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Abstract—This paper investigates the privacy-preserving adap-
tive tracking control problem for nonlinear multiagent systems
with unknown disturbances. Firstly, based on the phenomenon
of Lorenz system, a masking function endowed with uncer-
tainty and unpredictability is proposed. Meanwhile, a time-
assist function is designed to achieve privacy protection within
a predefined period of time, which enhances the flexibility of
the mechanism. In addition, a dynamically self-adjustable gain
parameter is designed in disturbance observer. The introduction
of this parameter enables the proposed disturbance observer
to not only handle unknown disturbances but also achieve
better results in improving system performance. Afterward, the
Lyapunov stability theorem is utilized to prove that all signals
of the closed-loop system are semi-globally uniformly ultimately
bounded. Finally, simulation results confirm the effectiveness of
the proposed control scheme.

Index Terms—Disturbance observer, gradient descent method,
multiagent systems, privacy-preserving mechanism.

I. INTRODUCTION

In recent years, multiagent systems (MASs) have garnered
ongoing attention across diverse fields [1, 2]. In the control
problems of MASs, effective communication between agents is
crucial to accomplish common control tasks. Most communi-
cation channels frequently lack protection, leaving communi-
cation networks susceptible to malicious attacks. Additionally,
each agent has sensitive information that it prefers to keep
private. Hence, there arises an urgent necessity for integrating
privacy protection attributes into MASs.

Given the hidden risks in information interaction, some
scholars have increasingly directed their attention to research-
ing privacy protection in MASs [3, 4]. At present, the main-
stream method is to design a protection function with masking
ability. Notably, the parameters in these masking functions
are fixed, which increases the risk of the specific form of the
masking function being deciphered. Furthermore, most of the
current masking functions are applied in infinite time domains,
which may not only affect the stability of the system but
also lack the ability to flexibly choose protection time. The
question of enhancing the protective effectiveness of masking
functions and achieving privacy protection within user-defined
time frames is worth exploring, and it has inspired the research
presented in this paper.

Unknown disturbances are prevalent in industrial appli-
cations, posing a threat to the stability of the system. To

effectively detect and mitigate the impact of these distur-
bances, disturbance observer has been extensively researched
[5, 6]. Most of the design methods involved in the disturbance
observers lack certain adaptability. In order to improve the
performance of the disturbance observers, some scholars have
delved into the correlation between the disturbance observers
and system response [7]. This prompts us to further investigate
the interplay between the disturbance observers and system
errors, with the goal of detecting unknown disturbances while
optimizing system performance.

Motivated by the above discussion, this paper proposes a
preassigned-time hyperchaotic privacy-preserving mechanism
and an optimization-based adaptive disturbance observer. The
contributions are summarized as follows.

1) Based on the characteristics of Lorenz system, the de-
signed masking function is endowed with unpredictable
stochastic properties, which enhances the masking ef-
fectiveness and protective functionality. Furthermore, by
designing a time-assist function, privacy protection with-
in predefined time-frames is achieved, which mitigates
the adverse impact of protection-induced uncertainty on
system performance.

2) An adaptive gain parameter is designed in the distur-
bance observer based on the gradient descent method.
The introduced adaptive gain parameter enables the
disturbance observer not only to detect and estimate
unknown disturbances but also to achieve the effect of
improving the control performance of the MASs.

II. PRELIMINARIES

A. Graph Theory

Consider a directed graph G = (V,E,A) with M nodes.
V = (1, 2, . . . ,M) is a non-empty set of agents. E ∈ V × V
is an edge set, where (Vh,Vj) ∈ E is an edge from node
j to node h. A = [ph,j ] ∈ RM×M represents the adjacency
matrix. If (Vh,Vj) ∈ E, ph,j = 1, otherwise ph,j = 0. The
Laplacian matrix is defined as L = D − A, including the in-
degree matrices D = diag (d1, . . . , dM) with dh =

∑M
j=1 ph,j .

Define B = diag (b1, . . . , bM). The positive and negative of
bh represent whether the node h is able to obtain information
directly from the leader node or not, respectively.



Lemma 1: [1] There exists a spanning tree in the graph G,
where the leader node 0 is designated as the root node. With
this, L + B is nonsingular.

B. Problem Formulation

In this paper, we examine nonlinear MASs comprising M
followers and a leader, where the dynamic of the hth (h =
1, . . . ,M) follower is characterized by

ẋh,m = xh,m+1 + h,m(x̄h,m)

ẋh,n = uh + h,n(x̄h,n) + ωh(t)

yh = xh,1

(1)

where m represents the order of the system and satisfies 1 ≤
m < n−1, x̄h,m = [xh,1, xh,2, . . . , xh,m]T ∈ Rm and x̄h,n =
[xh,1, xh,2, . . . , xh,n]T ∈ Rn indicate the state vectors of the
hth follower. uh is the control input signal, and the output
signal of the hth follower is expressed as yh. ωh(t) is the
unknown disturbance. h,m(x̄h,m) and h,n(x̄h,n) are unknown
nonlinear functions. yr(t) stands for the leader signal of the
MASs. Then, the synchronization error of the hth follower is
given by zh,1 =

∑M
j=1 ph,j(yh − yj) + bh(yh − yr).

