Dual-Space Semantic Synergy Distillation for Continual Learning of Unlabeled Streams

Donghao Sun* Xi Wang* Xu Yang[†] Kun Wei Cheng Deng

School of Electronic Engineering, Xidian University, Xi'an 710071, China {donghaosun508, wangxi6317, xuyang.xd, weikunsk, chdeng.xd}@gmail.com

Abstract

Continual learning from unlabeled data streams while effectively combating catastrophic forgetting poses an intractable challenge. Traditional methods predominantly rely on visual clustering techniques to generate pseudo labels, which often suffer from semantic inconsistencies and limited discriminative precision, thereby impeding stable model evolution. To surmount these obstacles, we introduce an innovative approach that synergistically combines both visual and textual information to generate dual space hybrid pseudo labels for reliable model continual evolution. Specifically, by harnessing the capabilities of large multimodal models, we initially generate generalizable text descriptions for a few representative samples. These descriptions then undergo a 'Coarse to Fine' refinement process to capture the subtle nuances between different data points, significantly enhancing the semantic accuracy of the descriptions. Simultaneously, a novel cross-modal hybrid approach seamlessly integrates these fine-grained textual descriptions with visual features, thereby creating a more robust and reliable supervisory signal. Finally, such descriptions are employed to alleviate the catastrophic forgetting issue via a semantic alignment distillation, which capitalizes on the stability inherent in language knowledge to effectively prevent the model from forgetting previously learned information. Comprehensive experiments conducted on a variety of benchmarks demonstrate that our proposed method attains state-of-the-art performance, and ablation studies further substantiate the effectiveness and superiority of the proposed method.

1 Introduction

Deep learning models have demonstrated robust and well-established performance when trained on independently and identically distributed data, but real-world data is often nonstationary and arrives sequentially in tasks. In such scenarios, the model must continually learn new tasks while retaining knowledge of previous ones to avoid catastrophic forgetting [1, 2]. This learning paradigm is known as continual learning (CL), among which class-incremental learning (CIL) [3, 4] is particularly challenging and realistic, as it requires the model to perform unified classification while new classes are introduced progressively.

In many real-world scenarios, due to the high cost or even the infeasibility of labeling, data generally arrives in a continuous, unstructured, and unlabeled manner [5]. This raises a critical challenge: how can we perform structured modeling of continual streaming data in a fully unsupervised setting? Unlike conventional unsupervised learning [6], what makes the problem thornier is that unsupervised

^{*}These authors contributed equally.

[†]Corresponding author.

continual learning demands that models incrementally extract semantic structures over time, continually adapt to new data, and retain previously acquired knowledge. In this context, Unsupervised Class-Incremental Learning (UCIL) specifically targets the problem of progressively discovering class structures without any label supervision, and serves as a key step toward large-scale open-world learning.

In unsupervised learning, especially when dealing with large-scale unlabeled data, clustering-based pseudo-labeling is commonly used to guide model training [7]. However, existing clustering algorithms often perform poorly in complex visual scenarios, especially when dealing with visually similar categories (e.g., as illustrated in Fig.1a), where samples from different classes are easily confused. This frequently results in many incorrect pseudo-labels, severely hindering the model's ability to learn accurate feature representations. Such biased labels not only compromise training performance at the current stage but also cause irreversible knowledge corruption [8] in UCIL tasks, making it difficult for the model to correct early-stage misconceptions in later learning phases.

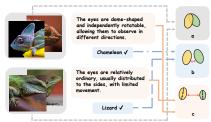


Figure 1: Classification results under different guidances. a) Visual-only (confusion risk) b) Coarse semantic (oracle labels) c) Fine-grained (optimized descriptions)

With the rapid advancement of large multimodal models (LMMs) [9], researchers have begun leveraging synthetic texts generated by LMMs as auxiliary supervision signals or contextual information to enhance overall performance [10–12]. Inspired by these developments, we explore the potential of using LMMs to uncover the latent semantic information within samples to further improve model effectiveness. We argue that natural language descriptions inherently contain semantic structures that can compensate for visual ambiguities (as illustrated in Fig.1b). Moreover, the relative stability of the semantic space provides a useful inductive bias for constraining model training, which in turn helps mitigate the problem of catastrophic forgetting [13].

Experimental results (Fig.2) demonstrate that directly employing LMMs as supervisory signals fails to enhance model performance while increasing computational complexity. Specifically, the standard unsupervised framework, fine-tuning through text clustering of LMM-generated image labels, shows limited performance gains. We attribute this to two factors: 1) The coarse-grained semantic representations from LMMs inadequately capture nuanced distinctions among visually similar samples [14]; 2) Inherent knowledge biases and inter-category semantic ambiguity [15] lead to semantic inconsistencies and inaccuracies in the generated pseudo labels, which critically constrain the efficacy of textual supervision.

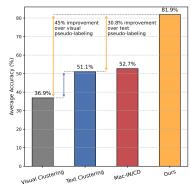


Figure 2: Quantitative experiments on ImageNet-R with 5 tasks.

Inherent knowledge bias refers to the tendency of large-scale pre-trained models (e.g., CLIP or large language models) to rely more heavily on concepts that appear frequently in their

pre-training corpus during open-world reasoning. Consequently, these models often yield biased predictions for low-frequency or visually indistinct categories [16]. For example, frequent animals such as "cat" and "dog" are consistently recognized due to their salient visual features and stable semantic expressions, whereas rarer species like "weasel" or "lynx" tend to suffer representational drift because of limited occurrence or ambiguous semantics in the training data. This reflects the statistical bias inherent in the "language model as knowledge base" paradigm, where prior exposure determines the reliability of recognition [17].

Inter-category semantic ambiguity arises when categories share overlapping attributes in the visual or textual domain, blurring their semantic boundaries. For instance, "seal" and "sea lion" exhibit highly similar visual traits (body shape, texture, and background), making them difficult to separate visually, while "octopus" and "jellyfish"—though visually distinct—are often semantically conflated by descriptors such as "marine animal" or "tentacles" [18]. These within- and cross-modality ambiguities increase the likelihood of label confusion when LMM-generated descriptions are used directly for supervision.

In light of the above constraints, we select a small subset of representative samples (approximately 2% of the dataset) based on image clustering, and query LMMs to generate multi-granularity descriptions ranging from coarse to fine levels. This low-query strategy significantly reduces computational cost while enhancing the richness and discriminability of the extracted semantic information (as illustrated in Fig.1c). Meanwhile, considering the complementary strengths of visual and semantic modalities in perceptual granularity and representational capacity, we propose a language-guided collaborative alignment strategy to bridge and integrate supervisory signals from both spaces. By introducing language as an intermediary, we establish a connection between these two imperfect sources of pseudo-supervision, enabling the model to learn discriminative features that jointly capture abstract semantics and fine-grained visual details. Finally, as the semantic space excels at capturing abstract concepts and prior knowledge, while the visual space is more effective at modeling low-level details such as textures and edges, we introduce a semantic-to-visual distillation mechanism that leverages the stability of the semantic space to regularize model updates. This cross-modal alignment strategy effectively addresses the challenges of supervision scarcity and catastrophic forgetting in UCIL.

