
One Model to Drift Them All: Physics-Informed
Conditional Diffusion Model for Driving at the Limits

Franck Djeumou1,2, Thomas Lew1, Nan Ding1, Michael Thompson1,
Makoto Suminaka1, Marcus Greiff1, and John Subosits1

1Toyota Research Institute, 2Rensselaer Polytechnic Institute

Abstract: Enabling autonomous vehicles to reliably operate at the limits of han-
dling— where tire forces are saturated — would improve their safety, particularly
in scenarios like emergency obstacle avoidance or adverse weather conditions.
However, unlocking this capability is challenging due to the task’s dynamic na-
ture and the high sensitivity to uncertain properties of the road, vehicle, and their
dynamic interactions. Motivated by these challenges, we propose a framework to
learn a conditional diffusion model for high-performance vehicle control using an
unlabelled dataset containing trajectories from distinct vehicles in different environ-
ments. We design the diffusion model to capture the complex dataset’s trajectory
distribution through a multimodal distribution of parameters of a physics-informed
data-driven dynamics model. By conditioning the generation process on online
measurements, we integrate the diffusion model into a real-time model predictive
control framework for driving at the limits, and show that it can adapt on the fly to
a given vehicle and environment. Extensive experiments on a Toyota Supra and
a Lexus LC 500 show that a single diffusion model enables reliable autonomous
drifting on both vehicles when operating with different tires in varying road condi-
tions. The model matches the performance of task-specific expert models while
outperforming them in generalization to unseen conditions, paving the way towards
a general, reliable method for autonomous driving at the limits of handling.

Keywords: Diffusion Models, Learning for Control, Autonomous Drifting.

Figure 1: Left: Examples of the conditional diffusion model performing drifting trajectories on two
vehicles. Right: Overview of the controller architecture and online model parameter generation
process. The videos of the experiments can be found at https://tinyurl.com/diff-drift.

1 Introduction

Existing autonomous vehicles are constrained to operate at a fraction of their full handling potential.
Designing algorithms to reliably control vehicles beyond these engineered limits would unlock faster

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://tinyurl.com/diff-drift


and more reliable responses to diverse safety-critical situations [1, 2] such as driving on ice and
avoiding sudden obstacles, scenarios where the vehicle may use all of the available tire-road friction,
causing it to slide across the road [3, 4, 5]. However, driving at the limits of handling is challenging
due to the task’s dynamic nature, the high sensitivity to model mismatch, and the uncertain properties
of the road, the vehicle, and their dynamic interactions. In addition, the high cost of collecting
a dataset for driving at the limits, the complex vehicle dynamics, and the safety considerations
complicate the use of imitation learning and reinforcement learning strategies. These challenges
motivate the development of a model capable of exploiting physics knowledge and capturing complex
forms of uncertainties while being amenable to real-time autonomous vehicle control.

Diffusion models [6, 7, 8, 9] have shown to be highly capable of representing complex, high-
dimensional, and multimodal distributions from data. However, their direct use for driving at the
limits is not straightforward. The limitations of classical diffusion models include the question of
how to leverage prior physics knowledge to improve data efficiency and interpretability, and the
considerable model inference time, which can be a bottleneck for high-bandwidth control.

Contribution. We propose a conditional diffusion vehicle model for control-oriented modeling of
driving at the limits of handling under uncertainties. By predicting the parameters of a physics-
informed neural stochastic differential equation dynamics model, the model has four key properties.

• By encoding prior physics knowledge as an inductive bias, the proposed diffusion-based vehicle
model is interpretable and generalizes to new environments from small amounts of data.

• The model can capture complex multimodal distributions over the vehicle model’s parameters.
• The model can adapt on the fly to various test-time vehicles and road conditions by conditioning

on measurements of the vehicle’s interaction with the world.
• By predicting the parameters of a physics-based model, as opposed to directly predicting state

trajectories, the model inference and control loops are decoupled. This hierarchical approach
unlocks diffusion sampling at low rates and high-frequency predictive control.

We integrate the diffusion model in a real-time nonlinear model predictive control framework for
autonomous driving at the friction limits, and extensively validate it on a Toyota Supra and a Lexus
LC500. Our results showcase that a single diffusion model can reliably control both vehicles on
challenging drifting tasks involving different road conditions and vehicle properties, see Figure 1.

2 Related work

Several works have explored autonomous driving at the limits of handling, both in the context
of racing [10, 11, 12, 13] and drifting [14, 5, 4, 15]. These methods identify the parameters of a
physics-based vehicle dynamics model [16, 17, 4, 18, 19] or train a neural network model [15, 20],
and subsequently use it for model-based optimal control. Nonlinear model predictive control (MPC)
is the go-to control strategy in such settings and has demonstrated high-performance tracking ability
in challenging racing and drifting tasks [12, 11, 4, 15]. However, the performance of MPC is limited
by the fidelity of the vehicle model, designed to capture a single vehicle with given tires operating in
specific road conditions. In contrast, using an unlabeled trajectory dataset, we train a single generative
vehicle model with online adaptation capabilities that enable autonomous driving at the limits of
handling on different vehicles in varying road conditions.

Diffusion models have emerged as a powerful tool for generating complex and multimodal distri-
butions in continuous domains such as images [21, 22], 3D contents [23, 24], planning and control
[25, 26, 27, 28, 29, 30, 31], time series [32, 33], and physics processes [34, 35, 36]. However, all
these works learn to represent, in a black-box manner, distributions for which samples are directly
available in the training data. In contrast, we train a diffusion model to generate samples from a
latent space of vehicle dynamics parameters that are not in the training data. Our approach relates
to research in latent diffusion models [23, 37]. But instead of learning encoder and decoder net-
works to map between the data and latent spaces, we impose a structure on the latent space through
physics-informed neural stochastic differential equations.

Neural ordinary differential equations [38, 39, 40, 41, 42], Koopman operators [43, 44, 45, 46, 47, 48],
classical system identification [49, 50, 51, 52, 53], Gaussian processes [54, 55, 56, 57, 58], and neural
stochastic differential equations (SDEs) [59, 60, 61, 62, 63] have been widely studied for modeling
uncertain dynamical systems from data. These models are either deterministic or can capture only a

2



single mode of the training dataset’s distribution, along with the uncertainty around the mode. On the
other hand, Bayesian inference on the parameters of some of these models can, in theory, capture the
multimodal distribution of the model parameters. However, classical Monte Carlo-based methods
[64, 65, 66, 67] do not scale well with large models and datasets, while variational inference-based
methods [68, 69, 70] are limited by the choice of variational family used to approximate multimodal
posteriors. To address these limitations, recent works [71, 72, 73, 36] have highlighted the scalability
and expressivity of diffusion models when approximating the posterior distribution in Bayesian
inference. We leverage such expressivity to capture a multimodal distribution over the parameters of
a vehicle model expressed as a neural SDE: A model shown in [63] to improve long-term prediction
accuracy and uncertainty estimate compared to deep Gaussian-based models [74, 75].

Our modeling approach is similar to meta-learning methods [76, 77, 78] since the diffusion model
learns offline to predict the parameters of a neural SDE model while adapting online to different
vehicles and environment conditions. However, in contrast to existing meta-learning approaches where
the dataset has task-specific labels, we train our model from an unlabeled dataset of vehicle trajectories.
In addition, while conditioning the offline-trained diffusion model enables online adaptation, we
emphasize that no gradient updates or any sort of regression on the model parameters are performed
online for adaptation, as is typically done in meta-learning or online learning [79, 80, 81, 82, 83].

3 Method

Figure 2: Trajectories in T .

We assume access to a dataset T = {τ1, . . . , τ|T |} of vehicle tra-
jectories τ = {(xt0 , ut0), . . . , (xt|τ| , ut|τ|)}, where each (xt, ut)

denotes a state-control pair. We denote by xt:Tf
= [xt, . . . , xt+Tf

]
and ut:Tf

= [ut, . . . , ut+Tf
] the future state and control sequence

from time t to time t+Tf , and by xTp:t and uTp:t the past sequence
from t − Tp to t. We also use τt:Tf

, τTp:t, and τTp:t:Tf
to denote

the future, past, and full sequence of state-control pairs at time t,
respectively. We consider that the dataset’s trajectories may be collected from vehicles with different
physical and tire specifications, and operating on various road conditions while performing different
tasks. Thus, the distribution over its trajectories is complex and challenging to model. The dataset
is also characterized as unlabelled since no information (per trajectories) about the vehicles and
environments is provided for model identification other than the state-control pairs.

