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ABSTRACT

Sampling via Markov chain Monte Carlo can be inefficient when each evaluation
of the energy function gradient depends on a large dataset. In continuous spaces,
this challenge has been addressed by extending Langevin samplers with stochas-
tic gradient estimators. However, such an approach cannot be directly applied to
discrete spaces, as a naive application leads to biased estimates with large vari-
ance. To close this gap, we propose a new sampling strategy, Stochastic Gradient
Discrete Langevin Dynamics, to provide the first practical method for stochastic
distribution sampling in discrete spaces. The proposed approach mitigates the
bias of naive “gradient” estimators via a novel caching scheme, and reduces esti-
mation variance by introducing a modified Polyak step size scheme to adapt the
simulation time. We demonstrate significant efficiency improvements across vari-
ous sampling problems in discrete spaces, including Bayesian learning, stochastic
integer programming, and prompt tuning for text-image models.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) is one of the most widely used techniques to sample from
complex and intractable probability distributions (Robert & Casella, 2013). In continuous spaces,
gradient-based MCMC approaches such as Langevin Monte Carlo (Rossky et al., 1978), Hamilto-
nian Monte Carlo (Duane et al., 1987) and variants (Girolami & Calderhead, 2011; Hoffman et al.,
2014) are able to accurately simulate the Langevin Dynamics (LD) and significantly improve sam-
pling efficiency in both theory and practice (Cheng & Bartlett, 2018; Chen & Vempala, 2019; Car-
penter et al., 2017). In discrete spaces, the Discrete Langevin Dyanmics (DLD) (Sun et al., 2023)
has been recently proposed as a viable generalization of LD to discrete space dynamics, which lever-
ages a characterization in terms of a continuous time Markov chain (ctMc). The “gradient-based”
MCMC methods for discrete spaces, including LB (Zanella, 2020), GWG (Grathwohl et al., 2021),
PAS (Sun et al., 2021; 2022), DLP (Zhang et al., 2022), and DLMC (Sun et al., 2023), can generally
be interpreted as simulating the DLD.

A limitation of “gradient-based” MCMC methods is that they rely on computing the energy gradient,
which can be extremely expensive when the energy is expressed in terms of an auxiliary expecta-
tion, such as an average over a massive dataset. Using stochastic approximation (Robbins & Monro,
1951), SGLD (Welling & Teh, 2011) and SGHMC (Chen et al., 2014) leverage noisy estimates of
the energy gradient from mini-batches of the data to approximately simulate the Langevin dynamics.
However, these methods are built upon a diffusion process and cannot be directly applied to discrete
spaces for two major reasons: First, the accumulated transition kernel from a naive stochastic ap-
proximation does not converge to the DLD, even with infinitesimal simulation time. This is unlike
the diffusion process, as the bias comes from the fact that the ratio estimator is not exchangeable
with the expectation. Second, it is common to maintain a constant step size once it drops below a
threshold (Welling & Teh, 2011; Chen et al., 2014), but in discrete spaces it is important to decrease
the step size to zero, as the error of the stochastic approximation in DLD is typically many orders of
magnitude larger than that in LD.

In this paper, we propose a new algorithm, Stochastic Gradient Discrete Langevin Dynamics
(SGDLD), for efficiently simulating the DLD in discrete spaces when the energy differences are
defined by an auxiliary expectation. Given that we focus on discrete spaces throughout this paper,
we will abuse the terminology “gradient” to refer to the vector of local probability ratios (explained
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in more detail below). SGDLD consists of two key techniques, gradient caching and step size adap-
tation, which each addresses one of the two issues above. First, we maintain a cache of the stochastic
gradient approximations. When a step of DLD does not jump to a new state, the cached values are
reused to correct the empirical ratio in the next step. In this way, we can effectively reduce the
approximation error in the rate matrix with negligible computational overhead. Second, as the mag-
nitude of the empirical probability ratios from different mini-batches can differ by several orders of
magnitude, we introduce a modified Polyak step size scheme (Hazan & Kakade, 2019) in discrete
spaces to automatically adapt the step size to accommodate different states and mini-batches. With
proper annealing, we can prove that SGDLD samples from the correct distribution.

The highlights of the paper are organized as follows:

• In section 3, we define the sampling problem of stochastic distribution and point out its challenges.
• In section 4, we introduce stochastic gradient with caching and the Polyak step size to address the

difficulties identified above, obtaining the SGDLD algorithm.
• In section 6, we empirically verify the theory in two synthetic sampling problems, and also apply

SGDLD to three significant applications in stochastic integer programming, approximate comput-
ing, and prompt tuning for text to image models.

2 PRELIMINARIES

Our approach is built upon the foundations of Langevin Dynamics with extensions to stochastic
gradient and discrete approximation.

Langevin Dynamics. The Langevin Dynamics (LD) describe a diffusion process where a point xt
moves according to gradient ascent steps in f(x) with Gaussian noise injected in the updates:

dXt = ∇f(Xt)dt+
√
2dWt (1)

such that Wt is a Wiener process. The stationary distribution of the process in Equation 1 is π(x) ∝
exp(f(x)), and fast convergence of the process to the stationary distribution has been proved under
various metrics (Durmus & Moulines, 2017; 2019; Cheng & Bartlett, 2018). Research on discrete
time simulation of LD has delivered many efficient algorithms for sampling from a target distribution
π(x), such as LMC (Rossky et al., 1978) and the Unadjusted Langevin Algorithm (Parisi, 1981).