Our main contributions can be summarized as follows:

- We propose a low-resource UCIL approach that generates hierarchical semantic descriptions
 from LMMs using a small set of representative samples, effectively reducing computational
 cost and improving the reliability of pseudo labels, thereby enhancing the quality of semantic
 supervision.
- We design a dual-modality pseudo-labeling strategy that jointly leverages visual and semantic cues for robust representation learning, and introduce a semantic distillation mechanism to effectively mitigate catastrophic forgetting.
- Through comprehensive experiments and ablation studies, our method demonstrates superior
 performance and robustness on multiple benchmark datasets, highlighting its advantages in
 UCIL scenarios.

2 Related works

2.1 Unsupervised Class Incremental Learning

Unsupervised Class Incremental Learning (UCIL) focuses on learning new classes from unlabeled data while preserving knowledge of previously learned classes [19]. The challenge lies in preventing catastrophic forgetting as new classes are introduced. Self-supervised learning (SSL) is often employed [20], where models learn useful representations without labeled data. Contrastive learning, a popular SSL approach, distinguishes between positive and negative samples, enabling the model to learn discriminative features for new classes.

To address forgetting, techniques like memory replay and knowledge distillation are used [21]. Memory replay stores previously encountered data and replays it during training to maintain performance on old classes while learning new ones [22]. Additionally, combining unsupervised learning with pseudo labels or cross-modal information can help improve learning efficiency and task adaptability in UCIL settings [23].

2.2 Fine-Tuning CLIP Models

CLIP models, pretrained on large-scale image-text pairs, have demonstrated strong zero-shot performance, but fine-tuning is often necessary to improve task-specific performance [24]. A common approach to fine-tuning CLIP involves training a classifier on top of the pre-trained features. One efficient method is adding a fully connected linear layer at the output of CLIP's visual encoder. This approach freezes the CLIP model's parameters and only fine-tunes the linear layer, minimizing the risk of overfitting and reducing the computational cost compared to full fine-tuning [25]. This method is effective in adapting CLIP to specific tasks while maintaining the robustness of its pre-trained representations.

Recently, methods such as contrastive loss [26] and linear probing [27] have also been applied to CLIP models for task adaptation. However, freezing the core CLIP model while fine-tuning a small number of parameters, like the output layer, has emerged as a popular technique, as it balances computational efficiency with high performance in specific applications.

3 Method

The objective of this work is to enable the network to learn from continuous, unlabeled data streams that more accurately reflect the real-world environment. The proposed method efficiently utilizes the cross-modal information inherent in the data streams, while minimizing resource consumption. It is anticipated that this approach to cross-modal information alignment will offer a more comprehensive solution for future unsupervised tasks. In this section, we first present the definition of UCIL, followed by a detailed explanation of the method we have introduced.

3.1 Preliminary

3.1.1 Problem definition.

In the context of UCIL, the model needs to be trained on T consecutive tasks. Each task t provides an unlabeled dataset $D^t = \{x_i\}_{i=1}^{N^t}$, where N^t represents the number of instances in task t, and these instances belong to C^t new categories. The categories across tasks are disjoint, meaning there is no overlapping between any two different tasks: $C^{t_i} \cap C^{t_j} = \varnothing, i \neq j$. The goal of UCIL is to enable the model to incrementally discover semantically meaningful categories from D^t and assign instances to these categories without label information. In each task, the model has access only to the current unlabeled dataset D^t and cannot access any prior information. The number of new categories C^t introduced in task t is known in advance, but for the specific category instances of each task, the model can only discover them through the exploration of the data. During the incremental learning process, the model not only needs to learn the new categories in the current task but also must retain the categories learned previously, preventing the forgetting of knowledge from earlier tasks. To formalize this problem, let X be the input data space. The objective is to learn a mapping function $f: X \to \bigcup_{t=1}^T C^t$, which can map any test sample x to the set of categories discovered across all tasks without relying on task identifiers.

3.1.2 Base model

CLIP was chosen as the base pre-trained model for our work due to its ability to simultaneously process data from both visual and linguistic spaces. An effective approach to fine-tuning a pre-trained model for downstream tasks involves incorporating a lightweight network as an adapter. To facilitate our subsequent explanation, we denote the visual encoder as E_v , the text encoder as E_t , and the linear adapter as f. Under supervised conditions, when textual labels are employed as supervision information for category classification, the probability that the model predicts any input sample x_i as category l_k is:

$$pred_k = E_t(l_k) \cdot f(E_v(x_i)). \tag{1}$$

In the previous analysis, we performed classification in the visual and textual knowledge spaces using traditional clustering methods, but the results were unsatisfactory. Even though we obtained information from both modalities in the data stream, the high visual similarity between categories and the inherent semantic ambiguity in the textual information derived from LMMs made it difficult to achieve satisfactory classification performance with existing methods. Therefore, in this paper, we propose two approaches to address the confusion within tasks caused by the lack of supervisory signals, as well as the confusion between different tasks induced by incremental data. The architectures of these methods are illustrated in the Fig.3. We will now provide a detailed description of the proposed methods.

3.2 Semantic Collaborative Facilitative Supervision

To fully exploit cross-modal information, we avoid performing clustering independently in a single modality. Instead, we propose semantic collaborative supervision, which aligns visual and semantic knowledge in a unified framework. Specifically, we reduce the reliance on LMM queries by selecting only a few representative samples near visual cluster centers, rather than querying every instance. To enhance the quality of semantic signals, we design a series of progressively refined prompt templates for hierarchical description extraction. The resulting visual and textual cues are then jointly used in a collaborative supervision mechanism to guide model training more effectively.

