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ABSTRACT

Large language models (LLMs) excel at learning individual facts but fail at a fun-
damental aspect of human cognition: binding related episodes through shared el-
ements. Unlike humans, that effortlessly retrieve all encounters with a person or
visits to a location after learning each separately, we demonstrate through con-
trolled experiments that LLMs trained on single-event question-answering pairs
cannot generalize to exhaustive multi-event retrieval. We formalize Episodic
Knowledge Binding as the challenge of retrieving multiple related episodes when
training lacks explicit multi-event supervision.
Differently from catastrophic forgetting, where models lose previously learned
information, this binding failure persists even when training on aggregated data
without temporal confounds, showing that models do not spontaneously develop
multi-event retrieval from separate training points. Leveraging synthetic episodic
narratives, we reveal a consistent binding gap across model scales (3B–13B and
GPT-4.1) and narrative lengths (10–100 events): models attain high accuracy
when entities appear in single events, but performance collapses when multiple
related episodes must be retrieved. We find that (unsurprisingly) binding becomes
harder with more events and that model scaling (more surprisingly) offers only
minimal relief within our tested range. To address this problem, we propose
Generative Cued Replay (GCR), that (i) inherently operates in a continual learn-
ing manner and, inspired by hippocampal memory consolidation, (ii) queries the
model’s parametric memory for related episodes when processing new events, (iii)
synthesizing multi-event training data without storing past episodes at each new
training step. This approach significantly improves binding without architectural
changes, offering a practical method compared to exhaustive multi-event super-
vision which is both computationally infeasible as well as inherently more rigid.
We release our Episodic Knowledge Binding benchmark to enable future research
on this fundamental capability that LLMs are currently lacking.

1 INTRODUCTION

Human episodic memory does not just store events, it binds them through shared elements (Tulving,
1983; Tulving et al., 1972; Horner et al., 2015): when encountering a colleague at a conference,
our hippocampus does not merely encode this new episode, it activates an entire network of related
memories through common threads, the person, the topic, similar venues in a process known as
pattern completion (Horner et al., 2015). This binding capacity, fundamental to human cognition,
enables us to answer “When did I meet Sarah?” with a complete list of episodes, not just the most
recent encounter.

Unlike semantic memory, which stores general facts, episodic memory is inherently relational,
grounding experiences in time, space, and entity-specific details (Tulving et al., 1972). This re-
markable integration is mediated by the hippocampus, which acts as a dynamic index for episodic
memories Teyler & DiScenna (1986) and a pattern completion engine (Horner et al., 2015). At
this index, specialized neurons, place cells that encode specific locations (Moser et al., 2008), time
cells that segment temporal sequences (MacDonald et al., 2011), and concept cells that respond
to entities regardless of modality (Quiroga et al., 2005), create a multi-dimensional binding space.
The hippocampal indexing theory (Teyler & DiScenna, 1986; Teyler & Rudy, 2007) posits that the
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hippocampus stores compressed representations that serve as pointers to reactivate distributed neo-
cortical patterns during recall. Critically, this biological system does not just prevent forgetting;
it actively connects related episodes, enabling mental time travel and coherent narrative construc-
tion (Schacter et al., 2007).

Anecdotal evidence shows that modern LLMs exhibit intriguing contradictions in this domain. The
Reversal Curse demonstrates that models trained on “A is B” often cannot infer “B is A” (Berglund
et al., 2023), suggesting rigid, unidirectional storage rather than flexible binding. Yet paradoxically,
the same models can compose facts learned separately, inferring a city’s identity from distances to
Rome and London learned in different LoRA modules (Treutlein et al., 2024). These paradoxes
suggest that parametric memory in LLMs, differently from hippocampal indexing, can cope with
partial pattern completion while failing at exhaustive retrieval.

We study this binding challenge through controlled experiments with single-event QA training and
multi-event QA testing, a setting that makes the problem clearly observable and measurable. While
one could theoretically generate multi-event training data, this becomes impractical at scale: with-
out ground truth episode structures, identifying and linking all related episodes across large corpora
exceeds current capabilities. Even with frontier LLMs, context limitations and the combinatorial
explosion of possible multi-event questions make exhaustive coverage infeasible. The binding prob-
lem manifests in both static training (where all data is available) and continual learning (where
episodes arrive sequentially), though it becomes particularly salient in the latter where models are
rarely exposed to related episodes simultaneously.

The field has focused on catastrophic forgetting, i.e. hoping that models remember that Paris is
in France after learning about London (Gupta et al., 2024). In classic neural networks, techniques
like elastic weight consolidation (Kirkpatrick et al., 2017), experience replay (Rebuffi et al., 2017;
Lopez-Paz & Ranzato, 2017), and progressive neural networks (Rusu et al., 2016) aim to avoid
such forgetting. However LLMs introduce a new and even more important challenge: i.e., how
to effectively bind episodes through shared elements, as opposite as just remembering individual
episodes – a challenge which we here term Episodic Knowledge Binding, and which remains largely
unexplored (cfr related work in Sec.6 and Appendix: E) despite being fundamental to both human
cognition and practical applications.

In this work, we study this challenge through a specific lens: after training on single episodes in-
dividually, can models retrieve all episodes matching a given retrieval cue purely from parametric
memory? We design (Sec.2) controlled experiments with synthetic episodic narratives where each
event is a single sentence encoding time, space, entity, and content. Models are trained on single-
event question–answer pairs (e.g., “Where was Emma on March 5th?” → “Tokyo”) but evaluated
on multi-event retrieval (e.g., “List all times Emma was in Tokyo” → “Mar 5th; Sep 12th; . . . ”).

Controlled setting allows to isolate and study the binding phenomenon: our systematic evaluation
reveals a universal binding gap across scales (Sec. 3). Models of any tested scale (from 3B to 13B
parameters, as well as GPT4.1), consistently fail at multi-event retrieval: they achieve high accuracy
when an entity appears in exactly one event, while performance collapses as the number of matching
events increases. This holds both when training sequentially (mimicking continual learning) as well
as on aggregated data (removing temporal confounds and catastrophic forgetting effects): in other
terms, fine-tuning on single-event QAs creates lookup tables, not episodic indices.

To address this gap, we propose (Sec.4) and evaluate (Sec.5) a novel approach inspired by hippocam-
pal memory consolidation where new experiences trigger replay and rebinding of related memories,
that we refer to as Generative Cued Replay (GCR). When encountering a new episode about entity
ent, GCR: (i) mimick pattern completion by querying the model to recall prior episodes involv-
ing ent and (2) creates synthetic multi-event QAs combining recalled and new information. This
biologically-inspired approach, requiring no architectural changes, significantly improves binding
by progressively building parametric indices through rehearsal, similar to how cued recall spon-
taneously reminds of related episodes or later sleep-dependent consolidation strengthens episodic
associations in biological systems Rasch et al. (2007).

Our main contributions are:

A new fundamental challenge revealed through controlled experiments: We formalize the new
challenge of Episodic Knowledge Binding, as retrieving multiple related episodes after learning
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them individually: this challenge is distinct from catastrophic forgetting, and we show it to be a
severe limitation in current static as well as sequential training paradigms.

Systematic evidence of binding failure: Across model scales (3B-13B) and event lengths (10-100
events), we demonstrate that single-event training fails to induce multi-event retrieval capabilities,
although a partial successful binding appears with small narratives of 10 events.

Human-inspired approaches: We propose Generative Cued Replay (GCR) strategies guided by bi-
ological memory consolidation principles, which we show to significantly improve binding without
requiring direct multi-event supervision.

A reproducible benchmark: We release our synthetic episodic narrative generation code and eval-
uation framework to enable future research on this fundamental and new capability.

We believe episodic knowledge binding represents a new frontier in continual learning, beyond only
preventing forgetting. For LLMs to succeed in tackling complex sequential tasks, the ability to bind
related episodes through shared elements becomes essential. We believe our work establishes both
the challenge and initial approaches, opening a new research direction at the intersection of continual
learning, memory systems, and neural episodic representation.

2 PROBLEM FORMULATION

We adapt the episodic memory benchmark from Huet et al. (2025) to study a new challenge in para-
metric LLM training: can models bind related episodes learned separately into queryable paramet-
ric indices? The benchmark by Huet et al. (2025) provides a controlled framework for generating
synthetic episodic narratives and evaluating memory recall through cue-based retrieval. We modify
their approach in two key ways to focus on the binding problem. First, we focus on parametric mem-
ory, distinguishing between single-event and multi-event question performance to measure whether
models can retrieve all related episodes after learning them individually. Second, while the original
benchmark used multi-paragraph chapters for long-context evaluation, we instead generate simpler
single-sentence events, which allows to better isolate the binding challenge from potential side ef-
fects arising from, e.g.., context length limitation.

2.1 EPISODIC WORLD MODEL AND SYNTHETIC NARRATIVE GENERATION

Following Huet et al. (2025), each event in our narratives encodes a tuple (ti, si, enti, ci) where ti
denotes time (e.g., “March 5th”), si denotes space (e.g., “Tokyo”), enti denotes the entity involved
(e.g., “Emma”), and ci denotes the content or action (e.g., “painting”). In our adaptation, each
event becomes a single concise sentence rather than a paragraph, allowing us to focus on parametric
binding rather than context comprehension. The Appendix illustrates specific examples in Fig 4– 6.

We generate synthetic narratives of N events (N ∈ {10, 30, 100}) using the original controlled mul-
tiplicity approach with truncated geometric sampling: this ensures entities, dates, and spaces natu-
rally recur across multiple events, creating authentic binding challenges (e.g. “Emma” might appear
in 1, 3, or 6+ events distributed across different times and locations). We also enforce uniqueness
constraints (no duplicate t× s pairs) and use canonical representations for unambiguous evaluation.
We also adopt their three narrative universes (everyday events in New York, imaginary world news,
and sci-fi events) preserving event structure. This synthetic generation provides perfect ground truth
for any episodic question, enabling precise evaluation without real-world ambiguity.

2.2 QUESTION TYPES AND EVALUATION FRAMEWORK

The episodic memory benchmark models episodic recall as cue-based retrieval, where partial event
information (a cue) triggers memory recall. A cue is any combination of elements from the event
tuple (ti, si, enti, ci), with asterisks denoting wildcards. For example, the cue (∗, s, ∗, ∗) asks for
all events at location s, while (∗, ∗, ent, ∗) asks for all events involving entity ent. Table 1 shows
how different cue patterns create different retrieval challenges:

To isolate the binding challenge, we distinguish two fundamental question types. Single-event
questions (SEQ), detailed in Tab. 4, have answers found in exactly one event: for example, “Where
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Table 1: Cue patterns and their binding requirements. Patterns with unique answers require no
binding; patterns with multiple matches test episodic binding (Examples in Fig. 7–3)

Cue Pattern Example Question Binding Requirement

(∗, s, ent, c) “What day did Emma paint in Tokyo?” None (unique answer)
(∗, ∗, ent, ∗) “List all Emma’s activities” Entity binding (multiple events)
(∗, s, ∗, ∗) “What happened in Tokyo?” Location binding (multiple events)
(∗, ∗, ent, c) “When did Emma paint?” Entity-action binding (multiple events)

was Emma on March 5th?” has a unique answer since no two events share the same date. Multi-
event questions (MEQ), detailed in Tab 5, require retrieving all events matching a cue: for example,
“List all times Emma was in Tokyo” requires finding every event where Emma appears in Tokyo.
While SEQs test basic memorization, MEQs test whether models can bind related episodes through
shared elements.

We evaluate MEQs through three diagnostic tasks of increasing difficulty. Multi-hit retrieval asks
models to retrieve all matching events given a cue, directly testing exhaustive set retrieval. Models
must activate all relevant episodic traces, not just the most salient. Latest state tracking requires
identifying only the most recent event for a given entity, which still requires binding to compare
temporal information across multiple episodes. Chronological ordering demands retrieving all
events for an entity in temporal order, the most challenging task as it requires both complete binding
and temporal structure preservation. These tasks form a hierarchy a models that fail at basic multi-hit
retrieval cannot succeed at chronological ordering.

Evaluation We use lenient recall: |Ŷ ∩Y |
|Y | where Y is the ground truth set and Ŷ is the model’s

prediction that we extract using an LLM as a judge (details in App. 8). We consider an answer
correct only if recall equals 1.0 (complete retrieval). Note how we do not penalize hallucinations to
isolate the binding challenge effects. We stratify results by ground-truth set size k ∈ {1, 2, 3-5, 6+}
to reveal how performance degrades as more episodes must be bound together.

2.3 EPISODIC KNOWLEDGE BINDING DEFINITION

We formally define episodic knowledge binding as the ability to retrieve all episodes matching a
given cue after learning episodes separately. Given a model M trained on single-event QA pairs
{(qi, ai)}Ni=1 where each qi queries one aspect of event Ei, binding manifests when M can an-
swer multi-event questions requiring exhaustive retrieval across multiple events sharing common
attributes. The binding challenge becomes apparent when models reach high accuracy on SEQs
but fail on MEQs. Crucially, this differs from catastrophic forgetting: binding failure occurs when
models remember each fact in isolation but cannot retrieve them together when queried.