Stochastic Gradient Langevin Dynamics. Welling & Teh (2011) considered the important scenario
of Bayesian learning, where f(x) depends on a massive datasetD. To avoid the huge computational
cost in evaluating ∇f(x), Welling & Teh (2011) proposed SGLD, where the gradient ∇f(x) in
Equation 1 is replaced by an unbiased stochastic approximation ∇f̂(x). Given a time interval h =
Nϵ, SGLD simulates N steps of the noisy LD, such that

xt+h = xt + ϵ

N∑
n=1

∇f̂(xt+nϵ) +
√
2Wh (2)

Denote ĝ(x) = f̂(x) − f(x). Under mild conditions that, for example, ∇f̂(x) is L-Lipschitz and
ĝ(x) has finite variance σ2, one can establish:

ϵ

N∑
n=1

∇f̂(xt+nϵ) = ϵ

N∑
n=1

∇f̂(xt) +O(h2L) = h∇f(xt) + ϵ

N∑
i=1

∇ĝ(xt) +O(h2L) (3)

When N is sufficiently large, it is easy to verify that the second term of Equation 3 converges to
a normal random variable with zero mean and variance O(hϵ), which is dominated by Wh with
variance O(h). Hence, Equation 2 reduces to:

xt+h = xt + h∇f(xt) +
√
2Wh, (4)

for sufficiently small h, showing that SGLD provides an asymptotically unbiased discrete time sim-
ulation of LD.

Discrete Langevin Dynamics. LD in a continuous space Rd can be generalized to a discrete
Langevin dynamics (DLD) in a discrete space X as a continuous time Markov chain (ctMc) in
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X (Sun et al., 2023) that satisfies:

d

dt
ρt = ρtR, R(x, y) = g

(
π(y)

π(x)

)
1{y∈N(x)}(x, y), (5)

where ρt ∈ R|X | is the probability distribution of Xt at time t, and R ∈ R|X |×|X| is the rate matrix.
Here, π(x) is the target distribution, N(x) is the neighborhood set of x, and g(·) : R+ → R+ is
a locally balanced weight function satisfying g(a) = ag( 1a ), for example g(a) =

√
a or g(a) =

a
a+1 (Zanella, 2020). The gradient approximation π(y)

π(x) ≈ exp(⟨∇ log π(x), y − x⟩) has produced
good performance in many applications (Grathwohl et al., 2021), so we adopt this as an intuitive
“gradient” for discrete spaces.

3 SAMPLING FROM A STOCHASTIC DISTRIBUTION

3.1 STOCHASTIC DISTRIBUTION

Let π(·) : X → R+ be an unnormalized distribution on X . We assume querying the function π(x)
is expensive, for example π(x) is a function that depends on a massive dataset. We say π(·) is a
stochastic distribution if there exists functions ψ(x, ξ) : X → R and ϕ : R→ R such that:

π(x) = ϕ(Eξ[ψ(x|ξ)]) (6)

where ϕ andψ can be efficiently evaluated, and ξ is a random variable that can be sampled efficiently.
We give two concrete examples to illustrate this definition.

Example: Quenched Model. Assume π(·) has the form: π(x) =
∫
p(u)π(x|u)du, where p(u) and

π(x|u) are easy to sample from. To rewrite π(·) as in Equation 6, we let ξ = {u1, ..., uB} be a
uniformly sampled mini-batch from p(u), ϕ(·) be the identity function, and ψ(x|ξ) = π̂(x|u1:B) =
1
B

∑B
i=1 π(x|ui).

Example: Bayesian Learning. Assume π(·) has the form π(x) = exp
(
p(x) +

∑
ui∈D f(u|x)

)
,

where D is a dataset, p(x) is a prior, and f(u|x) is the likelihood function. To rewrite π(·) as in
Equation 6, we let ξ = {u1, ..., uB} be a uniformly sampled mini-batch from D, ϕ(x) = exp(x)
and ψ(x|ξ) = p(x) + D

B

∑n
i=1 f(ui|x).

3.2 NAIVE STOCHASTIC GRADIENT

Let us assume that we have an unbiased noisy estimate of the rate matrix R̂ for the DLD Equation 5,
such that E[R̂] = R and ∥R̂ − R∥2 < U almost surely, where U is a fixed constant. To simulate
from xt to xt+h, we split h into N smaller steps of duration h

N and denote the stochastic rate matrix
in each step j as Rj . Since computing exp( h

NRj) exactly is intractable, we follow Sun et al. (2023)
to use

exp(
h

N
Rj) ≈ I +

h

N
Rj , (7)

as the transition matrix in simulation. We only need to show that

lim
N→∞

exp(hR)−
N∏
i=1

(I +
h

N
Ri) = 0 (8)

Note that one can decompose N = N1N2 to obtain:
N∏
i=1

(I +
h

N
Ri) =

N1∏
i=1

N2∏
j=1

(I +
h

N
RiN1+j) =

N1∏
i=1

[I +
h

N1
(
1

N2

N2∑
j=1

RiN1+j) +O(
1

N2
1

)] (9)

=

N1∏
i=1

[exp(
h

N1
R) +O(

1

N1

√
N2

) +O(
1

N2
1

)] = exp(hR) +O(
1√
N2

) +O(
1

N1
), (10)

where N2 controls the Monte Carlo estimation error from R̂ to R, and N1 controls the Taylor
approximation error from I + ϵR ≈ exp(ϵR). When both N1 and N2 are sufficiently large, the
naive stochastic gradient DLD asymptotically converges to the correct target distribution π(·).
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3.3 CHALLENGE IN DISCRETE SPACES

Bias: The derivation above assumes that the rate matrix R has an unbiased estimator R̂, which is
not necessarily available for general discrete distributions. That is, in general:

g
(π(y)
π(x)

)
= g
(ϕ(Eξ[ψ(x, ξ)])

ϕ(Eξ[ψ(x, ξ)])

)
̸= Eξ

[
g
(ϕ(ψ(x, ξ))
ϕ(ψ(x, ξ))

)]
. (11)

This gap can also be illustrated in the two examples above. For simplicity, consider the weight
function g(a) =

√
a.

