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Abstract

Continual learning from unlabeled data streams while effectively combating catas-
trophic forgetting poses an intractable challenge. Traditional methods predomi-
nantly rely on visual clustering techniques to generate pseudo labels, which often
suffer from semantic inconsistencies and limited discriminative precision, thereby
impeding stable model evolution. To surmount these obstacles, we introduce an
innovative approach that synergistically combines both visual and textual infor-
mation to generate dual space hybrid pseudo labels for reliable model continual
evolution. Specifically, by harnessing the capabilities of large multimodal mod-
els, we initially generate generalizable text descriptions for a few representative
samples. These descriptions then undergo a ‘Coarse to Fine’ refinement process to
capture the subtle nuances between different data points, significantly enhancing
the semantic accuracy of the descriptions. Simultaneously, a novel cross-modal
hybrid approach seamlessly integrates these fine-grained textual descriptions with
visual features, thereby creating a more robust and reliable supervisory signal.
Finally, such descriptions are employed to alleviate the catastrophic forgetting issue
via a semantic alignment distillation, which capitalizes on the stability inherent in
language knowledge to effectively prevent the model from forgetting previously
learned information. Comprehensive experiments conducted on a variety of bench-
marks demonstrate that our proposed method attains state-of-the-art performance,
and ablation studies further substantiate the effectiveness and superiority of the
proposed method.

1 Introduction

Deep learning models have demonstrated robust and well-established performance when trained on
independently and identically distributed data, but real-world data is often nonstationary and arrives
sequentially in tasks. In such scenarios, the model must continually learn new tasks while retaining
knowledge of previous ones to avoid catastrophic forgetting [1} 2]]. This learning paradigm is known
as continual learning (CL), among which class-incremental learning (CIL) [3l 4] is particularly
challenging and realistic, as it requires the model to perform unified classification while new classes
are introduced progressively.

In many real-world scenarios, due to the high cost or even the infeasibility of labeling, data generally
arrives in a continuous, unstructured, and unlabeled manner [5]. This raises a critical challenge: how
can we perform structured modeling of continual streaming data in a fully unsupervised setting?
Unlike conventional unsupervised learning [6], what makes the problem thornier is that unsupervised
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continual learning demands that models incrementally extract semantic structures over time, contin-
ually adapt to new data, and retain previously acquired knowledge. In this context, Unsupervised
Class-Incremental Learning (UCIL) specifically targets the problem of progressively discovering
class structures without any label supervision, and serves as a key step toward large-scale open-world
learning.

In unsupervised learning, especially when dealing with
large-scale unlabeled data, clustering-based pseudo-
labeling is commonly used to guide model training [[7].
However, existing clustering algorithms often perform
poorly in complex visual scenarios, especially when deal-
ing with visually similar categories (e.g., as illustrated movement. 0—0
in Fig.1a), where samples from different classes are eas- —

ily confused. This frequently results in many incorrect €
pseudo-labels, severely hindering the model’s ability to
learn accurate feature representations. Such biased labels
not only compromise training performance at the current
stage but also cause irreversible knowledge corruption [§]]
in UCIL tasks, making it difficult for the model to correct
early-stage misconceptions in later learning phases.
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Figure 1: Classification results under dif-
ferent guidances. a) Visual-only (confu-
sion risk) b) Coarse semantic (oracle la-
bels) ¢) Fine-grained (optimized descrip-
tions)

With the rapid advancement of large multimodal models (LMMs) [9], researchers have begun lever-
aging synthetic texts generated by LMMs as auxiliary supervision signals or contextual information
to enhance overall performance [10H12]]. Inspired by these developments, we explore the potential of
using LMMs to uncover the latent semantic information within samples to further improve model
effectiveness. We argue that natural language descriptions inherently contain semantic structures that
can compensate for visual ambiguities (as illustrated in Fig.1b). Moreover, the relative stability of the
semantic space provides a useful inductive bias for constraining model training, which in turn helps
mitigate the problem of catastrophic forgetting [[13]].
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Experimental results (Fig.2) demonstrate that directly employ- e
ing LMMs as supervisory signals fails to enhance model per- overvisual g | g

formance while increasing computational complexity. Specifi-
cally, the standard unsupervised framework, fine-tuning through
text clustering of LMM-generated image labels, shows limited
performance gains. We attribute this to two factors: 1) The
coarse-grained semantic representations from LMMs inade-
quately capture nuanced distinctions among visually similar
samples [14]; 2) Inherent knowledge biases and inter-category
semantic ambiguity [[15] lead to semantic inconsistencies and
inaccuracies in the generated pseudo labels, which critically
constrain the efficacy of textual supervision. e
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Inherent knowledge bias refers to the tendency of large-scale
pre-trained models (e.g., CLIP or large language models) to
rely more heavily on concepts that appear frequently in their
pre-training corpus during open-world reasoning. Consequently, these models often yield biased
predictions for low-frequency or visually indistinct categories [16]. For example, frequent animals
such as “cat” and “dog” are consistently recognized due to their salient visual features and stable
semantic expressions, whereas rarer species like “weasel” or “lynx” tend to suffer representational
drift because of limited occurrence or ambiguous semantics in the training data. This reflects the
statistical bias inherent in the “language model as knowledge base” paradigm, where prior exposure
determines the reliability of recognition [17].

Figure 2: Quantitative experiments
on ImageNet-R with 5 tasks.