2.4 DIFFICULTY OF KNOWLEDGE BINDING

In this work, we focus on knowledge binding in continual learning settings within the parametric
space of the model (cfr related work in Sec.6 and Appendix: E). In doing so, we point out fallacies
of other approaches to address this challenge, and that motivate our study:

Limitations of external memories. While alternative approaches for specific applications exist,
such as augmenting context with retrieval-augmented generation (RAG), we point out that was found
to perform poorly on multi-event episodic retrieval already on the original benchmark (Huet et al.,
2025), so that it could only provide an even lower performance comparison reference on our new
challenge, and that we therefore disregard. Besides, we believe that episodic knowledge binding is
a more general problem, not only relevant for continual learning scenarios, but also for the founda-
tional training of LLMs, where the ability to parametrically integrate and retrieve related episodes
from massive text corpora is essential for human-like reasoning.

The impracticality of exhaustive multi-event supervision. We note that programmatically gen-
erating comprehensive multi-event training data (MEQAs) is computationally costly across all train-
ing paradigms. In static training with large corpora, identifying and linking all related episodes
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across millions of documents would require sophisticated entity resolution and co-reference sys-
tems to handle the complex, multifaceted nature of real-world episodic connections (far beyond our
simplified (t, s, ent, c) episodic model). Similarly in continual learning, maintaining a complete
database of past episodes, programmatically enumerating all possible, e.g. entity-location-time,
combinations, and dynamically updating all multi-event answers as new events arrive becomes ex-
pensive as episodes unfold. The issue might also arise in foundation model pre-training, where
episodic connections naturally occur across documents, but the sparse and implicit nature of these
connections fails to induce robust binding. This fundamental impracticality, whether in static or
continual settings, motivates our search for methods that can achieve binding through more efficient
training strategies that do not require exhaustive multi-event supervision – that we therefore consider
only for reference.

3 EFFECTS OF SCALING ON EPISODIC KNOWLEDGE BINDING

We investigate how the episodic binding challenge manifests across model and narrative scales. Our
experiments isolate the binding failure from other confounds like catastrophic forgetting by using
static training paradigms, as reference alongside our target continual learning ones.

3.1 EXPERIMENTAL PROTOCOL

Models. We evaluate Llama models (3B, 8B, 13B parameters) and GPT-4.1 variants to capture
behavior across a 10x parameter range, from smaller models with limited memory to larger models
with enhanced parametric storage.

Static training paradigms. To illustrate the problem we compare two ideal strategies as benchmark,
isolating different aspects of binding: (i) Train(SEQ): One-shot fine-tuning on all single-event QA
pairs pooled together. By removing sequential interference and temporal confounds, this isolates
the pure binding challenge: can models generalize from learning each event separately to inferring
all times Emma was in Tokyo? (ii) Train(SEQ+MEQ): One-shot fine-tuning including both single
and multi-event QAs. This provides direct supervision for binding and serves as an upper bound for
what models can achieve with oracle supervision.

Hyperparameter selection. We perform grid search over learning rates (10−5 to 10−3), batch sizes
(8 to 32), and epochs (1 to 5). For computational efficiency, we use the Continual-NoReplay baseline
(sequential training without replay) as the optimization target. Selected hyperparameters are then
applied consistently across all conditions to ensure fair comparison.

Narrative scales. We vary narrative length from 10 to 100 events, testing how binding complexity
affects performance as the number of episodes and potential connections grows.

3.2 THE BINDING GAP AND ITS SCALING EFFECTS

10 30 100
#Events 

Llama3 3B

Llama3 8B

Llama-2 13B

gpt4.1-nano

gpt4.1-mini

95
(0.4)

96
(0.4)

96
(0.3)

94
(1.2)

94
(0.4)

94
(0.3)

95
(0.0)

93
(0.4)

92
(0.3)

70
n=1

60
n=1

32
n=1

84
n=1

74
n=1

41
n=1

SEQ

10 30 100
#Events 

100
(0.0)

100
(0.0)

100
(0.2)

95
(3.7)

99
(0.4)

98
(0.4)

100
(0.0)

93
(3.3)

84
(1.9)

21
n=1

13
n=1

10
n=1

39
n=1

25
n=1

12
n=1

MEQ

(a) Train(SEQ+MEQ)

10 30 100
#Events 

94
(0.4)

95
(0.4)

95
(1.1)

91
(1.6)

91
(2.2)

92
(3.8)

94
(1.6)

90
(0.4)

94
(0.3)

75
n=1

52
n=1

21
n=1

87
n=1

76
n=1

33
n=1

SEQ

10 30 100
#Events 

18
(13.6)

3
(0.8)

4
(1.3)

31
(2.5)

16
(8.3)

8
(6.2)

24
(0.0)

9
(5.0)

11
(1.9)

3
n=1

1
n=1

0
n=1

3
n=1

1
n=1

1
n=1

0%

20%

40%

60%

80%

100%
MEQ

(b) Train(SEQ)

Figure 1: Average (stdev) multi-hit performance, using lenient recall, over 3 narrative types.
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Fig. 1 reveals a universal binding failure across model scales. When trained on single-event ques-
tions alone Train(SEQA), all models achieve near-perfect accuracy (86-96%) on single-event re-
trieval (SEQ) but catastrophically fail at multi-event retrieval (MEQ). This failure occurs despite
static training that eliminates temporal confounds and catastrophic forgetting.

Partial success at small scale. At 10 events, models show very limited binding capability, achieving
23-37% MEQ accuracy – which shows that minimal binding can emerges naturally.

Sharp degradation with narrative length. As narratives grow from 10 to 30 events, MEQ perfor-
mance collapses: the 8B model drops from 34% to 27%, while 3B and 13B models fall to near-zero
(4% and 2%). At 100 events, all models converge to 5-17% MEQ accuracy. This sharp degradation
reveals how binding complexity overwhelms the models’ parametric indices.

Model scaling offers no relief. Across a 10x parameter range (3B to 13B), we observe no consistent
improvement in binding capability. The 8B model shows marginal gains over 3B and 13B variants,
but this inconsistency suggests architectural limitations rather than capacity constraints. Model scal-
ing, which typically improves knowledge-intensive tasks, fails to address episodic binding.

Multi-event supervision proves binding is learnable. When provided with direct supervision
(Train(SEQA+MEQA)), models achieve 88-100% MEQ accuracy across all narrative lengths,
demonstrating that binding is learnable with appropriate training signals. However, generating such
exhaustive multi-event labels requires maintaining a complete episodic database and enumerating
all possible entity-location combinations, computationally intractable for continual learning.

Cross-model consistency validates the challenge. For the GPT-4.1 family, we conducted a single
experimental run using default hyperparameters without grid search or multiple repetitions. This
streamlined evaluation served to confirm that the binding problem generalizes across different model
families and architecture — rather than being intented as a direct performance comparison between
Llama3 and GPT models.

These results establish episodic binding as a fundamental challenge distinct from catastrophic for-
getting, one that current architectures cannot overcome through scale alone.

4 GENERATIVE CUED REPLAY FOR EPISODIC BINDING

While model scaling fails to address the binding gap, we propose Generative Cued Replay (GCR),
inspired by hippocampal memory replay and consolidation. The key insight is that instead of storing
past episodes or exhaustively enumerating multi-event combinations, which is infeasible in practice,
we can synthesize multi-event training data on-the-fly by querying the model’s own parametric mem-
ory when learning new events. Note that this approach transforms a classic training problem into a
continual learning one, since the synthesized MEQs depend on the current training sample.

4.1 METHOD OVERVIEW

Figure 2 illustrates the GCR pipeline. When event Ek arrives (e.g., “Marry was in London on
March 5th”), the system does not only train on this isolated fact. Instead, the Recollector queries
the current model Mk−1 for related past episodes (other times Emma appeared or other events in
Tokyo). Simultaneously, the Asker generates single-event questions about Ek. The Merger then
combines recalled episodes with the current event to synthesize multi-event Q&As. This merged
training data updates the model via supervised fine-tuning, teaching it not just the new fact but its
connections to the existing episodic network. Unlike traditional replay methods that require storing
past episodes, GCR leverages the model’s own parametric memory as both storage and retrieval
mechanism. The GCR pipeline consists of four core components:

Single-event Asker. Given a single event’s textual description, it generates questions and answers
for fine-tuning a learner to recall the event details 12. To make the process fully automated, we use a
frontier LLM to synthetically generate finetuning questions starting solely from a textual description
of the event. As a control (see Continual-GT below), we also use templated questions based on our
ground truth event structure. 7

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Event1 Event2

…

EventN

Single-event Q&A (SEQk)

Eventk

(Apr 23rd, Tokyo, Mary) (Aug 7th, Dakar, Jon) (March 5th, London, Mary)

When was Mary in London?
Where was Mary on March 5th?

Asker(Ek)

Recollector(Ek)
Past places you saw Mary
Past events in London

Recollection questions (Ek)
Merger

(July 16th, London, Mary)

Model1 Modelk-1Model2

GCR GCR

Modelk

GCR

Modelk

Eventk Modelk-1

Merged Q&A(k)

Multi-event Q&A (MEQk)
(March 5th, London, Mary)

SFT

Modelk-1

Generative Cued Recall (GCR) pipeline

Infer

Figure 2: Generative Cued Replay (GCR) pipeline. When a new event Ek arrives, the Recollector
queries the current model Mk−1 for related past episodes. The Asker generates single-event Q&As
about Ek. The Merger combines recalled episodes with the current event to synthesize multi-event
Q&As (e.g., “List all times Emma was in Tokyo” → “March 5th, September 12th”), helping the
model not just learning the new fact but its connections to the existing episodic memory network.

Recollector of Related-events. Retrieves prior episodes that match the current event from the
learner’s parametric memory. We evaluate three retrieval strategies (details Tab. 6): (i) GCR-
Simple: Uses one basic question per cue type (e.g., “List all events you’ve seen about Emma”,
“List all events at location X”; templates in Fig. 9). This tests whether minimal retrieval prompting
can trigger episodic binding. (ii) GCR-Rich: Uses multiple detailed templated questions per cue,
providing richer retrieval context to help the model recall related episodes more comprehensively
(details in Fig. 10). (iii) GCR-Generated: Instead of fixed templates, employs a frontier LLM to
generate diverse, natural recall queries tailored to each event. This tests whether more sophisticated
retrieval prompting improves binding performance (details in Fig 11).

Merger. Combines recalled episodes with the current event to create synthetic multi-event training
questions and answers 13. For example, if the current event is ”Emma visited Tokyo in September”
and recalled episodes include ”Emma visited Tokyo in March”, the merger creates questions such as
”List all times Emma was in Tokyo” with answer ”March, September”.

Hallucination filter. Since smaller models (3B-13B) often hallucinate during recall, we option-
ally filter retrieved episodes before merging. The filter removes fabricated entities and details by
comparing recollection answers against the ground truth corpus, so that we can disentangle episodic
binding challenges from hallucinations 14.

Finally, we use two continual learning baseline. One can realistically obtained using the Asker,
the other uses the groundtruh which we use as control: (i) Continual-Gen. sequential fine-tuning
event-by-event on single-event questions only (generated by the Asker), without any replay mech-
anism. This baseline faces both catastrophic forgetting and binding challenges, allowing us to
measure GCR’s improvement. (ii) Continual-GT. The same sequential learning pipeline but us-
ing groundtruth SEQs instead of Asker-generated ones.

5 EVALUATION OF GENERATIVE CUED RECALL

5.1 GCR IMPROVES BINDING DESPITE LIMITED RECOLLECTION CAPACITY

Figure 3 evaluates fully automated approaches that require no ground-truth supervision, compar-
ing our GCR method against Continual-Gen, the baseline using LLM-generated questions without
any replay mechanism. On 30-event narratives with LlaMA 8B, Continual-Gen achieves only 11%
accuracy for single-match questions and completely fails (0%) when multiple events must be re-
trieved. GCR doubles single-match performance to 25% and maintains some capability (8-10%) for
2-5 match questions where the baseline fails entirely.
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Critically, these results reflect the constraints of testing with LlaMA 8B, a model with limited para-
metric memory and recollection abilities. When we filter hallucinations (an orthogonal problem
to binding) GCR-filtered reveals the true binding improvement: 50% accuracy for single-match
questions, 31% for two-match, and sustained performance even at high multiplicities (19% for 3-
5 matches, 6% for 6+ matches). This filtering isolates the binding mechanism from the noise of
hallucinated recalls, demonstrating that GCR genuinely improves episodic integration even with a
memory-constrained model such as LlaMA 8B. We expect larger gains with models that possess
better parametric storage and lower hallucination rates.

The degradation at higher multiplicities is expected: as events accumulate without proper integra-
tion, recall errors compound. Each failed recall prevents the model from building complete episodic
indices, creating cascading failures for complex multi-event queries. This highlights that binding is
fundamentally about information integration during learning, not just retrieval.

5.2 COMPARING RETRIEVAL STRATEGIES AND GROUND-TRUTH CONTROLS

Figure 4 provides controlled ablations to understand GCR’s mechanisms. The left panel (filtered hal-
lucinations) isolates the binding problem from retrieval noise, while the right panel shows realistic
performance including hallucination effects. Two key patterns emerge:

First, the recall-and-merge mechanism drives the improvement, not question quality alone. GCR-
Gen filtered outperforms both Continual-Gen (11.1% SEQ) and Continual-GT (17.5% SEQ), despite
the latter using ground-truth questions. This confirms that synthetic multi-event training generated
through parametric recall is effective.