In the Quenched Model scenario, the expectation clearly cannot be exchanged with the ratio√
π(y)

π(x)
=

√
Eu1:N

[π̂(y|u1:N )]

Eu1:N
[π̂(x|u1:N )]

̸= Eu1:N

[√
π̂(y|u1:N )

π̂(x|u1:N )

]
.

In Bayesian Learning, Jensen’s inequality reveals that the expectation is not generally exchangeable
with the exponential:√

π(y)

π(x)
= exp

(
E

[
M

2B

B∑
i=1

f(ui|y)− f(ui|x)

])
≤ E

[
exp

(
M

2B

B∑
i=1

f(ui|y)− f(ui|x)

)]

Magnitude: Besides the bias in R̂, its large variance requires an extremely small simulation time ϵ,
which slows the mixing rate of the algorithm with increasing iterations. This is unlike the continuous
case, where Welling & Teh (2011) and Chen et al. (2014) keep the step size constant once it has
decreased below a threshold, since when the threshold is sufficiently small the MH rejection rate
is negligible. Unfortunately, in the discrete case, choosing a fixed threshold for all states and all
mini-batches is typically not a good choice. The first order Taylor approximation of exp(ϵR̂) in
Equation 7 requires the simulation time ϵ in the order of O(∥R̂∥−1). However, given that R̂ consists
of probability ratios, Equation 5, that are an exponential of the gradients ∇f(x) used in LD, the
resulting norms of the stochastic rate matrix R̂ across mini-batches in the discrete case can differ by
orders of magnitude.

For example, we evaluated the probability ratio in the Bayesian logistic regression task below (see
Section 6.2) with 200 different mini-batches. The magnitude of the gradient and the jump rate are
visualized in Figure 1 (see Z(x) in Equation 14 for the definition of the jump rate). The gradient
norms are all of the same order on the log scale while the largest jump rate can be 1030 times of the
smallest jump rate. Choosing a simulation time ϵ that is small enough for the largest jump rate will
cause the process to be stuck for an inordinately long time at locations with a small jump rate.

Figure 1: Scale for Gradients and Jump Rates

Algorithm 1 One Step of SGDLD
1: Input: state xt, cache C
2: C ← C ∪ {ψ(z, ξ) : z ∈ N(xt)}
3: Get rate R̂ via Equation 12.
4: Get simulation time ϵt via Equa-

tion 14.
5: Sample new state xt+1 ∼ I+ϵtR̂.

6: if xt+1 ̸= xt then
7: Empty cache C.
8: end if
9: Return: xt+1, ϵt

4 STOCHASTIC GRADIENT DISCRETE LANGEVIN DYNAMICS

4.1 STOCHASTIC GRADIENT WITH CACHE

The most straightforward approach to address the bias in R̂ is to increase the batch size B but this
also increases the computational cost. Moreover, when a large batch size mitigates the estimation
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error Equation 10 controlled by N1, the error from first order Taylor approximation of exp(ϵR̂) still
requires a large N2. As a result, the algorithm still only admits a small simulation time ϵ, where the
new state remains in the same position xt+ϵ = xt with a high probability under the transition matrix
I + ϵR̂. In this case, the information collected at xt is lost. This is unlike SGLD (Welling & Teh,
2011) in a continuous space, where an update of the state xt+ϵ ̸= xt occurs in every step.

To address this inefficiency, conveniently, whenever the DLD stays at the same state during a simu-
lation interval ϵ, i.e., xt+ϵ = xt, we can cache the information collected at xt and reuse it to compute
the rate matrix at xt+ϵ. Assume that a sequence of states x0 = xϵ = ... = x(m−1)ϵ = x has occurred
in the DLD without a jump. We can maintain the cache C = {ψ(z, ξk) : z = x or z ∈ N(x)}m−1

k=0 ,
where ξk = ukB+1:(k+1)B is the mini-batch collected at state xkϵ. The empirical probability ratio
π̂k(y)
π̂k(x)

from xkϵ to x(k+1)ϵ can then be calculated as:

π̂k(y)

π̂k(x)
=
ϕ( 1

m

∑m
i=1 ψ(y, ξi))

ϕ( 1
m

∑m
i=1 ψ(x, ξi))

. (12)

Again, we use the two concrete examples above to illustrate the empirical probability ratio:

Quenched:
π̂k(y)

π̂k(x)
=

∑mB
i=1 π(y|ui)∑mB
i=1 π(x|ui)

, Bayesian:
π̂k(y)

π̂k(x)
= exp

( M

mB

mB∑
i=1

f(ui|y)− f(ui|x)
)
.

The caching technique can effectively expand the batch size without increasing the computation.
With some mild assumptions, Proposition 4.1 shows that the stochastic gradient sampler indicated
by Equation 12 is asymptotically unbiased.

Proposition 4.1. Assume for all x, y, u, the likelihood ratio π(y;u)
π(x;u) is bounded by a fixed value U .

Then, when the step size ϵ decreases to 0, the sampling process associated with jump rate from
Equation 12 is asymptotically unbiased.

See the complete proof in Appendix A.