Inter-category semantic ambiguity arises when categories share overlapping attributes in the visual
or textual domain, blurring their semantic boundaries. For instance, “seal” and “sea lion” exhibit
highly similar visual traits (body shape, texture, and background), making them difficult to separate
visually, while “octopus” and “jellyfish”—though visually distinct—are often semantically conflated
by descriptors such as “marine animal” or “tentacles” [18]. These within- and cross-modality
ambiguities increase the likelihood of label confusion when LMM-generated descriptions are used
directly for supervision.




In light of the above constraints, we select a small subset of representative samples (approximately 2%
of the dataset) based on image clustering, and query LMMs to generate multi-granularity descriptions
ranging from coarse to fine levels. This low-query strategy significantly reduces computational cost
while enhancing the richness and discriminability of the extracted semantic information (as illustrated
in Fig.1c). Meanwhile, considering the complementary strengths of visual and semantic modalities
in perceptual granularity and representational capacity, we propose a language-guided collaborative
alignment strategy to bridge and integrate supervisory signals from both spaces. By introducing
language as an intermediary, we establish a connection between these two imperfect sources of
pseudo-supervision, enabling the model to learn discriminative features that jointly capture abstract
semantics and fine-grained visual details. Finally, as the semantic space excels at capturing abstract
concepts and prior knowledge, while the visual space is more effective at modeling low-level details
such as textures and edges, we introduce a semantic-to-visual distillation mechanism that leverages
the stability of the semantic space to regularize model updates. This cross-modal alignment strategy
effectively addresses the challenges of supervision scarcity and catastrophic forgetting in UCIL.

Our main contributions can be summarized as follows:

* We propose a low-resource UCIL approach that generates hierarchical semantic descriptions
from LMMs using a small set of representative samples, effectively reducing computational
cost and improving the reliability of pseudo labels, thereby enhancing the quality of semantic
supervision.

* We design a dual-modality pseudo-labeling strategy that jointly leverages visual and semantic
cues for robust representation learning, and introduce a semantic distillation mechanism to
effectively mitigate catastrophic forgetting.

* Through comprehensive experiments and ablation studies, our method demonstrates superior
performance and robustness on multiple benchmark datasets, highlighting its advantages in
UCIL scenarios.

2 Related works

2.1 Unsupervised Class Incremental Learning

Unsupervised Class Incremental Learning (UCIL) focuses on learning new classes from unlabeled
data while preserving knowledge of previously learned classes [19]. The challenge lies in preventing
catastrophic forgetting as new classes are introduced. Self-supervised learning (SSL) is often
employed [20], where models learn useful representations without labeled data. Contrastive learning,
a popular SSL approach, distinguishes between positive and negative samples, enabling the model to
learn discriminative features for new classes.

To address forgetting, techniques like memory replay and knowledge distillation are used [21]. Mem-
ory replay stores previously encountered data and replays it during training to maintain performance
on old classes while learning new ones [22]. Additionally, combining unsupervised learning with
pseudo labels or cross-modal information can help improve learning efficiency and task adaptability
in UCIL settings [23]].

2.2 Fine-Tuning CLIP Models

CLIP models, pretrained on large-scale image-text pairs, have demonstrated strong zero-shot per-
formance, but fine-tuning is often necessary to improve task-specific performance [24]. A common
approach to fine-tuning CLIP involves training a classifier on top of the pre-trained features. One
efficient method is adding a fully connected linear layer at the output of CLIP’s visual encoder. This
approach freezes the CLIP model’s parameters and only fine-tunes the linear layer, minimizing the
risk of overfitting and reducing the computational cost compared to full fine-tuning [25]]. This method
is effective in adapting CLIP to specific tasks while maintaining the robustness of its pre-trained
representations.

Recently, methods such as contrastive loss [26] and linear probing [27] have also been applied to
CLIP models for task adaptation. However, freezing the core CLIP model while fine-tuning a small
number of parameters, like the output layer, has emerged as a popular technique, as it balances
computational efficiency with high performance in specific applications.



3 Method

The objective of this work is to enable the network to learn from continuous, unlabeled data streams
that more accurately reflect the real-world environment. The proposed method efficiently utilizes the
cross-modal information inherent in the data streams, while minimizing resource consumption. It is
anticipated that this approach to cross-modal information alignment will offer a more comprehensive
solution for future unsupervised tasks. In this section, we first present the definition of UCIL, followed
by a detailed explanation of the method we have introduced.

3.1 Preliminary
3.1.1 Problem definition.

In the context of UCIL, the model needs to be trained on 7" consecutive tasks. Each task ¢ provides

an unlabeled dataset D* = {xl}f\’:t 1» where Nt represents the number of instances in task ¢, and these
instances belong to C* new categories. The categories across tasks are disjoint, meaning there is
no overlapping between any two different tasks: C*% N C% = @,i # j. The goal of UCIL is to
enable the model to incrementally discover semantically meaningful categories from D! and assign
instances to these categories without label information. In each task, the model has access only
to the current unlabeled dataset D! and cannot access any prior information. The number of new
categories C* introduced in task ¢ is known in advance, but for the specific category instances of each
task, the model can only discover them through the exploration of the data. During the incremental
learning process, the model not only needs to learn the new categories in the current task but also
must retain the categories learned previously, preventing the forgetting of knowledge from earlier
tasks. To formalize this problem, let X be the input data space. The objective is to learn a mapping

function f : X — Uthl C*, which can map any test sample z to the set of categories discovered
across all tasks without relying on task identifiers.