Second, retrieval strategy matters but not as expected. Simple templated questions (GCR-Simple:
41.3% SEQ filtered) outperform rich templates (GCR-Rich: 32.5%), suggesting that overly spe-
cific retrieval prompts may constrain associative recall, consistent with hippocampal theories where
partial cues trigger broader pattern completion than detailed ones. Generated queries (GCR-Gen:
50% SEQ filtered) perform best, likely because diverse, natural prompts better activate the model’s
parametric memory.

These results demonstrate that biological-inspired replay mechanisms can partially address the bind-
ing gap we identify, even with memory-limited models. While exhaustive retrieval remains chal-
lenging for high-multiplicity events, GCR provides a foundation for improving episodic binding in
parametric continual learning.
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Figure 3: Accuracy of “fully-automated” versions as a function of the number of events matching a
question (30 event narrative, Llama 8B). The difference is statisxtically significant, as demonstrated
via Critical distance (CD) plots deferred to the Appendix C in Fig.8, 9, 10

6 RELATED WORK

For the sake of brevity, we provide a succinct yet complete taxonomy of related work in Tab.2.
While for reason of space we defer a comprehensive of the relevant literature in Appendix E, from
the taxonomy it appears clearly that still to finish
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Figure 4: Performance of different GCR alternatives/ablations

Table 2: Taxonomy of related work: no work attempts to deal jointly with knowledge binding in
continual learning settings, by leveraging reharsal to deal with catastrophic forgetting.

Examples Knowledge
Binding

Catastrophic
Forgetting

Scale
Effect Rehearsal Continual

Learning

Lampinen et al. (2025a) ✔ ✘ ✘ ✘ ✘
Treutlein et al. (2024) ✔ ✘ ✘ ✘ ✘
Berglund et al. (2023) ✔ ✘ ✘ ✘ ✘
Lampinen et al. (2025b) ✔ ✘ ✘ ✔ ✘
Allen-Zhu & Li (2024) ✘ ✘ ✘ ✘ ✘
Sun et al. (2025) ✘ ✔ ✘ ✘ ✘
Kalajdzievski (2024) ✘ ✔ ✔ ✘ ✘
Fedus et al. (2023) ✘ ✔ ✘ ✘ ✘
Das et al. (2024) ✘ ✔ ✘ ✘ ✘
Huang et al. (2024) ✘ ✔ ✘ ✔ ✔
Elsayed & Mahmood (2024) ✘ ✔ ✘ ✘ ✔
Song et al. (2025) ✘ ✔ ✘ ✘ ✔
Li et al. (2024) ✘ ✔ ✘ ✘ ✔
Han et al. (2020) ✘ ✔ ✘ ✘ ✔
Borhanifard & Faili (2024) ✘ ✔ ✘ ✘ ✔
Luo et al. (2023) ✘ ✔ ✘ ✘ ✔
Kotha et al. (2024) ✘ ✔ ✘ ✘ ✔

this work ✔ ✔ ✔ ✔ ✔

7 CONCLUSIONS

This work reveals a fundamental limitation in how LLMs encode and retrieve episodic knowledge:
models trained on individual episodes fail to spontaneously bind them through shared elements. This
effect persists across model scales(3B-13B) and even in GPT-4.1, suggesting it reflects architectural
and objective limitations rather than capacity constraints.

Although we later studied the problem in the continual learning setting which fits better our rehersal-
based solution, the binding problem likely emerges in static training too, where catastrophic forget-
ting plays no role. Our static results suggest indeed that current training creates lookup tables rather
than queryable episodic indices. Faced with the impracticality of generating exhaustive multi-event
supervision (which would require perfect knowledge of all episodic connections across massive cor-
pora) we proposed Generative Cued Replay. GCR leverages the model’s own parametric memory
to synthesize multi-event training data on-demand. While our implementation shows promising im-
provements, it also reveals multiple opportunities for advancement along all the components of our
approach: the Asker, the Recollector as well as the Merger could benefit from more sophisticated
synthesis.

Beyond improving these components, fundamental questions remain unexplored. For example, how
does episodic binding manifest in foundation model pretraining, where episodes naturally span doc-
uments but connections remain implicit? Does the sparse, distributed nature of episodic links in
real text manifest itself in frontier model knowledge? Could alternative training objectives, perhaps
explicitly encouraging multi-event integration, help models develop the necessary inductive biases?

9
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8 REPRODUCIBILITY STATEMENT

Details about narrative generation and LLM judge prompts are available in Appendix. Anonymized
code is available Anonymous (2025)
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A EVENTS GENERATION

We construct possible universes from atomic components comprising Huet et al. (2025): temporal
boundaries (start/end dates), 100 distinct first names, last names, locations, event contents, and 30
unique details per content type. Different component sets are used depending on the narrative style.
The static universe defines Nuniverse = 100 dates (sampled from the temporal range), full names
(randomly combining first and last names), locations, and contents (shuffled from raw materials),
while content details remain unchanged. All items are ensured to be unique, with a seed parameter
for reproducibility. For simplicity, Listing 1 presents one representative component set.� �
# temporal
start_date = datetime(2024, 1, 1)
end_date = datetime(2026, 12, 31)

# entities
first_names = [’Henry’, ’Evelyn’, ’Alexander’,...]
last_names = [’Hernandez’, ’Lopez’, ’Gonzalez’,...]

# locations
locations = [’Central Park’, ’Times Square’, ’Brooklyn Bridge’,...]

# contents
contents = [’Educational Workshop’, ’Yoga Retreat’, ’Photography

Exhibition’,...]

# contents details
content_details = {

’Educational Workshop’: [’Performed musical number’, ’Discussed costume
design’,’Explained method acting techniques’,...],

’Yoga Retreat’: [’Led meditation session’, ’Demonstrated breathing
techniques’,’Guided mindfulness exercises’,...],

’Photography Exhibition’: [’Unveiled new collection’, ’Explained
composition techniques’,’Discussed lighting methods’,...]

}� �
Listing 1: Excerpt of the raw materials with default universe style

The atomic events are structured as tuples containing five elements: temporal information, spa-
tial location, entity identity, event type, and specific action details. Listing 2 illustrates the event
structure with color-coded components, where each tuple provides the complete metadata required
for narrative generation while maintaining clear semantic boundaries between different information
types.� �
events[0] = [’June 14, 2025’, ’Washington Square Park’, ’Mila Gonzalez’,

’Theater Performance’, ’Explained method acting techniques’],
events[1] = [’February 27, 2026’, ’Washington Square Park’, ’Henry Reed’,

’Fashion Show’,’Revealed future collections’],
events[2] = [’June 14, 2025’, ’Statue of Liberty’, ’Brooklyn Ross’, ’

Fashion Show’,’Explained fabric choices’],
events[3] = [’November 13, 2026’, ’One World Trade Center’, ’Levi

Rodriguez’, ’Theater Performance’,’Discussed theater technology’]� �
Listing 2: Excerpt of the first four events with entity highlighting. Dates are in @4brown@4,
locations in @1green@1, persons in @2blue@2, and events in @3magenta@3.

A.1 NARRATIVE GENERATION PROMPTS

Each event is transformed into a narrative paragraph using the template prompt shown in Listing 3.
The template incorporates placeholders for event metadata (date, location, entity, content, and spe-
cific details) and style parameters, which are populated from the static universe components before
being processed by the language model. The prompt enforces strict constraints on narrative length
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(20-30 words), temporal scope (single day), and spatial boundaries (single location) to ensure con-
sistency across generated paragraphs. Additionally, the template mandates verbatim inclusion of
all key information elements, full names, dates, locations, and event details, to maintain factual
accuracy while allowing stylistic variation within the specified narrative framework� �
Write a brief and short text, do not use more than 20-30 words, excerpt

in a style style about entity attending a content. Please be ultra
brief don’t use more than 20/30 words.

The story takes place on date, at location, where entity
content_single_detail. Follow these guidelines:

Structure and Information Reveal:
str_numbering, keep in mind this is a short story text.

2. Reveal key information:
- Full location ’location’: must appear verbatim
- Full date ’date’: must appear verbatim
- Full name ’entity’: must appear verbatim
- Full detail that ’first_name content_single_detail’: must appear

verbatim

Content and Setting:
1. Include the detail that first_name content_single_detail.
2. Limit the timeframe to a single day and confine all action to

location. Limit also the number of words, use a little number!

Characters:
1. Omit background information about first_name and other characters.

Style and Tone:
1. Incorporate elements of the style style, including style_description

.
2. Since this is a very short narrative please don’t use more words

than necessary, be brief and concise!

Restrictions:
1. Only mention location and date; avoid other locations or dates.
2. Exclude explicit introductions, conclusions, or character

backgrounds.
3. Focus exclusively on the events of this particular content.
4. Do not use a too common starting sentence.
5. Do not use more than 20-30 words for each paragraph

Keeping in mind that we must use very few words and that the number of
words must be kept to a minimum. up to 3 sentences!� �

Listing 3: Prompt template for short narrative generation with variable placeholders. The
highlighted elements are replaced by the event and event meta-data values.

A.1.1 EXAMPLES OF NARRATIVES WITH 10 EVENTS

We generate episodic memory benchmarks of varying scales by creating narratives with 10, 30,
100 events for each universe configuration. To assess potential scale effects and ensure statistical
robustness, this generation process is repeated across three distinct static universes 4 5 6. This
systematic approach yields a comprehensive evaluation dataset spanning multiple narrative lengths
and universe instantiations, enabling assessment of how episodic memory performance varies with
temporal complexity and contextual scale. For brevity, we present only the 10-event narratives from
each of the three universes.� �
Chapter 1 On June 14, 2025, at Washington Square Park, Mila Gonzalez

captivated a small crowd. She eloquently explained method acting
techniques, demonstrating with impromptu performances. The audience
watched, mesmerized by her expertise.
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Chapter 2 At Washington Square Park on February 27, 2026, Henry Reed
unveiled his groundbreaking designs. Models strutted, showcasing
futuristic attire. Henry revealed future collections, leaving the
audience in awe.

Chapter 3 At the Statue of Liberty on June 14, 2025, Brooklyn Ross
captivated the audience. Amidst the iconic backdrop, she explained
fabric choices with precision. The fashion show attendees hung on her
every word.

Chapter 4 At One World Trade Center on November 13, 2026, Levi Rodriguez
attended a theater performance. During intermission, he discussed
theater technology with fellow attendees, marveling at the venue’s
cutting-edge systems.

Chapter 5 On May 11, 2026, at Washington Square Park, Levi Rodriguez
explained method acting techniques to a captivated audience. His
impromptu demonstration drew curious onlookers, transforming the park
into an unexpected theater classroom.

Chapter 6 At High Line on February 27, 2026, Samuel Parker attended a
tech hackathon. Amid the buzz of innovation, he discussed agile
methodologies with fellow participants. The event sparked new ideas
and collaborations.

Chapter 7 At the Metropolitan Museum of Art on February 27, 2026, Levi
Rodriguez attended an educational workshop. Surrounded by ancient
artifacts, he discussed career implications with fellow participants.
The setting inspired thoughtful dialogue about professional futures.

Chapter 8 At the Metropolitan Museum of Art on May 11, 2026, Scarlett
Thomas explained choreography during a captivating fashion show.
Models gracefully showcased avant-garde designs as Scarlett’s
instructions guided their movements.

Chapter 9 At the Metropolitan Museum of Art on September 22, 2026, Carter
Stewart attended a fashion show. Amidst the glittering runway,

Carter discussed music selection, his input shaping the event’s
ambiance.

Chapter 10 On June 14, 2025, Henry Reed participated in brainstorming at
Metropolitan Museum of Art. The educational workshop buzzed with
creative energy as attendees explored innovative exhibition concepts.� �

Listing 4: Style: Default� �
Chapter 1 On June 14, 2025, Mila Gonzalez witnessed a bridge collapse in

Luzon Region. The structure buckled without warning, plunging
vehicles into the river below. Screams pierced the air as Mila
watched, frozen in disbelief.

Chapter 2 On February 27, 2026, Henry Reed witnessed a residential tower
fire in Luzon Region. Smoke billowed as flames engulfed the structure
. Sirens wailed through the night air.

Chapter 3 On June 14, 2025, Brooklyn Ross witnessed a residential tower
fire in North Dakota. Flames engulfed the building, casting an eerie
glow across the night sky. Sirens wailed as firefighters battled the
inferno.

Chapter 4 On November 13, 2026, Levi Rodriguez witnessed a bridge
collapse in Rajasthan. The structure crumbled before his eyes,
sending debris into the river below. Chaos ensued as emergency
services rushed to the scene.
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Chapter 5 On May 11, 2026, Levi Rodriguez witnessed a bridge collapse in
Luzon Region. The structure buckled without warning, plunging
vehicles into the river below. Chaos erupted as emergency services
rushed to the scene.

Chapter 6 On February 27, 2026, Samuel Parker witnessed a volcanic
eruption in Greater Mumbai. The sky darkened as ash billowed,
blanketing the city. Chaos erupted as residents fled the
unprecedented disaster.

Chapter 7 On February 27, 2026, Levi Rodriguez witnessed a flash flood
emergency in Luang Prabang Province. Torrential rains unleashed a
deluge, transforming streets into rivers. Residents scrambled for
safety as water levels rose rapidly.