For task t, we process the input samples x_i through the CLIP visual encoder to obtain their feature representations $E_v(x_i)$ in the visual space. We then apply K-means clustering in this space to partition

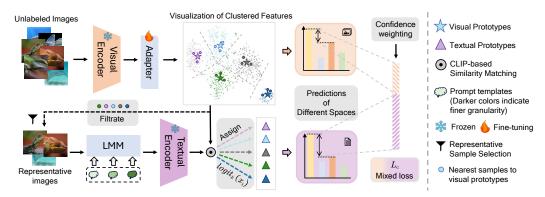


Figure 3: Framework for a single task in unsupervised class-incremental learning. Visual clusters and LMM-generated descriptions provide dual-modality pseudo-labels, which jointly supervise adapter training via confidence-weighted loss.

the samples into C^t clusters, denoted as $\{\phi_k\}_{k=1}^{C^t}$. For the k-th cluster ϕ_k , we treat the samples that are closest to the cluster center as belonging to the k-th class and assign them the corresponding visual pseudo-label p_v . Since the visual feature space may contain similar but semantically different image representations, the resulting visual pseudo labels often suffer from inter-class confusion. Using such confusing pseudo labels as supervision to fine-tune the pre-trained model may lead to an unstable optimization process, hindering transferability to downstream tasks. Therefore, it is necessary to introduce more reliable supervisory signals. Given the superior stability and generalizability of the semantic space, we leverage independently designed textual descriptions to filter the data and reduce the class confusion in the visual pseudo labels.

To obtain text descriptions, the most straightforward method is to directly input these samples into an LMM and prompt it with the query, 'What object is depicted in this image?', which generates a coarse-grained category description for each sample x_i . Besides the additional time and financial costs associated with utilizing the LMM, the generated text may still exhibit a degree of randomness due to the LMM's inherent knowledge biases and the potential ambiguity between different classes. Under such textual supervision, this randomness may exacerbate the confusion between samples. Therefore, based on the previous clustering results, for any given cluster k, we first obtain the prototype corresponding to each cluster k:

$$\mu_k = \frac{1}{n_k} \sum_{i=1}^{n_k} E_v(x_i), x_i \in \phi_k,$$
(2)

where n_k represents the number of samples in ϕ_k . Then, we calculate the similarity between all samples in the cluster and the cluster prototype to construct the similarity matrix $Q_k = [q_i]_{i \in n_k}$ for any ϕ_k , q_i represent the cosine similarity score corresponding to each sample,

$$q_i = \cos\left(E_v(x_i), \mu_k\right). \tag{3}$$

Based on the similarity matrix, we can obtain the most representative m samples from each clustering result. We consider these m samples to have high-quality representations of each cluster. By providing fine-grained text descriptions for these samples, we avoid semantic ambiguity introduced by outlier or boundary samples and reduce computational resource consumption.

At the same time, to reduce the randomness caused by sample selection and obtain more generalizable text descriptions, we designed the following three prompt templates in a sequence from coarse-grained to fine-grained to guide the LMM in generating the corresponding text descriptions.

Prompt 1: 'Please tell me the name of the object in the image without any descriptors.' This prompt quickly captures the main object in the image by directly asking for its basic name, avoiding redundant information.

Prompt 2: 'Please describe the most distinctive visual attributes in the photo.' This prompt focuses on the fine-grained visual features of the image, helping to identify subtle details or distinctive visual markers that may not be immediately noticeable.

Prompt 3: 'Please describe the most common scenes of the object in the photo.' This prompt describes the common scenes of the object, providing a coarse-grained background, usage, and context.

Under the guidance of these three prompts, the LMM generates a total of $\left\{l_i^k\right\}_{i=1}^{3m}$ textual descriptions for the m samples in each clustering cluster ϕ_k . These texts are treated as the textual descriptors for independent classes. Based on these textual descriptors, we can perform fine-grained filtering of the visual features. For any given input sample x_i , the probability of it belonging to the k-th class is given by:

$$logit_k(x_i) = \frac{1}{3m} \sum_{i=1}^{3m} E_t(l_j^k) \cdot E_v(x_i). \tag{4}$$

We consider the class with the highest probability as the textual pseudo-label p_t for the input sample. By using fine-grained textual descriptions, we optimize the initial purely visual labels and leverage the stability of the semantic space to provide higher-quality supervision signals for unsupervised tasks. For any given sample, we assign its corresponding visual pseudo-label p_v and textual pseudo-label p_t . With the assistance of these supervision signals, we can thereby transform the originally unsupervised task into a supervised one and optimize the model using the cross-entropy loss $\mathcal{L}_{ce}(x_i, p)$.

Textual pseudo labels, derived from the semantic space, provide high-level and stable representations but may overlook fine-grained visual differences. When generated by LMMs, they can also exhibit semantic bias or inaccuracy. In contrast, visual pseudo labels capture detailed features but are more sensitive to inter-class confusion and ambiguity. To leverage their complementary strengths and offset their limitations, we propose a hybrid supervision strategy that combines both modalities. Inspired by the general principle of multimodal fusion that higher-confidence predictions tend to provide more reliable supervisory signals [28], our visual—semantic dynamic weighting mechanism adaptively balances the two modalities according to their relative confidence. Increasing the weight of the more confident modality helps stabilize training and improve effectiveness. Based on this intuition, we design a sample-level adaptive weighting strategy that fuses supervision from the visual and semantic spaces according to their confidence difference. For each sample x_i , the training loss is defined as follows:

$$\mathcal{L}_{cls}^{i} = \omega_{v}^{i} \mathcal{L}_{ce}(x_{i}, p_{v}) + \omega_{t}^{i} \mathcal{L}_{ce}(x_{i}, p_{t}). \tag{5}$$

For the input sample x_i , if the clustering results in the visual space and textual space are identical, meaning that $p_v = p_t$, we consider the sample to be in a stable state. In this case, we consider the additional information provided by both the visual and textual spaces to be of equal importance.

For cases where the clustering results differ between the two modalities, $p_v \neq p_t$, we consider the sample to be in a state of confusion. In this case, we need to find the balance between the visual and textual spaces. To achieve this, we first calculate the difference between the maximum probability and the second maximum probability at the stage of assigning pseudo labels to samples.