We present our approach to learning physics-constrained generative models for autonomous driving
at the limits. The main idea is to integrate the structure and the existing physics knowledge of driving
at the limits into the design of a neural SDE model parametrized by θ. Then, we train a state-control
history conditioned diffusion model, parameterized by ψ, to output a distribution pψ(θ|xTp:t, uTp:t)
over the neural SDE parameters θ, which is then used to generate the future state trajectories or
models to use by an MPC controller. However, existing approaches to training diffusion models
cannot be directly applied here as they would require unavailable access to a dataset of neural SDE
parameters. The proposed approach (Section 3.1) generates such a dataset and consistently improves
its parameters with respect to the trajectories in T while simultaneously training the diffusion model.

Neural SDEs for modeling. Neural SDEs [84, 85, 59, 60, 63] offer a principled approach for
modeling uncertain dynamical systems due to their ability to encode prior physics knowledge from
first principles, their calibrated uncertainties, and their expressiveness from using neural networks:

dx = fθ(x, u) dt+ Σθ(x, u)dW, (1)
where x ∈ X ⊆ Rnx is the state, u ∈ U ⊆ Rnu is the control input, t is the time, W is the
nx-th dimensional Wiener process, and fθ : X × U → Rnx and Σθ : X × U → Rnx×nx

+ are the
parametrized drift and diffusion terms, respectively, and the equation is interpreted as an SDE in the
Itô sense. Under smoothness assumptions [86, 87] on fθ,Σθ, we can efficiently sample a distribution
of predicted trajectories via numerical integration of the neural SDE [88, 89]. Assuming approximate
Gaussian transitions between discrete times of a numerical SDE integrator, the negative log-likelihood
(NLL) loss of a state sequence xt:Tf

given the controls ut:Tf
can be estimated by

Jnll(θ, τt:Tf
) := Ex̃θt:Tf

[∑t+Tf

s=t
‖xs − x̃θs‖2(Σθs)−1 + log

(
det
(
Σθs
))]

, (2)

with ‖z‖2A := z>Az for z ∈ Rnx , A ∈ Rnx×nx , and where Σθs := Σθ(x̃θs, us) and x̃θt:Tf
is a sample

sequence obtained from the SDE integration for a fixed θ and the initial conditions xt and ut:Tf
.

3



Algorithm 1 Training of the Diffusion Model ψ
1: Initialize D = ∅.
2: Compute θloc by solving (3) using SGD.
3: while not converged do
4: Sample τTp:t:Tf

from T .
5: Sample {τTp:tk:Tf

}k around τTp:t:Tf
.

6: if Refine then
7: Update θloc with pψ(·|h(τTp:t)).
8: end if
9: Optimize for θt using (4) and θloc.

10: Append (τTp:t, θt) to D.
11: Update ψ using (5) on batches from D.
12: end while

Algorithm 2 Online MPC Model Sampling
1: Initialize history dataset Thist = ∅.
2: Initialize best parameters θ1, . . . , θnbest .
3: while not terminated do
4: Append latest (xt, ut) to Thist.
5: Tgen ← {τTp:tk}k, Tval ← {τtj :Tf

}j are
subsets of Thist

6: {θtk}k ∼ pψ(·|{τTp:tk}k) using (7).
7: Evaluate scores Jtraj(θ, Tval) for θ ∈
{θtk}k ∪ {θp}nbest

p=1 .
8: Update Θ := {θp}nbest

p=1 with best scores.
9: Send θbest = argmin

θ∈Θ
Jtraj(θ,Tval)to MPC.

10: end while

3.1 Conditioned diffusion model in parameter space

We provide the main steps of the training process below and summarize them in Algorithm 1.

Initial estimate of the neural SDE parameters. First, we compute the maximum a posteriori
estimate of the neural SDE parameters θ over the entire dataset T . The training problem is given by

θloc ← argminθ Jtraj(θ, T ) , with Jtraj(θ, T ) := E(τt:Tf∼T )

[
Jnll(θ, τt:Tf )

]
+ λtrajR(θ), (3)

where Jnll is the negative log-likelihood defined in (2), and τ ∼ T is a sampled trajectory from the
dataset. The term λtraj controls the regularization termR(θ) that enforces available prior knowledge
on the neural SDE parameters; see Appendix A.4 for details on the design choices in this section.

Parameter dataset generation via local optimization. Next, we use the estimate θloc to iteratively
generate a datasetD = {(τTp:t, θt), . . . } of short state-control trajectories τTp:t and model parameters
θt that are consistent with (a) the data sequence τTp:t, (b) the immediate future sequence τt:Tf

, and (c)
additional sequences τTp:tk:Tf

in a neighborhood of the initial data sequence τTp:t:Tf
. The timesteps

tk are sampled from a uniform distribution U of fixed width centered at t. The local optimal parameter
θt that is added to the parameters dataset D is given by θt = argminθ Jloc(τTp:t, θ, θ

loc) with

Jloc(τTp:t, θ, θ
loc) := Jnll(θ, τt:Tf

) + Etk∼U(t−W,t+W)

[
Jnll(θ, τTp:tk:Tf

)
]

+ λloc‖θ − θloc‖2, (4)

where the term in λloc regularizes θ to be close to the estimate θloc. The additional sequences
τTp:tk:Tf

help refine the uncertainty estimates of the neural SDE model. Using short sequences
τTp:tk:Tf

, with tk in a small time window W ∈ R+ around t, helps ensure that they can be explained
by a single parameter vector θt, since properties of the system may otherwise vary over a trajectory
τTp:t:Tf

if τTp:t:Tf
is too long. We optimize for θt using gradient descent on (4) starting from an

initial guess sampled from a Gaussian distribution centered at θloc. We found that regularizing to the
estimate θloc in the objective (4) stabilizes the optimization process.

Training the diffusion model. Given the generated neural SDE parameters in D, we update the
parameters ψ of our conditional denoising diffusion model with gradient descent as in [7], on a loss

JDM(ψ) = E(θt,τTp:t)∼D,ε∼N (0,I),k∼U(1,K)

[
‖εψ(
√
γkθt +

√
1− γkε, k, h(τTp:t))− ε‖2

]
, (5)

where γk :=
∏k
i=1(1 − βi) with βi ∈ (0, 1) being a linear noise schedule to gradually distort the

parameters dataset D,N (0, I) is the standard normal distribution, K is the number of diffusion steps,
and εψ is the denoising neural network predicting the noise ε added during the noising process. Here,
h is a function that maps the history τTp:t to a feature space for conditioning the diffusion model:

h(τTp:t) = [∆xTp:t∆t
−1
Tp:t, uTp:t], with ∆xTp:t = [xTp+1 − xTp

, . . . , xt − xt−1], (6)

and ∆t−1
Tp:t = [(tTp+1 − tTp

)−1, . . . , (tt − tt−1)−1]. We use K = 1000 noising steps as in [7].

Iteratively refining the parameter dataset. As the diffusion model training progresses, its predic-
tions of the local parameters θt become more accurate while the initial estimate θloc computed in (3)

4



may become a suboptimal initial guess for θt. Thus, after some number of diffusion training steps,
we use the generative model to refine the dataset D by sampling a neural SDE parameter that would
serve as an initial estimate θloc and a regularizer for the local optimization problem (4).

Online diffusion model inference. Algorithm 2 outlines a simple online strategy for sampling the
neural SDE parameters conditioned on online measurements. The algorithm maintains the history
of state-control pairs and uses it as a source for generating, validating, and scoring the neural SDE
parameters. At each time step of the algorithm, a set Tgen of state-action sequences is sampled from
the history dataset Thist to generate a set of parameters θt conditioned on each τTp:t ∈ Tgen. This is
done in K steps, by sampling θ̄K ∼ N (0, I) and refining θ̄k−1 ∼ N (µψ(θ̄k, k, h(τTp:t)), σkI) with

σk = βk
1− γk−1

1− γk
, and µψ(θ̄k, k, z) =

1√
1− βk

(
θ̄k −

βk√
1− γk

εψ(θ̄k, k, z)
)
, (7)

before letting θt = θ̄0. Finally, a set Tval ⊆ Thist is sampled and used to validate the generated param-
eters and compute their scores, defined as the loss Jtraj(θ, Tval) in (3) plus a 2-norm regularization
term that penalizes the distance to the nbest = 5 best previously generated parameters {θp}nbest

p=1 . We
found that this last term helps ensure consistent updates during the online inference process.