3.1.2 Base model

CLIP was chosen as the base pre-trained model for our work due to its ability to simultaneously
process data from both visual and linguistic spaces. An effective approach to fine-tuning a pre-trained
model for downstream tasks involves incorporating a lightweight network as an adapter. To facilitate
our subsequent explanation, we denote the visual encoder as E,,, the text encoder as E, and the
linear adapter as f. Under supervised conditions, when textual labels are employed as supervision
information for category classification, the probability that the model predicts any input sample x; as

category [y, is:

pred;, = Ei(ly) - f(Ey(xi)). (H
In the previous analysis, we performed classification in the visual and textual knowledge spaces
using traditional clustering methods, but the results were unsatisfactory. Even though we obtained
information from both modalities in the data stream, the high visual similarity between categories
and the inherent semantic ambiguity in the textual information derived from LMMs made it difficult
to achieve satisfactory classification performance with existing methods. Therefore, in this paper,
we propose two approaches to address the confusion within tasks caused by the lack of supervisory
signals, as well as the confusion between different tasks induced by incremental data. The architec-
tures of these methods are illustrated in the Fig.3. We will now provide a detailed description of the
proposed methods.

3.2 Semantic Collaborative Facilitative Supervision

To fully exploit cross-modal information, we avoid performing clustering independently in a single
modality. Instead, we propose semantic collaborative supervision, which aligns visual and semantic
knowledge in a unified framework. Specifically, we reduce the reliance on LMM queries by selecting
only a few representative samples near visual cluster centers, rather than querying every instance. To
enhance the quality of semantic signals, we design a series of progressively refined prompt templates
for hierarchical description extraction. The resulting visual and textual cues are then jointly used in a
collaborative supervision mechanism to guide model training more effectively.

For task ¢, we process the input samples x; through the CLIP visual encoder to obtain their feature
representations F, (x;) in the visual space. We then apply K-means clustering in this space to partition
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Figure 3: Framework for a single task in unsupervised class-incremental learning. Visual clusters and
LMM-generated descriptions provide dual-modality pseudo-labels, which jointly supervise adapter
training via confidence-weighted loss.

the samples into C* clusters, denoted as {qﬁk}kc;l For the k-th cluster ¢, we treat the samples that
are closest to the cluster center as belonging to the k-th class and assign them the corresponding visual
pseudo-label p,,. Since the visual feature space may contain similar but semantically different image
representations, the resulting visual pseudo labels often suffer from inter-class confusion. Using such
confusing pseudo labels as supervision to fine-tune the pre-trained model may lead to an unstable
optimization process, hindering transferability to downstream tasks. Therefore, it is necessary to
introduce more reliable supervisory signals. Given the superior stability and generalizability of the
semantic space, we leverage independently designed textual descriptions to filter the data and reduce
the class confusion in the visual pseudo labels.

To obtain text descriptions, the most straightforward method is to directly input these samples into
an LMM and prompt it with the query, ‘What object is depicted in this image?’, which generates a
coarse-grained category description for each sample x;. Besides the additional time and financial
costs associated with utilizing the LMM, the generated text may still exhibit a degree of randomness
due to the LMM'’s inherent knowledge biases and the potential ambiguity between different classes.
Under such textual supervision, this randomness may exacerbate the confusion between samples.
Therefore, based on the previous clustering results, for any given cluster k£, we first obtain the
prototype corresponding to each cluster k:

1 &
= E’U i)y L ) 2
Ik nkz (@), zi € Pk (@)

i=1

where ny, represents the number of samples in ¢;. Then, we calculate the similarity between all

samples in the cluster and the cluster prototype to construct the similarity matrix Q. = [gi],,,, for
any ¢y, g; represent the cosine similarity score corresponding to each sample,
qi = cos (Ey(;), pi) - 3)

Based on the similarity matrix, we can obtain the most representative m samples from each clustering
result. We consider these m samples to have high-quality representations of each cluster. By providing
fine-grained text descriptions for these samples, we avoid semantic ambiguity introduced by outlier
or boundary samples and reduce computational resource consumption.

At the same time, to reduce the randomness caused by sample selection and obtain more generalizable
text descriptions, we designed the following three prompt templates in a sequence from coarse-grained
to fine-grained to guide the LMM in generating the corresponding text descriptions.

Prompt 1: ‘Please tell me the name of the object in the image without any descriptors.” This prompt
quickly captures the main object in the image by directly asking for its basic name, avoiding redundant
information.

Prompt 2: ‘Please describe the most distinctive visual attributes in the photo.” This prompt focuses
on the fine-grained visual features of the image, helping to identify subtle details or distinctive visual
markers that may not be immediately noticeable.



Prompt 3: ‘Please describe the most common scenes of the object in the photo.” This prompt
describes the common scenes of the object, providing a coarse-grained background, usage, and
context.

Under the guidance of these three prompts, the LMM generates a total of {lic }f;nl textual descriptions
for the m samples in each clustering cluster ¢5. These texts are treated as the textual descriptors for
independent classes. Based on these textual descriptors, we can perform fine-grained filtering of the
visual features. For any given input sample x;, the probability of it belonging to the k-th class is
given by:

1=
logit (#:) = 5 — > E(1F) - Ey(:). 4)
j=1

We consider the class with the highest probability as the textual pseudo-label p; for the input sample.
By using fine-grained textual descriptions, we optimize the initial purely visual labels and leverage
the stability of the semantic space to provide higher-quality supervision signals for unsupervised tasks.
For any given sample, we assign its corresponding visual pseudo-label p,, and textual pseudo-label p;.
With the assistance of these supervision signals, we can thereby transform the originally unsupervised
task into a supervised one and optimize the model using the cross-entropy loss L..(xz;, p).