Chapter 8 On May 11, 2026, Scarlett Thomas witnessed a residential tower
fire in Luang Prabang Province. Flames engulfed the building as
sirens wailed. Residents fled while firefighters battled the inferno.

Chapter 9 On September 22, 2026, Carter Stewart witnessed a residential
tower fire in Luang Prabang Province. Flames engulfed the building,
casting an eerie glow over the night sky. Sirens wailed as emergency
responders rushed to the scene.

Chapter 10 On June 14, 2025, Henry Reed witnessed a flash flood emergency
in Luang Prabang Province. Torrential rain unleashed chaos, sweeping
away vehicles and forcing evacuations. Henry watched helplessly as

the surging waters transformed familiar streets into raging rivers.� �
Listing 5: Style: News� �

Chapter 1 On June 14, 2225, at Europa Subsurface Laboratory, Mila
Gonzalez witnessed a antimatter cascade. Particles collided,
releasing a blinding flash. The event shook the facility, leaving
Mila awestruck.

Chapter 2 At Europa Subsurface Laboratory on February 27, 2226, Henry
Reed witnessed a fusion core breach. Alarms blared as containment
fields failed. Blinding light engulfed the chamber, leaving Henry
stunned and breathless.

Chapter 3 On June 14, 2225, at Mars Valles Industrial Hub, Brooklyn Ross
witnessed a fusion core breach. Alarms blared as blinding light
erupted. Technicians scrambled, their faces etched with panic.

Chapter 4 On November 13, 2226, at Luna Shackleton Crater Colony, Levi
Rodriguez witnessed a antimatter cascade. The event unfolded swiftly,
bathing the lunar outpost in an eerie glow. Spectators watched in

awe as energy rippled across the crater’s edge.

Chapter 5 At Europa Subsurface Laboratory on May 11, 2226, Levi Rodriguez
witnessed a antimatter cascade. Particles collided, unleashing a

brilliant flash. The event left him awestruck, etching the moment in
scientific history.

Chapter 6 On February 27, 2226, at Mercury Twilight Observatory, Samuel
Parker witnessed a cryo-pod integrity breach. Alarms blared as frozen
vapor billowed from the ruptured chamber. Technicians scrambled to

contain the crisis.

Chapter 7 At Luna Oceanus Trading Post on February 27, 2226, Levi
Rodriguez witnessed a plasma conduit rupture. Searing blue light
flooded the chamber. Alarms blared as technicians scrambled to
contain the breach.
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Chapter 8 On May 11, 2226, Scarlett Thomas witnessed a fusion core breach
at Luna Oceanus Trading Post. Alarms blared as radiation levels

spiked. Personnel evacuated, leaving Scarlett to face the unfolding
catastrophe.

Chapter 9 On September 22, 2226, Carter Stewart witnessed a fusion core
breach at Luna Oceanus Trading Post. Alarms blared as the facility
shuddered. Technicians scrambled to contain the erupting plasma,
their faces etched with panic.

Chapter 10 On June 14, 2225, at Luna Oceanus Trading Post, Henry Reed
witnessed a plasma conduit rupture. Alarms blared as blue-white
energy surged. Technicians scrambled to contain the breach, averting
catastrophe.� �

Listing 6: Style: Sci-Fi

A.1.2 EXAMPLES OF QUESTIONS

By construction, each event in our episodic memory framework is composed of four fundamental
dimensions: time (t), space (s), entity (ent), and content (c). This structured representation enables
systematic querying across all possible combinations of these dimensions.

Tab.3 shows how the episodic benchmark is built. Here we can see some examples of questions.

Table 3: Episodic memory questions based on cue composition and retrieval types (Taken from Huet
et al. (2025) with permission).

Cue Description Retrieved trace (id) Template question (corresponding to ⋆)

(t, *, *, *) Events at a specific
time

- Spaces (0)
- Entities (1) ⋆
- Contents (2)

⋆ Consider all events that happened on {t}. Provide a
list of all protagonists involved in any of these events,
without describing the events themselves.

(*, s, ent, *)
Events involving

entities at a specific
location

- Times (18)
- Contents (19) ⋆

⋆ Reflect on {ent}’s experiences at {s}. Describe all the
key events they’ve been involved in at this location, fo-
cusing on what happened rather than when it occurred.

(*, s, ent, c)
Events with specific

location, entities, and
content

- Times (27) ⋆
⋆ Consider all events involving both {ent} and {c} at
{s}. Provide a list of all dates when these events oc-
curred, without describing the events.

(t, s, ent, c)
Events with specific

time, location, entities,
and content

- Full event details (29) ⋆

⋆ Provide a comprehensive account of what happened
involving {ent} and {c} at {s} on {t}. Include all rele-
vant details about the event(s), including what occurred
and any other pertinent information.

(*, *, ent, *)
Retrieves the most

recent known location
of an entity

- Times [latest] (30)
- Spaces [latest] (31) ⋆
- Contents [latest] (32)

⋆ What is the most recent location where {ent} was ob-
served in the story’s chronological timeline?

(*, *, ent, *)

Retrieves a
chronological list of
dates when an entity

was observed

- Times [chrono.] (33) ⋆
- Spaces [chrono.] (34)
- Contents [chrono.] (35)

⋆ Provide a chronological list of all dates when {ent}
was observed, from earliest to latest in the story’s time-
line.
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If the answer is contained in just a single chapter we define the question as SEQ. Otherwise if the
answer is in more than 1 we have MEQ.

Table 4: Example of SEQ

question cue cue completed ret type get correct answer chapters

Reflect on September 22, 2026.
Describe all the key events that
occurred on this date, focusing
on what happened rather than
who was involved or where it
took place.

(t, *, *, *) ({September 22,
2026}, *, *, *)

Event con-
tents

all [Fashion Show] [9]

Consider all events that hap-
pened on November 13, 2026.
Provide a list of all protago-
nists involved in any of these
events, without describing the
events themselves.

(t, *, *, *) ({November 13,
2026}, *, *, *)

Entities all [Levi Rodriguez] [4]

Reflect on September 22, 2026.
Provide a list of all protago-
nists involved in any of these
events, without describing the
events themselves.

(t, *, *, *) ({September 22,
2026}, *, *, *)

Entities all [Carter Stewart] [9]

Table 5: Example of MEQ

question cue cue completed ret type get correct answer chapters

Reflect on events related to Ed-
ucational Workshop. Provide
a list of all protagonists in-
volved in these events, without
describing the events.

(*, *, *, c) (*, *, *,
{Educational
Workshop})

Entities all [Henry Reed, Levi Ro-
driguez]

[10, 7]

Consider all events involving
Educational Workshop. List all
the locations where these events
took place, without mentioning
the events themselves.

(*, *, *, c) (*, *, *,
{Educational
Workshop})

Spaces all [Metropolitan Museum
of Art]

[10, 7]

Recall all events related to Ed-
ucational Workshop. Provide
a list of all dates when these
events occurred, without de-
scribing the events.

(*, *, *, c) (*, *, *,
{Educational
Workshop})

Times all [February 27, 2026,
June 14, 2025]

[10, 7]

Since all Llama models are instruction-tuned, we add contextual framing to specify that the evalua-
tion involves fictional events and entities. This ensures responses are based on the provided narrative
rather than pre-existing knowledge. The following examples show our prompt format for just a cou-
ple of questions:� �
[
{

"messages": [
{

"content": "You are an expert in memory tests regarding the
fictional book \"Synaptic Echoes 2026: The Neuro-Temporal Paradox of
Episodic Precognition\".",

"role": "system"
},
{

"content": "This question is about the book \"Synaptic Echoes
2026: The Neuro-Temporal Paradox of Episodic Precognition\". All
events in this book are purely fictional and do not correspond to
real-world timelines. Please answer based solely on the content of
this fictional story.\n\n Question: Reflect on all events involving
Samuel Parker. Provide a list of all dates when these events
occurred, without describing the events.",

"role": "user"
},
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{
"content": "February 27, 2026",
"role": "assistant"

}
]

},
{

"messages": [
{

"content": "You are an expert in memory tests regarding the
fictional book \"Synaptic Echoes 2026: The Neuro-Temporal Paradox of
Episodic Precognition\".",

"role": "system"
},
{

"content": "This question is about the book \"Synaptic Echoes
2026: The Neuro-Temporal Paradox of Episodic Precognition\". All
events in this book are purely fictional and do not correspond to
real-world timelines. Please answer based solely on the content of
this fictional story.\n\n Question: Consider all events involving
Henry Reed at Washington Square Park. Provide a list of all dates
when these events occurred, without describing the events.",

"role": "user"
},
{

"content": "February 27, 2026",
"role": "assistant"

}
]

},
{

"messages": [
{

"content": "You are an expert in memory tests regarding the
fictional book \"Synaptic Echoes 2026: The Neuro-Temporal Paradox of
Episodic Precognition\".",

"role": "system"
},
{

"content": "This question is about the book \"Synaptic Echoes
2026: The Neuro-Temporal Paradox of Episodic Precognition\". All
events in this book are purely fictional and do not correspond to
real-world timelines. Please answer based solely on the content of
this fictional story.\n\n Question: Consider the events involving
Henry Reed on June 14, 2025. List all the locations where these
events took place, without describing the events themselves.",

"role": "user"
},
{

"content": "Metropolitan Museum of Art",
"role": "assistant"

}
]

}
]� �

Listing 7: Example prompt structures for finetuning q/a

A.2 EVALUATION PROMPTS

We build on the evaluation prompt from Huet et al. (2025). Our adaptation employs Gemini 2.5
Flash as an automated judge that compares model responses against ground truth answers, assigning
continuous scores between 0 and 1 based on accuracy and completeness. This approach enables
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scalable evaluation across our comprehensive benchmark while maintaining consistent scoring cri-
teria that account for synonyms, paraphrases, and partial matches, allowing us to systematically
measure how well models retrieve specific episodic details at scale. The prompt is shown in 8� �
RESEARCH EVALUATION TASK:
You are conducting an academic evaluation of AI system accuracy. Below

is factual reference data and an AI-generated response that needs
objective assessment.

You are an expert judge evaluating the accuracy of an AI-generated
answer against a known groundtruth. Questions can probe for
different types or aspects, like what actions or events took place,
what people were involved, what were the dates, or what were the
locations or spaces.

Question type: retrieval_type
Groundtruth: correct_answer_long
AI-generated answer: llm_answer

Your task:
- Identify all unique items in the AI-generated answer that are

relevant to the question type. Answer an empty list [] for this
field in case of at least one negative information (e.g., when the
answer begins by telling there is no information, or cannot answer)

- Determine a matching score between 0 and 1 for each ground truth item
. Give 1 if the item has been found in the relevant items of the AI-
generated answer, considering synonyms, paraphrases, or close
meanings. Give 0.5 if the item could be considered related to any AI
-generated item but without being explicitly stated as such. Give 0
if the item missed mentioning a specific AI-generated item.

- Provide a brief explanation of the evaluation
adding_text

Provide your evaluation in the following JSON format, no markdown
formatting or code blocks:

{
"identified_items_in_AI_answer": ["AI_answer_item_1", "
AI_answer_item_2", ...],
"matching_score": json.dumps(d)
"explanation": "Brief explanation of your evaluation"

}� �
Listing 8: Evaluation prompt template

Building upon the LLM judge evaluation, we define a binary correctness metric that addresses model
hallucination. A response is marked as correct only if it contains all ground truth elements, no
missing information is tolerated. However, we do not penalize models for providing additional
correct information beyond what is required. For example, if the ground truth specifies 3 elements
and a model returns 5 elements, the answer is correct if all 3 required elements are present among
the 5 provided. This strict recall requirement ensures models must demonstrate complete episodic
memory retrieval while allowing for comprehensive responses that exceed minimum requirements.

B BUILDING GCR COMPONENTS

We introduce Generative Cued Replay (GCR), inspired by hippocampal memory consolidation.
GCR generates multi-event question-answer pairs during training using the model’s internal knowl-
edge, eliminating the need for explicit episode storage.

B.0.1 GCR-SIMPLE

GCR-Simple employs four template-based recollection queries that target different aspects of
episodic memory retrieval. As shown in Listing 9, these templates prompt the model to recall infor-
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mation based on temporal markers (‘t‘), spatial locations (‘s‘), entity identities (‘ent‘), and content
types (‘c‘). Each template follows a consistent ”List everything you remember” structure while sys-
tematically probing distinct dimensions of the learned episodes, enabling comprehensive memory
consolidation across the narrative’s key components.� �
f"List everything you remember about t in the book."
f"List everything you remember in this book about s."
f"List everything you remember in this book about ent."
f"List everything you remember in this book about c."� �

Listing 9: Recollection question templates GCR-Simple

B.0.2 GCR-RICH

GCR-Rich extends the basic recollection approach with twelve sophisticated template queries that
probe multi-dimensional episodic associations. As shown in Listing 10, these templates system-
atically explore cross-references between temporal, spatial, entity, and content dimensions while
maintaining selective focus. Each query follows a structured pattern: given one episodic dimen-
sion (e.g., a specific date ‘t‘ or location ‘s‘), the model must retrieve information from a different
dimension (locations, entities, events, or dates) without describing intermediate details.� �
"Recall all the events that occurred on t. Without describing the

events,list all the unique locations where these events took place."

"Consider all events that happened on t. Provide a list of all
protagonists involved in any of these events, without describing the
events themselves."