3.2 Application to autonomous driving at the limits of handling

Physics-constrained neural SDE model. We now introduce the uncertainty-aware and physics-
constrained neural SDE model for driving at the limits of handling. We employ the commonly used
single-track model [90, 16, 91, 18, 17] as a foundation to describe the nonlinear dynamics of the
vehicle. The vehicle position is expressed in a curvilinear coordinate system relative to a reference
trajectory [14, 19, 12]. Specifically, the position coordinate is described by the distance s along the
reference trajectory, the relative heading ∆φ with respect to a reference heading φref , and the lateral
deviation e from the path. The proposed neural SDE model is given by

dx = Mθ(x, u)F θ(x, u)dt+ Σθ(x, u)dW, (8)

where prior knowledge comes from the matrix Mθ(·, ·) that depends on vehicle parameters such as
the mass mθ, yaw moment of inertia Iθz , rotational inertia of the drivetrain Iθw, tire radius Rθ, and
distances from the center of gravity to the front and rear axles aθ and bθ. The control input u = [δ, τ e]
is the steering angle and engine torque, respectively. The state x = [r, V, β, ωr, e,∆φ, s] includes the
yaw rate r, velocity V , sideslip angle β, rear wheelspeed ωr, lateral error e, and angular deviation
∆φ. Lastly, F θ = [F θxf , F θyf , F θxr, F

θ
yr] represents the tire forces between the vehicle and the road.

These unknown tire forces F θ are learned as functions of the state and control inputs.

Modeling the dynamic interaction between the tires and the uncertain road surface is crucial for
accurately controlling a vehicle at the limits of handling. To do so, we incorporate into our neural
SDE model a version of the neural-ExpTanh tire model [15], a physics-informed neural tire model
that captures the nonlinearities and saturation effects of tire forces, and that has shown to better
predict tire forces than previous models used in the literature. We refer to Appendix A.1 for the
derivations of Mθ(·, ·) and the neural tire force models used in the experiments.

Model predictive control (MPC) for autonomous drifting. The MPC tracks a reference trajectory
under actuator and actuator rate constraints by solving at each time t the optimization problem

minimize
ū0:H

Ex̄1:H+1

[∑H

k=1
Qβ(β̄k − βref,k)2 +Qeē

2
k +Qφ∆̄φ

2
k +Qδ̇ δ̇k

2
+Qτ̇ τ̇ e

k

2
]

(9a)

subject to x̄k+1 = SDESolve(x̄k, ūk; θbest) ∀k = 0, ...,H, x̄0 = xt, ū0:H ∈ U , ˙̄u0:H ∈ Ū (9b)
where xk is the state at timestep k, x̄1:H+1 denotes the state trajectory over the prediction horizon
of length H + 1, and ū0:H are the corresponding control signals. SDESolve is any differentiable
SDE integration scheme, in our case a simple Euler–Maruyama method, parameterized using the
best parameters θbest found by Algorithm 2. The states x̄1:H+1 are thus random variables, and the
expectation in (9a) is evaluated using Monte Carlo. We use 2 particles in our experiments. The
system is actuated by ut = ū?0, where ū?0 is the optimal solution to (9) constrained with x̄0 = xt.

4 Results

We validate the proposed framework on two vehicles in scenarios with different tires, operating gears,
and road conditions. First, we verify the capabilities of the conditional diffusion model to capture the

5



complexity of the unlabelled dataset and adapt its predictions online (Section 4.1). Second, we show
that the model can adapt to different tires (Section 4.2). Third, we demonstrate the high performance
of the method in diverse scenarios (Section 4.3). Finally, using a small amount of data collected on
wet surfaces, we show that the framework enables drifting at the limits of handling in heavy rain
(Section 4.4). We provide further details on the experiments in Appendix A.

Experimental vehicles. We deploy the approach on a Toyota Supra and a Lexus LC500, as shown in
Figure 1. The Supra is modified with a more powerful engine and more responsive actuators, whereas
the Lexus is kept with factory settings, making it a particularly challenging platform for autonomous
drifting. The two vehicles’ large differences in dynamics responses make them ideal platforms for
evaluating the robustness and generalization capabilities of our approach. For both vehicles, we use
onboard vehicle state estimation using a GPS and IMU, and we use the CPU of a ruggedized PC to
run the diffusion model inference at 2Hz and compute control inputs using MPC at 200Hz.

Figure 3: Dataset for model training.

Training dataset. We train the diffusion model on a
total of 84 manual and autonomous driving and drifting
trajectories from the two vehicles. The duration of each
trajectory is between 10 and 90 seconds. It consists
of 5 manual driving trajectories pushing the car to the
limits of handling, whereas the remaining trajectories are
autonomous drifting experiments comprising of failed
and successful attempts. The dataset includes driving
data in different gears (affecting the effectiveness of the
throttle input) and using tires with different physical properties (affecting the vehicle’s dynamics and
steering input effectiveness). The composition of the dataset is summarized in Figure 3.

Baselines. We compare with neural SDE dynamics models (referred to as BaseSDE or Expert
depending on context) trained on specific vehicle-tire-gear subsets of the dataset in Figure 3. Each
baseline is trained with the loss function in (3) and a regularization term R(θ) encoding prior
knowledge about the parameters (m, a, b, Iz, Iw, R). The resulting models are Expert since they are
optimized for specific scenarios, but they may perform poorly when deployed in different conditions.

4.1 Multimodality and conditioning capabilities of the diffusion model

−2 0 2
∝ log Iw

0

1

2

3

D
en

si
ty

Grip
Slide

0 1 2 3
∝ log max rear force

0.0

0.5

1.0

1.5

Figure 4: Parameter distribution predicted by
the diffusion model, when conditioned on grip-
ping and sliding trajectories.

We condition the model on two trajectories from the
Lexus vehicle dataset (see Figure 3), where the vehi-
cle is either accelerating in a straight line (gripping)
or drifting (sliding). In Figure 4, we report two pre-
dicted parameters (Iθw, c

θ
1) corresponding to the rear

wheel inertia and the maximum total force that can
be generated by the rear tires; see Appendix A.1. By
conditioning on the straight-line (grip) trajectory, the
model returns a multimodal parameter distribution
due to the lack of information about tire friction prop-
erties, as tire forces are not saturated. Interestingly,
by conditioning on a trajectory where the vehicle is
sliding and tire forces are saturated, the model pre-

dicts a tight unimodal distribution of the parameters. The left mode of the two parameters from the
gripping phase has collapsed due to sufficient information to infer vehicle properties. This example
shows that the proposed conditional diffusion model captures multimodal parameter distributions and
adapts its predictions based on the information contained in the trajectory.

4.2 Online adaptation to different tires

Table 1: Tracking error: Lexus with tires type 2.
Donut Figure-8

RMSE e (m) β (deg) e (m) β (deg)
Expert (Tires 2) 0.35 4.08 0.32 5.17

BaseSDE (Tires 3) spin spin spin spin
BaseSDE (Tires 2 & 3) 0.51 4.52 1.39 13.63
Diffusion (Tires 2 & 3) 0.31 4.19 0.56 5.38

We further highlight the generalization capa-
bility of the proposed method by studying the
closed-loop tracking performance of the Lexus
when operating with various tires. We report
tracking performance on two reference trajec-
tories in Table 1. The controller using the
Expert model accurately tracks the reference
trajectory. In contrast, using the baseline trained only on type 3 tire data is insufficient to track the

6



−20 0 20 40 60 80 100

North [m]−20

0

20

40

E
as

t[
m

]

Start

12

14

16

V
[m

/s
]

−50

−25

0

25

50

β
[d

eg
]

150 200 250 300 350 400 450

Distance along path [m]

0

1

2

e
[m

]

−20 −10 0

North [m]
0

10

20

E
as

t[
m

]

Start

10

12

14
Reference
Expert

Diffusion

−45

−30

−15

0

150 200 250 300 350

Distance along path [m]

−0.5

0.0

0.5

1.0

−20 0 20 40

North [m]0

10

20

30

40

E
as

t[
m

]

Start

12

14

16

−50

−25

0

25

50

200 300 400 500 600

Distance along path [m]

−1

0

1

Figure 5: Drifting the Supra: performance comparison between the Expert and Diffusion models.

reference, and leads to spinning out. This baseline fails to initiate the drift, due to differences in the
cornering stiffness between the two tires leading to a poor prediction of how fast the vehicle will
saturate the rear tires. The BaseSDE model trained on data with type 2 and type 3 tires can drift with
a higher tracking error. On the donut trajectory, this baseline drifts on a circle with a larger radius
due to a tire force modeling mismatch. Finally, the diffusion model quickly infers the tire properties,
which results in adaptive tracking performance that matches Expert performance.

