
provides each client with a customized global model by down-weighting contributions from irrelevant
tasks, rather than enforcing a single globally shared one, thereby providing knowledge beneficial for
personalization, while still enhancing generalizability as a byproduct.

We also empirically compare RELA with MTL methods (Navon et al) 2022). Note that Ro-
tograd(Javaloy & Valera, 2022) is incompatible with PFL because it aligns gradient directions
by optimizing rotation heads using samples from multiple tasks, which is not feasible under federated
data isolation and privacy constraints. Therefore, we only compare with NBS, which determines
task weights via a Nash bargaining objective that maximizes total loss reduction. In PFL setting,
we apply NBS weighting to adapter parameters rather than raw gradients for a shared global model,
since FL aggregates parameters. As shown in Tab.[33] NBS shows lower ’Self” performance, while
maintaining similar generalization (‘Others’) performance. We believe NBS’s weighting mechanism
focuses on harmonizing parameters from multiple tasks to minimize the overall loss, but fails to
preserve or share task-relevant information necessary for each client’s personal tasks, resulting in
poor ‘Self” performance.

Self Others
Method Agst T Apuc T Apast T Apvc T

FedMosaic w/ RELA 67.86+0.51 59.83+0.15 51.16+0.04 49.360.08
FedMosaic w/ NBS (Navon et al.|[2022) 66.89+0.43 58.984+0.20 51.07£0.09 49.09+0.06

Table 33: Quantitative comparison with MTL method.

A.23 EXTENDED FAST ADAPTATION EVALUATIONS

In addition to the fast adaptation evaluation in Sec[6.2] we further assess fast adaptation on additional
unseen tasks from DRAKE. We summarize the results in Fig[T9] As shown in the figure, models
initialized with FedMosaic adapt significantly faster than those with random initialization or other PFL
baselines, demonstrating that FedMosaic enhances generalizability by effectively sharing knowledge
in heterogeneous PFL setups.

‘— Random Init == SFT FedIT === FedSIM FedDPA === FedMKT === FedMosaic (Ours)
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Figure 19: Comparison of adaptation speed. We use FedMosaic’s unseen tasks as downstream
tasks. Random init starts from randomly initialized models, while other baselines are initialized from
aggregated local models trained on DRAKE using each respective FL baseline.
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A.24 ADDITIONAL DETAILS OF DRAKE

We curate DRAKE using open-sourced datasets from the Internet. Specifically, we select large-scale
multi-modal benchmarks that differ in distribution or properties from LLaVA’s pre-training data and
provide clear metadata or instructions, enabling task-wise splits for emulating distribution shifts. We
refer to diverse multi-modal benchmarks, such as DEMON (L. et al., 2024c), SEED-Bench-2 (Li
et al., [2024a), Co-Instruct (Wu et al.,[2024b)), and HFLB (Chen et al.,[2024).

DRAKE consists of 40 distinct tasks, where for each task, we subsample 10,000 training and 1,000
test samples, if the dataset is large; otherwise, we split the data into training and test sets with an 8:2
ratio, totaling 375k images and 274k questions. We illustrate the overall structure of DRAKE as a tree
diagram in Fig.[20} As shown in the figure, DRAKE consists of three sub-groups, i.e., visual relation,
multi-modal reasoning, and VQA, each comprising multiple fine-grained tasks, with representative
examples of each sub-group in Fig. 21} We also provide detailed per-client task configuration of
DRAKE in Tab.[34

Visual Relation Tasks Visual relation tasks focus on capturing relationships among visual objects,
consist of 12 distinct tasks. We categorize them into three splits: fashion-relation, dual-image relation,
and spatial/temporal. The fashion-relation split focuses on fine-grained attribute understanding in
clothing images, using the cloth-counting and three-/four-image variants of Fashion200K (Han et al.|
2017) as well as the query-reference caption split of FashionIQ (Wu et al.l 2021). The dual-image
relation split evaluates comparative reasoning across separate images, drawing on NLVR2 (Suhr
et al., [2019), CIRR (Liu et al., 2021)), the two- and four-image true/false subsets of VISION (Bai
et al.| [2023)), and MagicBrush (Zhang et al.l 2023a). The spatial/temporal split targets positional and
temporal dependencies, combining single-frame spatial reasoning in VSR (Liu et al.}[2023a) with
temporal understanding tasks from SEED-Bench-2 (Li et al., 2024a)).