"Reflect on t. Describe all the key events that occurred on this date,
focusing on what happened rather than who was involved or where it
took place."

"Think about all events that have occurred at s. Provide a list of all
dates when these events took place, without describing the events."

"Consider the location s. List all protagonists that have been involved
in any events at this location, without mentioning the events
themselves."

"Recall the various events that have taken place at s. Describe what
happened during these events, focusing on the actions or occurrences
rather than the timing or people involved."

"Reflect on all events involving ent. Provide a list of all dates when
these events occurred, without describing the events."

"Consider all events that ent has been involved in. List all the
locations where these events took place, without mentioning the
events themselves."

"Think about ent’s experiences. Describe all the key events they’ve
been involved in, focusing on what happened rather than when or
where it occurred."

"Recall all events related to c. Provide a list of all dates when these
events occurred, without describing the events."

"Consider all events involving c. List all the locations where these
events took place, without mentioning the events themselves."

"Reflect on events related to c. Provide a list of all protagonists
involved in these events, without describing the events."� �

Listing 10: Twelve template questions for retrieval queries
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B.0.3 GCR-GENERATED

GCR-Generated replaces fixed templates with dynamic question generation using a frontier LLM
to create contextually relevant memory probes. As shown in Listing 11, this approach employs a
sophisticated prompt that instructs the question generator to identify key entities (people, places,
events, objects, relationships) within each narrative excerpt and generate targeted recall queries.
The generator creates diverse probe types including entity identification, temporal sequencing, and
chronological reconstruction questions, while remaining agnostic to whether entities are appearing
for the first or multiple times.� �
You are a question generator seeing a text excerpt for the first time.

Your job is to generate questions that will help an LLM model (which
MAY have seen previous chapters of the same document) recall
potential connections and maintain temporal coherence.

CURRENT EXCERPT:
content_text

DOCUMENT CONTEXT: document_context

TASK: Generate memory-probing questions about entities in this excerpt.
You DON’T know if these entities appeared before - the questions
should work whether this is their first appearance or not.

1. **Identify Key Entities** in this excerpt, e.g.:
- People (names, roles)
- Places (locations, settings)
- Events (actions, occurrences)
- Objects (important items)
- Relationships (between any entities)

2. **Generate Open-Ended Memory Probes to the model**, e.g.:
- "What do you remember about [entity] from earlier in this
narrative, if anything?"
- "Have you encountered [entity] before in this story? If so, when
and where?"
- "Is this your first time seeing [entity] in this narrative?"

3. **Temporal & Sequential Probes**, e.g.:
- "If you’ve seen [entity] before, what has changed since then?"
- "Where does this event fit in the sequence of events you’ve read
about?"
- "What events, if any, led up to this moment, based on what you
remember?"

4. **Full Sequence Report Questions** (CRITICAL for temporal ordering),
e.g.:

- "Can you list ALL the places [entity] has been, in chronological
order?" (if entity is not a place, obviously)
- "What is the complete sequence of [entity]’s appearances so far?"
- "What prior events happened in [entity]" (if entity is a location)
- "Trace the timeline: What happened first, then next, leading to
this point?"
- "If you’ve seen these entities before, what order did you
encounter them in?"
- "Reconstruct the journey: How did [entity] get from their first
appearance to here?"
- "What is the chronological order of major events involving [entity
]?" (let it be a place or a person etc..)
- "If [location] has appeared before, what events occurred there in
chronological order?"

5. Now that you understand the goal, adapt your questions to the
CURRENT_EXCERPT content.
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6. Keep in mind that the tested model will receive a context prefix
text followed by your question, make sure your question fits.

OUTPUT FORMAT:
{
"questions": [

{
"entity": "the entity being probed",
"entity_type": "person/place/object/event/relationship",
"question": "the memory probe question",
"probe_type": "identity/location/state/temporal/relationship/

sequence_report/chronology"
}

]
}

Generate as many questions as needed, but do not exceed 20, pick the
most significant. Questions should be open-ended enough to work
whether this is the entity’s first or fifth appearance, but specific
to elicit useful responses. Avoid redundancy.� �

Listing 11: Recollection question templates GCR-Generated

Here we present a comparative analysis of the different question generation approaches using a
single chapter corpus, as detailed in Table 6.

Table 6: Comparison of recollection strategies in Generative Cued Replay (GCR). Each strategy
queries the model’s parametric memory to retrieve related episodes before learning a new event.

Current Event GCR-Generated GCR-Simple GCR-Rich
(t, s, e, c) (LLM Queries) (4 Templates) (Detailed Templates)
At Washington
Square Park on
February 27, 2026,
Henry Reed un-
veiled his ground-
breaking designs.
Models strutted,
showcasing futur-
istic attire. Henry
revealed future
collections, leaving
the audience in
awe.

1. What do you remem-
ber about Henry Reed’s
background or previous
activities in this narra-
tive, if anything?
...
N. Have any specific
models been mentioned
earlier in the story? If
so, what do you remem-
ber about them?

1. List everything you
remember about Febru-
ary 27, 2026 in the book.
2. List everything
you remember in this
book about Washington
Square Park.
3. List everything you
remember in this book
about Henry Reed.
4. List everything you
remember in this book
about Fashion Show.

1. Recall all the events
that occurred on Febru-
ary 27, 2026. Without
describing the events,
list all the unique loca-
tions where these events
took place.
...
12. Think about Henry
Reed’s experiences. De-
scribe all the key events
they’ve been involved in,
focusing on what hap-
pened rather than when
or where it occurred.

B.1 SINGLE-EVENTS ASKER

Here we present the prompt template used to generate question-answer pairs from individ-
ual narrative chapters for fine-tuning purposes. As shown in Listing 12, the prompt inte-
grates the complete chapter text (data_tuple[1]) along with the five key factual elements:
date (data_tuple[0][0]), location (data_tuple[0][1]), entity (data_tuple[0][2]),
event type (data_tuple[0][3]), and specific detail (data_tuple[0][4]).� �
You are tasked with creating 15 high-quality question-answer pairs from

the provided text to help fine-tune a language model. Your goal is
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to generate comprehensive Q/A pairs that cover the full scope of the
chapter while emphasizing the specified key factual elements.

SOURCE MATERIAL:
Here is the text to analyze:
data_tuple[1]

KEY FACTUAL ELEMENTS (PRIORITY FOCUS):
The key factual elements that MUST be incorporated into answers

whenever relevant are:
- Date: data_tuple[0][0]
- Location: data_tuple[0][1]
- Person/Entity: data_tuple[0][2]
- Event/Topic: data_tuple[0][3]
- Key Detail: data_tuple[0][4]

INSTRUCTIONS:
Generate exactly 20 question-answer pairs following these guidelines:

QUESTION REQUIREMENTS:
1. Variety: Include different question types (factual, analytical,

comparative, causal, definitional)
2. Complexity Range: Mix simple recall questions (30%) with more

complex analytical questions (70%)
3. Key Element Integration: At least 10 questions should directly

reference the key factual elements above
4. Comprehensive Coverage: Questions should span the entire chapter,

not just focus on one section
5. Natural Language: Questions should sound like they come from a human

learner or teacher

ANSWER REQUIREMENTS:
1. SOURCE-BASED ONLY: Answers must be EXCLUSIVELY based on information

found in the provided chapter text. DO NOT invent, assume, or add
any information not explicitly stated in the source material.

2. FACTUAL RECALL: All answers must be direct recalls from the chapter
- no speculation, inference beyond what’s clearly stated, or
external knowledge.

3. MANDATORY ENTITY INCLUSION: Every answer must incorporate at least
one of the key factual elements (date, location, person/entity,
event/topic, key detail) when relevant to the question.

4. VERBATIM ACCURACY: When referencing specific facts, dates, names, or
details, use the exact information as presented in the source text.

5. NO FABRICATION: If information to answer a question is not available
in the chapter, do not create that question.

6. Length: Aim for 2-4 sentences per answer, but prioritize accuracy
over length.

QUESTION TYPE DISTRIBUTION:
- Factual Recall (10 questions): Who, what, when, where questions
- Analytical (5 questions): Why, how, explain, analyze questions
- Comparative (2 questions): Compare, contrast, similarities/

differences
- Application (2 questions): What would happen if, how would this apply
- Synthesis (1 question): Summarize, conclude, overall significance

MANDATORY OUTPUT FORMAT:
You must output ONLY the Python list of dictionaries, with no

additional text, explanations, or formatting. Do not include any
introductory text like "Here are the question-answer pairs" or any
closing remarks. Your response should start with [ and end with ].
Each dictionary must have ’question’ and ’correct_answer’ keys.

Format exactly like this:
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[{"question": "Question 1", "correct_answer": "Answer 1"}, {"question":
"Question 2", "correct_answer": "Answer 2"}, ...]

CRITICAL CONSTRAINTS:
- ONLY use information explicitly stated in the provided chapter text
- DO NOT add external knowledge or make assumptions beyond what’s

written
- EVERY answer must reference at least one key factual element (date:

data_tuple[0][0], location: data_tuple[0][1], person/entity:
data_tuple[0][2], event/topic: data_tuple[0][3], or key detail:
data_tuple[0][4])

- If you cannot answer a question based solely on the chapter content,
do not include that question

- Answers must be factual recalls, not interpretations or
extrapolations

- All 15 Q/A pairs must be created
- Key factual elements must be prominently featured
- Full chapter coverage must be achieved
- Question types must be varied appropriately
- Answers must be accurate and complete
- Natural, educational language must be used throughout

Generate the 20 Q/A pairs now in the specified Python list format.� �
Listing 12: Question-answer pair generation prompt template for fine-tuning

This prompt generates questions exemplified in Table 7, which includes both the source chapter
corpus and ground-truth questions for comparison.

Table 7: Comparison of question generation strategies for single-event queries (SEQ). The LLM-
Generated Asker creates natural, diverse questions while Ground-Truth templates follow fixed pat-
terns.

Event LLM-Generated SEQ Ground-Truth SEQ
At the Statue of Lib-
erty on June 14, 2025,
Brooklyn Ross cap-
tivated the audience.
Amidst the iconic back-
drop, she explained
fabric choices with
precision. The fashion
show attendees hung on
her every word.

Who was the central figure capti-
vating the audience at the Statue of
Liberty?
When and where did Brooklyn
Ross give her presentation?
What type of event was taking
place at the Statue of Liberty?

Provide a comprehensive ac-
count of what happened in-
volving Brooklyn Ross and
Fashion Show at Statue of
Liberty on June 14, 2025.
Include all relevant details
about the event(s), including
what occurred and any other
pertinent information.

B.2 MERGE

Here we present the prompt template for merging content-based and recollection question-answer
pairs. As shown in Listing 13, the merger filters out negative recollection responses, identifies
shared entities between question sets, and combines questions that demonstrate meaningful episodic
connections while preserving the original number of content-based questions.� �
CONTEXT INFO: context

TASK:
You are tasked with merging two sets of Q&A pairs: content-based

questions and recollection questions. The output must preserve the
total number of content-based questions. Follow these specific rules
:
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FILTERING RULES:
1. **Filter out recollection questions** where the answer indicates:

- "This information is not present"
- "I haven’t encountered this before"
- "No previous instances found"
- "Not mentioned in my training"
- Any similar negative responses indicating lack of prior knowledge

2. **Keep only recollection questions** that demonstrate actual
connections to previous knowledge

MERGING RULES:
3. **Identify shared entities** between content and recollection

questions:
- Same places/locations
- Same dates/time periods
- Same entities/characters
- Same events/actions
- Same concepts/objects
- Any other proven connections

4. **For content questions with shared entities in recollection
questions**:
- Only merge when there are clear, substantial connections that
contains potential conflicts of information in the 2 questions
- Transform them into broader questions that encompass both the
content information AND the recollection connections
- Create comprehensive answers that incorporate timeline and context
from recollection data

- Create questions that test understanding of both the current
content and its relationship to previous knowledge
- Be conservative in identifying shared entities - only merge when
the connection adds meaningful context, otherwise keep the original
questions as they are.

5. **For content questions without matching recollection connections**:
- Keep the original content-based questions exactly as they are
- Do not modify questions that have no recollection counterparts
- Preserve original questions when recollection connections are
minor, superficial, and don’t generate any kind of conflict

QUALITY GUIDELINES:
- Merged questions should be clear and well-formed
- Answers should incorporate both current and recalled information when

merging
- Remove redundancy while preserving important details
- Fix any grammatical errors or awkward phrasing
- Ensure the final output contains at least the same number of

questions as the content-based dataset

CRITICAL: You MUST output at least content_count questions (the exact
number of content-based questions), NO LESS!

INPUT DATA:format_qa_dataframe(df1, "Content-based questions")
format_qa_dataframe(df2, "Recollection questions")

REQUIRED JSON FORMAT:
[

{"question": "Your question here", "correct_answer": "Your answer
here"},
{"question": "Your question here", "correct_answer": "Your answer
here"},
...

]

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

IMPORTANT JSON RULES:
- Start with [ and end with ]
- Each object must have exactly "question" and "correct_answer" keys
- Use double quotes for all strings
- Separate objects with commas
- No trailing comma after the last object
- Escape any quotes inside strings with backslashes

OUTPUT ONLY THE JSON ARRAY - NO OTHER TEXT WHATSOEVER.