In the visual space, for any sample i, we first compute the cosine similarity between its feature and all class prototypes in the current task:

$$s_j^i = \frac{E_v(x_i) \cdot \mu_j}{\|E_v(x_i)\| \|\mu_j\|}, \quad j = 1, \dots, C^t.$$
 (6)

The confidence margin for sample i in the visual space is then defined as the difference between the top-1 and top-2 similarities:

$$\mathcal{H}_v^i = \mathsf{top}_1(s_j^i) - \mathsf{top}_2(s_j^i). \tag{7}$$

Similarly, in the textual space, the confidence margin is computed as:

$$\mathcal{H}_t^i = \mathsf{top}_1(\mathsf{logit}_j(x_i)) - \mathsf{top}_2(\mathsf{logit}_j(x_i)), \quad j = 1, \dots, C^t. \tag{8}$$

This difference, after normalization, is regarded as the reliability of the supervisory information provided by the pseudo labels from different spaces:

$$\omega_{\{v,t\}} = \frac{\mathcal{H}^i_{\{v,t\}}}{\mathcal{H}^i_v + \mathcal{H}^i_t}.\tag{9}$$

Therefore, under the supervision of visual-text dual pseudo labels, the model's training loss is given by:

$$\mathcal{L}_{c}^{i} = \begin{cases} \frac{1}{2} \mathcal{L}_{ce}(x_{i}, p_{v}) + \frac{1}{2} \mathcal{L}_{ce}(x_{i}, p_{t}) & \text{if } p_{v} = p_{t} \\ \frac{\mathcal{H}_{v}^{i}}{\mathcal{H}_{v}^{i} + \mathcal{H}_{t}^{i}} \mathcal{L}_{ce}(x_{i}, p_{v}) + \frac{\mathcal{H}_{t}^{i}}{\mathcal{H}_{v}^{i} + \mathcal{H}_{t}^{i}} \mathcal{L}_{ce}(x_{i}, p_{t}) & \text{else.} \end{cases}$$
(10)
Finally, we perform a weighted summation for a batch of training samples $\mathcal{L}_{cls} = \sum_{i} \mathcal{L}_{c}^{i}$, which

serves as the loss of semantic supervision.

By balancing the reliability of supervisory information from the visual and textual spaces, we effectively mitigate the inconsistency between the two supervisory signals, maximizing the utility of pseudo labels. This, in turn, enhances the success rate of transferring the model to downstream tasks. The effectiveness of this weighting mechanism is further validated by our experiments in Table 3.

3.3 **Semantic Alignment Distillation**

Due to the influence of continuous data streams, the constantly changing visual features affect the feature space constructed by previous data, leading to catastrophic forgetting in the model. Compared with the instability of visual representations, the semantic space offers stronger structural consistency and scalability. To leverage this advantage, we propose Semantic Alignment Distillation (SAD), which utilizes the stability of the language space to regularize the evolution of the visual space and mitigate catastrophic forgetting.

After each task training, we store the class prototypes $\mu_k = \frac{1}{n_k} \sum_{i=1}^{n_k} E_v(x_i)$ and covariance matrices Σ_k for all categories based on the textual space prediction results. During subsequent tasks, for each training batch, we randomly sample c instances from the Gaussian distribution of old data. For these sampled instances, we compute the similarity $logit_k(x_i^{old})$ between each sample and its corresponding textual descriptor, as well as $logit_g(x_i^{old})$ between the same sample and the textual descriptor of a randomly selected new class. Here, k and g denote the categories of the old and new classes, respectively. Given the invariance of textual representations, we define the semantic alignment loss for each sample as:

$$\mathcal{L}_s^i = 1 - \mathsf{logit}_k(x_i^{old}) + \mathsf{logit}_a(x_i^{old}). \tag{11}$$

The first term in Eq. 11 measures the similarity between the sample and its corresponding textual prototype, while the second term evaluates its similarity to a randomly selected new class prototype. This formulation encourages old samples to remain close to their semantic anchors while keeping a margin from new class descriptors, thereby constraining the visual representation space during incremental updates. The semantic alignment loss for a batch is expressed as $\mathcal{L}_{sal} = \sum_{i=1}^{c} \mathcal{L}_{s}^{i}$.

To further stabilize feature evolution, we add a distillation constraint between the previous and current adapters:

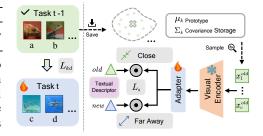


Figure 4: Semantic distillation leverages stable textual descriptors to constrain visual training and mitigate catastrophic forgetting.

$$\mathcal{L}_{kd} = \|f_{\text{old}}(E_v(x)) - f_{\text{new}}(E_v(x))\|_2. \tag{12}$$

The overall training objective integrates three components:

$$\mathcal{L} = \mathcal{L}_{cls} + \lambda_1 \mathcal{L}_{sal} + \lambda_2 \mathcal{L}_{kd}. \tag{13}$$

Different from prototype-based distillation methods that operate solely within the visual space, SAD introduces a cross-modal alignment mechanism that transfers stability from the semantic space to the visual domain. It constructs a language-driven semantic scaffold composed of textual prototypes generated via hierarchical prompts (Sec. 3.2), whose embeddings are obtained from a frozen text encoder and remain invariant throughout learning. These prototypes act as semantic anchors that define a stable manifold for guiding visual feature updates. By enforcing directional alignment between visual features and their fixed textual counterparts, SAD emphasizes semantic consistency rather than visual reconstruction, providing a novel and effective approach to mitigating catastrophic forgetting in unsupervised class-incremental learning.

4 Experiments

4.1 Experiments Settings

Datasets. We conducted experiments on three datasets, including the widely used image classification dataset CIFAR100, the style-varied classification dataset ImageNet-R, and the fine-grained dataset CUB200. The CIFAR100 dataset contains 100 distinct classes, while both the ImageNet-R and CUB200 datasets consist of 200 different classes. We partitioned each of the three datasets into 5, 10, and 20 consecutive task streams, with an equal distribution across the tasks.

Metrics. In continual learning, performance is commonly evaluated using two metrics: the *Last Stage Accuracy (LA)* and the *Overall Average Accuracy (AA)*, following common practice in class-incremental learning [3]. The average accuracy is computed as $A = \frac{1}{T} \sum_{t=1}^{T} A_t$, where A_t denotes the accuracy on all seen classes after learning task t, and T is the total number of tasks. The final accuracy (LA) is defined as A_T , which measures the performance on all classes after completing the last task, reflecting the model's overall retention capability. In the main paper, we report the final accuracy (LA) of each method for clarity and fairness of comparison. To provide a more comprehensive evaluation, the corresponding AA results of our method are included in Appendix A.4.

Comparison methods. We compare our method with state-of-the-art algorithms, including unsupervised class incremental learning methods CaSSLe [20], PFR [29], POCON [30] and MSc-iNCD [31]. Unsupervised representation learning UPS [32]. The original term MSc-iNCD refers to novel class discovery, but its setup is identical to the UCIL in this paper. For unsupervised representation learning methods, we directly trained the model using the UPS algorithm under two scenarios: one without any constraints and the other with adding knowledge distillation. Meanwhile, we directly use CLIP to cluster the test data, and we also labeled all the samples in the test set using LMM and then clustered the text to enhance the comprehensiveness of our experiments [33].