Textual pseudo labels, derived from the semantic space, provide high-level and stable representations
but may overlook fine-grained visual differences. When generated by LMMs, they can also exhibit
semantic bias or inaccuracy. In contrast, visual pseudo labels capture detailed features but are more
sensitive to inter-class confusion and ambiguity. To leverage their complementary strengths and offset
their limitations, we propose a hybrid supervision strategy that combines both modalities. Inspired by
the general principle of multimodal fusion that higher-confidence predictions tend to provide more
reliable supervisory signals [28]], our visual-semantic dynamic weighting mechanism adaptively
balances the two modalities according to their relative confidence. Increasing the weight of the more
confident modality helps stabilize training and improve effectiveness. Based on this intuition, we
design a sample-level adaptive weighting strategy that fuses supervision from the visual and semantic
spaces according to their confidence difference. For each sample x;, the training loss is defined as
follows: ) . )

»Céls = wa;»cce(xiv pv) + wzzt'cce(xia pt)~ ®)
For the input sample x;, if the clustering results in the visual space and textual space are identical,
meaning that p,, = p;, we consider the sample to be in a stable state. In this case, we consider the
additional information provided by both the visual and textual spaces to be of equal importance.

For cases where the clustering results differ between the two modalities, p,, # p;, we consider the
sample to be in a state of confusion. In this case, we need to find the balance between the visual and
textual spaces. To achieve this, we first calculate the difference between the maximum probability
and the second maximum probability at the stage of assigning pseudo labels to samples.

In the visual space, for any sample ¢, we first compute the cosine similarity between its feature and
all class prototypes in the current task:
5 — Ey(x:) - py
) T 9
T B (@) s
The confidence margin for sample ¢ in the visual space is then defined as the difference between the
top-1 and top-2 similarities:

j=1,...,C" (©6)

”Hflj = topl(sé) — top2(s§). @)
Similarly, in the textual space, the confidence margin is computed as:
Hi = top; (logit,(z;)) — topy(logit;(z:)), j=1,..., (o (8)

This difference, after normalization, is regarded as the reliability of the supervisory information
provided by the pseudo labels from different spaces:

Wioy = ﬁ;}{t ©)



Therefore, under the supervision of visual-text dual pseudo labels, the model’s training loss is given
by:
3 Lee(i, Do) + 5 Lo (i, Dr) if py =

L= i o
¢ mﬁce(xiapv) + W‘Cce(xivpt) else.

(10)
Finally, we perform a weighted summation for a batch of training samples Lo, = ), L%, which
serves as the loss of semantic supervision.

By balancing the reliability of supervisory information from the visual and textual spaces, we
effectively mitigate the inconsistency between the two supervisory signals, maximizing the utility of
pseudo labels. This, in turn, enhances the success rate of transferring the model to downstream tasks.
The effectiveness of this weighting mechanism is further validated by our experiments in Table 3]

3.3 Semantic Alignment Distillation

Due to the influence of continuous data streams, the constantly changing visual features affect the
feature space constructed by previous data, leading to catastrophic forgetting in the model. Compared
with the instability of visual representations, the semantic space offers stronger structural consistency
and scalability. To leverage this advantage, we propose Semantic Alignment Distillation (SAD),
which utilizes the stability of the language space to regularize the evolution of the visual space and
mitigate catastrophic forgetting.

After each task training, we store the class prototypes py = % >i*, E,(x;) and covariance matrices
>, for all categories based on the textual space prediction results. During subsequent tasks, for
each training batch, we randomly sample ¢ instances from the Gaussian distribution of old data.
For these sampled instances, we compute the similarity logit, (z¢'?) between each sample and its
corresponding textual descriptor, as well as logit g(x;?ld) between the same sample and the textual
descriptor of a randomly selected new class. Here, k£ and g denote the categories of the old and
new classes, respectively. Given the invariance of textual representations, we define the semantic
alignment loss for each sample as:

Ll =1—1logit, (z2') + logitg(xfld). (11)

The first term in Eq. [[T] measures the similarity be- TasktA
tween the sample and its corresponding textual pro- g & Hic rotoype
totype, while the second term evaluates its similarity b8 E ---- Z Goveronce Storage
to a randomly selected new class prototype. This for- D sample @ E
mulation encourages old samples to remain close to 30 i .. A-@ . 'M
their semantic anchors while keeping a margin from 6 Taskt =E } g
new class descriptors, thereby constraining the visual — =
representation space during incremental updates. The g = o | 0 A—@®

semantic alignment loss for a batch is expressed as EEC /" Far Away

Lo =5 L. . T

sal = Diz1 £ Figure 4: Semantic distillation leverages sta-
To further stabilize feature evolution, we add a dis- ble textual descriptors to constrain visual
tillation constraint between the previous and current  training and mitigate catastrophic forgetting.
adapters:

-

Adapter @
Visual
Encoder

et

Lya = Hfold(Ev(x)) _fnew(Ev(x))HQ' (12)
The overall training objective integrates three components:
L= Ecls + /\1£sal + )\2£kd~ (13)

Different from prototype-based distillation methods that operate solely within the visual space, SAD
introduces a cross-modal alignment mechanism that transfers stability from the semantic space to
the visual domain. It constructs a language-driven semantic scaffold composed of textual prototypes
generated via hierarchical prompts (Sec. 3.2), whose embeddings are obtained from a frozen text
encoder and remain invariant throughout learning. These prototypes act as semantic anchors that
define a stable manifold for guiding visual feature updates. By enforcing directional alignment
between visual features and their fixed textual counterparts, SAD emphasizes semantic consistency
rather than visual reconstruction, providing a novel and effective approach to mitigating catastrophic
forgetting in unsupervised class-incremental learning.