WARNING: Outputting fewer questions than the content-based dataset is
considered a failure!!� �

Listing 13: Q&A merging prompt template for combining content-based and recollection questions

B.3 FILTER

Here we present the prompt template used for hallucination filtering of recollection answers. Each
recollection response is compared against the source text to remove unsupported information while
preserving only content that can be verified from the provided narrative corpus. The filter removes
fabricated details and contradictions but does not add missing information when the original answer
is incomplete, ensuring that only grounded episodic recall is retained for training.� �
You are an expert fact-checker tasked with removing hallucinations from

an AI model’s answer based on provided source text.

**Your Task:**
1. Compare the AI’s answer against the given source text
2. Remove any information that is NOT supported by or contradicts the

source text
3. Keep only the parts that are accurate and grounded in the source

material
4. If the question asks about topics not covered in the source text,

return the fallback response: "I have no information to respond to
this question."

5. Return the cleaned answer in the exact format specified below

**Critical Output Requirements:**
- Return ONLY a clean, readable paragraph or short paragraphs
- NO bullet points, NO numbered lists, NO markdown formatting
- NO asterisks (*), NO dashes (-), NO special characters for formatting
- Use plain text with proper sentences and periods
- Keep answers comprehensive but remove redundancy
- If multiple facts, separate them with periods in flowing sentences
- If the entire answer becomes invalid, return EXACTLY: "I have no

information to respond to this question."

**Content Filtering Rules:**
- Only retain information directly verifiable from the source text
- Remove invented facts, fictional details, or unsupported claims
- Remove repetitive or redundant information
- Preserve original phrasing when possible for retained content
- Do not add new information beyond what’s in the original answer
- Focus on filtering the original answer, not rewriting it completely
- If uncertain about a claim, remove it entirely

**Response Format Example:**
Clean, readable paragraph format with proper sentences and periods. Use

plain text only.

**Source Text:**
text_up_to
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**Question Being Asked:**
question

**AI Answer to Clean:**
answer_llm

**Your Response (cleaned answer only):**� �
Listing 14: Hallucination filtering prompt template for recollection answer validation

C RESULTS

C.1 GRIDSEARCH

C.1.1 10 EVENTS
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Table 8: GridSearch Results - 10 Events with Continual-GT Baseline

Event per Question Model Learning Rate Epochs Batch Size Count Episodic Accuracy

1 Llama3-3B 1e-4 5 16 121 2.48
1 Llama3-3B 1e-4 20 16 121 42.98
1 Llama3-3B 1e-4 30 16 121 29.75
1 Llama3-3B 1e-5 5 16 121 0.00
1 Llama3-3B 1e-5 20 16 121 9.92
1 Llama3-3B 1e-5 10 32 121 0.00
1 Llama3-8B 1e-5 20 16 121 34.71
1 Llama3-8B 1e-5 40 16 121 42.15
1 Llama3-8B 1e-5 60 16 121 42.15
1 Llama3-8B 1e-6 80 16 121 40.50
1 Llama3-8B 1e-6 100 16 121 26.45
1 Llama3-8B 1e-6 120 16 121 33.88
1 Llama2-13B 1e-5 20 8 121 28.10
1 Llama2-13B 1e-5 40 8 121 38.02
1 Llama2-13B 1e-6 20 8 121 1.65
1 Llama2-13B 1e-6 40 8 121 1.65
1 Llama3-70B 1e-5 10 1 121 38.02
1 Llama3-70B 1e-5 20 1 121 33.06
1 Llama3-70B 1e-5 40 1 121 28.93
1 Llama3-70B 1e-6 10 1 121 0.00
1 Llama3-70B 1e-6 20 1 121 23.97
1 Llama3-70B 1e-6 40 1 121 33.88
1 Llama3-70B 1e-5 20 4 121 42.98
1 Llama3-70B 1e-5 40 4 121 42.15
1 Llama3-70B 1e-6 20 4 121 27.27
2 Llama3-3B 1e-4 5 16 17 0.00
2 Llama3-3B 1e-4 20 16 17 23.53
2 Llama3-3B 1e-4 30 16 17 5.88
2 Llama3-3B 1e-5 5 16 17 0.00
2 Llama3-3B 1e-5 20 16 17 5.88
2 Llama3-3B 1e-5 10 32 17 0.00
2 Llama3-8B 1e-5 20 16 17 17.65
2 Llama3-8B 1e-5 40 16 17 29.41
2 Llama3-8B 1e-5 60 16 17 29.41
2 Llama3-8B 1e-6 80 16 17 29.41
2 Llama3-8B 1e-6 100 16 17 41.18
2 Llama3-8B 1e-6 120 16 17 35.29
2 Llama2-13B 1e-5 20 8 17 11.76
2 Llama2-13B 1e-5 40 8 17 5.88
2 Llama2-13B 1e-6 20 8 17 0.00
2 Llama2-13B 1e-6 40 8 17 0.00
2 Llama3-70B 1e-5 10 1 17 23.53
2 Llama3-70B 1e-5 20 1 17 29.41
2 Llama3-70B 1e-5 40 1 17 5.88
2 Llama3-70B 1e-6 10 1 17 0.00
2 Llama3-70B 1e-6 20 1 17 5.88
2 Llama3-70B 1e-6 40 1 17 23.53
2 Llama3-70B 1e-5 20 4 17 29.41
2 Llama3-70B 1e-5 40 4 17 29.41
2 Llama3-70B 1e-6 20 4 17 11.76

3-5 Llama3-3B 1e-4 5 16 21 4.76
3-5 Llama3-3B 1e-4 20 16 21 19.05
3-5 Llama3-3B 1e-4 30 16 21 0.00
3-5 Llama3-3B 1e-5 5 16 21 0.00
3-5 Llama3-3B 1e-5 20 16 21 4.76
3-5 Llama3-3B 1e-5 10 32 21 0.00
3-5 Llama3-8B 1e-5 20 16 21 4.76
3-5 Llama3-8B 1e-5 40 16 21 14.29
3-5 Llama3-8B 1e-5 60 16 21 9.52
3-5 Llama3-8B 1e-6 80 16 21 14.29
3-5 Llama3-8B 1e-6 100 16 21 4.76
3-5 Llama3-8B 1e-6 120 16 21 9.52
3-5 Llama2-13B 1e-5 20 8 21 4.76
3-5 Llama2-13B 1e-5 40 8 21 9.52
3-5 Llama2-13B 1e-6 20 8 21 0.00
3-5 Llama2-13B 1e-6 40 8 21 0.00
3-5 Llama3-70B 1e-5 10 1 21 9.52
3-5 Llama3-70B 1e-5 20 1 21 14.29
3-5 Llama3-70B 1e-5 40 1 21 0.00
3-5 Llama3-70B 1e-6 10 1 21 0.00
3-5 Llama3-70B 1e-6 20 1 21 4.76
3-5 Llama3-70B 1e-6 40 1 21 4.76
3-5 Llama3-70B 1e-5 20 4 21 19.05
3-5 Llama3-70B 1e-5 40 4 21 9.52
3-5 Llama3-70B 1e-6 20 4 21 0.00
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C.1.2 30 EVENTS

Table 9: GridSearch Results - 30 Events with Continual-GT Baseline

Event per Question Model Learning Rate Epochs Batch Size Count Episodic Accuracy

1 Llama3-3B 1e-4 20 16 126 8.73
1 Llama3-3B 1e-4 40 16 126 11.90
1 Llama3-3B 1e-5 20 16 126 8.73
1 Llama3-3B 1e-5 40 16 126 10.32
1 Llama3-8B 1e-5 20 16 126 18.25
1 Llama3-8B 1e-5 40 16 126 17.46
1 Llama3-8B 1e-6 20 16 126 0.00
1 Llama3-8B 1e-6 40 16 126 10.32
1 Llama2-13B 1e-5 20 8 126 9.52
1 Llama2-13B 1e-5 40 8 126 10.32
1 Llama2-13B 1e-6 20 8 126 0.79
1 Llama2-13B 1e-6 40 8 126 1.59
1 Llama3-70B 1e-5 40 1 126 14.29
1 Llama3-70B 1e-5 20 4 126 11.90
1 Llama3-70B 1e-5 40 4 126 12.70
1 Llama3-70B 1e-6 20 4 126 10.32
1 Llama3-70B 1e-6 40 4 126 11.90
2 Llama3-3B 1e-4 20 16 42 0.00
2 Llama3-3B 1e-4 40 16 42 4.76
2 Llama3-3B 1e-5 20 16 42 2.38
2 Llama3-3B 1e-5 40 16 42 0.00
2 Llama3-8B 1e-5 20 16 42 9.52
2 Llama3-8B 1e-5 40 16 42 11.90
2 Llama3-8B 1e-6 20 16 42 0.00
2 Llama3-8B 1e-6 40 16 42 2.38
2 Llama2-13B 1e-5 20 8 42 2.38
2 Llama2-13B 1e-5 40 8 42 0.00
2 Llama2-13B 1e-6 20 8 42 0.00
2 Llama2-13B 1e-6 40 8 42 0.00
2 Llama3-70B 1e-5 40 1 42 11.90
2 Llama3-70B 1e-5 20 4 42 2.38
2 Llama3-70B 1e-5 40 4 42 2.38
2 Llama3-70B 1e-6 20 4 42 0.00
2 Llama3-70B 1e-6 40 4 42 2.38

3-5 Llama3-3B 1e-4 20 16 53 0.00
3-5 Llama3-3B 1e-4 40 16 53 0.00
3-5 Llama3-3B 1e-5 20 16 53 0.00
3-5 Llama3-3B 1e-5 40 16 53 1.89
3-5 Llama3-8B 1e-5 20 16 53 1.89
3-5 Llama3-8B 1e-5 40 16 53 3.77
3-5 Llama3-8B 1e-6 20 16 53 0.00
3-5 Llama3-8B 1e-6 40 16 53 3.77
3-5 Llama2-13B 1e-5 20 8 53 3.77
3-5 Llama2-13B 1e-5 40 8 53 0.00
3-5 Llama2-13B 1e-6 20 8 53 0.00
3-5 Llama2-13B 1e-6 40 8 53 0.00
3-5 Llama3-70B 1e-5 40 1 53 9.43
3-5 Llama3-70B 1e-5 20 4 53 1.89
3-5 Llama3-70B 1e-5 40 4 53 0.00
3-5 Llama3-70B 1e-6 20 4 53 0.00
3-5 Llama3-70B 1e-6 40 4 53 0.00
6+ Llama3-3B 1e-4 20 16 18 0.00
6+ Llama3-3B 1e-4 40 16 18 0.00
6+ Llama3-3B 1e-5 20 16 18 0.00
6+ Llama3-3B 1e-5 40 16 18 0.00
6+ Llama3-8B 1e-5 20 16 18 0.00
6+ Llama3-8B 1e-5 40 16 18 5.56
6+ Llama3-8B 1e-6 20 16 18 0.00
6+ Llama3-8B 1e-6 40 16 18 0.00
6+ Llama2-13B 1e-5 20 8 18 0.00
6+ Llama2-13B 1e-5 40 8 18 0.00
6+ Llama2-13B 1e-6 20 8 18 0.00
6+ Llama2-13B 1e-6 40 8 18 0.00
6+ Llama3-70B 1e-5 40 1 18 0.00
6+ Llama3-70B 1e-5 20 4 18 0.00
6+ Llama3-70B 1e-5 40 4 18 0.00
6+ Llama3-70B 1e-6 20 4 18 0.00
6+ Llama3-70B 1e-6 40 4 18 0.00

C.1.3 100 EVENTS
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Table 10: GridSearch Results - 100 Events with Continual-GT Baseline

Event per Question Model Learning Rate Epochs Batch Size Count Episodic Accuracy

1 Llama3-3B 1e-4 20 16 135 11.85
1 Llama3-3B 1e-4 40 16 135 8.15
1 Llama3-3B 1e-5 20 16 135 4.44
1 Llama3-3B 1e-5 40 16 135 13.33
1 Llama3-8B 1e-5 20 16 135 10.37
1 Llama3-8B 1e-5 40 16 135 22.96
1 Llama3-8B 1e-6 20 16 135 0.00
1 Llama3-8B 1e-6 40 16 135 7.41
1 Llama2-13B 1e-5 20 8 135 4.44
1 Llama2-13B 1e-5 40 8 135 4.44
1 Llama2-13B 1e-6 20 8 135 2.96
1 Llama2-13B 1e-6 40 8 135 2.22
1 Llama3-70B 1e-5 20 1 135 22.22
1 Llama3-70B 1e-5 20 4 135 7.41
1 Llama3-70B 1e-5 40 4 135 11.11
1 Llama3-70B 1e-6 20 4 135 13.33
1 Llama3-70B 1e-6 40 4 135 13.33
2 Llama3-3B 1e-4 20 16 78 7.69
2 Llama3-3B 1e-4 40 16 78 0.00
2 Llama3-3B 1e-5 20 16 78 1.28
2 Llama3-3B 1e-5 40 16 78 7.69
2 Llama3-8B 1e-5 20 16 78 6.41
2 Llama3-8B 1e-5 40 16 78 14.10
2 Llama3-8B 1e-6 20 16 78 2.56
2 Llama3-8B 1e-6 40 16 78 3.85
2 Llama2-13B 1e-5 20 8 78 1.28
2 Llama2-13B 1e-5 40 8 78 2.56
2 Llama2-13B 1e-6 20 8 78 1.28
2 Llama2-13B 1e-6 40 8 78 1.28
2 Llama3-70B 1e-5 20 1 78 19.23
2 Llama3-70B 1e-5 20 4 78 1.28
2 Llama3-70B 1e-5 40 4 78 5.13
2 Llama3-70B 1e-6 20 4 78 0.00
2 Llama3-70B 1e-6 40 4 78 7.69