Lemma 2: [7] Define źh,1 = (z1,1, . . . , zM,1)T, ýh =
(y1, . . . , yM)T, ýr = (yr, . . . , yr)

T. Then, it follows that
‖ýh− ýr‖ ≤ ‖źh,1‖

M̄(L+B)
, where M̄(L+B) denotes the minimum

singular value of L + B.
Lemma 3: [8] The second-order sliding mode integral filter

(SSMIF) is established as K̇h,k10 = −Kh,k10−w(t)
kh,k10

− Rh,k10(Kh,k10−w(t))
‖Kh,k10−w(t)‖+ιh,k10

K̇h,k20 = −Kh,k20−K̇h,k10

kh,k20
− Rh,k20(Kh,k20−K̇h,k10)

‖Kh,k20−K̇h,k10‖+ιh,k20
(2)

where Kh,k10 and Kh,k20 denote the states of the filter (2).
kh,k10, kh,k20, ιh,k10 and ιh,k20 are positive design parame-
ters.

Lemma 4: [5] One can approximate an unknown func-
tion P (s) by using Radial Basis Function Neural Network-
s (RBF NNs). P (s) = ζ∗Tφ(s) + ε(s), where φ(s) =
[φ1(s), φ2(s), . . . , φr(s)]

T denotes the basis function vector.
ε(s) represents the approximation error. The ideal weight
vector ζ∗ = [ζ∗1 , ζ

∗
2 , . . . , ζ

∗
r ]T ∈ Rr can be chosen as

ζ∗ = arg minζ∈Rr
{

sups∈Ω

∣∣P (s)− ζTφ(s)
∣∣}.

III. MAIN RESULTS

A. The Preassigned-Time Hyperchaotic Protection Mechanism

In this paper, a class of Lorenz-Stenflo hyperchaotic systems
are considered, which is modelled as

ẋ = a(y − x) + µw
ẏ = cx− y − xz
ż = −βz + xy
ẇ = −x− aw

(3)

where a is the Prandtl number, c is the generalized Rayleigh
parameter, β = 4k2

1/k
2
2 and µ = 4Ω2k2

1/k
2
hk

6
2 , Ω is the angu-

lar frequency of the earth rotation, kh is the heat dissipation

coefficient, k1 and k2 are design constants. In this paper, we
choose a = 3, µ = 30, c = 30 and β = 8/3.

Next, a time-assist function Π(t) is designed to achieve
privacy protection within a specified timeframe. The specific
expression of the function is as follows:

Π(t) =

{
1 +

[
cos
(
πt
Tε

)](2n+1)

0 ≤ t < Tε

0 t ≥ Tε
(4)

where Tε is the user-defined protection time with arbitrary
settings, and 2n + 1 is the designed function order. Corre-
spondingly, it is concluded that

Π̇(t) =

{
− (2n+1)π

Tε

[
sin(πtTε )

]2n
0 ≤ t < Tε

0 t ≥ Tε
(5)

Based on the above analysis, a masking function is designed
for the leader signal, which is expressed as

yπ = yr+
[
κ(

∫
(−x−aw)dt)e−ς(

∫
(ay−ax+sw)dt)t

]
Π(t) (6)

where κ and ς > 0 are designed parameters.

B. The Optimization-Based Adaptive Disturbance Observer

The optimization-based adaptive disturbance observer is
designed in the following form [5]:{

ˆ̄ωh = κh (xh,n − ξh)

ξ̇h = uh + `h ˆ̄ωh + ζ̂T
h,nφh,n (x̄h,n)

(7)

where ζ̂h,n and φh,n(x̄h,n) denote the approximate parameter
vector and basis function vector, respectively. κh means a
positive design parameter. ˆ̄ωh is the estimated value of ω̄h
with ˜̄ωh = ω̄h− ˆ̄ωh, and the specific form of ω̄h will be given
later. `h is an iterative parameter that can be varied adaptively.
After that, it can be deduced that

˙̄̃ωh = ˙̄ωh − κh
(
`h ˜̄ωh + ζ̃T

h,nφh,n(x̄h,n)
)

(8)

with ˙̄ωh being a bounded value. The controller uh is designed
in the form of uh = −(ϑh,n + 1

2 )δh,n + Kh,n20 − δh,n−1 −
`h ˆ̄ωh− ζ̂h,nφh,n(x̄h,n). The detailed design process of uh will
be analyzed later. Then, according to the error transformation
relation δh,n = xh,n − αh,n−1, the derivative of the error
variable δ̇h,n satisfies δ̇h,n = uh + fh,n + ωh(t)− α̇h,n−1.