Multi-modal Reasoning Tasks Multi-modal reasoning tasks require the integration of visual
cues with common-sense knowledge, comprising 12 distinct tasks. We include four tasks from
IRFL (Yosef et al.| [2023) that examine the figurative interpretation of images paired with non-literal
language. We also include five additional tasks derived from the positive—negative image groups in
Bongard-HOI (Jiang et al.,|2022)) and Bongard-OpenWorld (Wu et al.,2024d). These tasks require
fine-grained discrimination between contrasting sets. We incorporate three reasoning challenges from
COMICS (lIyyer et al., 2017), MIT-States (Isola et al.,|2015), and VizWiz (Gurari et al.,[2018]), all
sourced from DEMON (Li et al., [2024c).

VQA Tasks The VQA sub-group includes 16 diverse VQA tasks that differ significantly from
LLaVA’s pre-training datasets. We include novel question types, such as image-quality queries
in Co-Instruct (Wu et al., [2024b), textbook-style diagram interpretation in TQA (Kembhavi et al.,
2017), DVQA (Kafle et al.} 2018)), and knowledge-grounded QA tasks from SEED-Bench-2 (Li et al.,
2024a). We also incorporate unfamiliar image domains, including IconQA (Lu et al., [2021) and
WCVQA (Winata et al.| [2024). We partition Co-Instruct by question type (e.g., Yes/No, How/what
questions), IconQA by difficulty and question category (e.g., Multi-choice or Short answering,
kindergarten-level or grade 1-level questions), while we dividle WCVQA using their original split.

Unseen Tasks To assess generalization capability, we add 7 additional tasks that are disjoint from
the clients’ tasks in DRAKE. We selected challenging benchmarks requiring extensive training,
which are far from fast adaptation. The unseen tasks include novel task types (DreamSim (Fu
et al.,[2023b), ImageCoDe (Krojer et al.| 2022)) and novel visual domains with familiar task format
(RecipeQA (Yagcioglu et al.,|2018)) subsets proposed in DEMON (Li et al.l 2024c)), and HQ-Edit Hui
et al. (2025)). In addition, we split the Contrast-Caption subset of Mantis (Jiang et al.| 2024} |Yu et al.
2022)) into two tasks: one with images overlapping LLaVA’s pre-training distribution and another
with previously unseen images.

A.25 COMPARISON WITH OTHER FL BENCHMARKS.
A number of federated learning (FL) benchmarks exist, but most lack critical aspects required for FL.

of multi-modal foundation models, which DRAKE addresses, with the main differences summarized
in Tab.[1
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Client 1

Client 2

e Fashion200K (Han et al.|[2017): ClothCombination
e FashionIQ (Wu et al.[[2021)

e VISION (Bai et al.||2023): 2_Img

o MagicBrush (Zhang et al.|[2023a)

o Co-Instruct (Wu et al.|2024b): 2_ImgCompare
o SEED-Bench-2 (Li et al.|[|2024a): KGQA

e IconQA (Lu et al.[[2021): ShortAnswerEasy

o WCVQA (Winata et al.[[2024): DishName

Client 3

Client 4

e Co-Instruct (Wu et al.|[2024b): HowWhat

e DVQA (Kafle et al.|[2018)

e IconQA (Lu et al.|[2021): ShortAnswerHard

e WCVQA (Winata et al.|[2024): ContextDishName

e Co-Instruct (Wu et al.![2024b): 3_ImgCompare

e SEED-Bench-2 (Li et al.||2024a): InstanceQA

e IconQA (Lu et al.[[2021): MultiChoiceEasy

e WCVQA (Winata et al.|[2024): AdvContextDishName

Client 5

Client 6

o Fashion200K (Han et al.|2017): ColorConsistency
o NLVR2 (Suhr et al.|[2019): Subset1

o VISION (Bai et al.[[2023): 4_Img

e VSR (Liu et al.|[2023a)

e Fashion200K (Han et al.|[2017): StyleConsistency
e NLVR2 (Suhr et al.||2019): Subset2

o CIRR (Liu et al.[[2021)

o SEED-Bench-2 (Li et al.|[2024a): TemporalQA

Client 7

Client 8

o IRFL (Yosef et al.|[2023): MetaphorSimileMatching
e Bongard—HOI (Jiang et al.||2022): ActionDetection
e VizWiz (Gurari et al.|[2018)

o MIT-States (Isola et al.||2015)