Remark: Similar to Hamiltonian Monte Carlo, the sampling process above has an equivalent form
of memoryless Markov chain. See more detailed discussion in Appendix B.1.

4.2 POLYAK STEP SIZE

Although we have an asymptotically unbiased estimator, as mentioned in Section 3.3, the large
deviation of the magnitude of R̂ makes the stochastic simulation of DLD very unstable. To address
this problem, we borrow an idea from Polyak step adaptation in convex optimization (Hazan &
Kakade, 2019). Given an objective function f(x), a Polyak step in a gradient descent with step size
ηt is given by:

xt+1 = xt − ηt∇f(xt), ηt =
ht

∥∇f(xt)∥2
, (13)

where ht is hand designed schedule and the norm of the gradient is used to normalize the step
size. We extend this idea to discrete spaces, where we can also maintain a Polyak step ϵt. Given a
designed schedule ht and current state xt, let:

ϵt =
ht

Z(xt)
, Z(x) =

∑
z∈N(x)

g

(
π(z)

π(x)

)
, (14)

where the value Z(x) is the jump rate for leaving the current state x. We use Z(x) in place of the
norm of gradients for simulating DLD. In this way, the step size ϵt can be automatically adjusted for
all states x and all mini-batches. In practice, calculating the probability ratio π(z)

π(x) in the jump rate
Z(x) exactly could be time consuming. Hence, we follow Grathwohl et al. (2021) to use a gradient
approximation. Empirically, we find this is sufficient to stabilize the sampling process.

For the Polyak step size schedule, we can set a threshold h∗ and gradually decrease ht until it reaches
h∗. In this way, the Monte Carlo estimation for a function F (x) of interest is

Ex[F (x)] =

∑T
t=1 ϵtF (xt)∑T

t=1 ϵt
. (15)
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We name this algorithm as Stochastic Gradient Discrete Langevin Dynamics (SGDLD) and summa-
rize it in Algorithm 1.

5 RELATED WORK

In scaling to massive or streaming datasets, which has become more prevalent in recent years,
stochastic gradient variants of dynamics-based samplers have achieved significant success. Stochas-
tic gradient Langevin dynamics (SGLD) (Welling & Teh, 2011) attempted the first step in this di-
rection. Following this work, Ahn et al. (2012) proposed to use Fisher scoring as a pre-conditioning
matrix in SGLD to accelerate mixing. Patterson & Teh (2013) generalized SGLD to the probability
simplex by choosing a proper Riemannian metric. Chen et al. (2014) proposed the stochastic gra-
dient Hamiltonian Monte Carlo (SGHMC) algorithm and introduced a friction term to address the
entropy explosion problem. Finally, Baker et al. (2019) incorporated a variance reduced stochas-
tic gradient estimator in SGLD for faster sampling. These methods are fundamentally based on
diffusion processes and suitable for continuous spaces.

However, for discrete spaces, the corresponding theories are far less well understood. Recently,
Zanella (2020) introduced an informed proposal for discrete spaces, and proved that a family of
locally balanced functions is asymptotically optimal. Inspired by this work, Sun et al. (2023) gener-
alized the Langevin dynamics to discrete spaces by introducing DLD as a continuous time Markov
chain, showing that the various locally balanced proposal samplers (Grathwohl et al., 2021; Sun
et al., 2021; Zhang et al., 2022; Sun et al., 2022) are a discretizations of the DLD. Mimicking SGLD,
Zhang et al. (2022) attempted to generalize SGLD under the assumption that an unbiased estimator
of the rate matrix exists. However, the continuous time Markov chain perspective followed in this
work is fundamentally different from the diffusion process, hence a corresponding understanding of
the discrete Langevin dynamics for stochastic distributions, as considered in this paper, was lacking.

6 MORE EXPERIMENT DETAILS

In this section, we evaluate stochastic gradient discrete Langevin Dynamics (SGDLD) on two syn-
thetic tasks and three real-world applications. For an abalation study, we also consider two variants:
(1) SGDLD-noC, which does not use the gradient caching technique Equation 12, and (2) SGDLD-
noP, which does not use the Polyak step size Equation 14. We omitted the results for SGDLD-noP
in three applications as it can not generate reasonable solutions.

6.1 GAUSSIAN BERNOULLI MODEL

We first validate SGDLD on a simple quenched model with x ∈ {0, 1}4. We let the auxiliary
variable u ∈ R4 satisfy a Gaussian mixture model

u ∼
∑16

i=1 wiN (µi,Σi), (16)

and let the likelihood π(x|u) ∝ exp(⟨x, u⟩) satisfy a Bernoulli model. In this case, we can exactly
compute the probability distribution for x. See more details in Appendix C.1.

We measure the distance between the empirical distribution obtained from samples and the true
probability distribution to quantify sample quality. We compare SGDLD with SGDLD-noC and
Gibbs, which computes the empirical conditional probability based on the mini-batch in each step.
For all methods, we use ⟨method⟩-b to denote the batch size b that is used. We report the mean and
standard deviation of the total variation in Figure 2. The results strongly support the claims made in
this paper.

• SGDLD algorithm has smaller total variation than Gibbs.
• The total variation of SGDLD is consistently less than SGDLD-noC with the same batch size,

implying the gradient cache can reduce bias.
• The total variation of SGDLD decreases when the step size decreases, which is consistent with

the claim that SGDLD is asymptotically unbiased.
• The total variation of SGDLD-noC does not decreases when the step size decreases, which implies

SGDLD-noC is not asymptotically unbiased.