From this, a gradient expression for the derivative of the

error variable δ̇h,n with respect to `h is obtained as
∂
(
δ̇h,n

)
∂
(
`h

) =

− ˆ̄ωh, which reveals a potential link between δ̇h,n and `h,
inspiring us to improve system performance by controlling
the variation of `h.

The gradient descent method is applied to realize the self-
regulation function of `h and improve the performance of the
MASs. The specific iterative expression is given as `h = `Pr

h +
sL
hΞh(δh,n)ˆ̄ωh, where `Pr

h is the position of `h after the last
iteration, and the initial position of `h is artificially designed.
sL
h is the step size of each iteration. Ξh is a sign function

related to δh,n, when δh,n > 0, Ξh = 1; when δh,n < 0,
Ξh = −1.



IV. ADAPTIVE CONSENSUS CONTROL OF MASS

A. Adaptive Controller Design

In order to accomplish the proposed control objective,
the following common error transformation is implemented,
specified as{

δh,1 =
∑M
j=1 ph,j(yh − yj) + bh(yh − yπ)

δh,g = xh,g − αh,g−1 g = 2, 3, . . . , n
(9)

where αh,g−1 is the virtual control signal.
Step 1. The Lyapunov function is selected as Vh,1 =

1
2δ

2
h,1+ 1

2%h,1
ζ̃2
h,1, where %h,1 > 0 is a design constant. In view

of the unknown function z(X́h) = p̄hh,1−
∑M
j=1 ph,j(xj,2 +

j,1) with X́h = [xh,1, xj,1, xj,2]
T, the RBF NN is introduced

to approximate z(X́h).
To achieve system stability, the following design is imple-

mented for both the virtual control signal and the adaptive
law.{

αh,1 = −(
2ϑh,1+1

2p̄h
)δh,1 − ζ̂h,1φh,1(X́h,1)

p̄h
+ bh

p̄h
ẏπ

˙̂
ζh,1 = %h,1δh,1φh,1(X́h,1)− χh,1ζ̂h,1

(10)

where ϑh,1 > 0 and χh,1 > 0 are design constants.
Step s. For step s with s = 2, . . . , n − 1, an SSMIF is

used to estimate α̇h,s−1. The Lyapunov function is selected as
Vh,s = Vh,s−1 + 1

2δ
2
h,s+ 1

2%h,s
ζ̃2
h,s, where %h,s > 0 is a design

constant. Then, the virtual control signal and the adaptive law
are designed as

αh,s = − (ϑh,s + 1) δh,s + Kh,s20 − δh,s−1

−ζ̂h,sφh,s (x̄h,s)
˙̂
ζh,s = %h,sδh,sφh,s (x̄h,s)− χh,sζ̂h,s

(11)

where ϑh,s and χh,s are positive constants.
Step n. Similar to the previous treatment, through SSMIF,

we have α̇h,n−1 = Kh,n20 − Kh,fn−1
, where |Kh,fn−1

| <
K̄h,fn−1 with K̄h,fn−1 > 0. Accounting for the effects of
unknown disturbances, the Lyapunov function is chosen as
Vh,n = Vh,n−1 + 1

2δ
2
h,n + 1

2%h,n
ζ̃2
h,n + 1

2
˜̄ω2
h, where %h,n > 0

is a design constant.
With the aim of ensuring that all signals in the system are

SGUUB, the final controller uh and the adaptive law ˙̂
ζh,n are

devised as
uh = −

(
ϑh,n + 1

2

)
δh,n + Kh,n20 − δh,n−1 − `h ˆ̄ωh

−ζ̂h,nφh,n (x̄h,n)
˙̂
ζh,n = %h,nδh,nφh,n (x̄h,n)− χh,nζ̂h,n

(12)
where ϑh,n and χh,n are positive constants. Following
the properties of the proposed optimization-based adaptive
disturbance observer involved in (7) and (8), we derived
V̇h,n ≤ −

∑n
o=1 ϑh,oδ

2
h,o +

∑n−1
o=1

ε̄2h,o
2 +

∑n−1
o=2

K̄h,fo−1

2 −∑n−1
o=1

χh,oζ̃
2
h,o

2%h,o
− (

χh,o
2%h,o

− |κh|2 )ζ̃2
h,n +

∑n
o=1

χh,oζ
2
h,o

2%h,o
+ 1

2
˙̄ω2
h−

1
2

(
2κh`h − `2h − 1− |κh|φT

h,n(x̄h,n)φh,n(x̄h,n)
)
˜̄ω2
h.