Client 9

o IRFL (Yosef et al.|[2023): PhraseSelection

e Bongard-OpenWorld (Wu et al.|[2024d): ConceptQuery
e Bongard-HOI (Jiang et al.||2022): ConceptQuery

e Bongard—HOI (Jiang et al.|2022): ActionIncoherence

o IRFL (Yosef et al.||2023): Figurative Verification

o IRFL (Yosef et al.|[2023): IdiomMatching

o Bongard—OpenWorld (Wu et al.|[2024d): ConceptDetection
e COMICS (Iyyer et al.|[2017): Dialogue

Client 10

o Co-Instruct (Wu et al.|[2024b): YesNO

e TQA (Kembhavi et al.|[2017)

e IconQA (Lu et al.[[2021): MultiChoiceHard
e WCVQA (Winata et al.[[2024): Location

Table 34: Per-client task configuration of DRAKE. DRAKE consists of 10 clients, each with 4
distinct tasks. Client 1, 5, 6 tackle visual relation tasks, Client 7, 8, 9 handle multi-modal reasoning
tasks, and Client 2, 3, 4, 10 focus on VQA tasks, as illustrated in Fig. @}

Benchmarks like NonlID-50 (Yoon et al., 2021), LEAF-FCL (Q1 et al., |2023), and MNIST-
Shuffle (Wuerkaixi et al., [2024) simulate distribution shifts under FL. However, they are single-
task and single-modal (i.e., image classification) only, thus cannot reflect real-world task diversity.
HC-FMTL (Lu et al., [2024)) spans multiple vision tasks, such as depth estimation and semantic
segmentation, but still remains unimodal.

On the language side, several text-only FL benchmarks have recently been proposed to target LLM
federated learning scenarios. Fed-SNI (Collins et al., 2023)) and Fed-FLAN (Long et al., 2024) cover
diverse NLP tasks, while Fed-Aya (Ye et al.,[2024) focuses on multilingual instruction following.
FEDLEGAL (Zhang et al., [2023b)) curates a FL. benchmark for the privacy-sensitive legal domain
where federated learning is necessary. Despite their breadth, they are also limited to a single modality
and assume static data distribution, while data distribution often shifts over time in real-world.

For multi-modal PFL, we find only one prior benchmark: HFLB (Chen et al.| [2024). Although
HFLB includes 7 different datasets, the multi-modal task diversity is limited, and they are mostly
single-image settings. Other multi-modal FL benchmarks, e.g., FedMultimodal (Feng et al.| [2023),
FHBench (Wang et al., 2025), and FedMLLM (Xu et al., [2024), are primarily comprised of only
a classification task on different modalities or split one or two VQA datasets, which is insufficient
for evaluation personalization under diverse heterogeneous tasks. Importantly, existing benchmarks
generally lack an unseen task split to test the generalization ability of the model.

In contrast, DRAKE offers 40 different multi-modal tasks (including multi-image tasks), which is
suitable for personalization evaluation and temporal distribution shift. Moreover, DRAKE additionally
provides 7 unseen tasks for out-of-distribution generalization evaluation.

A.26 LIMITATIONS AND FUTURE WORK
While we evaluate FedMosaic across diverse multi-modal FL benchmarks (e.g., HFLB and our

proposed DRAKE) and text-only NLP benchmarks (e.g., Fed-Aya, Fed-Scope, and Fed-LLM-Large),
it has not yet been tested on other modalities such as speech and time series. Extending evaluations
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Multi-modal
Reasoning
Tasks

Sub-group 3

VQA
Tasks

—( Fashion Relation QA )—

Fashion200K - Cloth Counting
Fashion200K - 3 Image Style T/F
Fashion200K - 4 image Color T/F
FashionlQ - Query-Reference Caption T/F)

—(Dual image Relation QA]—

NLVR2 - Dual Image Relationship Check
CIRR - Image Transition Caption T/F
VISION - 2 Image T/F

VISION - 4 Image T/F

MagicBrush - Image Edit Instruction
Direction Check J

Spatial/Temporal
Understanding

+ VSR - Spatial Understanding
+ SEED-Bench2 -Temporal Understanding

Visual Figurative
Understanding

+ IRFL - Image Selection for Idiom

+ IRFL - Phrase Selection for Image

IRFL - Figurative Verification T/F

IRFL - Image Selection for Metaphor/
Simile

Context-dependent
Visual Reasoning

+ Bongard-OpenWorld - Positive/Negative
+ Bongdard-OpenWorld - Common
- Bongard-HOI - Positive/Negative