6



Under review as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8 1.0
polyak step size

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

to
ta

l v
ar

ia
tio

n
gibbs-2
SGDLD-noC-1
SGDLD-noC-2
SGDLD-noC-4
SGDLD-1
SGDLD-2

Figure 2: Total Variation Distance on
Gaussian Bernoulli Model.
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Figure 3: Estimation Error of variable selection us-
ing Bayesian Logistic Regression.

Another interesting phenomenon is that the total variation of SGDLD-noC-1 and SGDLD-noC-2
increases when we decrease the step size. The variation is dominated by the Monte Carlo estimation
error when Polyak step size is small, and is dominated by the approximation error Equation 7 when
Polyak step size is large. Results with larger batch size are given in Appendix C.1.

6.2 BAYESIAN LOGISTIC REGRESSION

We apply SGDLD to Bayesian logistic regression for variable selection. Specifically, for a dataset
X ∈ Rm×d and Y ∈ {0, 1}m we assume the log likelihood function is given by:

f(Y |X) = ⟨Y,Xβ⟩ − log Sigmoid(Xβ) (17)

where the binary vector β ∈ {0, 1}d plays the role of selecting variables. Details in Appendix C.2.

For baselines, we consider SGDLD-noC, SGDLD-noP, and DLMC (Sun et al., 2023) that uses the
entire dataset in every MH step. For the stochastic methods, we denote each as ⟨method⟩-h, where
h is the threshold for the Polyak step size. For SGDLD-noP-h, the simulation time threshold is
selected so that is has the same average jump distance as SGDLD-h. For DLMC, we use the optimal
simulation time obtained by tuning the average acceptance rate to match 0.574 (Sun et al., 2022).

To measure the mixing rate, we report the 1-norm estimation error of the marginal distribution of β.
To calibrate the computation cost, each step in the x-axis of Figure 3 refers to 320 updates for the
stochastic methods and 2 updates for DLMC. The results in Figure 3 strongly support our claims:

• SGDLD has a faster mixing rate than DLMC, as SGDLD requires less computation in each step.
• SGDLD has significantly smaller estimation error than SGDLD-noC. The reason is SGDLD lever-

ages gradient caching to correct the transition probability.
• SGDLD has a faster mixing rate than SGDLD-noP. Also, SGDLD has smaller variance as it is less

affected by the large variance in the stochastic approximation of the jump rate.

We conducted extra experiments to show the fast mixing of SGDLD and demonstrate its advantage
compared to more baselines, such as pseudo marginal MCMC (Bardenet et al., 2017). The results
are given in Appendix C.2.

6.3 STOCHASTIC FACILITY LOCATION

Stochastic mixed integer programming (SMIP) — which integrates two hard optimization prob-
lems, integer programming (Conforti et al., 2014) and stochastic programming (Prékopa, 2013) —
poses problems that are typically hard to solve (Sen, 2005). A commonly used approach is to com-
bine sample average approximation (SAA) (Kleywegt et al., 2002) with Bender’s decomposition
(BnnoBRs, 1962), which is restricted to a finite number of samples due to the hardness of integer
programming. Here, SGDLD can find a high quality solution by efficiently evaluating a massive
number of samples.
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Table 1: Facility Location with Stochastic Demands
Problem Size 15× 30 40× 120 100× 400

Method Cost ↓ Time (s) Cost ↓ Time (s) Cost ↓ Time (s)

Gurobi (8) 10418± 499 2 29390± 3018 256 73342± 3436 3502
Gurobi (1024) 10152± 494 103 26137± 2428 3342 68924± 4727 3621

SLS 9981± 480 16 26514± 2283 25 73849± 3036 91
SGDLD-noC 9870± 487 15 25773± 2576 25 67532± 2983 96

SGDLD (Ours) 9792± 515 15 25398± 2366 26 66395± 3181 98

Table 2: Relative errors of different methods with the AxC unit constraint as 3,5,8
Threshold RL GS-Tr+S GS-Tr+R CON AFF SGDLD-noC SGDLD OPT

3 AxC units 7.68 4.87 3.24 3.18 3.10 3.34 2.95 2.77
5 AxC units 10.15 8.03 5.86 5.13 5.38 5.26 5.13 4.74
8 AxC units 12.83 12.65 10.62 10.17 10.04 9.93 9.81 8.56

We consider the facility location problem with stochastic demand (Albareda-Sambola et al., 2011;
Bieniek, 2015). Let I and J denote the index sets for facilities and customers, respectively. Denote
yi ∈ {0, 1} as whether facility i ∈ I is open or not, xij ∈ {0, 1} as whether customer j ∈ J is
served by facility i, and si as the outsource for facility i. The objective function is:

f(x, y; d) =
∑
i∈I

ciyi +
∑

i∈I,j∈J

cijdjxij +
∑
i∈I

gisi, (18)

More details about the parameters ci, cij , dj and gi are given in Appendix C.3. We use |I| × |J |
to refer to the size of the problems we consider. We can transform the optimization problem into a
sampling problem by considering the following probability distribution

π(x, y; τ) ∝ exp(−βEd[f(x, y; d)]), (19)

where β is the inverse temperature used to control the smoothness of π(·). In this case, sampling is
equivalent to Bayesian learning with a dataset having infinite samples d. We compare SGDLD with
SGDLD-noC, SGDLD-noP, Gurobi 10.0 (Bixby, 2007) and stochastic local search (SLS) (Hoos &
Stützle, 2004). For Gurobi, we use SAA with 8 and 1024 samples. For SLS, we use the same
procedure as SGDLD except replace the sampling step by greedily picking the best local edit in the
neighborhood. We solve problems at three different sizes. After each method returns a configuration
(x, y), we sample another 10k demands d and report the average cost with standard deviation in
Table 1. The results show that SGDLD significantly outperforms other methods in all sizes.