4.3 Drifting performance in different scenarios

We evaluate the framework on a range of scenarios, including reference trajectories that are not in the
dataset, and compare its performance with an Expert trained on the relevant subset of the dataset.

Table 2: Tracking error on the Toyota Supra.
Slalom (gear 2) Donut (gear 1) Figure-8 (gear 2)

RMSE e (m) β (deg) e (m) β (deg) e (m) β (deg)
Expert 0.74 5.03 0.31 3.32 0.32 3.40

Diffusion 0.72 6.52 0.19 2.26 0.57 4.34

Drifting results on the Toyota Supra.
We report performance in tracking dif-
ferent reference trajectories in Figure 5
and Table 2. The diffusion model enables
drifting maneuvers with tracking perfor-
mance that is comparable to expert models, while simultaneously having the advantage of being
trained on an unstructured dataset. This demonstrates the model’s ability to adapt at test time to
the specific vehicle setting and road condition based on the online observation. Interestingly, the
framework succeeds in accurately tracking the Slalom trajectory (first column of Figure 5), which
is not part of any maneuvers in the training dataset. Tracking this trajectory requires the vehicle to
operate outside of the training data distribution, given the rapid changes between circles of different
radii while accelerating during the last transition of the trajectory. We speculate that this ability to
generalize results from the prior physics knowledge encoded in the neural SDE vehicle model.

Table 3: Tracking error: Lexus with type 3 tires.
Donut (gear 2) Donut (gear 1) Figure-8 (gear 1)

RMSE e (m) β (deg) e (m) β (deg) e (m) β (deg)
Expert 0.48 3.44 0.38 6.39 0.32 3.27

Diffusion 0.82 4.70 0.29 4.48 0.34 3.79

Drifting results on the Lexus LC500.
Tracking results in Figure 6 and Table 3
show that using the diffusion model en-
ables accurate tracking with performance
comparable to expert models. Again, the
proposed method is capable of performing a donut trajectory in second gear, although no second-gear
trajectory from the Lexus is in the dataset. Moreover, only unsuccessful Figure-8 trajectories on the
Lexus are in the dataset, yet both methods using the expert and diffusion models succeed in tracking
this trajectory, thanks to the physics structure encoded in the neural SDE model.

4.4 Drifting in low-friction conditions using limited data

7



−40 −30 −20 −10 0

North [m]0

10

20

30

E
as

t[
m

]
Start

10

12

14

V
[m

/s
]

−40

−30

−20

−10

0

β
[d

eg
]

100 200 300 400

Distance along path [m]

−1

0

1

e
[m

]

−10 0

North [m]
0

5

10

15

E
as

t[
m

]

Start

7

8

−45

−30

−15

0 Reference
Expert

Diffusion

20 40 60 80 100 120 140 160

Distance along path [m]

−1

0

1

0 10 20 30

North [m]
0

5

10

15

E
as

t[
m

]

Start

8

10

−50

−25

0

25

50

100 150 200 250 300

Distance along path [m]

−1

0

Figure 6: Drifting the Lexus: performance comparison between the Expert and Diffusion models.

Lastly, we augment the dataset with 3 manual drifting trajectories collected in the rain and 4 au-
tonomous drifting donut trajectories on a wet surface with failed and successful attempts on the Lexus
vehicle. Then, we retrain the diffusion model and report the performance of the resulting controller
deployed in heavy rain in Figure 7. The proposed approach is capable of drifting with only 1.47 m as
the lateral RMS error (e) and 4.79 deg as the RMS slip angle (β) error.

6

7

8

V
[m

/s
]

0

15

30

45

β
[d

eg
]

Reference Diffusion

25 50 75 100 125 150 175 200 225

Distance along path [m]

0

2

4

e
[m

]

Figure 7: Tracking performance in heavy rain
on a donut trajectory when drifting the Lexus.

Drifting in such rainy conditions is particularly chal-
lenging. Indeed, accurate friction modeling is critical
to successfully initiating the drift without spinning
out, especially using a commercial vehicle such as
the Lexus. Stabilizing the vehicle in rainy conditions
is particularly difficult due to the increased effect of
small friction variations on the handling characteris-
tics of the vehicle, and because friction parameters
vary over space due to the terrain drying unevenly
over time. These results indicate that a single gener-
ative model, trained on a majority of data collected
on high-friction surfaces, has the potential to enable
reliable autonomous driving at the limits in both high
and low-friction conditions.

5 Conclusions

We propose a physics-informed generative vehicle model for autonomous driving at the limits of
handling. By decoupling model inference and control, this hierarchical approach combines the
expressiveness of a diffusion model with the high-rate replanning and reliability of model predictive
control. Through extensive autonomous drifting experiments on a Toyota Supra and Lexus LC500,
we demonstrate that a single conditional diffusion model, trained on unlabelled trajectories from
both vehicles operating in various conditions, can enable adaptive, robust, and real-time autonomous
driving at the limits of handling.

Limitations and future work. Although the diffusion model predicts a multimodal distribution of
parameters of the neural SDE vehicle dynamics model, the current model predictive controller only
uses one predicted parameter set for control at a time. Fully reasoning over predicted distribution
using risk-sensitive algorithms would potentially lead to additional robustness and inform data
collection via active exploration to best reduce uncertainties online. Finally, while only validated on
drifting tasks, the generality of the proposed hierarchical method and the experiments indicate that
the approach could potentially be used in other autonomous driving and robotics applications.

8



Acknowledgments

We would like to thank the platform research team at Toyota Research Institute for their support
with the test platforms and experiments. Special acknowledgment to Phung Nguyen and Steven
Goldine for facilitating the experiments and making it possible to validate our framework under
various conditions, and Jenna Lee for facilitating data logging and processing. We would also like
to thank Yusei Sakamoto at Toyota Motor Corporation for the tremendous assistance in setting up
our framework on their test platform, and creating an environment to validate our approach on wet
surfaces and rainy conditions.

References
[1] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli. Predictive control for

agile semi-autonomous ground vehicles using motion primitives. In 2012 American Control
Conference (ACC), pages 4239–4244, 2012.

[2] T. Zhao, E. Yurtsever, and G. Rizzoni. Justifying emergency drift control for automated vehicles.
IFAC-PapersOnLine, 55(24):141–148, 2022.

[3] T. Gordon and M. Lidberg. Automated driving and autonomous functions on road vehicles.
Vehicle System Dynamics, 53(7):958–994, 2015.

[4] J. Y. Goh, M. Thompson, J. Dallas, and A. Balachandran. Nonlinear model predictive control
for highly transient autonomous drifting. 15th International Symposium on Advanced Vehicle
Control, 2022.

[5] T. P. Weber and J. C. Gerdes. Modeling and control for dynamic drifting trajectories. IEEE
Transactions on Intelligent Vehicles, 2023.

[6] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256–2265, 2015.

[7] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[8] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[9] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2020.

[10] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou. Aggressive driving with
model predictive path integral control. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 1433–1440, 2016.

[11] J. Dallas, M. Thompson, J. Goh, and A. Balachandran. A hierarchical adaptive nonlinear model
predictive control approach for maximizing tire force usage in autonomous vehicles. Field
Robotics, 3(1):222–242, 2023.

[12] J. K. Subosits and J. C. Gerdes. Impacts of model fidelity on trajectory optimization for
autonomous vehicles in extreme maneuvers. IEEE Transactions on Intelligent Vehicles, 6:
546–558, 2021.

[13] J. Dallas, M. P. Cole, P. Jayakumar, and T. Ersal. Terrain adaptive trajectory planning and
tracking on deformable terrains. IEEE Transactions on Vehicular Technology, 70(11):11255–
11268, 2021.

[14] J. Y. Goh, T. Goel, and J. C. Gerdes. Toward automated vehicle control beyond the sta-
bility limits: Drifting along a general path. Journal of Dynamic Systems Measurement and
Control-transactions of The Asme, 142, 2019.

9



[15] F. Djeumou, J. Y. Goh, U. Topcu, and A. Balachandran. Autonomous drifting with 3 minutes
of data via learned tire models. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 968–974, 2023.

[16] R. Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

[17] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle. The kinematic bicycle model:
A consistent model for planning feasible trajectories for autonomous vehicles? 2017 IEEE
Intelligent Vehicles Symposium (IV), pages 812–818, 2017.

[18] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehicle models for
autonomous driving control design. 2015 IEEE Intelligent Vehicles Symposium (IV), pages
1094–1099, 2015.