+ Bongard-HOI - Common Action Detection

Concept Query
Concept Detection

Concept Query

Bongard-HOI - Action Incoherence
Recognition

Additional
Vision Language QA

+ VizWiz - Question-Answer Difference

COMICS - Dialogue prediction h
MIT-States - State Recognition J

Image Quality QA )— :

+ Co-Instruct - 3 Image Quality Compare

Co-Instruct- How/What QA
Co-Instruct - Yes/No QA

Co-Instruct - 2 Image Quality Compare
QA

A
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{ i
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+ WCVQA - Dish Name Prediction
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Adversarial Context
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DreamSim - Similar Image Matching

Matching (Seen image domain)
ImageCoDe - Sequential Image Choice
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+ HQ-Edit - Image Edit Instruction Direction
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Figure 20: Detailed configuration of the proposed DRAKE benchmark.

to these domains would better capture real-world FL scenarios and represent an important direction

for future work.
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Figure 21: Data samples from DRAKE.

Moreover, although LoRA is most commonly used in transformer-based models, it is not restricted to
them. Specifically, prior studies (Yeh et al.l|2023} Ding et al., 2024) have demonstrated its applicability
to convolutional layers, highlighting its architecture-agnostic nature. Therefore, exploring the use of
PQ-LoRA beyond transformers to enable knowledge transfer across broader model families represents
an important direction for future work.

A.27 IMPACT STATEMENTS

This work focuses on federated learning, which enables model training in a distributed manner,
eliminating the need to share raw data and thereby mitigating data privacy risks. However, since
we assume that the model is trained under distribution shifts, there is a potential for the unintended
amplification of issues such as model bias and ethical misalignment. We are committed to taking all
necessary measures to address these risks, although tackling these concerns is not the primary focus
of this work.

A.28 DETAILED ALGORITHM OF FEDMOSAIC
Algorithm [I] provides a pseudocode for the proposed FedMosaic framework. We further provide

detailed algorithms for initializing adapters (Algorithm[2) and aligning adapters across heterogeneous
clients (Algorithms [3|and f).
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Algorithm 1: FedMosaic

# Input
# Number of clients N, Number of client model types K,
# Set of frozen pre-trained models W= {Wy,.., Wk},
# Mapping of client to model V :{l,..,N} — W, Number of rounds
Rr
# Batch size B, Learning rate 7, Gradient frequency f, EMA
ratio a, Temperature 7, Gaussian noise std u, Gradient
subsample ratio N
# Small-scale pre-trained model Wsg, Regularization
coefficient A
# Training data streams of T tasks for N clients
{D1,Ds,...,Dn},

where D; ={D},D? ..., DI}, Number of PQ-LoRA blocks Np,

# Public dataset D,, Conventional-LoRA, PQ-LoRA

E = InitializeAdaptersForModels (W, Np, K) # (Alg. [2)
E = AlignAdapter (W, E, D,, K, N # (Alg. [5 2lg. [4

# Initialization for each client
for i in range(N) do

M[i] = [] # Initialize episodic memory

# Initialize local and global adapters with the aligned
adapter E

L[i] = E[1]

G[i] = E[1i]

# Initialize gradient vector with zeros

gl[i] = torch.zeros(d_[len(V(i))])

# Initialize gating parameters for each layer in L[i]
beta[i] = [0.0 for _ in range(len(L[i]))]

# Set Random subsample indices for last layer gradient
subsample_index = random_choice (last_layer_grad size, Nj)

for task t in range(T) do

for round r in range (R) do

# Client-side

for client index i in range (N) do

W_i = V(i)

g_t = []

for j, (x_j, y_j) in D! do

M[i].append ((x_3j, y_3))

X, y = random_choice (M[1], B)

# Compute loss with mixed local-global adapter
loss = CrossEntropy (Forward(wW_i, L[i], G[i], betali],
X), V)

L[{i] —= n » Grad(L[i], loss)

if 1 ¢ £ == 0 then

loss = CrossEntropy (Forward (Ws, x), y)
g_last = LastLayerGrad(Wg, loss)

# Subsample gradient and add gaussian noise
eps ~ N(O,I) # I ER,&SY layer_grad size
g_sanitized = g_last[subsample_index] + p =*
eps [subsample_index]

| g_t.append(g_sanitized)

gli]l] = (1 - a) = gl[i] + a * Average(g_t)