Implementation details. For both datasets, our pretrained model is the ViT-L/14 version of CLIP, and we train the model with the Adam optimizer for 30 epochs, with a learning rate of 1×10^{-3} . We use CosineSchedule to adjust the learning rate. To ensure experimental fairness, all comparison methods were conducted in the same environment. In our experiments m=3 and $\lambda_1=1$ for all datasets and $\lambda_2=0.03$ for ImageNet-R and CIFAR100, $\lambda_2=0.15$ for CUB200. For all datasets, the LMM that we used is GPT-4-turbo. In order to ensure the fairness of our experiment, we try our best to keep the training environment the same, and all the methods are obtained by re-running them on Python 3.8, Pytorch 2.0.1, and a single GPU A6000. All baselines were also re-run using the same ViT-L/14 backbone for fair comparison.

Table 1: Comparison experiments on different benchmarks. **Bold** indicates the best, while <u>underline</u> represents the second-best. Results are averaged over 20 random seeds for robustness verification (see Appendix A.4).

<u> </u>									
Method		ImageNet-R		CIFAR100		CUB200			
	5 tasks	10 tasks	20 tasks	5 tasks	10 tasks	20 tasks	5 tasks	10 tasks	20 tasks
UPS [ICLR'21]	20.9	16.5	14.3	18.4	15.7	12.9	18.3	15.9	13.1
UPS + KD [ICLR'21]	37.9	35.2	32.6	43.9	37.8	35.6	29.7	25.3	22.1
CassLe [CVPR'22]	45.2	40.5	37.8	59.6	52.5	49.6	-	-	-
PFR [CVPR'22]	41.6	37.9	31.0	59.8	54.3	44.8	-	-	-
POCON [WACV'24]	40.3	41.5	41.1	63.1	60.5	56.8	-	-	-
MSc-iNCD [ICPR'24]	52.7	53.4	51.2	64.9	62.7	60.3	32.9	31.9	30.4
CLIP-based clustering	36.9	36.9	36.9	32.9	32.9	32.9	31.6	31.6	31.6
LMM-based text clustering	51.1	51.1	51.1	41.7	41.7	41.7	<u>34.5</u>	<u>34.5</u>	<u>34.5</u>
Ours	81.7	82.2	79.8	66.1	63.6	<u>59.4</u>	66.7	64.8	64.0

4.2 Experimental Results

We conducted experiments on various datasets under different settings, and the results are shown in Table 1. On ImageNet-R with 5 tasks, our method achieves 81.7%, yielding a 29.0% improvement over MSc-iNCD. This gain is not simply due to the use of CLIP, as the clustering result obtained by CLIP alone is only 36.9%. Similarly, clustering with LMM-generated text performs better than visual clustering but still falls short of the previous SOTA. When the number of tasks increases to 10

and 20, our method remains robust, achieving accuracies of 82.2% and 79.8%. On the fine-grained CUB200 dataset, where distinguishing similar image features is particularly challenging, all prior methods show relatively low performance. In contrast, our method reaches 66.7% on the 5-task setting, surpassing the previous SOTA by 33.8%, and maintains 64.8% and 64.0% with 10 and 20 tasks. For CIFAR100, our method achieves 66.1%, 63.6%, and 59.4% with 5, 10, and 20 tasks, respectively. The relatively lower performance can be partly attributed to the 32×32 resolution of CIFAR100 images, which limits the LMM's ability to extract fine-grained semantics and generate accurate textual descriptions, thus affecting pseudo-label quality. In comparison, on higher-resolution datasets, our method consistently demonstrates strong and stable performance.

4.3 Ablation Study

In this section, we analyze the effectiveness of each component in our proposed method. The experiments were conducted on ImageNet-R across 5 tasks, with the results presented in Table 2. As shown in the table, although pre-trained models possess powerful representational capabilities, relying solely on clustering fails to achieve highly accurate classification results when faced with unsupervised data, clustering method based solely on visual features achieved an accuracy of 36.9%. This result does not meet the performance requirements. By treating the clustering results as a visual pseudo-label and fine-tuning the model under the constraint of distillation loss, the model ultimately achieved an accuracy of 50.4%. Due to the poor clustering performance in the previous step, the visual pseudo labels contain substantial inter-class confusion and labeling inaccuracies. As a result, relying solely on the supervisory information introduced by the visual space is insufficient to successfully transfer the pre-trained model to downstream tasks.

Considering the remarkable stability and knowledge expansion capability of textual information, we used our generated generalized text descriptors to filter the samples. Under this LLM-based textual supervision, where diverse and unstructured labels are generated for each image and clustered into category prototypes, the fine-tuned model achieved a performance of 76.8% on downstream tasks. Building upon this, our proposed hierarchical prompting strategy queries only a few representative samples per class to construct consistent and discriminative textual prototypes, and further introduces a

Table 2: Ablation study on ImageNet-R, 5 tasks.

		Con	Accuracy		
	p_v	p_t	\mathcal{L}_{kd}	\mathcal{L}_{lkd}	
a)					36.9
b)					50.4
c)	•		$\sqrt{}$		76.8
d)					78.1
e)				$\sqrt{}$	81.9

SAD loss to enhance cross-modal consistency. This combined strategy improves the performance to 81.9%. For reference, using ground-truth labels to construct text prompts in the form of "a photo of a [label]" yields a supervised upper bound of 84.2%. This comparison demonstrates that our semantically guided pseudo-label design, even without any real labels, achieves performance close to the supervised upper limit.

To maximize the utilization of supervisory information from both modalities, we further reduce pseudo-label inaccuracies by adaptively weighting each space according to its reliability. On the ImageNet-R benchmark, as shown in Table 3, this balanced dynamic weighting strategy outperforms the fixed weighting scheme, providing strong evidence for the effectiveness of the proposed method.

Table 3: Dynamic vs. fixed weighting.

Tasks	Dynamic Weighting (%)	Fixed Weighting (%)
5	81.7	80.2
10	82.2	80.3
20	79.8	77.1

4.4 Further Analysis

Annotating images with LMM.

We analyzed the initially proposed approach of directly employing a LMM to annotate the entire dataset and conducted experiments on the ImageNet-R benchmark. The results indicate that LMMs are highly susceptible to interference from complex backgrounds and environmental variations, often leading to inaccurate predictions(as exemplified by the misannotations shown in Fig. 5). This

naive annotation strategy not only lacks reliability but also incurs substantial computational costs. These findings underscore the necessity and effectiveness of the proposed Semantic Collaborative Facilitative Supervision framework introduced in this work.

Figure 5: Incorrect labels generated by the LMM.

Figure 6: The confusion matrix of pseudo labels: the left represents visual pseudo labels, while the right represents textual pseudo labels.

Comparison of pseudo-label prediction results.