[19] J. Y. Goh and J. C. Gerdes. Simultaneous stabilization and tracking of basic automobile drifting
trajectories. 2016 IEEE Intelligent Vehicles Symposium (IV), pages 597–602, 2016.

[20] N. A. Spielberg, M. Brown, and J. C. Gerdes. Neural network model predictive motion control
applied to automated driving with unknown friction. IEEE Transactions on Control Systems
Technology, 30(5):1934–1945, 2021.

[21] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.
Zero-shot text-to-image generation. In International conference on machine learning, pages
8821–8831, 2021.

[22] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in neural information processing systems, 35:
36479–36494, 2022.

[23] A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, K. Kreis, et al. Lion: Latent point
diffusion models for 3d shape generation. Advances in Neural Information Processing Systems,
35:10021–10039, 2022.

[24] L. Zhou, Y. Du, and J. Wu. 3d shape generation and completion through point-voxel diffusion. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 5826–5835,
2021.

[25] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[26] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional gen-
erative modeling all you need for decision-making? International Conference on Learning
Representations, 11, 2023.

[27] B. Kang, X. Ma, C. Du, T. Pang, and S. Yan. Efficient diffusion policies for offline reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2024.

[28] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv
preprint arXiv:2301.10677, 2023.

[29] T. Gu, G. Chen, J. Li, C. Lin, Y. Rao, J. Zhou, and J. Lu. Stochastic trajectory prediction via
motion indeterminacy diffusion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 17113–17122, 2022.

[30] C. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, D. Anguelov, et al. Motiondiffuser: Con-
trollable multi-agent motion prediction using diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9644–9653, 2023.

[31] D. Rempe, Z. Luo, X. Bin Peng, Y. Yuan, K. Kitani, K. Kreis, S. Fidler, and O. Litany. Trace
and pace: Controllable pedestrian animation via guided trajectory diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13756–13766,
2023.

10



[32] J. M. L. Alcaraz and N. Strodthoff. Diffusion-based time series imputation and forecasting with
structured state space models. arXiv preprint arXiv:2208.09399, 2022.

[33] Y. Tashiro, J. Song, Y. Song, and S. Ermon. Csdi: Conditional score-based diffusion models for
probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:
24804–24816, 2021.

[34] B. Holzschuh, S. Vegetti, and N. Thuerey. Solving inverse physics problems with score matching.
Advances in Neural Information Processing Systems, 36, 2023.

[35] G. Kohl, L.-W. Chen, and N. Thuerey. Turbulent flow simulation using autoregressive condi-
tional diffusion models. arXiv preprint arXiv:2309.01745, 2023.

[36] Q. Liu and N. Thuerey. Uncertainty-aware surrogate models for airfoil flow simulations with
denoising diffusion probabilistic models. American Institute of Aeronautics and Astronautics,
pages 1–22, 2024.

[37] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10684–10695, 2022.

[38] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equa-
tions. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pages 6572–6583, 2018.

[39] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ramadhan,
and A. Edelman. Universal differential equations for scientific machine learning. arXiv preprint
arXiv:2001.04385, 2020.

[40] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-
informed architectures and constraints for dynamical systems modeling. In Proceedings of The
4th Annual Learning for Dynamics and Control Conference, volume 168, 2022.

[41] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neu-
ral networks. In International Conference on Learning Representations, 2020 Workshop on
Integration of Deep Neural Models and Differential Equations, 2020.

[42] S. Greydanus, M. Dzamba, and J. Yosinski. Hamiltonian neural networks. In Advances in
Neural Information Processing Systems, 2019.

[43] B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

[44] I. Mezić. Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dynamics, 41:309–325, 2005.

[45] I. Mezić. Analysis of fluid flows via spectral properties of the koopman operator. Annual review
of fluid mechanics, 45:357–378, 2013.

[46] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson. Spectral analysis of
nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

[47] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Generalizing koopman theory to allow for inputs
and control. SIAM Journal on Applied Dynamical Systems, 17(1):909–930, 2018.

[48] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz. Modern koopman theory for dynamical
systems. arXiv preprint arXiv:2102.12086, 2021.

[49] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with control. SIAM
Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

[50] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of nonlinear dynamics for
model predictive control in the low-data limit. Proceedings of the Royal Society A, 474(2219):
20180335, 2018.

11



[51] M. Korda and I. Mezić. Linear predictors for nonlinear dynamical systems: Koopman operator
meets model predictive control. Automatica, 93:149–160, 2018.

[52] J. Coulson, J. Lygeros, and F. Dörfler. Data-enabled predictive control: In the shallows of the
deepc. In 2019 18th European Control Conference (ECC), pages 307–312, 2019.

[53] H. J. van Waarde, M. K. Camlibel, and M. Mesbahi. From noisy data to feedback controllers:
Nonconservative design via a matrix s-lemma. IEEE Transactions on Automatic Control, 67
(1):162–175, 2020.

[54] C. E. Rasmussen. Gaussian processes in machine learning. Springer, 2003.

[55] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. MIT press
Cambridge, 2006.

[56] L. Song, J. Huang, A. Smola, and K. Fukumizu. Hilbert space embeddings of conditional
distributions with applications to dynamical systems. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 961–968, 2009.

[57] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,
and R. Adams. Scalable bayesian optimization using deep neural networks. In International
conference on machine learning, pages 2171–2180, 2015.

[58] A. J. Thorpe, C. Neary, F. Djeumou, M. M. Oishi, and U. Topcu. Physics-informed kernel
embeddings: Integrating prior system knowledge with data-driven control. arXiv preprint
arXiv:2301.03565, 2023.

[59] B. Tzen and M. Raginsky. Neural stochastic differential equations: Deep latent gaussian models
in the diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

[60] P. Kidger. On neural differential equations. PhD thesis, University of Oxford, 2021.

[61] X. Li, T.-K. L. Wong, R. T. Chen, and D. K. Duvenaud. Scalable gradients and variational
inference for stochastic differential equations. In Symposium on Advances in Approximate
Bayesian Inference, 2020.

[62] T. Lew, S. Singh, M. Prats, J. Bingham, J. Weisz, B. Holson, X. Zhang, V. Sindhwani, Y. Lu,
F. Xia, et al. Robotic table wiping via reinforcement learning and whole-body trajectory
optimization. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 7184–7190, 2023.

[63] F. Djeumou, C. Neary, and U. Topcu. How to learn and generalize from three minutes of
data: Physics-constrained and uncertainty-aware neural stochastic differential equations. In
Conference on Robot Learning, pages 577–601, 2023.

[64] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, 1970.

[65] S. Chib and E. Greenberg. Understanding the metropolis-hastings algorithm. The american
statistician, 49(4):327–335, 1995.

[66] R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

[67] M. D. Hoffman, A. Gelman, et al. The no-u-turn sampler: adaptively setting path lengths in
hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014.

[68] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal
of Machine Learning Research, 2013.

[69] A. Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

[70] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

12



[71] L. Baldassari, A. Siahkoohi, J. Garnier, K. Solna, and M. V. de Hoop. Conditional score-based
diffusion models for bayesian inference in infinite dimensions. Advances in Neural Information
Processing Systems, 36, 2024.

[72] B. Kawar, G. Vaksman, and M. Elad. Snips: Solving noisy inverse problems stochastically.
Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

[73] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with
score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

[74] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[75] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

[76] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[77] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International conference on machine learning, pages
1842–1850, 2016.

[78] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

[79] L. Bottou. Online learning and stochastic approximations. Online learning in neural networks,
17(9):142, 1998.

[80] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24:109–165, 1989.

[81] J. Kivinen, A. Smola, and R. C. Williamson. Online learning with kernels. IEEE Transactions
on Signal Processing, 52:2165–2176, 2001.

[82] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone. Safe active dynamics learning and
control: A sequential exploration exploitation framework. IEEE Transactions on Robotics, 38:
2888–2907, 2020.

[83] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37:
408–423, 2015.

[84] R. L. Stratonovich. A new representation for stochastic integrals and equations. Siam Journal
on Control, 4:362–371, 1966.

[85] K. Itô. On stochastic differential equations. American Mathematical Society, 1951.

[86] B. Øksendal. Stochastic differential equations. Springer Berlin Heidelberg, 2003.

[87] H. Kunita. Stochastic flows and stochastic differential equations. Cambridge university press,
1997.

[88] G. N. Milstein. Numerical integration of stochastic differential equations. Springer Science &
Business Media, 1994.

[89] P. E. Kloeden, E. Platen, and H. Schurz. Numerical solution of SDE through computer
experiments. Springer Science & Business Media, 2002.