4 Experiments

4.1 Experiments Settings

Datasets. We conducted experiments on three datasets, including the widely used image classification
dataset CIFAR100, the style-varied classification dataset ImageNet-R, and the fine-grained dataset
CUB200. The CIFAR100 dataset contains 100 distinct classes, while both the ImageNet-R and
CUB200 datasets consist of 200 different classes. We partitioned each of the three datasets into 5, 10,
and 20 consecutive task streams, with an equal distribution across the tasks.

Metrics. In continual learning, performance is commonly evaluated using two metrics: the Last
Stage Accuracy (LA) and the Overall Average Accuracy (AA), following common practice in class-

incremental learning [3]. The average accuracy is computed as A = % Zthl Ay, where A, denotes
the accuracy on all seen classes after learning task ¢, and 7T is the total number of tasks. The final
accuracy (LA) is defined as A, which measures the performance on all classes after completing
the last task, reflecting the model’s overall retention capability. In the main paper, we report
the final accuracy (LA) of each method for clarity and fairness of comparison. To provide a more
comprehensive evaluation, the corresponding AA results of our method are included in Appendix A.4.

Comparison methods. We compare our method with state-of-the-art algorithms, including unsuper-
vised class incremental learning methods CaSSLe [20], PFR [29], POCON [30] and MSc-iNCD [31]].
Unsupervised representation learning UPS [32]. The original term MSc-iNCD refers to novel class
discovery, but its setup is identical to the UCIL in this paper. For unsupervised representation learning
methods, we directly trained the model using the UPS algorithm under two scenarios: one without
any constraints and the other with adding knowledge distillation. Meanwhile, we directly use CLIP to
cluster the test data, and we also labeled all the samples in the test set using LMM and then clustered
the text to enhance the comprehensiveness of our experiments [33]].

Implementation details. For both datasets, our pretrained model is the ViT-L/14 version of CLIP,
and we train the model with the Adam optimizer for 30 epochs, with a learning rate of 1 x 1073,
We use CosineSchedule to adjust the learning rate. To ensure experimental fairness, all comparison
methods were conducted in the same environment. In our experiments m = 3 and A\; = 1 for all
datasets and Ay = 0.03 for ImageNet-R and CIFAR100, A, = 0.15 for CUB200. For all datasets, the
LMM that we used is GPT-4-turbo. In order to ensure the fairness of our experiment, we try our best
to keep the training environment the same, and all the methods are obtained by re-running them on
Python 3.8, Pytorch 2.0.1, and a single GPU A6000. All baselines were also re-run using the same
ViT-L/14 backbone for fair comparison.

Table 1: Comparison experiments on different benchmarks. Bold indicates the best, while underline
represents the second-best. Results are averaged over 20 random seeds for robustness verification
(see Appendix A.4).

Method ImageNet-R CIFAR100 CUB200
Stasks 10tasks 20tasks 5tasks 10 tasks 20 tasks 5Stasks 10 tasks 20 tasks
UPS [ICLR’21] 20.9 16.5 14.3 18.4 15.7 12.9 18.3 15.9 13.1
UPS + KD [ICLR’21] 37.9 35.2 32.6 43.9 37.8 35.6 29.7 253 22.1
CassLe [CVPR’22] 45.2 40.5 37.8 59.6 52.5 49.6 - - -
PFR [CVPR’22] 41.6 37.9 31.0 59.8 54.3 44.8 - - -
POCON [WACV’24] 40.3 41.5 41.1 63.1 60.5 56.8

MSc-iNCD [ICPR’24] 52.7 53.4 51.2 64.9 62.7 60.3 329 31.9 30.4
CLIP-based clustering 36.9 36.9 36.9 329 329 329 31.6 31.6 31.6
LMM-based text clustering ~ 51.1 51.1 51.1 41.7 41.7 41.7 34.5 34.5 34.5

Ours 81.7 82.2 79.8 66.1 63.6 594 66.7 64.8 64.0

4.2 Experimental Results

We conducted experiments on various datasets under different settings, and the results are shown in
Table[l]] On ImageNet-R with 5 tasks, our method achieves 81.7%, yielding a 29.0% improvement
over MSc-iNCD. This gain is not simply due to the use of CLIP, as the clustering result obtained
by CLIP alone is only 36.9%. Similarly, clustering with LMM-generated text performs better than
visual clustering but still falls short of the previous SOTA. When the number of tasks increases to 10



and 20, our method remains robust, achieving accuracies of 82.2% and 79.8%. On the fine-grained
CUB200 dataset, where distinguishing similar image features is particularly challenging, all prior
methods show relatively low performance. In contrast, our method reaches 66.7% on the 5-task
setting, surpassing the previous SOTA by 33.8%, and maintains 64.8% and 64.0% with 10 and 20
tasks. For CIFAR100, our method achieves 66.1%, 63.6%, and 59.4% with 5, 10, and 20 tasks,
respectively. The relatively lower performance can be partly attributed to the 32 x 32 resolution of
CIFAR100 images, which limits the LMM’s ability to extract fine-grained semantics and generate
accurate textual descriptions, thus affecting pseudo-label quality. In comparison, on higher-resolution
datasets, our method consistently demonstrates strong and stable performance.