B. Stability Analysis

Theorem 1: If the controller and adaptive law are formulated
as (12), then it can be concluded that all signals within the
MASs (1) exhibit SGUUB behavior, and the synchronization
errors of all agents have the capability to converge to a narrow
region around the origin.

Proof : Construct the Lyapunov function V∗ =
∑M
h=1 Vh,n,

it is known that V̇h,n can be restated as

V̇h,n ≤ −T̆hVh,n + P̆h (13)

where T̆h = min{ϑh,o, ϑh,n, χh,o2%h,o
, (

χh,n
2%h,n

− |κh|2 ),
(
2κh`h −

`2h − |κh|φT
h,n(x̄h,n)φh,n(x̄h,n) − 1

)
} with o = 1, . . . , n − 1

and P̆h =
∑n−1
o=1

ε̄2h,o
2 +

∑n−1
o=2

K̄h,fo−1

2 +
∑n
o=1

χh,oζ
2
h,o

2%h,o
+ 1

2
˙̄ω2
h.

After that, it can be inferred that V̇∗ ≤ −T̆ V∗ + P̆ , where
T̆ = min{T̆h} with h = 1, . . . ,M and P̆ =

∑M
h=1 P̆h. With

mathematical calculations, it follows that

0 ≤ V∗ ≤ V∗(0)e−T̆ t +
P̆
T̆

(
1− e−T̆ t

)
(14)

Based on the above analysis and Lemma 2, it can be justified
that the synchronization errors between agents are SGUUB.

V. SIMULATION RESULTS
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Fig. 1. Communication topology

In the given example, an MAS comprising five nodes is
examined. This MAS is composed of four followers (nodes
1-4) and a leader (node 0) arranged on a directed graph, with
the communication topology depicted in Fig. 1.

Consider a mass-spring-damper system [9] with dynamic
MẌ + BẊ + RX = F . Let xh,1 = X , xh,2 = Ẋ , and
uh = F , then the dynamic of hth (h = 1, 2, 3, 4) follower
subject to external disturbance is modelled as

ẋh,1 = xh,2

ẋh,2 =
1

M
uh −

R

M
xh,1 −

B

M
xh,2 + cos(t)

yh = xh,1

(15)

The actual parameters are specified as M = 1 kg, R = 3
N/m and B = 0.5 Ns/m. The masked leader signal is estab-
lished as yπ = 2 sin(t)+2w(t) exp(−0.1x(t)t)Π(t) with Tε =
3. The initial values of the states within MASs are selected as
x1,1(0) = 2, x2,1(0) = 0.3, x3,1(0) = −0.1, x4,1(0) = −0.2,
x1,2(0) = 0.5, x2,2(0) = 1, x3,2(0) = 1, x4,2(0) = 1. For
hth (h = 1, 2, 3, 4) follower, θ̂h,1(0) = θ̂h,2(0) = 0.1. The
initial values of the second-order sliding film filter are assigned
as Kh,k10(0) = 0.1 and Kh,k20(0) = 0.1 for h = 1, 2.



The relevant parameters of the adaptive law are given by
%h,1 = %h,2 = 12 and χi,1 = χi,2 = 2. The controller
parameters are designed as ϑ1,1 = 39.5, ϑ2,1 = 19.5,
ϑ3,1 = 39.5, ϑ4,1 = 39.5, ϑ1,2 = 79.5, ϑ2,2 = 79.5,
ϑ3,2 = 79.5, ϑ4,2 = 79.5. The informations of the disturbance
observer are configured as κ1 = κ2 = κ3 = κ4 = 0.01,
`1(0) = `2(0) = `3(0) = `4(0) = 1, sL

1 = sL
2 = sL

3 = sL
4 = 1.
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Fig. 2. The trajectories of the followers’s signals and the leader’s signal under
privacy protection.
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Fig. 3. The synchronization errors of the four followers.

Figs. 2 and 3 show the simulation results. There is seen in
Fig. 2 that after 4 seconds the trajectories of all the agents
are able to fulfil the cooperative goal of validly following
the leader for which a communication link exists. Before
3 seconds it can be observed that the privacy-preserving
mechanism is effective, and the followers are biased by the
information they receive to the extent that the trajectories
fluctuate significantly. Moreover, this fluctuation is bounded
and controllable and does not lead to the collapse of the MASs.
Information about the synchronisation errors is demonstrated
in Fig. 3, where it can be found that when the system is
relatively stable, the overall error distribution is basically in the

range of −0.1 to 0.1. This illustrates that the method proposed
in this paper works effectively in achieving the established
control objectives.

VI. CONCLUSIONS

In this paper, the privacy-preserving adaptive tracking con-
trol problem has been researched for MASs subject to un-
known external disturbances. The future goal of our work is
to apply the preassigned-time privacy-preserving mechanism
to more control methods and control systems.
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