[90] B. Paden, M. Cáp, S. Z. Yong, D. S. Yershov, and E. Frazzoli. A survey of motion planning and
control techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles,
1:33–55, 2016.

13



[91] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat. Predictive active steering
control for autonomous vehicle systems. IEEE Transactions on Control Systems Technology,
15:566–580, 2007.

[92] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

[93] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2014.

[94] Q. Li, Y. Zhou, Y. Liang, and P. K. Varshney. Convergence analysis of proximal gradient with
momentum for nonconvex optimization. In International Conference on Machine Learning,
pages 2111–2119, 2017.

14

http://github.com/google/jax


A Appendix

This section provides additional details on the neural SDE vehicle model, the experimental vehicles
and training dataset, the expert models used as baselines, the diffusion model training, and the model
predictive control formulation.

We implement all the numerical experiments (training the models and the gradient-based model
predictive control solver) using the Python library JAX [92] to take advantage of its automatic
differentiation and just-in-time compilation features. We use Python 3.8.5 for the experiments and
train all our models on a laptop computer with an Intel R© Xeon(R) W-11855M CPU (base frequency
3.30GHz), 12 cores, 32 GB of RAM, and a GeForce RTX 2060, TU10.

A.1 Physics-inspired neural SDE vehicle model

Figure 8: Single-track model of a vehicle on a
reference path.

We employ the commonly used single-track
model [90, 16, 91, 18, 17] as a foundation to describe
the nonlinear dynamics of the vehicle. The vehicle
position is expressed in a curvilinear coordinate sys-
tem relative to a reference trajectory [14, 19, 12], as
shown in Figure 8. Specifically, the position coordi-
nate is described by the distance s along the path, the
relative heading ∆φ with respect to a planned course
φref , and the lateral deviation e from the path. For
simplicity, we assume only the steering and throttle
are used for autonomous drifting and do not include
brakes in the control inputs and dynamics. The pro-
posed neural SDE model is given by

d



r

V

β

ωr


=



aθF θyf cos(δ)+aθF θxf sin(δ)−bθF θyr
Iθz

−F θyf sin(δ−β)+F θxf cos(δ−β)+F θyr sin(β)+F θxr cos(β)

mθ

F θyf cos(δ−β)+F θxf sin(δ−β)+F θyr cos β−F θxr sin β

mθV
− r

GEθ(τe)−F θxrR
θ

Iθw


+ Σθ(x, u)dW, (10)

where vehicle-specific parameters such as the mass mθ, yaw moment of inertia Iθz , rotational
inertia of the drivetrain Iθw, the tire radius Rθ, and the distances from the center of gravity to the
front and rear axles aθ and bθ are included in the neural SDE parameters θ to learn. The control
input u = [δ, τ e] is the steering angle and engine torque, respectively. Eθ(τ e) is a parameterized
polynomial function that maps the engine torque to the wheel torque through the gear ratio G. The
state x = [r, V, β, ωr, e,∆φ, s] includes the yaw rate r, velocity V , sideslip angle β, rear wheelspeed
ωr, lateral error e, and angular deviation ∆φ. The evolution of the path-dependent variables e, ∆φ,
and s are well described by basic kinematics

de = V sin(∆φ)dt, (11)

ds =
V cos(∆φ)

1− eκref(s)
dt, (12)

d(∆φ) = (β̇ + r − κref(s)ṡ)dt, (13)

where κref(s) is the curvature of the reference path, and we use β̇ and ṡ as an abuse of notation for
the drift terms of β and s, respectively. Lastly, the unknown lateral and longitudinal tire forces F θxf ,
F θyf , F θxr, and F θyr are parametrized and learned as functions of the state and control inputs.

15



We propose to incorporate into our neural SDE model a version of the recently proposed neural-
ExpTanh [15] tire mode parameterized by

F θyf = ExpTanhθ(tan(αf ); feat1), F θtot = ExpTanhθ(tan2(αr) + cθ0σ
2
r ; feat2),[

F θyr
F θxr

]
=

NNθ
0(αr, σr)

‖NNθ
0(αr, σr)‖

F θtot, σr =
Rθωr − V cosβ

V cosβ
,

αf = atan
V sinβ + aθr

V cosβ
− δ, αr = atan

V sinβ − bθr
V cosβ

,

(14)

where ExpTanhθ(z; feat) := cθ1 + cθ2e
−cθ3|z| tanh

(
cθ4(z − cθ5)

)
is such that (cθi )

5
i=1 = NNθ(feat) is

the output of a neural network with input feat and satisfying cθ3, c
θ
4 ≥ 0 (enforced via an exponential

function on the last two outputs of the neural network). Besides, σr is the slip ratio, αf and αr are
the slip angles for the front and rear tires, feat1 = [r, V, β] and feat2 = [r, V, β, ωr] are features for
the two neural-ExpTanh models, and cθ0 and NNθ

0 are learned to approximate the coupled effect
between the longitudinal and lateral tire dynamics when the vehicle is sliding and accelerating at
the same time. We note that our model has four neural networks: NNθ

0 for the coupled effect, NNθ
1

and NNθ
2 for front and rear neural-ExpTanh tire models, and Σθ for the diffusion term. Lastly, we

emphasize that although the proposed neural model assumes rear-wheel drive vehicles, it can be
straightforwardly extended to other drive configurations.

Modeling details. We use a diagonal matrix to represent the noise scale Σθ. This design choice
greatly reduces the computation of the losses (2), (3), and (4) at the cost of possibly limiting the
expressivity of the model by neglecting correlations between states. However, the experiments show
that the model can still capture the complex dynamics of the vehicle and enable reliable performance
on diverse drifting maneuvers. The vehicle parametersmθ, Iθz , Iθw,Rθ, aθ, and bθ are learnable scalar
values optimized during training. We refer to Appendix A.3 for prior knowledge enforced on these
vehicle parameters during the training of expert models, but not during the diffusion model training.
The engine torque function Eθ(τ e) is a linear function with learnable parameters. The parameter
cθ0 is a learnable scalar value, and the neural networks NNθ

0, NNθ
1, and NNθ

2 are feedforward neural
networks with two hidden layers of 6 neurons each and tanh activation functions. We do not perform
any preprocessing on the training dataset and learn from raw and noisy vehicle trajectories.

A.2 Experimental vehicles and training dataset

Figure 9: Experimental vehicles used in the study. Left: Toyota Supra. Right: Lexus LC500.

Experimental vehicles. We deployed our framework on a Toyota Supra and a Lexus LC500,
illustrated in Figure 9. The Supra is a prototype vehicle that has been heavily modified to become
an autonomous drifting platform, while the Lexus is a commercial 2019 LC500 with its powertrain,
drivetrain, and suspension unmodified from the dealership. The Supra has been modified with a
3L inline-six engine capable of outputting 380hp. The engine has been outfitted with an upgraded
turbocharger that can provide an additional 300hp, for a total of 680hp. The steering system is
outfitted with both hydraulic assist and electric power-assisted steering, providing high-performance
steer-by-wire abilities with up to 56.7Nm of torque. The vehicle has also been modified to provide

16



brake-by-wire and throttle-by-wire capabilities. These modifications make the platform extremely
suitable for (autonomous) Formula drift, as they allow for precise and fast control of the vehicle’s
dynamics. The Lexus, on the other hand, has lower-performance actuators and is not designed to
be used as a drifting vehicle. Ultimately, these two platforms have completely different dynamics,
which makes them ideal for evaluating the robustness and generalization capabilities of our approach.

We use an Oxford Technical Systems (OxTS) RT4003 v2 RTK-GPS/IMU system for localization
and vehicle state estimation for both vehicles. The MPC controller is implemented on an Intel Xeon
E-2278GE (base frequency 3.30GHz) CPU Linux computer mounted on board the vehicles. The
computer communicates with a low-level PID controller implemented on a dSpace MicroAutoBoxII
(DS1401) to track desired steering angle δ and engine torque τ e. The MicroAutoBoxII receives
commands from the MPC controller via UDP and sends actuator commands to the original equipment
manufacturer’s steering and engine electronic control units. All data are synchronized and recorded
at a frequency of 62.5Hz on the Lexus and 100Hz on the Supra.