3-5 Llama3-3B 1e-4 20 16 81 1.23
3-5 Llama3-3B 1e-4 40 16 81 0.00
3-5 Llama3-3B 1e-5 20 16 81 0.00
3-5 Llama3-3B 1e-5 40 16 81 0.00
3-5 Llama3-8B 1e-5 20 16 81 2.47
3-5 Llama3-8B 1e-5 40 16 81 0.00
3-5 Llama3-8B 1e-6 20 16 81 0.00
3-5 Llama3-8B 1e-6 40 16 81 1.23
3-5 Llama2-13B 1e-5 20 8 81 0.00
3-5 Llama2-13B 1e-5 40 8 81 0.00
3-5 Llama2-13B 1e-6 20 8 81 0.00
3-5 Llama2-13B 1e-6 40 8 81 0.00
3-5 Llama3-70B 1e-5 20 1 81 14.81
3-5 Llama3-70B 1e-5 20 4 81 0.00
3-5 Llama3-70B 1e-5 40 4 81 0.00
3-5 Llama3-70B 1e-6 20 4 81 3.70
3-5 Llama3-70B 1e-6 40 4 81 4.94
6+ Llama3-3B 1e-4 20 16 63 0.00
6+ Llama3-3B 1e-4 40 16 63 0.00
6+ Llama3-3B 1e-5 20 16 63 0.00
6+ Llama3-3B 1e-5 40 16 63 0.00
6+ Llama3-8B 1e-5 20 16 63 1.59
6+ Llama3-8B 1e-5 40 16 63 0.00
6+ Llama3-8B 1e-6 20 16 63 0.00
6+ Llama3-8B 1e-6 40 16 63 0.00
6+ Llama2-13B 1e-5 20 8 63 0.00
6+ Llama2-13B 1e-5 40 8 63 0.00
6+ Llama2-13B 1e-6 20 8 63 0.00
6+ Llama2-13B 1e-6 40 8 63 0.00
6+ Llama3-70B 1e-5 20 1 63 1.59
6+ Llama3-70B 1e-5 20 4 63 0.00
6+ Llama3-70B 1e-5 40 4 63 0.00
6+ Llama3-70B 1e-6 20 4 63 4.76
6+ Llama3-70B 1e-6 40 4 63 1.59
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D SCALING EFFECTS
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Figure 5: Average (standard deviation) performance using lenient recall metric for multi-hit retrieval
task over 3 books. Standard deviations are calculated across books.
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Figure 6: Average (standard deviation) performance using lenient recall metric for chronological
ordering over 3 books. Standard deviations are calculated across books.
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Figure 7: Average (standard deviation) performance using lenient recall metric for latest state track-
ing over 3 books. Standard deviations are calculated across books.
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D.1 GCR ABLATIONS

Table 11: GCR Pipelines Multi Retrieval Task

#Ev MSize
Event per
question

Continual
NoReplay

GCR
Simple

raw

GCR
Simple
filtered

GCR
Rich
raw

GCR
Rich

filtered

GCR
Generated

raw

GCR
Generated

filtered GT-Baseline

10 3B 1 29.75 47.11 50.41 40.50 48.76 36.36 56.20 42.98
10 8B 1 28.10 43.80 29.75 44.63 41.32 52.89 40.50 42.15
10 3B 2 5.88 11.76 17.65 5.88 23.53 11.76 47.06 23.53
10 8B 2 23.53 11.76 11.76 23.53 41.18 29.41 11.76 29.41
10 3B 3-5 0.00 9.52 4.76 4.76 9.52 9.52 23.81 19.05
10 8B 3-5 0.00 4.76 0.00 38.10 19.05 14.29 4.76 14.29
30 3B 1 10.32 19.05 18.25 21.43 15.08 19.84 21.43 11.90
30 8B 1 11.11 30.16 41.27 28.57 32.54 24.60 50.00 17.46
30 3B 2 0.00 7.14 11.90 9.52 9.52 4.76 9.52 4.76
30 8B 2 9.52 16.67 28.57 7.14 7.14 9.52 30.95 11.90
30 3B 3-5 0.00 1.89 1.89 1.89 0.00 0.00 1.89 0.00
30 8B 3-5 0.00 1.89 16.98 3.77 3.77 7.55 18.87 3.77
30 3B 6+ 0.00 0.00 0.00 0.00 0.00 0.00 5.56 0.00
30 8B 6+ 0.00 0.00 5.56 0.00 0.00 0.00 5.56 5.56

100 8B 1 - 25.93 25.19 20.74 35.56 22.22 39.26 22.96
100 8B 2 - 11.54 11.54 6.41 14.10 8.97 15.38 14.10
100 8B 3-5 - 1.23 2.47 1.23 2.47 2.47 11.11 0.00
100 8B 6+ - 0.00 0.00 0.00 1.59 0.00 6.35 0.00

Table 12: GCR Pipelines Chronological Task

#Ev MSize
Event per
question

Continual
NoReplay

GCR
Simple

raw

GCR
Simple
filtered

GCR
Rich
raw

GCR
Rich

filtered

GCR
Generated

raw

GCR
Generated

filtered GT-Baseline

10 3B 1 13.33 60.00 60.00 20.00 46.67 60.00 46.67 40.00
10 8B 1 20.00 46.67 20.00 66.67 26.67 60.00 40.00 46.67
10 3B 2 0.00 33.33 33.33 0.00 33.33 0.00 100.00 33.33
10 8B 2 0.00 33.33 0.00 66.67 66.67 33.33 33.33 0.00
10 3B 3-5 0.00 33.33 0.00 0.00 0.00 0.00 33.33 0.00
10 8B 3-5 0.00 0.00 33.33 33.33 66.67 0.00 33.33 0.00
30 3B 1 16.67 25.00 50.00 33.33 41.67 33.33 33.33 33.33
30 8B 1 0.00 33.33 50.00 25.00 33.33 41.67 41.67 33.33
30 3B 3-5 0.00 0.00 0.00 6.67 0.00 0.00 0.00 6.67
30 8B 3-5 0.00 6.67 26.67 0.00 6.67 13.33 20.00 13.33
30 3B 6+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 8B 6+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.33

100 8B 1 - 33.33 66.67 50.00 33.33 33.33 33.33 33.33
100 8B 2 - 6.67 6.67 0.00 0.00 6.67 13.33 20.00
100 8B 3-5 - 11.11 11.11 11.11 0.00 0.00 11.11 11.11
100 8B 6+ - 0.00 6.67 0.00 0.00 0.00 0.00 0.00
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Table 13: GCR Pipelines Latest Task

#Ev MSize
Event per
question

Continual
NoReplay

GCR
Simple

raw

GCR
Simple
filtered

GCR
Rich
raw

GCR
Rich

filtered

GCR
Generated

raw

GCR
Generated

filtered GT-Baseline

10 3B 1 26.67 20.00 20.00 26.67 33.33 20.00 40.00 13.33
10 8B 1 20.00 46.67 26.67 40.00 33.33 26.67 33.33 40.00
10 3B 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 8B 2 0.00 33.33 0.00 33.33 0.00 0.00 33.33 0.00
10 3B 3-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 8B 3-5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 3B 1 16.67 16.67 16.67 0.00 25.00 8.33 8.33 33.33
30 8B 1 0.00 33.33 33.33 8.33 16.67 16.67 33.33 33.33
30 3B 3-5 13.33 6.67 33.33 6.67 26.67 13.33 26.67 26.67
30 8B 3-5 13.33 33.33 40.00 13.33 40.00 26.67 60.00 26.67
30 3B 6+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 8B 6+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 8B 1 - 16.67 33.33 16.67 33.33 0.00 33.33 33.33
100 8B 2 - 0.00 26.67 0.00 26.67 20.00 6.67 0.00
100 8B 3-5 - 0.00 0.00 0.00 33.33 22.22 0.00 0.00
100 8B 6+ - 13.33 20.00 6.67 20.00 6.67 6.67 6.67
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D.1.1 CD PLOT

1 2 3

1.6175GCR-G-filtered
1.9722GCR

2.4103Continual-GT

SEQ+MEQ

Figure 8: Critical distance analysis for Llama3 8B model performance on a 30-event narrative with
126 SEQ and 113 MEQ questions, comparing Continual-GT pipeline, GCR-G, and GCR-G-filtered
approaches.

1 2 3

1.6639GCR-G-filtered
2.0410GCR

2.2951Continual-GT

SEQ

Figure 9: Critical distance analysis for Llama3 8B model performance on a 30-event narrative with
126 SEQ questions, comparing Continual-GT pipeline, GCR-G, and GCR-G-filtered approaches.

1 2 3

1.5670GCR-G-filtered
1.8973GCR

2.5357Continual-GT

MEQ

Figure 10: Critical distance analysis for Llama3 8B model performance on a 30-event narrative with
113 MEQ questions, comparing Continual-GT pipeline, GCR-G, and GCR-G-filtered approaches.

E RELATED WORK EXTENDED

E.1 CONNECTING ENTITIES ACROSS EPISODES

On the generalization of language models from in-context learning and finetuning: a con-
trolled study Lampinen et al. (2025a) DeepMind researchers compared in-context learning (ICL)
versus fine-tuning using syllogistic reasoning tasks to understand how different learning methods
affect generalization. They used identical training datasets for both approaches to create a con-
trolled comparison. The key question was whether the learning mechanism itself (putting examples
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in context vs updating model parameters) influences how well models generalize to new logical
structures. Their results showed that while ICL outperformed standard fine-tuning, augmented fine-
tuning (combining both approaches) achieved the best generalization performance overall.
Unlike the above work, our goal is to understand how model scale correlates with LLMs’ inability
to ”connect the dots” across knowledge domains. In addition to providing insights into the fun-
damental factors underlying current models’ limited capacity for knowledge integration, we also
propose a methodology to address these limitations.

Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training
Data 2024

The researchers Treutlein et al. (2024) used 5 different tasks, each containing training examples
with hidden underlying patterns (like unknown functions or city identities), but never explicitly
revealing these patterns during finetuning. After training, they tested whether models could infer
and verbalize the hidden patterns, then apply this knowledge to new tasks. The models successfully
identified simple functions like x+14 and x//3, and correctly inferred that an unknown city was Paris
based solely on distance data.

The Reversal Curse: LLMs trained on “A is B” fail to learn “B is A”, 2023

The researchers Berglund et al. (2023) conducted two separate experiments to demonstrate the
”Reversal Curse” - a fundamental failure where LLMs trained on ”A is B” cannot infer ”B is A”.
In the first experiment, they finetuned base models (GPT-3, Llama-1) on synthetic fictitious facts
like ”Uriah Hawthorne is the composer of Abyssal Melodies” to control for prior knowledge, then
tested whether models could answer reverse questions like ”Who composed Abyssal Melodies?”
The models performed no better than random chance on reverse queries despite perfect forward
performance. In a second experiment, they evaluated commercial models (GPT-3.5, GPT-4) on
real celebrity facts, finding GPT-4 correctly answered forward questions like ”Who is Tom Cruise’s
mother?” 79% of the time but only 33% for reverse questions like ”Who is Mary Lee Pfeiffer’s
son?” This reversal failure proved robust across different model sizes and families, and couldn’t be
fixed through data augmentation, revealing a systematic limitation in how LLMs learn bidirectional
logical relationships.
Unlike all the work above, which reaches conflicting conclusions despite addressing the same
core problem, our goal is to examine the ”connect the dots” challenge within a continual learning
framework. Rather than reconciling these contradictory findings, we provide insights into how
knowledge integration capabilities evolve as models encounter sequential learning scenarios.

Physics of Language Models: Part 3.2, Knowledge Manipulation

Researchers Allen-Zhu & Li (2024) have shown fundamental weaknesses in current LLMs for
knowledge manipulation tasks beyond simple information retrieval. Using controlled synthetic bio-
graphical datasets, they found that models fail at basic tasks like classification (e.g., ’Was X born in
an even month?’), comparison (e.g., ’Is A older than B?’), and inverse search (e.g., ’Who was born
on this date?’) regardless of model size - even GPT-4 struggles with these tasks. Chain-of-Thought
(CoT) reasoning helps, but only when used at both training and inference time - models trained
with CoT still fail when asked to give direct answers without explicit step-by-step reasoning at test
time. This reveals that LLMs cannot learn to manipulate knowledge ”mentally” like humans do, but
must explicitly generate intermediate steps. For practical applications, they suggest RAG and other
retrieval-augmented methods as potential solutions.
Here they are addressing generalization limitations by forcing models to follow specific interme-
diate reasoning steps, our goal is to directly examine the ”connect the dots” problem rather than
focusing on structured reasoning pathways.