4.3 Ablation Study

In this section, we analyze the effectiveness of each component in our proposed method. The
experiments were conducted on ImageNet-R across 5 tasks, with the results presented in Table
[2l As shown in the table, although pre-trained models possess powerful representational capabili-
ties, relying solely on clustering fails to achieve highly accurate classification results when faced
with unsupervised data, clustering method based solely on visual features achieved an accuracy
of 36.9%. This result does not meet the performance requirements. By treating the clustering
results as a visual pseudo-label and fine-tuning the model under the constraint of distillation loss,
the model ultimately achieved an accuracy of 50.4%. Due to the poor clustering performance
in the previous step, the visual pseudo labels contain substantial inter-class confusion and label-
ing inaccuracies. As a result, relying solely on the supervisory information introduced by the
visual space is insufficient to successfully transfer the pre-trained model to downstream tasks.
Considering the remarkable stability and knowl-

edge expansion capability of textual informa- Taple 2: Ablation study on ImageNet-R, 5 tasks.
tion, we used our generated generalized text

descriptors to filter the samples. Under this mponen
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tive textual prototypes, and further introduces a
SAD loss to enhance cross-modal consistency. This combined strategy improves the performance to
81.9%. For reference, using ground-truth labels to construct text prompts in the form of “a photo
of a [label]” yields a supervised upper bound of 84.2%. This comparison demonstrates that our
semantically guided pseudo-label design, even without any real labels, achieves performance close to
the supervised upper limit.

To maximize the utilization of supervisory infor-
mation from both modalities, we further reduce
pseudo-label inaccuracies by adaptively weight- Dynamic Fixed

ing each space according to its reliability. On Tasks Weighting (%) Weighting (%)
the ImageNet-R benchmark, as shown in Ta-

Table 3: Dynamic vs. fixed weighting.

ble 3] this balanced dynamic weighting strategy 5 81.7 80.2
outperforms the fixed weighting scheme, provid- 10 82.2 80.3
ing strong evidence for the effectiveness of the 20 79.8 77.1
proposed method.

4.4 Further Analysis

Annotating images with LMM.

We analyzed the initially proposed approach of directly employing a LMM to annotate the entire
dataset and conducted experiments on the ImageNet-R benchmark. The results indicate that LMMs
are highly susceptible to interference from complex backgrounds and environmental variations,
often leading to inaccurate predictions(as exemplified by the misannotations shown in Fig. [5). This



naive annotation strategy not only lacks reliability but also incurs substantial computational costs.
These findings underscore the necessity and effectiveness of the proposed Semantic Collaborative
Facilitative Supervision framework introduced in this work.
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%% Figure 6: The confusion matrix of pseudo la-
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while the right represents textual pseudo la-
bels.

Figure 5: Incorrect labels generated by the
LMM.

Comparison of pseudo-label prediction results.

In this paper, we propose a dual pseudo-labeling strategy for both visual and textual spaces. We
randomly selected 10 classes from ImageNet-R and constructed the confusion matrix shown in Figure
[6l where the horizontal and vertical axes represent the true labels and pseudo-labels, respectively.
Larger values along the diagonal indicate higher accuracy of the pseudo-labels. Experimental results
demonstrate that textual descriptions, due to their stronger generalization capability, outperform
visual clustering. However, both types of pseudo-labels still contain errors, which led us to design a
balanced strategy that integrates predictions from both spaces to more effectively leverage supervisory
information.

To further validate the robustness and adaptability of the proposed method, we include additional
experimental analyses in the supplementary material, including, but not limited to: (1) the impact
of the number of representative samples m on the quality of LMM-generated descriptions; (2) the
effect of different prompt; (3) sensitivity analysis of hyperparameters (e.g., A\; and \3). We also
include additional analyses on the computational and resource overhead introduced by integrating the
LMM component, comparing API-based and fully local deployment setups. Detailed results and cost
breakdowns are provided in Appendix A.5.

5 Conclusion

In this paper, we propose a hierarchical, language-guided approach to generate fine-grained text
pseudo labels. By combining these with traditional visual clustering pseudo labels, we create mul-
timodal weighted text-visual pseudo labels to guide training, addressing the challenge of missing
supervision in unsupervised class-incremental learning. We also introduce a collaborative align-
ment method that uses text pseudo-labels to constrain training and reduce catastrophic forgetting
between incremental tasks. Our method is compared with various approaches in unsupervised class-
incremental learning, and extensive experiments on benchmark datasets demonstrate its effectiveness.
Additionally, we conduct ablation studies to validate the rationale behind our approach.

We sincerely hope that the proposed method offers a novel and impactful perspective for advancing
the fields of unsupervised and incremental learning. By strategically harnessing the capabilities of
modern multimodal models, our approach aims to unlock the latent structure within vast, unannotated
real-world data streams. We believe this work serves as a step toward more intelligent, scalable,
and label-efficient learning systems capable of adapting to the complexity and openness of dynamic
environments.
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A Appendix / supplemental material

To further assess the robustness, generalizability, and practical effectiveness of the proposed method,
we present a series of additional experimental analyses in this supplementary material. These analyses
offer deeper insights into the behavior of the model under varying conditions and validate the design
choices made in the main paper. Specifically, we investigate the influence of key components and
parameters that affect the performance of our approach.

A.1 Impact of the Number of Representative Samples (1)

To assess how the number of representative samples m affects the quality of LMM-generated
descriptions and overall model performance, we conducted experiments on the ImageNet-R dataset
with 5 tasks. The results are summarized in Table 4]

Table 4: Effect of the number of representative samples (m) on classification accuracy (ImageNet-R,
5 tasks).

m=1 m=2 m=3 m=4 m=25
81.0 81.4 81.9 82.0 82.2

As shown in Table [d] increasing the number of representative samples generally improves perfor-
mance. The accuracy increases steadily from 81.0% (when m = 1) to 82.2% (when m = 5). This
improvement is attributed to the richer and more diverse descriptions generated by the LMM when
provided with more query samples.