6.4 APPROXIMATE COMPUTING

SGDLD can also be used to solve black-box stochastic integer optimization. For example, one
fundamental problem in approximate computing (AxC) is to assign imprecise functional units (a.k.a.
AxC units) to execute operations such as multiplication or addition (Han & Orshansky, 2013; Mittal,
2016), aiming to significantly reduce circuit energy with tolerable error. We follow Wang et al.
(2022) and formulate the problem as a computation graph that has 15 nodes of multiplication or
addition that maps R16 to R. The random variable w determines the computational task to execute.
The energy function is defined as the expectation of the computing error Ew[f(x;w)]. More details
about the problem are given in Appendix C.4

Similar to the stochastic facility location problem, we can transform the optimization problem into
a sampling problem by considering the energy based model:

π(x) ∝ exp(−βEw[f(x;w)]) (20)

We report the average relative error for SGDLD in Table 2. For the other methods, we use the number
reported in (Wang et al., 2022). We can see that SGDLD has comparable or better performance than
state-of-the-art learning based methods CON and AFF. Computationally, sampling based method
can be much cheaper. In particular, SGDLD only requires 10k evaluations of f(x;w) to generate a
solution. For CON and AFF, ignoring the training and inference cost, collecting training data alone
requires more than 100 million evaluations (Wang et al., 2022).
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Table 3: Prompt Tuning for Style Transfer. For each method and prompt length, we run the algorithm
for 10 times and report the mean and standard deviation of the CLIP (Radford et al., 2021) similarity
(↑) between the best text prompts found and the target images.

Prompt Length 4 8 16 32

SGDLD 0.4201± 0.0089 0.4452± 0.0071 0.4708± 0.0127 0.4844± 0.0095
SGDLD-noC 0.3689± 0.0166 0.3655± 0.0138 0.3670± 0.0141 0.3678± 0.0161

CR Wen et al. (2023) 0.3957± 0.0054 0.4195± 0.0063 0.4375± 0.0060 0.4526± 0.0049

Target Style Paris Tiger Calculator Rocket

Figure 4: Examples of images generated using SGDLD with prompt length 32

6.5 PROMPT TUNING

The performance of large language models (Chowdhery et al., 2022; OpenAI, 2023) and diffusion
generative models (Rombach et al., 2022; Radford et al., 2021) can heavily depend on the quality of
the prompts (Lester et al., 2021; Wei et al., 2022). Since the text prompts are discrete, the SGDLD
algorithm is a natural choice to sample good prompts. We follow the style transfer experiments
in Wen et al. (2023). In particular, given a target style represented by a set of target images I =
{I1, ..., In}, we sample text prompts x that obtain a high CLIP (Radford et al., 2021) score on the
target images. Similar to last two applications, we consider the target distribution:

π(x) = exp(βEI∼I [CLIP(x, I)]). (21)

We compare SGDLD with the continuous relaxation (CR) method in Wen et al. (2023) and SGDLD-
noC. The CLIP similarity is reported in Table 3 and some examples generated by SGDLD are given
in Figure 4. In Table 3, one can see that SGDLD obtains a CLIP similarity that is consistently larger
than the other two methods. More details and examples are given in Appendix C.5.

7 DISCUSSION

In this work, we generalize the stochastic gradient Langevin dynamics to discrete spaces. The pro-
posed approach builds on the foundation of discrete Langevin dynamics, but uses stochastic approx-
imations of the probability ratio to avoid calculating over an entire dataset. The proposed algorithm
incorporates significant advances, since naive implementations will be biased in probability ratio
estimation and also unstable in selecting the simulation time threshold. The proposed SGDLD ad-
dresses these two challenges by introducing novel gradient caching scheme and a Polyak step size
control to deliver an asymptotically unbiased algorithm. Empirically, the method demonstrates good
performance in both stochastic sampling tasks and stochastic optimization problems.

Despite the advances in SGDLD, there remains plenty of room to improve stochastic sampling in
discrete spaces. In Equation 12, we implement a very simple cache approach. We believe that
introducing variance reduction techniques will help improve sampling efficiency. Also, SGDLD
currently simulates discrete Langevin dynamics in an unadjusted manner, requiring an exact calcu-
lation of the probability ratio to ensure asymptotic unbiasedness. For more challenging scenarios
where one does not have access to the exact probability ratio and gradient approximation is re-
quired, unbiasedness is not guaranteed. Deriving an MH rejection step based on mini-batch data is
a possible solution. Nevertheless, this work provides a first viable step toward developing efficient
MCMC samplers for discrete spaces based on stochastic approximation, and we will seek further
improvements in future work.
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A DEFERRED PROOF

Proposition A.1. Assume for all x, y, u, the likelihood ratio π(y;u)
π(x;u) is bounded by a fixed value U .

Then, when the step size ϵ decreases to 0, the sampling process associated with jump rate from
Equation 12 is asymptotically unbiased.

Proof. For a given time interval h, consider a split into N steps so that h = Nϵ. Denote the batch
size as B. For each step k = 0, ..., N − 1, the samples collected at step k can be indexed as
ukB+1:(k+1)B . For 0 ≤ i < j ≤ N − 1, let Ri:j denote the rate matrix computed using uiB+1:jB .
By assumption Equation 6, we have that Ri:j is an asymptotically unbiased estimator of R as j − i
increases to infinity. For simplicity, let P̂ (xs → xt) denote the empirical transition probability from
time s to time t.