In this paper, we propose a dual pseudo-labeling strategy for both visual and textual spaces. We randomly selected 10 classes from ImageNet-R and constructed the confusion matrix shown in Figure 6, where the horizontal and vertical axes represent the true labels and pseudo-labels, respectively. Larger values along the diagonal indicate higher accuracy of the pseudo-labels. Experimental results demonstrate that textual descriptions, due to their stronger generalization capability, outperform visual clustering. However, both types of pseudo-labels still contain errors, which led us to design a balanced strategy that integrates predictions from both spaces to more effectively leverage supervisory information.

To further validate the robustness and adaptability of the proposed method, we include additional experimental analyses in the supplementary material, including, but not limited to: (1) the impact of the number of representative samples m on the quality of LMM-generated descriptions; (2) the effect of different prompt; (3) sensitivity analysis of hyperparameters (e.g., λ_1 and λ_2). We also include additional analyses on the computational and resource overhead introduced by integrating the LMM component, comparing API-based and fully local deployment setups. Detailed results and cost breakdowns are provided in Appendix A.5.

5 Conclusion

In this paper, we propose a hierarchical, language-guided approach to generate fine-grained text pseudo labels. By combining these with traditional visual clustering pseudo labels, we create multimodal weighted text-visual pseudo labels to guide training, addressing the challenge of missing supervision in unsupervised class-incremental learning. We also introduce a collaborative alignment method that uses text pseudo-labels to constrain training and reduce catastrophic forgetting between incremental tasks. Our method is compared with various approaches in unsupervised class-incremental learning, and extensive experiments on benchmark datasets demonstrate its effectiveness. Additionally, we conduct ablation studies to validate the rationale behind our approach.

We sincerely hope that the proposed method offers a novel and impactful perspective for advancing the fields of unsupervised and incremental learning. By strategically harnessing the capabilities of modern multimodal models, our approach aims to unlock the latent structure within vast, unannotated real-world data streams. We believe this work serves as a step toward more intelligent, scalable, and label-efficient learning systems capable of adapting to the complexity and openness of dynamic environments.

6 Acknowledgment

This work is supported in part by the National Key Research and Development Program of China (No. 2023YFC3305600), Joint Fund of Ministry of Education of China (8091B022149, 8091B02072404), National Natural Science Foundation of China (62132016, 62571412, and 62571393), Key Research and Development Program of Shaanxi (2024GX-YBXM-127) and National Key Laboratory Foundation of China (Grant No. HTKJ2024KL504011).

References

- [1] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In *Psychology of learning and motivation*, volume 24, pages 109–165. Elsevier, 1989.
- [2] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114(13):3521–3526, 2017.
- [3] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental classifier and representation learning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pages 2001–2010, 2017.
- [4] Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis and machine intelligence*, 40(12):2935–2947, 2017.
- [5] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via deep transfer clustering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8401–8409, 2019.
- [6] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van De Weijer. Class-incremental learning: survey and performance evaluation on image classification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):5513– 5533, 2022.
- [7] Jiaolong Xu, Liang Xiao, and Antonio M López. Self-supervised domain adaptation for computer vision tasks. *IEEE Access*, 7:156694–156706, 2019.
- [8] Chenghao Xu, Jiexi Yan, Muli Yang, and Cheng Deng. Rethinking noise sampling in class-imbalanced diffusion models. *IEEE Transactions on Image Processing*, 33:6298–6308, 2024.
- [9] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- [10] Hasan Abed Al Kader Hammoud, Hani Itani, Fabio Pizzati, Philip Torr, Adel Bibi, and Bernard Ghanem. Synthclip: Are we ready for a fully synthetic clip training? *arXiv preprint arXiv:2402.01832*, 2024.
- [11] Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yonglong Tian. Improving clip training with language rewrites. Advances in Neural Information Processing Systems, 36:35544–35575, 2023.
- [12] Chenghao Xu, Guangtao Lyu, Jiexi Yan, Muli Yang, and Cheng Deng. Llm knows body language, too: Translating speech voices into human gestures. In *ACL*, pages 5004–5013, 2024.
- [13] Xi Wang, Xu Yang, Jie Yin, Kun Wei, and Cheng Deng. Long-tail class incremental learning via independent sub-prototype construction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 28598–28607, 2024.
- [14] Yuwei Zhang, Zihan Wang, and Jingbo Shang. Clusterllm: Large language models as a guide for text clustering. *arXiv preprint arXiv:2305.14871*, 2023.
- [15] Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. We're afraid language models aren't modeling ambiguity. arXiv preprint arXiv:2304.14399, 2023.
- [16] Chenghao Xu, Jiexi Yan, and Cheng Deng. Keep and extent: Unified knowledge embedding for few-shot image generation. *IEEE Transactions on Image Processing*, 34:2315–2324, 2025.
- [17] Shubham Parashar, Zhiqiu Lin, Tian Liu, Xiangjue Dong, Yanan Li, Deva Ramanan, James Caverlee, and Shu Kong. The neglected tails in vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12988–12997, June 2024.

- [18] Jing Wang, Zhiqiang Kou, Yuheng Jia, Jianhui Lv, and Xin Geng. Label distribution learning by exploiting fuzzy label correlation. *IEEE Transactions on Neural Networks and Learning* Systems, 36:8979–8990, 2025.
- [19] Shivam Khare, Kun Cao, and James Rehg. Unsupervised class-incremental learning through confusion. *arXiv preprint arXiv:2104.04450*, 2021.
- [20] Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and Julien Mairal. Self-supervised models are continual learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9621–9630, 2022.
- [21] Xi Wang, Xu Yang, Kun Wei, Yanan Gu, and Cheng Deng. Class incremental learning via contrastive complementary augmentation. *IEEE Transactions on Image Processing*, 34:3663–3673, 2025.
- [22] Quentin Jodelet, Xin Liu, Yin Jun Phua, and Tsuyoshi Murata. Class-incremental learning using diffusion model for distillation and replay. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3425–3433, 2023.
- [23] Kun Wei, Xu Yang, Zhe Xu, and Cheng Deng. Class-incremental unsupervised domain adaptation via pseudo-label distillation. *IEEE Transactions on Image Processing*, 33:1188– 1198, 2024.
- [24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [25] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International Journal of Computer Vision*, 132(2):581–595, 2024.
- [26] An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, and Chang Zhou. Chinese clip: Contrastive vision-language pretraining in chinese. *arXiv preprint arXiv:2211.01335*, 2022.
- [27] Yunshi Huang, Fereshteh Shakeri, Jose Dolz, Malik Boudiaf, Houda Bahig, and Ismail Ben Ayed. Lp++: A surprisingly strong linear probe for few-shot clip. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 23773–23782, 2024.
- [28] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. *arXiv preprint arXiv:2001.07685*, 2020.
- [29] Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew D Bagdanov, and Joost Van de Weijer. Continually learning self-supervised representations with projected functional regularization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3867–3877, 2022.
- [30] Alex Gomez-Villa, Bartlomiej Twardowski, Kai Wang, and Joost Van de Weijer. Plasticity-optimized complementary networks for unsupervised continual learning. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 1690–1700, 2024.
- [31] Mingxuan Liu, Subhankar Roy, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Large-scale pretrained models are surprisingly strong in incremental novel class discovery. In *International Conference on Pattern Recognition*, pages 126–142. Springer, 2024.
- [32] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh S Rawat, and Mubarak Shah. In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning. *arXiv preprint arXiv:2101.06329*, 2021.
- [33] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. *IEEE transactions on information theory*, 13(1):21–27, 1967.