In our final setting, we choose m = 3 as a trade-off between accuracy and computational efficiency.
Generating high-quality descriptions via LMM is relatively time-consuming, and larger values of m
incur additional query and processing overhead. The setting m = 3 achieves competitive accuracy
(81.9%) while keeping the LMM query cost low, making it a practical and scalable choice for
continual learning scenarios.

A.2 Effect of Different Prompt Designs

To evaluate the impact of prompt design on the effectiveness of LMM-generated textual descriptions,
we conducted a series of ablation experiments using multiple prompt templates. The goal is to
determine the sensitivity of our method to prompt formulations and to explore whether certain
prompt combinations lead to more informative and discriminative descriptions, ultimately improving
classification performance.

We abbreviated the prompt templates as P, where P1, P2, and P3 were all derived from the main
text. Additionally, we introduced P4 to increase the diversity of the experiment. P4 consists of the
generic prompt "a photo of []", which was completed by directly querying the LMM, serving as a
widely-used baseline template. The results of this experiment on the ImageNet-R dataset with 5 tasks
are summarized in Table

Table 5: Accuracy (%) of different prompt combinations on ImageNet-R (5 tasks).

Prompt Combination Accuracy (%)

P1+P2+P3 81.9
P1 79.4
P2 77.6
P3 76.9
P1 +P2 80.8
P1+P3 80.1
P2 +P3 78.4
P4 79.0

These results demonstrate several key findings:
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* Prompt diversity helps: Combining multiple prompts (P1+P2+P3) yields the best accuracy,
suggesting that richer semantic descriptions enhance the model’s ability to generalize.

* Even simple prompts work: Although P4 uses a very simple and generic format, it still
achieves competitive performance (79.0%), outperforming many prior SOTA baselines,
which highlights the robustness of our method to prompt variations.

Overall, this experiment confirms that while our method is relatively robust to different prompt
formats, careful prompt engineering can further boost performance. Additionally, it illustrates that
even basic prompts can produce effective representations when combined with our proposed learning
framework.

A.3 Sensitivity Analysis of Key Hyper-parameters (A1, \2)

In this section, we analyze how variations in the key hyper-parameters \; and Ao affect the per-
formance of our proposed method. These hyper-parameters play critical roles in balancing the
contributions of visual and semantic modalities during training.

Hybrid Loss Balancing Mechanism

Our method employs a hybrid loss function that integrates visual and textual supervision. The
balancing of this hybrid loss is adaptive and depends on the consistency between the predictions from
the visual and semantic spaces. Specifically:

* If the predicted class labels from both modalities agree, we assign equal weights to both
terms.

* If the predictions differ, the weights are adjusted dynamically based on the difference in
confidence (i.e., probability gap between the top two predicted classes) in each modality.

This mechanism helps to assign higher weight to the more confident modality, thereby improving
stability and reducing the impact of unreliable pseudo labels.
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Figure 7: Sensitivity analysis of hyper-parameters \; and Ay with respect to classification accuracy
(ImageNet-R 5 tasks). Each bar represents the model’s accuracy under a different value of the
corresponding hyper-parameter.

Sensitivity Analysis of \;

We conducted a sensitivity analysis on the hyper-parameter \;, which governs the weight of the
visual modality in the hybrid loss. The default setting was A\; = 1.0. To evaluate the robustness of
this parameter, we varied its value within a small range, specifically testing values from 0.8 to 1.2 in
increments of 0.1.

As shown in Figure[7} model performance remains relatively stable across this range. The accuracy
peaks at the default value of A\; = 1.0, and only minor performance degradation is observed when
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moving away from this setting. These results suggest that the method is robust to small perturbations
in )\1 .

Sensitivity Analysis of )\

We further analyzed the sensitivity of Ao, which controls the influence of the semantic distillation
loss. The default value of Ay was set to 0.03. We explored its effect on classification accuracy by
varying it between 0.01 and 0.05 in increments of 0.01.

As depicted in Figure[/| the model achieves the best performance at the default value. Although
performance decreases slightly when A, is adjusted by +0.01, the drop remains within 1.3 percentage
points, indicating relative stability in this parameter as well. However, Ao appears slightly more
sensitive than A1, with a more pronounced performance peak at its tuned value.

Discussion

Overall, the results illustrated in Figure [/| demonstrate that the proposed method exhibits good
robustness to moderate changes in both A\; and Ay. Although the model is not highly sensitive to
these hyper-parameters, careful tuning can still yield incremental improvements in classification
performance.

A.4 Multiple-Seed Evaluation and Accuracy Metrics

To further assess the stability and robustness of our proposed method, we conducted 20 independent
runs with different random seeds on all three datasets, following the evaluation protocol described
in Section 4.1. We report both the Last Task Accuracy (LA) and the Average Accuracy (AA)—two
standard metrics widely used in class-incremental learning [3]. The results are summarized in Table[6]
where each score represents the mean accuracy (%) =+ standard deviation (%) over 20 runs. The small
variances demonstrate the strong consistency of our approach under different initialization conditions,
while the close gap between LA and AA indicates stable performance across incremental stages.

Table 6: Performance of our method under 20 independent runs, reporting both Last Task Accuracy
(LA) and Average Accuracy (AA).