To compute the accumulated transition probability for the first two steps, we need to consider two
cases: First, with probability 1−O(ϵ), the state does not jump in the first step and the accumulated
transition probability is (I + ϵR0:1)(I + ϵR0:2). Second, with probability O(ϵ), the state jumps in
the first step and the accumulated transition probability is (I + ϵR0:1)(I + ϵR1:2). Combining these
two cases yields the transition probability over the first two steps:

P̂ (x0 → x2ϵ) = I + ϵ(R0:1 +R0:2) +O(ϵ2) (22)

Then, applying Equation 22 recursively to the remaining steps, we have accumulated transition
probability after N steps as:

P̂ (x0 → xh) = I + h
1

N

N∑
i=1

R0:i +O(hϵ) (23)

Since R0:i converges to R, we have:

lim
h→0

lim
N→∞

P̂ (x0 → xh)− exp(hR)

h
= 0, (24)

which implies that as ϵ decreases to 0, the empirical transition probability is asymptotically unbiased.

B DISCUSSION

B.1 MEMORYLESS MARKOV CHAIN

Assume we have an initial state X1 = z1. Using the caching scheme, we generate a chain

(X0 = z0, ϵ0), (X1 = z0, ϵ1), . . . , (Xn1−1 = z0, ϵn1−1), (Xn1
= z1, ϵn1

), (Xn1+1 = z1, ϵn1+1), . . .

That is to say, the changes of the state occur at steps 0 = n0 < n1 < . . ., while the intermediate
steps made no change and thus cached. Superficially this looks like a non-Markovian chain, but we
can condense this sequence and obtain a Markov chain:

(Y0 = z0, ε0), (Y1 = z1, ε1), . . . , where εj =
nj∑

i=nj−1

ϵi (25)

Specifically, the sequence Xnj
, Xnj+1, · · · , xnj+1−1 are condensed into a single state Yj . For any

objective function f(·), the Monte Carlo estimation on the stationary distribution π(·) is:

Ez∼π(·)

[
1∑m

i=1 εi

m∑
i=1

εif(zi)

]
(26)

In another word, the process to generate the sequence Xnj , Xnj+1, · · · , Xnj+1−1 is simply a pro-
posal and the transition between (Yj , εj) to (Yj+1, εj+1) are Markovian.

In analogy, in the Hamiltonian Monte Carlo algorithm, one uses the leapfrog algorithm to simulate
the Hamiltonian dynamics in multiple steps to give a proposal. The non-Markovian within the
proposal does not harm the to get a memoryless Markov chain in the end.
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C PROBLEM FORMULATION IN EXPERIMENT

The experiments are run on a GCP virtual machine, with n1-standard-32 Intel Haswell CPU, 8
Nvidia V100 GPUs. We run 100 chains in C.1, C.2, C.3, 1 chain in C.4, and 10 chains in C.5. More
details see below.

For sampling tasks in the Gaussian Bernoulli Model and Bayesian Logistic Regression, we use step
size ht = clip(3 · (10 + t)−0.5,min = hmin) In sampling tasks, the results reported in Figures 2
and 3 only use samples collected with t large enough, such that ht = hmin. Hence, the schedule
does not affect the result. For optimization tasks, we use ht = clip( 1000

100+t

0.5
,min = 0.3) in facility

location, ht = clip( 3
10+t

0.5
,min = 0.1) in approximate computing, and ht = 1 in prompt tuning.

In optimization tasks, we did some hyperparameter searching and we found that, if ht decreases too
fast or too slow, SGDLD will need more steps to obtain good solutions.

C.1 GAUSSIAN BERNOULLI MODEL

We generate the Gaussian Bernoulli Model via Gaussian integral trick (Hubbard, 1959). Specifically,
we consider a Markov random field with distribution:

π(x) ∝ exp(
xTWx

2
+ bTx) (27)

where:

W =

 1 0.5 0.5 0.5
0.5 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

 , b =W

 −0.5−0.5
−0.5
−0.5

 (28)

Then, we introduce auxiliary variable u such that π(u|x) = N (W
1
2x, I). Then, we have the

marginal distribution of u is a Gaussian mixture model

u ∼
∑
x

π(x)N (W
1
2x, I) (29)

and the condition distribution of x is Bernoulli:

π(x|u) ∝ (xT (W
1
2u+ b)) (30)

Results with larger batch size are given in Figure 5. One can see that caching scheme consistently
improve the sampling efficiency.

C.2 BAYESIAN LOGISTIC REGRESSION

In Bayesian logistic regression, for dataset X ∈ Rm×d, Y ∈ {0, 1}m, we assume the log likelihood
function is given by:

f(Y |X) = ⟨Y,Xβ⟩ − logSigmoid(Xβ) (31)
and the binary vector β ∈ {0, 1}d plays the role of selecting variables. Following Zhou (2020),
we sample Xi ∼ N (0, (I + 11T )/d) for i = 1, ...,m independently. We set βj = 1 if j <

√
d

and βj = 0 for else. Then, we sample Yi ∼ Bernoulli(sigmoid(Xiβ)) for i = 1, ...,m inde-
pendently. After creating the dataset (X,Y ), we expand the model dimension by duplication, i.e.,
X̃i = cat([Xi, Xi]) ∈ Rm×2d, to make the problem more challenging (Titsias & Yau, 2017). As a
result, in the new selector β̃ ∈ {0, 1}2d, the last d dimensions have the same probability to be set to
1 as the first d dimensions. In main text, we consider 2d = 18 and m = 100k.