Training dataset. We build a dataset of manual and autonomous driving and drifting trajectories
on a closed circuit from both vehicles. The dataset contains a total of 84 trajectories, each trajectory
with a duration between 10 and 90 seconds. It has 5 trajectories collected from manual driving with
the intent of pushing the car to the limits of handling without any specific path-tracking maneuvers
planned. The remaining trajectories are from autonomous drifting experiments with 28 from the
Supra and the rest from the Lexus. The supra dataset contains failed and successful attempts at
performing donut maneuvers in first gear and Figure-8 maneuvers in second gear. The Lexus dataset
contains attempts at performing donut maneuvers in first gear and very limited (all failed) attempts at
performing "Figure-8" maneuvers in first gear. No second-gear drifting trajectories were provided in
the training dataset for the Lexus. Additionally, 7% of the trajectories from the Lexus were collected
with Tire 2, as opposed to Tire 3 used in the rest of the dataset. A notable difference between the
two sets of tires is their cornering stiffness, which makes drift initiation strategies and tire dynamics
different between the two sets of tires.

Training dataset for drifting on heavy rain. We augmented the above training dataset with 7
additional drifting trajectories collected on a wet track with a vehicle identical to the Lexus LC500.
3 of the trajectories were manually collected, while the remaining 4 were collected autonomously.
The autonomous trajectories were collected using second-gear drifting maneuvers only on a donut
trajectory. Despite the limited number of trajectories and restriction to second-gear drifting, we show
in Section 4.4 that the diffusion model trained on this dataset generalizes to drifting in heavy rain on
a first-gear donut trajectory.

A.3 Expert models training

Table 4: Prior parameters for the expert models.

Vehicle m (kg) Iz (kg·m2) Iw (kg·m2) R (m) a (m) b (m)
Toyota Supra 2048 3675 6 0.368 1.345 1.522
Lexus LC500 1476 2241 6 0.323 1.239 1.209

We recall that the expert models in the experiments are neural SDE models trained on specific
vehicle-tire subsets of the dataset. Given a subset Texp of the training dataset T , we train the expert
models by minimizing the negative log-likelihood Jtraj(θ, Texp) defined in (3) with respect to the
neural SDE parameters θ defined in Appendix A.1. The regularization termR(θ) encodes a Gaussian
prior on the vehicle parameters mθ, Iθz , Iθw, Rθ, aθ, and bθ. For each parameter, we use a Gaussian
prior with a mean equal to the known (estimated) parameter value for the specific vehicle and a
standard deviation of 1. The resultingR(θ) is given by

R(θ) =(mθ −m)2 + (Iθz − Iz)2 + (Iθw − Iw)2 + (Rθ −R)2 + (aθ − a)2 + (bθ − b)2, (15)

where the parameters values m, Iz , Iw, R, a, and b for each vehicle are provided in Table 4. The
expert models are trained using Adam optimizer [93] with a learning rate of 10−3 and a batch size
of 64. We use λtraj = 10−4 for the regularization term in the loss function (3). During training, we
discretize the sum in the expression of Jnll (see (2) for the expression and (3) for the loss function) into
a sum of Nf = 20 discrete time steps t0, . . . , tNf

, where t0 = t, Tf = tN − t0, and ti = ti−1 + ∆ti

17



for i = 1, . . . , Nf . We set ∆ti = U(1,6)∆t where ∆t is typically 0.01 for trajectories on the Supra
and 0.016 for trajectories on the Lexus. We randomize the time steps ∆ti during training to improve
the model’s generalization when evaluated with an integration scheme that uses stepsizes other than
the training stepsizes. This is typically the case when using the model in a model predictive controller;
see Appendix A.5. We note that the model learns to predict state-action sequences with varying
lengths Tf between 0.4 seconds and 1.96 seconds. Lastly, we use 5 particles of the neural SDE to
compute the expectation in the expression of Jnll.

A.4 Diffusion model training and online sampling

Initial estimate of the neural SDE parameters. We train the initial estimate θloc of the neural
SDE parameters in a similar manner to the expert models in Appendix A.3. The main difference is
that we use the full training dataset T instead of the vehicle-specific subset Texp, and thus we do not
enforce any prior knowledge on the vehicle parameters as in (15). Specifically, the regularization
termR(θ) is now enforcing an uninformative Gaussian prior with mean 0 and standard deviation 1
on all the neural SDE parameters θ as follows

R(θ) =
∑Nθ

i=1
(θi)

2, (16)

where Nθ is the number of parameters in θ, and θ in defined as in Appendix A.3.

Parameter dataset generation via local optimization. The hyperparameters that define this step
of the diffusion model training are the regularization parameter λloc, the time window W , the history
length Tp, the future trajectory length Tf , and the number of sequences τTp:tk:Tf

used to compute the
expectation in (4). We set λloc = 10−3, W = 10 seconds, and the number of sequences τTp:tk:Tf

to 5.
In a similar manner to how we chose the time steps in the training of the expert models (see Appendix
A.3), we discretize τTp:t and τTp:tk into Np = 10 discrete time steps with the same randomization
of the step size ∆ti as in Appendix A.3. Thus, the maximum length of the history sequence is
Tp = 0.96 seconds. Besides, we keep the future trajectory length Tf to be the same as in the training
of the expert models, i.e., with Nf = 20 discrete time steps and a maximum length of 1.96 seconds.
We use 5 particles of the neural SDE to compute the expectation in the expression of Jnll.

We optimize the neural SDE parameters θ of the loss function (4) using gradient descent with Nesterov
acceleration and an adaptive learning rate through Armijo line search. We set the maximum number
of iterations to 1000 and the initial guess for the learning rate and neural SDE parameters to be
respectively 0.01 and θloc.

Diffusion model training. We follow the procedure described in [7] to train all our diffusion
models. The model εψ defining the generative process is represented as a standard feedforward neural
network with three hidden layers of 256 neurons each. We use a sinusoidal positional encoding
of the diffusion step k (see (5)) as an input to the neural network defining εψ, instead of using k
directly as the input. The encoding is done by scaling the diffusion step and concatenating its sine
and cosine to the input of a feedforward neural network with two hidden layers of 32 and 16 neurons
each and swish as the activation function. We use K = 1000 denoising steps, and a linear noise
schedule βi ∈ (0, 1), where βi = 0.0001 + 0.02i/K for i = 0, . . . ,K. We use Adam optimizer with
a learning rate of 10−4 and a batch size of 32 to train the diffusion model. Additionally, we perform
50 gradient updates of εψ for each step of Algorithm 1.

Iteratively refining the parameter dataset. Given the history sequence τTp:t, we use the diffusion
generation process defined in (7) to obtain a set of parameters {θpt }100

p=0 conditioned on τTp:t. Then,
we use the future sequence τt:Tf

to select the best parameter in terms of the negative log-likelihood
Jnll(θ

p
t , τTp:t:Tf

) with 5 particles of the neural SDE to compute the expectation in its expression. The
obtained best parameter is then used to update θloc for better initialization and regularization of the
local optimization problem (4). In our experiments, we refine θloc at every step of Algorithm 1 only
after the initial 20000 steps of the main training loop.

Online diffusion model inference. In Algorithm 2, we use a sliding window to deal with the
growing size of the dataset Thist and to account for changing vehicle-road properties or environment
conditions. The maximum size of the sliding window Thist is typically set to 30 seconds worth of

18



driving data. During online sampling for model predictive control, we randomly sample the set
Tgen to contain 5 history sequences τTp:tj and the set Tval ⊆ Thist to contain 30 sequences τtl:Tf

of
the current history dataset Thist. Specifically, by indexing each state-action pair xtk , utk with the
corresponding discrete time, we can define a discrete distribution to sample sequences τTp:tk , by
sampling time indexes tk and using the corresponding state-action as the endpoint of the sequence
of length Tp. In our experiments, we use an exponential distribution with a higher mass on the
latest time indexes in Thist to generate Tgen. Then, to generate Tval, we pick the future sequences
τtj :Tf

corresponding to the sequences of Tgen and sample the remaining validation sequences τtl:Tf

in the same manner as Tgen. The sequences in the validation dataset are selected to be as close as
possible to the latest time in the history dataset. We use the diffusion model to generate a total of 100
parameters {θtk}k conditioned on the sequences in Tgen, and select the best parameter according to
Algorithm 2.

A.5 Model predictive control formulation

We use a custom proximal gradient-based solver with Nesterov acceleration and Armijo line search,
inspired by the approach in [94], to optimize the MPC problem 9a–9b. The state constraints, if
any, and control rate constraints are enforced using slack variables, and the proximal operator for
projecting the slack variables onto the feasible set. We use a first-order approximation to compute the
control rate as in ˙̄uk = (ūk+1− ūk)/∆tk. On the other hand, the box constraints on the control input
are simply enforced by projection onto the set at each iteration of the proximal gradient-based solver.