A Appendix / supplemental material

To further assess the robustness, generalizability, and practical effectiveness of the proposed method, we present a series of additional experimental analyses in this supplementary material. These analyses offer deeper insights into the behavior of the model under varying conditions and validate the design choices made in the main paper. Specifically, we investigate the influence of key components and parameters that affect the performance of our approach.

A.1 Impact of the Number of Representative Samples (m)

To assess how the number of representative samples m affects the quality of LMM-generated descriptions and overall model performance, we conducted experiments on the ImageNet-R dataset with 5 tasks. The results are summarized in Table 4.

Table 4: Effect of the number of representative samples (m) on classification accuracy (ImageNet-R, 5 tasks).

m=1	m=2	m = 3	m=4	m=5
81.0	81.4	81.9	82.0	82.2

As shown in Table 4, increasing the number of representative samples generally improves performance. The accuracy increases steadily from 81.0% (when m=1) to 82.2% (when m=5). This improvement is attributed to the richer and more diverse descriptions generated by the LMM when provided with more query samples.

In our final setting, we choose m=3 as a trade-off between accuracy and computational efficiency. Generating high-quality descriptions via LMM is relatively time-consuming, and larger values of m incur additional query and processing overhead. The setting m=3 achieves competitive accuracy (81.9%) while keeping the LMM query cost low, making it a practical and scalable choice for continual learning scenarios.

A.2 Effect of Different Prompt Designs

To evaluate the impact of prompt design on the effectiveness of LMM-generated textual descriptions, we conducted a series of ablation experiments using multiple prompt templates. The goal is to determine the sensitivity of our method to prompt formulations and to explore whether certain prompt combinations lead to more informative and discriminative descriptions, ultimately improving classification performance.

We abbreviated the prompt templates as P, where P1, P2, and P3 were all derived from the main text. Additionally, we introduced P4 to increase the diversity of the experiment. P4 consists of the generic prompt "a photo of []", which was completed by directly querying the LMM, serving as a widely-used baseline template. The results of this experiment on the ImageNet-R dataset with 5 tasks are summarized in Table 5.

Table 5: Accuracy (%) of different prompt combinations on ImageNet-R (5 tasks).

Prompt Combination	Accuracy (%)
P1 + P2 + P3	81.9
P1	79.4
P2	77.6
P3	76.9
P1 + P2	80.8
P1 + P3	80.1
P2 + P3	78.4
P4	79.0

These results demonstrate several key findings:

- **Prompt diversity helps**: Combining multiple prompts (P1+P2+P3) yields the best accuracy, suggesting that richer semantic descriptions enhance the model's ability to generalize.
- Even simple prompts work: Although P4 uses a very simple and generic format, it still achieves competitive performance (79.0%), outperforming many prior SOTA baselines, which highlights the robustness of our method to prompt variations.

Overall, this experiment confirms that while our method is relatively robust to different prompt formats, careful prompt engineering can further boost performance. Additionally, it illustrates that even basic prompts can produce effective representations when combined with our proposed learning framework.

A.3 Sensitivity Analysis of Key Hyper-parameters (λ_1, λ_2)

In this section, we analyze how variations in the key hyper-parameters λ_1 and λ_2 affect the performance of our proposed method. These hyper-parameters play critical roles in balancing the contributions of visual and semantic modalities during training.

Hybrid Loss Balancing Mechanism

Our method employs a hybrid loss function that integrates visual and textual supervision. The balancing of this hybrid loss is adaptive and depends on the consistency between the predictions from the visual and semantic spaces. Specifically:

- If the predicted class labels from both modalities agree, we assign equal weights to both terms.
- If the predictions differ, the weights are adjusted dynamically based on the difference in confidence (i.e., probability gap between the top two predicted classes) in each modality.

This mechanism helps to assign higher weight to the more confident modality, thereby improving stability and reducing the impact of unreliable pseudo labels.

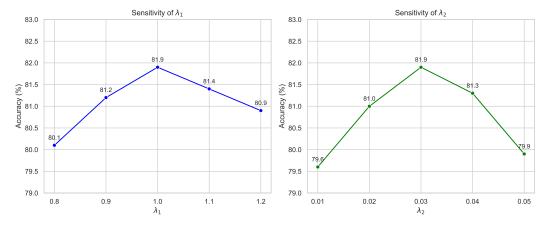


Figure 7: Sensitivity analysis of hyper-parameters λ_1 and λ_2 with respect to classification accuracy (ImageNet-R 5 tasks). Each bar represents the model's accuracy under a different value of the corresponding hyper-parameter.

Sensitivity Analysis of λ_1

We conducted a sensitivity analysis on the hyper-parameter λ_1 , which governs the weight of the visual modality in the hybrid loss. The default setting was $\lambda_1 = 1.0$. To evaluate the robustness of this parameter, we varied its value within a small range, specifically testing values from 0.8 to 1.2 in increments of 0.1.

As shown in Figure 7, model performance remains relatively stable across this range. The accuracy peaks at the default value of $\lambda_1=1.0$, and only minor performance degradation is observed when

moving away from this setting. These results suggest that the method is robust to small perturbations in λ_1 .

Sensitivity Analysis of λ_2

We further analyzed the sensitivity of λ_2 , which controls the influence of the semantic distillation loss. The default value of λ_2 was set to 0.03. We explored its effect on classification accuracy by varying it between 0.01 and 0.05 in increments of 0.01.

As depicted in Figure 7, the model achieves the best performance at the default value. Although performance decreases slightly when λ_2 is adjusted by ± 0.01 , the drop remains within 1.3 percentage points, indicating relative stability in this parameter as well. However, λ_2 appears slightly more sensitive than λ_1 , with a more pronounced performance peak at its tuned value.

Discussion

Overall, the results illustrated in Figure 7 demonstrate that the proposed method exhibits good robustness to moderate changes in both λ_1 and λ_2 . Although the model is not highly sensitive to these hyper-parameters, careful tuning can still yield incremental improvements in classification performance.