# Server-side
# Aggregate global adapters using SIMA
| G = SIMA(L, g)
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Algorithm 2: TnitializeAdaptersForModels(W, Ng, K)

// Initialize the list of adapter lists for each model
E = []
for k in range(1, K) do
// Initialize adapter list for model W
E_k = []
// Block size per model (PQ-LoRA assigned)
B_k = len(WI[k]) // Np
// Remaining layers not evenly divisible
B_.r = len(W]I[k]) % Np
for 1 in range (1, len (Wi [k])) do
ifd n in {1I..Np} s.t. ==nxB_k -+ B_r then
// Append PQ-LoORA
E_k.append (PQ-LoRA)
else
// Append conventional LoRA
E_k.append (Conventional-LoRA)

// Add adapter list to full collection
| E.append(E_k)
return E
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Algorithm 3: AlignAdapter (W, E, D,, K, A) - Part 1

# Define hook functions to capture outputs during a forward
pass

Function hook_ fn (module, input, output) :

| self.lora_outputs.append (output)

### Combine PQO-LoRA with the pre-trained model
E_indices = []
for i in range(K) do

E_index = []
for j in range(len(wW[i])) do
if £[i][j] == PO-LoRA then
# Attach PQ-LoRA to pre-trained model layers
W[i] [j] = Attach(E[i][3J], W[i][3])
E_index.append(7j)
| E_indices.append(E_index)

### Align PQ-LoRA A matrices
W_p = W[0] # Set pivot model

W_p.freeze() # Freeze pivot model
for i in range (1, K) do
W_i = W[i]

## Step 1. Attach hooks to LoRA A and perform a forward pass
# Register hooks to capture the outputs of LoRA A matrix at
PO-LoRA attached layers

for j in E_indices[0] do

| W.plJ].A.register_forward_hook (hook_fn)

for 7 in E_indices[i] do

| W_i[]J].A.register_forward_hook (hook_fn)

## Step 2. Alignment of A using L2 loss

total_loss = 0

for (x, y) in D, do

W_p.forward_with_lora_scaled(x, scale=0)
W_i.forward_with_lora_scaled(x, scale=0)

total_loss = 0

# Compute L2 loss for each layer using outputs captured by
hooks

for j in range(len(lora_outputs([i])) do

# Compute L2 between LoRA A outputs of W_i and W_p at
layer j

loss_12 = L2 (W_p.lora_outputs[]j], W_i.lora_outputs([]j])
# Compute Regularization loss to prevent deviation from
orthogonality (Eq. [21)

loss_reg = Reg(W_i[3j].A)

total_loss += loss_12 + A x loss_reg

| W_1i —= n » Grad(W_i, total_loss)
## Step 3. Post-process A to enforce Orthogonality
for 7 in E_indices[i] do

# Use Singular Value Decomposition to get the closest
orthogonal matrix

U, S, Vt = SVD(W_i[7j].A)

| W_i[j].A = U+Vt
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Algorithm 4: AlignAdapter (W, F, D,, K, \) - Part 2

### Align PQ-LoRA B matrices
for i in range (1, K) do
W_ i = W[i]

## Step 1. Attach hooks to LoRA B and perform a forward pass
# Register hooks to capture the outputs of B in PQ-LoRA
attached layers

for 7 in E_indices[0] do

| W_pl]J].B.register_forward_hook (hook_fn)

for j in E_indices[i] do

| W_i[]J].B.register_forward_hook (hook_fn)

# Forward pass to collect outputs of the LoRA B matrices for
CCA

for (x, y) in D, do
W_p.forward_with_lora_scaled(x, scale=0)

| W_i.forward_with_lora_scaled(x, scale=0)

## Step 2. Apply CCA to align B matrices
for j in range(len(w_i)) do

# Extract B matrix outputs from hooks
X p = W_p.lora_outputs|[]]

X 1 = W_i.lora_outputs[j]

# Compute CCA projection vectors

II_p, II_i = CCA(X_p, X_1i)

# Initialize B using the CCA transformation
L W_i[3].B = ((_1)™)" - (dp)" - W_pl[j].B

E_align = []

for i in range(K) do

for j in range(len(W[i])) do
if £[i][j] == PO-LoRA then
L E[11[3] = W[il[3]

| E_align.append(E[1i])

return E_align
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