E.2 ADDRESSING CATASTROPHIC FORGETTING

Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Re-
hearsal

The authors Huang et al. (2024) propose Self-Synthesized Rehearsal (SSR), which generates syn-
thetic rehearsal data using the LLM itself: the base model creates synthetic examples, the updated
model refines outputs, and diverse high-quality instances are selected for rehearsal. This approach
doesn’t require original training data or additional generative models, offering data efficiency and
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application flexibility. Mitigating Catastrophic Forgetting in Large Language Models with Self-
Synthesized Rehearsal SSR achieves superior performance compared to conventional methods while
being more data-efficient and preserving generalization capabilities. Mitigating Catastrophic For-
getting in Large Language Models with Self-Synthesized Rehearsal This enables practical continual
learning for publicly-released models where original training data is unavailable
Despite this work has some similarities, we study hallucinating problem a CL environment and
made the finetuned model itself the reharsal generator of previous experienced

Addressing Loss of Plasticity and Catastrophic Forgetting in Continual Learning Deep neural
networks Elsayed & Mahmood (2024) in continual learning suffer from both catastrophic forget-
ting of useful knowledge and loss of plasticity (reduced ability to learn new tasks), but most existing
methods address only one of these issues at a time. The authors propose Utility-based Perturbed
Gradient Descent (UPGD), a modified training algorithm that uses weight utility measures to selec-
tively protect important parameters from large updates while injecting perturbations into less useful
weights to maintain learning flexibility. UPGD employs a scalable second-order Taylor approxi-
mation to estimate weight importance, then applies utility-based gating where high-utility weights
receive minimal modifications and low-utility weights get both gradient updates and noise injec-
tion. Experiments on streaming learning problems with hundreds of task changes demonstrate that
UPGD continuously improves performance and outperforms existing methods, while conventional
approaches show degrading accuracy over time. This approach enables effective continual learning
without requiring task boundaries, replay buffers, or stored previous data, making it practical for
real-world applications where models must adapt continuously to new information.

How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and
Element-Wise Regularization Song et al. (2025) proposed a hierarchical regularization frame-
work combining element-wise and layer-wise importance weighting to mitigate catastrophic forget-
ting during LLM fine-tuning. Their dual-objective optimization strategy combines regularization
loss based on parameter importance with cross-entropy loss for task adaptation, using layer-wise co-
efficients to dynamically balance the optimization. Through experiments on scientific, medical, and
physical tasks using GPT-J and LLaMA-3, they achieve approximately 20 times faster computation
and require only 10-15% storage compared to Fisher Information Matrix methods while preserving
general capabilities. While their regularization-based approach effectively prevents parameter drift
during fine-tuning, it differs from cognitive-inspired frameworks as it focuses on parameter protec-
tion rather than explicit conflict detection and resolution mechanisms for contradictory information.

Revisiting Catastrophic Forgetting in Large Language Model Tuning The authors Li et al.
(2024) introduce Sharpness-Aware Minimization (SAM) to flatten loss landscapes through two-
step gradient optimization, mitigating catastrophic forgetting without expensive data modifications.
Their pipeline analyzes loss landscape flatness using visualization and quantitative metrics, then
integrates SAM during fine-tuning to promote flatter minima. Experiments across datasets (Al-
paca, ShareGPT, MetaMathQA) and model sizes (TinyLlama-1.1B to Llama2-13B) show signifi-
cant performance recovery on general tasks while maintaining domain capabilities. The method
complements existing anti-forgetting techniques like rehearsal and Wise-FT. They conclude that
catastrophic forgetting directly correlates with loss landscape sharpness and can be effectively miti-
gated through optimization promoting flatter minima.

Continual Relation Learning via Episodic Memory Activation and Reconsolidation

Han et al. (2020) proposed Episodic Memory Activation and Reconsolidation (EMAR) for con-
tinual relation learning, addressing catastrophic forgetting when learning new relations sequentially.
Their approach, inspired by human long-term memory formation, combines episodic memory replay
with relation prototype-based reconsolidation exercises to maintain stable understanding of old re-
lations while preventing overfitting to memorized examples. How to Alleviate Catastrophic Forget-
ting in LLMs Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization Experiments
demonstrate that EMAR successfully avoids catastrophic forgetting and outperforms state-of-the-art
continual learning models by utilizing memory reconsolidation to reduce confusion among existing
relations. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise
and Element-Wise Regularization Unlike approaches focused on general knowledge conflicts in
LLMs, this work specifically targets relation extraction tasks through biologically-inspired memory
mechanisms that stabilize learned relation representations during sequential learning
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ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Inter-
pretability

Sun et al. (2025) proposed ReDeEP, a mechanistic interpretability approach for detecting hallucina-
tions in RAG models by decoupling LLM utilization of external context and parametric knowledge.
Their empirical study reveals that RAG hallucinations occur when Knowledge FFNs over-emphasize
parametric knowledge while Copying Heads fail to effectively retain external knowledge, leading
to a dual-objective detection method that treats both sources as covariates to address confounding
problems. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-
Wise and Element-Wise Regularization Experiments on RAGTruth and Dolly datasets demonstrate
ReDeEP significantly outperforms existing detection methods across LLaMA variants, while their
proposed AARF intervention reduces hallucinations by modulating Knowledge FFN and Copying
Head contributions without parameter updates. How to Alleviate Catastrophic Forgetting in LLMs
Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization Unlike cognitive-inspired
approaches that focus on reasoning about conflicting information, ReDeEP operates through mech-
anistic analysis of transformer components, making it effective for RAG hallucination detection but
potentially limited in handling complex knowledge conflicts requiring higher-level reasoning pro-
cesses.

Combining replay and LoRA for continual learning in natural language understanding

The authors Borhanifard & Faili (2024) proposed Experience Replay Informative-Low Rank Adap-
tation (ERI-LoRA), a hybrid continual learning method that combines replay-based approaches with
parameter-efficient fine-tuning techniques for natural language understanding in task-oriented dia-
logue systems. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-
Wise and Element-Wise Regularization Their method addresses catastrophic forgetting in dialogue
systems by integrating LoRA’s parameter efficiency with experience replay mechanisms to pre-
serve previously learned knowledge while adapting to new domains and tasks. How to Alleviate
Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and Element-Wise Regu-
larization Experiments on intent detection tasks across eight datasets showed ERI-LoRA achieved
0.85% accuracy improvement over state-of-the-art lifelong learning methods, with evaluations on
forgetting measure (FM) and backward transfer (BWT) demonstrating minimal forgetting and sta-
ble memory retention across continual learning scenarios. How to Alleviate Catastrophic Forgetting
in LLMs Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization While their hybrid
approach effectively combines architectural and replay-based strategies for dialogue understanding,
it focuses on domain adaptation rather than explicit conflict resolution when contradictory informa-
tion emerges, making it complementary to cognitive-inspired approaches that emphasize detection
and reasoning about conflicting knowledge updates.

Unlike all the work above, where the researchers proposed new training algorithms or techniques
to reduce the problem of catastrophic forgetting, we focus on studying and isolate the problem as
a function of model and book size

An Empirical Study of Catastrophic Forgetting in Large Language Models During Contin-
ual Fine-tuning This empirical study Luo et al. (2023) evaluates catastrophic forgetting in LLMs
during continual instruction tuning by sequentially fine-tuning models (BLOOMZ, mT0, LLAMA,
ALPACA) on five generation tasks and measuring knowledge retention across domain knowledge,
reasoning, and reading comprehension benchmarks. The pipeline involves continual training on text
simplification, empathetic dialogue, question generation, explanation generation, and headline gen-
eration, then evaluating general knowledge preservation using established benchmarks like MMLU
and RACE. Results show that catastrophic forgetting occurs across all tested models, with larger
models experiencing more severe knowledge loss, decoder-only architectures retaining knowledge
better than encoder-decoder models, and prior general instruction tuning helping mitigate forgetting
in subsequent fine-tuning.

Understanding Catastrophic Forgetting in Language Models via Implicit Inference This work
Kotha et al. (2024) proposes that fine-tuning doesn’t erase pretrained capabilities but shifts the
model’s internal ”task inference” mechanism toward fine-tuning tasks. Their pipeline consists of
”Conjugate Prompting” - a two-step process that transforms input prompts to appear farther from
the fine-tuning distribution, applies the model, then inverts the output to get the original answer.
In practice, they use language translation (English to other languages) since most fine-tuning data

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

is English-only. Testing across instruction tuning, code fine-tuning, and safety fine-tuning scenar-
ios, they demonstrate that models can recover suppressed pretrained abilities (in-context learning,
natural language reasoning, harmful content generation) when prompted in non-English languages,
suggesting catastrophic forgetting is more about altered task inference than true capability loss.

Scaling Laws for Forgetting When Fine-Tuning Large Language Models Kalajdzievski (2024)
investigated scaling laws for catastrophic forgetting in large language models during fine-tuning,
finding that even parameter-efficient methods like LoRA suffer from significant forgetting. Their
analysis reveals a strong inverse linear relationship between fine-tuning performance and forgetting
amount, with forgetting following precise scaling laws as a shifted power law in both the num-
ber of fine-tuned parameters and update steps. How to Alleviate Catastrophic Forgetting in LLMs
Finetuning? Hierarchical Layer-Wise and Element-Wise Regularization Experiments on Llama 2
7B chat demonstrate that forgetting affects knowledge, reasoning, and safety guardrails and can-
not be mitigated through early stopping or parameter count adjustments, highlighting critical safety
implications for fine-tuning schemes. How to Alleviate Catastrophic Forgetting in LLMs Fine-
tuning? Hierarchical Layer-Wise and Element-Wise Regularization Unlike approaches targeting
specific knowledge conflicts, this work provides fundamental scaling insights into the unavoidable
trade-offs inherent in fine-tuning, suggesting that forgetting is a systematic rather than addressable
issue in current adaptation methods.

Unlike the above work that studies catastrophic forgetting in general settings, we focus on the
distinct problem of binding - the inability to correctly associate episodic elements across different
contexts. We investigate this binding problem in a continual learning setup and analyze how it
varies as a function of model and narrative size.

E.3 ADDRESSING CATASTROPHIC FORGETTING TROUGH EDITING

Mass-Editing Memory in a Transformer

Fedus et al. (2023) introduced MEMIT, a scalable method for mass-editing factual memories in
transformer language models by directly updating MLP weights across multiple layers. Their ap-
proach targets critical MLP layers identified through causal mediation analysis and updates thou-
sands of (subject, relation, object) associations simultaneously using a dual-objective optimization
that minimizes squared error of memorized associations while preserving existing knowledge. How
to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and Element-
Wise Regularization Experiments on GPT-J (6B) and GPT-NeoX (20B) demonstrate successful edit-
ing of up to 10,000 memories, significantly outperforming prior methods like ROME and MEND
which failed to scale beyond dozens of edits, while maintaining efficacy, generalization, and speci-
ficity metrics. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-
Wise and Element-Wise Regularization Unlike cognitive-inspired approaches that focus on conflict
detection and resolution, MEMIT operates through explicit parameter manipulation based on iden-
tified causal pathways, making it effective for bulk factual updates but limited to directional (s,r,o)
relations without handling contradictory information or symmetric knowledge relationships.

Larimar: Large Language Models with Episodic Memory Control

Das et al. (2024) introduced Larimar, a brain-inspired architecture that enhances LLMs with dis-
tributed episodic memory for dynamic knowledge updating without retraining. Inspired by comple-
mentary learning systems theory, their approach couples fast episodic memory (analogous to hip-
pocampus) with slow semantic memory (the LLM) using generative pseudo-inverse memory frame-
work that enables one-shot memory updates through least-squares solutions to linear systems. How
to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierarchical Layer-Wise and Element-
Wise Regularization Experiments on CounterFact and ZsRE benchmarks demonstrate that Larimar
achieves comparable accuracy to competitive baselines like ROME and MEND while providing 8-
10x speed improvements, successfully handling sequential editing, selective fact forgetting, and long
context generalization tasks. How to Alleviate Catastrophic Forgetting in LLMs Finetuning? Hierar-
chical Layer-Wise and Element-Wise Regularization Unlike approaches focused on parameter-level
interventions or explicit conflict detection, Larimar operates through external memory conditioning
that treats knowledge updates as distributed associative memory operations, making it effective for
rapid adaptation but potentially limited in handling nuanced contradictory information that requires
sophisticated reasoning about knowledge conflicts.
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Unlike all the work above, where researchers proposed editing techniques to try to solve the catas-
trophic forgetting problem, we focus on studying it in a CL setup and isolate the problem as a
function of model and book size.

F LARGE LANGUAGE MODEL USAGE DISCLOSURE

In compliance with ICLR 2026 policies on Large Language Model usage, we disclose the following
uses of LLMs:

Code development and debugging: Large language models were used as assistants with imple-
mentation of the training pipeline, visualization code, data generation and evaluation prompts re-
finement, as well as plotting utilities. All generated code was reviewed, tested, and validated by the
authors before use.

Writing assistance: LLMs were also used for rewriting and improving clarity of text passages and
the formulation of some technical descriptions. All scientific claims, experimental interpretations,
and conclusions remain the original intellectual contribution of the authors.

Literature review and formulation: LLMs occasionally assisted in identifying seeds of related
work. All referenced works were independently verified by the authors.

The authors take full responsibility for all content in this paper, including any LLM-generated con-
tributions. All experimental results, scientific interpretations, novel insights, and conclusions are the
authors’ original intellectual work. LLMs served purely as productivity tools and did not contribute
to the core research ideas or scientific discoveries presented herein.
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