A.4 Multiple-Seed Evaluation and Accuracy Metrics

To further assess the stability and robustness of our proposed method, we conducted 20 independent runs with different random seeds on all three datasets, following the evaluation protocol described in Section 4.1. We report both the Last Task Accuracy (LA) and the Average Accuracy (AA)—two standard metrics widely used in class-incremental learning [3]. The results are summarized in Table 6, where each score represents the mean accuracy (%) \pm standard deviation (%) over 20 runs. The small variances demonstrate the strong consistency of our approach under different initialization conditions, while the close gap between LA and AA indicates stable performance across incremental stages.

Table 6: Performance of our method under 20 independent runs, reporting both Last Task Accuracy (LA) and Average Accuracy (AA).

Dataset	Tasks	LA (%)	AA (%)
	5	81.7±0.9	$89.8 {\pm} 0.8$
ImageNet-R	10	82.2 ± 0.7	85.9 ± 0.6
_	20	79.8 ± 0.6	83.4 ± 0.5
	5	66.3±1.0	74.8±0.9
CIFAR100	10	63.8 ± 0.8	70.5 ± 0.7
	20	59.6 ± 0.7	65.1 ± 0.6
	5	67.1±0.8	72.4 ± 0.7
CUB200	10	65.3 ± 0.6	69.6 ± 0.6
	20	64.2 ± 0.5	67.8 ± 0.5

These results confirm that our dual-space distillation framework maintains stable performance across multiple independent runs and task configurations. The narrow performance gap between the Last Task Accuracy and Average Accuracy further validates the model's robustness and consistent learning behavior throughout the continual process.

A.5 Computational Cost and Feasibility of LMM Integration

We further analyze the computational overhead introduced by integrating the LMM component from two perspectives: (1) the time and memory cost when querying GPT-4-turbo via API, and (2) the feasibility of fully local deployment using an open-source large multimodal model (LMM).

Time and Memory Cost with GPT-4-turbo (API-based setup)

In our experiments, semantic descriptions were queried from GPT-4-turbo for a small number of representative samples per class ($m \in \{0,1,2,3,4,5\}$). Here, m=0 denotes the baseline setting without any LMM involvement, where only the visual encoder and adapter are used for forward propagation. We measured training time, memory usage, and the total number of tokens queried on the ImageNet-R dataset under a 5-task incremental setting.

Table 7: Resource usage when querying GPT-4-turbo during training. Bold values denote model training resources, and italic values denote the LMM querying phase.

\overline{m}	Train Memory (MB)	Train Time (s)	Tokens Queried	Test Accuracy (%)
0	3144	3912.47	_	50.4
1	3472	4836.49 + 1809 (236,053)	236K	81.0
2	3474	4931.53 + 4953 (444,700)	445K	81.4
3	3477	4941.75 + 7203 (681,405)	681K	81.9
4	3478	4939.51 + 8553 (931,251)	931K	82.0
5	3481	4998.79 + 9455 (1,158,350)	1.16M	82.2

All GPT-4-turbo queries were performed only during training, not inference. As shown in Table 7, increasing the number of representative samples m slightly extends the total training time, but the additional cost remains moderate relative to the performance gain. Once trained, the inference pipeline no longer involves any LMM queries and thus maintains the same efficiency as a standard ViT-based model.

Local Deployment with an Open-Source LMM

To evaluate the feasibility of complete local deployment, we replaced GPT-4-turbo with the open-source model Qwen2.5-VL-32B-Instruct-FP8-Dynamic (via Hugging Face). The model was deployed on four A6000 GPUs using FP8 precision, and the same semantic querying and pseudo-label generation pipeline was executed offline.

Table 8: Resource usage when using a locally deployed LMM (Qwen2.5-VL-32B-Instruct-FP8-Dynamic).

\overline{m}	Train Memory (MB)	Train Time (s)	LMM Overhead (MB)	Test Accuracy (%)
0	3144	3915.30	_	50.4
1	3478	4850.23 + <i>1483</i>	50,024	79.6
2	3481	4940.17 + 2721	50,024	79.2
3	3485	4952.31 + <i>4140</i>	50,024	80.4
4	3489	4947.95 + 5946	50,024	80.6
5	3493	5004.80 + 7213	50,024	80.6

The total memory footprint of the locally deployed Qwen2.5-VL model was approximately 50 GB across four GPUs. Compared with GPT-4-turbo, the accuracy decreased slightly (by about 1–1.5%), but the improvement over the baseline without external textual knowledge (m=0) remained substantial. Local deployment introduces additional memory usage only during training, while the inference phase remains identical to a pure visual model. This confirms that full local deployment is feasible without dependence on external APIs or network access.

Summary

Overall, the above results demonstrate that integrating an LMM introduces only moderate computational overhead, confined to the training stage. Local deployment is fully feasible on high-memory GPUs (e.g., $4 \times A6000$), and querying a small number of representative samples ($m \le 3$) provides an effective balance between accuracy and resource efficiency. The proposed framework thus remains lightweight and practical for both API-based and offline multimodal setups.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper's key contributions.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We acknowledge limitations: (1) Performance degrades on low-resolution datasets (e.g., CIFAR100) as LMMs struggle with fine details (Sec 4.2); (2) Pseudo-label quality depends on LMM outputs, which may introduce noise/bias (Sec 3.2, Fig 5).

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We prioritize empirical validation over theoretical proofs, relying on practical algorithms (clustering/distillation) and experimental results (Tables 1–2) without formal theorems.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present datasets, models, and implementation details in the Experiments section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We use open datasets (CIFAR100/ImageNet-R/CUB200) and models (CLIP/GPT-4) but do not provide code/preprocessed data, though future open-sourcing is planned for reproducibility.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We clearly specify all key experimental details including data splits (5/10/20 tasks), hyperparameters (=1, =0.03/0.15), and optimizer (Adam with CosineSchedule).

Guidelines: The paper specifies essential training/test details:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars or statistical significance tests for its experimental results (Tables 1-2). Performance metrics are presented as single-point averages without variance measures.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: We do not specify computational resources (e.g., GPU type, memory, or runtime) for experiments. Only mentions using "a single GPU A6000" (Sec 4.1) without further details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics without any identified violations.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: The paper focuses on technical contributions (e.g., methodology and benchmarks) and does not explicitly discuss societal impacts, positive or negative.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We cite the datasets and baseline papers in the experiment section.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.

- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [No]

Justification: Our paper does not involve crowdsourcing nor research with human subjects. Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly describes using GPT-4 as a core methodological component (e.g., generating hierarchical text descriptaaaions for pseudo-labels in Sec 3.2) and addresses its limitations (noise/bias in Sec 4.2).

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.