Reference trajectories. The reference trajectories for the maps are generated offline via the quasi-
equilibrium strategy proposed in [19]. We start with a few waypoints in terms of the desired curvature
κref and sideslip angle βref as a function of path distance s. Then, for each point on the path, an
equilibrium point is computed using the single-track bicycle model and the conditions κ = κref ,
β = βref , φ̇ = κrefV , and V̇ = ṙ = 0, yielding the fine-grained reference vehicle state xref . We
emphasize that the model used to generate the reference trajectories differs significantly from the
neural SDE model used in the MPC controller. We reduce the over-reliance on possibly infeasible
reference trajectory by using a cost function that penalizes the deviation from only in the sideslip
angle β and wheel speed ωr, see (9a)-(9b).

Lexus LC500. We use Qβ = 120, Qe = 2.0, Qφ = 60.0, Qδ̇ = 5, and Qτ̇ = 10−6. The
control set is given by U = [−0.52, 0.52] × [−1, 400] while the control rate set is given by Ū =
[−0.9, 0.9] × [−3000, 400]. The problem is optimized over a horizon H = 30 with 25 short time
steps of 0.05s and 5 long time steps of 0.15s. Thus, the total lookahead horizon amounts to 2s.

Toyota Supra. We use Qβ = 70, Qe = 3.0, Qφ = 30.0, Qδ̇ = 1, and Qτ̇ = 10−7. The
control set is given by U = [−0.75, 0.75] × [−50, 350] while the control rate set is given by
Ū = [−2, 2]× [−3000, 2000]. The problem is optimized over a horizon H = 30 with 25 short time
steps of 0.05s and 5 long time steps of 0.15s. Thus, the total lookahead horizon amounts to 2s.

A.6 Details on the drifting experiments

In this section, we provide additional details on the drifting experiments conducted with the Toyota
Supra and Lexus LC500 vehicles. We show the full vehicle state and control evolution when drifting
on the various trajectories and road conditions, and when equipped with different tires:

• Figure 10 shows the Lexus LC500 drifting on a first-gear donut trajectory with Tire 3.
• Figure 11 shows the Lexus LC500 drifting on a first-gear Figure-8 trajectory with Tire 3.
• Figure 12 shows the Lexus LC500 drifting on a second-gear donut trajectory with Tire 3.
• Figure 13 shows the Toyota Supra drifting on a first-gear donut trajectory.
• Figure 14 shows the Toyota Supra drifting on a second-gear Figure-8 trajectory.
• Figure 15 shows the Toyota Supra drifting on a second-gear slalom-like trajectory.
• Figure 16 shows the Lexus LC500 drifting on a first-gear donut trajectory with Tire 2.
• Figure 17 shows the Lexus LC500 drifting on a first-gear Figure-8 trajectory with Tire 2.
• Figure 18 shows the Lexus LC500 drifting on a first-gear donut trajectory on heavy rain.

19



7

8

V
[m

/s
]

Reference Expert Diffusion

0

1

r[
ra

d/
s]

−40

−20

0

β
[d

eg
]

−20

0

20

δ
[d

eg
]

−1

0

1

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

20 40 60 80 100 120 140 160

Distance along path [m]

6

8

10

12

R
·ω

r
[m

/s
]

20 40 60 80 100 120 140 160

Distance along path [m]

0

100

200

300

τe
[N

m
]

Figure 10: Lexus drifting on a first-gear donut trajectory with Tire 3.

20



8

10

V
[m

/s
]

Reference Expert Diffusion

−1

0

1

r[
ra

d/
s]

−25

0

25

β
[d

eg
]

−20

0

20

δ
[d

eg
]

−1

0

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

100 150 200 250 300

Distance along path [m]

10

12

14

R
·ω

r
[m

/s
]

100 150 200 250 300

Distance along path [m]

0

100

200

300

τe
[N

m
]

Figure 11: Lexus drifting on a first-gear Figure-8 trajectory with Tire 3.

21



10

12

14

V
[m

/s
]

Reference Expert Diffusion

0.0

0.5

1.0

r[
ra

d/
s]

−40

−20

0

β
[d

eg
]

−20

0

20

δ
[d

eg
]

−1

0

1

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

100 200 300 400

Distance along path [m]

10

15

R
·ω

r
[m

/s
]

100 200 300 400

Distance along path [m]

0

200

400

τe
[N

m
]

Figure 12: Lexus drifting on a second-gear donut trajectory with Tire 3.

22



10

12

14

V
[m

/s
]

Reference Expert Diffusion

0.0

0.5

1.0

1.5

r[
ra

d/
s]

−40

−20

0

β
[d

eg
]

−20

0

δ
[d

eg
]

−0.5

0.0

0.5

1.0

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

150 200 250 300 350

Distance along path [m]

0

10

20

R
·ω

r
[m

/s
]

150 200 250 300 350

Distance along path [m]

−200

0

200

τe
[N

m
]

Figure 13: Toyota Supra drifting on a first-gear donut trajectory.

23



12

14

16

V
[m

/s
]

Reference Expert Diffusion

−1

0

1

2

r[
ra

d/
s]

−50

0

50

β
[d

eg
]

−25

0

25

δ
[d

eg
]

−1

0

1

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

200 300 400 500 600

Distance along path [m]

0

10

20

R
·ω

r
[m

/s
]

200 300 400 500 600

Distance along path [m]

−400

−200

0

200

τe
[N

m
]

Figure 14: Toyota Supra drifting on a second-gear Figure-8 trajectory.

24



12

14

16

V
[m

/s
]

Reference Expert Diffusion

−1

0

1
r[

ra
d/

s]

−50

−25

0

25

β
[d

eg
]

−25

0

25

δ
[d

eg
]

0

1

2

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

150 200 250 300 350 400 450

Distance along path [m]

0

10

20

R
·ω

r
[m

/s
]

150 200 250 300 350 400 450

Distance along path [m]

−200

0

200

τe
[N

m
]

Figure 15: Toyota Supra drifting on a second-gear slalom-like trajectory.

25



7

8

V
[m

/s
]

Reference Expert (Tires 2) Diffusion (Tires 2, 3) BaseSDE(Tires 2, 3)

0

1

r[
ra

d/
s]

−40

−20

0

β
[d

eg
]

−20

0

20

δ
[d

eg
]

−0.5

0.0

0.5

e
[m

]

−0.1

0.0

0.1

∆φ
[r

ad
]

25 50 75 100 125 150 175 200

Distance along path [m]

7.5

10.0

12.5

R
·ω

r
[m

/s
]

25 50 75 100 125 150 175 200

Distance along path [m]

0

100

200

300

τe
[N

m
]

Figure 16: Lexus drifting on a first-gear donut trajectory with Tire 2.

8

10

V
[m

/s
]

Reference Expert (Tires 2) Diffusion (Tires 2, 3) BaseSDE (Tires 2, 3)

−1

0

1

r[
ra

d/
s]

−25

0

25

β
[d

eg
]

−20

0

20

δ
[d

eg
]

−4

−2

0

e
[m

]

−0.2

0.0

0.2

∆φ
[r

ad
]

50 100 150 200 250 300

Distance along path [m]

8

10

12

14

R
·ω

r
[m

/s
]

50 100 150 200 250 300

Distance along path [m]

0

100

200

300

τe
[N

m
]

Figure 17: Lexus drifting on a first-gear FIgure-8 trajectory with Tire 2.

26



6

7

8

V
[m

/s
]

Reference Diffusion

−1.5

−1.0

−0.5

0.0

r[
ra

d/
s]

0

20

40

β
[d

eg
]

−20

0

20

δ
[d

eg
]

0

2

4

e
[m

]

−0.2

0.0

0.2

∆φ
[r

ad
]

50 100 150 200

Distance along path [m]

7.5

10.0

12.5

R
·ω

r
[m

/s
]

50 100 150 200

Distance along path [m]

0

50

100

150

τe
[N

m
]

Figure 18: Lexus drifting on a first-gear donut trajectory on heavy rain.

27


	Introduction
	Related work
	Method
	Conditioned diffusion model in parameter space
	Application to autonomous driving at the limits of handling

	Results
	Multimodality and conditioning capabilities of the diffusion model
	Online adaptation to different tires
	Drifting performance in different scenarios
	Drifting in low-friction conditions using limited data

	Conclusions
	Appendix
	Physics-inspired neural SDE vehicle model
	Experimental vehicles and training dataset
	Expert models training
	Diffusion model training and online sampling
	Model predictive control formulation
	Details on the drifting experiments