Dataset Tasks LA (%) AA (%)

5 81.7£0.9 89.84+0.8
ImageNet-R 10 82.2+0.7 85.9£0.6
20 79.840.6 83.4£0.5

5 66.3£1.0 74.8+£0.9
CIFAR100 10 63.8£0.8 70.5£0.7
20 59.6£0.7 65.1£0.6

5 67.1£0.8 72.4+0.7
CUB200 10 65.3£0.6 69.6+0.6
20 64.2£0.5 67.8+0.5

These results confirm that our dual-space distillation framework maintains stable performance across
multiple independent runs and task configurations. The narrow performance gap between the Last
Task Accuracy and Average Accuracy further validates the model’s robustness and consistent learning
behavior throughout the continual process.

A.5 Computational Cost and Feasibility of LMM Integration
We further analyze the computational overhead introduced by integrating the LMM component from

two perspectives: (1) the time and memory cost when querying GPT-4-turbo via API, and (2) the
feasibility of fully local deployment using an open-source large multimodal model (LMM).
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Time and Memory Cost with GPT-4-turbo (API-based setup)

In our experiments, semantic descriptions were queried from GPT-4-turbo for a small number of
representative samples per class (m € {0,1,2,3,4,5}). Here, m = 0 denotes the baseline setting
without any LMM involvement, where only the visual encoder and adapter are used for forward
propagation. We measured training time, memory usage, and the total number of tokens queried on
the ImageNet-R dataset under a 5-task incremental setting.

Table 7: Resource usage when querying GPT-4-turbo during training. Bold values denote model
training resources, and italic values denote the LMM querying phase.

m  Train Memory (MB) Train Time (s) Tokens Queried Test Accuracy (%)
0 3144 3912.47 — 50.4
1 3472 4836.49 + 1809 (236,053) 236K 81.0
2 3474 4931.53 + 4953 (444,700) 445K 81.4
3 3477 4941.75 + 7203 (681,405) 681K 81.9
4 3478 4939.51 + 8553 (931,251) 931K 82.0
5 3481 4998.79 + 9455 (1,158,350) 1.16M 82.2

All GPT-4-turbo queries were performed only during training, not inference. As shown in Table
increasing the number of representative samples m slightly extends the total training time, but the
additional cost remains moderate relative to the performance gain. Once trained, the inference
pipeline no longer involves any LMM queries and thus maintains the same efficiency as a standard
ViT-based model.

Local Deployment with an Open-Source LMM

To evaluate the feasibility of complete local deployment, we replaced GPT-4-turbo with the open-
source model Qwen2.5-VL-32B-Instruct-FP8-Dynamic (via Hugging Face). The model was deployed
on four A6000 GPUs using FP8 precision, and the same semantic querying and pseudo-label
generation pipeline was executed offline.

Table 8: Resource usage when using a locally deployed LMM (Qwen2.5-VL-32B-Instruct-FP8-
Dynamic).

m  Train Memory (MB)  Train Time (s) LMM Overhead (MB) Test Accuracy (%)

0 3144 3915.30 — 50.4
1 3478 4850.23 + 1483 50,024 79.6
2 3481 4940.17 + 2721 50,024 79.2
3 3485 4952.31 + 4140 50,024 80.4
4 3489 4947.95 + 5946 50,024 80.6
5 3493 5004.80 + 7213 50,024 80.6

The total memory footprint of the locally deployed Qwen2.5-VL model was approximately 50 GB
across four GPUs. Compared with GPT-4-turbo, the accuracy decreased slightly (by about 1-1.5%),
but the improvement over the baseline without external textual knowledge (m = 0) remained
substantial. Local deployment introduces additional memory usage only during training, while the
inference phase remains identical to a pure visual model. This confirms that full local deployment is
feasible without dependence on external APIs or network access.

Summary

Overall, the above results demonstrate that integrating an LMM introduces only moderate computa-
tional overhead, confined to the training stage. Local deployment is fully feasible on high-memory
GPUs (e.g., 4xA6000), and querying a small number of representative samples (m < 3) provides an
effective balance between accuracy and resource efficiency. The proposed framework thus remains
lightweight and practical for both API-based and offline multimodal setups.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly outline the paper’s key contributions.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We acknowledge limitations: (1) Performance degrades on low-resolution
datasets (e.g., CIFAR100) as LMMs struggle with fine details (Sec 4.2); (2) Pseudo-label
quality depends on LMM outputs, which may introduce noise/bias (Sec 3.2, Fig 5).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We prioritize empirical validation over theoretical proofs, relying on practical
algorithms (clustering/distillation) and experimental results (Tables 1-2) without formal
theorems.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present datasets, models, and implementation details in the Experiments
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We use open datasets (CIFAR100/ImageNet-R/CUB200) and models
(CLIP/GPT-4) but do not provide code/preprocessed data, though future open-sourcing
is planned for reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly specify all key experimental details including data splits (5/10/20
tasks), hyperparameters (=1, =0.03/0.15), and optimizer (Adam with CosineSchedule).

Guidelines: The paper specifies essential training/test details:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars or statistical significance tests for its experimental
results (Tables 1-2). Performance metrics are presented as single-point averages without
variance measures.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We do not specify computational resources (e.g., GPU type, memory, or
runtime) for experiments. Only mentions using "a single GPU A6000" (Sec 4.1) without
further details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics without any identified
violations.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
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Justification: The paper focuses on technical contributions (e.g., methodology and bench-
marks) and does not explicitly discuss societal impacts, positive or negative.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the datasets and baseline papers in the experiment section.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly describes using GPT-4 as a core methodological com-
ponent (e.g., generating hierarchical text descriptaaaions for pseudo-labels in Sec 3.2) and
addresses its limitations (noise/bias in Sec 4.2).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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