We conducted extra experiments with 2d = 100 and m = 100k with more baselines, for example,
pseudo-marginal MCMC (Bardenet et al., 2017). In continuous spaces, pseudo marginal samplers
use an uninformed proposal distribution and various variance reduction techniques to control the MH
acceptance rate. However, these variance reduction techniques do not directly apply to problems in
discrete spaces. To enable comparison, we consider a random walk oracle, which is a Random Walk
Metropolis that has access to the exact energy function while having the same computation cost
as our SGDLD. Such a random walk oracle provides an upper bound of the efficiency for pseudo-
marginal samplers in discrete space. The results are given in Figure 6. One can see that, though with
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a zero variance estimator, the RWM-Oracle has a larger estimation error than SGDLD. The reason
is that a pseudo-marginal sampler is uninformed, thus it mixes slower than an informed sampler.

We also examine the Gelman-Rubin statistic (Gelman & Rubin, 1992) as a diagnosis of mixing.
When the statistic decreases to 1, it implies the Markov chain converges to its stationary distribution.
In figure 7, we report the Gelman-Rubin statistic from running 100 Markov chains on Bayesian
Logistic Regression model with n = 50 and m = 100. The statistic converges to 1 quite fast,
indicating a fast mixing of SGDLD. Also, we can see that using Polyak step size 0.6 mixes slightly
faster than using Polyak step size 0.3 as expected.

C.3 STOCHASTIC FACILITY LOCATION

Denote I, J as the index set for facilities and customers, respectively. Denote yi ∈ {0, 1} as whether
facility i is open or not, xij ∈ {0, 1} as whether customer j is served by facility i, si as the outsource
for facility i, the objective function is

min f(x, y; d) =
∑
i∈I

ciyi +
∑

i∈I,j∈J

cijdjxij +
∑
i∈I

gisi (32)

s.t.
∑
i∈I

xij = 1, j ∈ J (33)∑
j∈J

dijxij ≤ Kiyi + si, i ∈ I (34)

si ≥ 0, i ∈ I (35)

where ci is fixed cost to open facility i, cij is the transition cost from facility i to customer j, dj is
the stochastic demand of customer j, and gi is the outsource penalty coefficient for facility i, Ki is
the capacity for facility i. We set the values of these parameters following Albareda-Sambola et al.
(2011); Bieniek (2015).

We run SGDLD 10k steps with batch size 1 with Polyak step size decreasing from 3.0 to 0.3.
We use the temperature τ = 0.999t ∗ τ0, where τ0 = 200, 500, 1000 for problems with size
15 × 30, 40 × 120, 100 × 400, respectively. After sampling, we collect the last state in each chain
(x1, y1), ..., (x100, y100). Then we sample 10k demands d, and pick the (x∗, y∗) that has the smallest
average cost on these 10k demands d.

We compare SGDLD with baselines including Gurobi 10.0 (Bixby, 2007) and stochastic local search
(SLS) (Hoos & Stützle, 2004) on problems in three different sizes, each has 5 instances. For Gurobi,
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we use SAA with 8 samples and 1024 samples. We use the default setting of Gurobi and set a time
limit for 3600 seconds. For SLS, we use the same procedure as SGDLD except for replacing the
sampling step by greedily picking the best local edit in the neighborhood.

In evaluation, for each instance, we sample another 10k demands d and compute the cost for the
solutions obtained from different methods. We report the average cost with standard deviation on 5
instances for each method in Table 1.

C.4 APPROXIMATE COMPUTING

We conduct the approximate computing experiments following Wang et al. (2022). One fundamen-
tal problem in approximate computing (AxC) is to assign imprecise functional units (AxC units) to
execute operations such as multiplication and addition. In our experiments, we consider a compu-
tational graph that has 15 nodes of multiplication or addition that maps R16 to R. We consider a
fixed number of nodes (3, 5, or 8) are assigned to AxC units, where each unit randomly produces
a result with 10% relative error in average. Denote x ∈ {0, 1}15 as whether to assign AxC unit on
node i. The objective is to assign the fixed number of AxC units while minimizing the expected
relative error of the output Ew[f(x;w], where w represent a node is multiplication or addition and
the randomness for all AxC units.

For each configuration w, we run 1 chain with 200 steps and Polyak step size decreasing from 2.0
to 0.1 to solve the problem. We use the temperature τ = 5 · 0.96t and use the final state in the chain
as our solution.

C.5 PROMPT TUNING

The prompt tuning experiment follows Wen et al. (2023). In particular, the diffusion generative
models Rombach et al. (2022) can consume a text prompt to generate high-quality images and CLIP
(Radford et al., 2021) can measure the similarity between the images and texts. Given a set of target
images I = {I1, ..., In}, we sample text prompts x that obtains a high CLIP score on the target
images. We consider the target distribution

π(x) = exp(βEI∼I [CLIP(x, I)]. (36)

Following Wen et al. (2023), we run SGDLD for T = 3000 steps, with Polyak step size ht = 1,
inverse temperature βt = 0.1t, t = 1, ..., 3000. In the original work, CR Wei et al. (2022) randomly
initialize the text prompt and get its embedding in continuous space. Then, it applies gradient descent
on the continuous embedding for 3000 steps. In the end, it converts the continuous embedding back
to text prompt that is closest to the embedding. Our SGDLD directly updates the prompt x to
simulate the gradient flow and obtains a better result. We display more results in Figure 8.
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Paris Tiger Calculator Rocket

Figure 8: Examples of images generated via different methods with prompt length 32: (top):
SGDLD, (middle): CR (Wen et al., 2023), (bottom): SGDLD-noC
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