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ABSTRACT

Diffusion models have quickly become the state-of-the-art for generation tasks
across many different data modalities. An important ability of diffusion models
is the ability to encode samples from the data distribution back into the sampling
prior distribution. This is useful for performing alterations to real data samples
along with guided generation via the continuous adjoint equations. We propose an
algebraically reversible solver for diffusion SDEs that can exactly invert real data
samples into the prior distribution.

1 INTRODUCTION

Diffusion models have quickly become the state-of-the-art in many different modalities in generation,
e.g., audio (Liu et al., 2023), images (Rombach et al., 2022), video (Blattmann et al., 2023), protein
generation (Skreta et al., 2024), &c. The sampling process of diffusion models is done through
numerically solving an It6 Stochastic Differential Equation (SDE) or related Ordinary Differential
Equation (ODE) which describes the evolution of a sample drawn for some prior noise distribution
to the data distribution. Inversion of the sampling procedure, i.e., an encoding from the data
distribution back to the prior distribution, is invaluable for many downstream applications. E.g.,
image editing (Hertz et al., 2023; Su et al., 2023; Meng et al., 2022; Nie et al., 2024) and image
interpolation (Song et al., 2021a; Blasingame & Liu, 2024a;b) with natural extensions to other data
modalities. Existing work on diffusion inversion has focused on the ODE formulation (Wallace et al.,
2023; Zhang et al., 2024; Wang et al., 2024); however, recent work (Nie et al., 2024) has shown that
the SDE formulation is particularly useful for applications when the latent representation is edited.
Motivated by this finding, we propose a novel algebraically reversible solver for diffusion SDEs that
makes use of the Brownian interval (Kidger et al., 2021) to perform exact inversion with diffusion
models without storing the entire Wiener process in memory. To the best of our knowledge this work
is the first to propose a technique for exactly inverting diffusion SDEs without storing the sampled
noise from every timestep in memory.

2 PRELIMINARIES

Diffusion models aim to learn a mapping from some simple prior distribution of Gaussian noise p(x)
to the data distribution g(x). The namesake for this class of models comes from the forward diffusion
process, an Itd SDE given by:

dX; = f(t) X + g(t) AW, 2.1)
where f, g € C*([0,T1]) form the drift and diffusion coefficients of the SDE, and where {W/ };c(0.1
is the standard Wiener process on the time interval [0, T']. The reverse-time SDE (Anderson, 1982)
of Equation (2.1) is found to be:

AdX, = [f(t) X; + g (1) Vs log pi(X,)] dt + g(t) AW, 2.2)

where dt is a negative timestep and { W }4¢ (o 7 is the standard Wiener process in reverse-time. The
aim of diffusion models, then, is to learn the score function sy(x,t) = Vg logpi(x) (Song et al.,
2021b) or a closely related quantity, e.g., noise prediction (Song et al., 2021a; Ho et al., 2020) or data
prediction (Kingma et al., 2021). Once the score function or another equivalent parameterization
is learned, we can use it to sample g(x) by first sampling some 7 ~ p(x) and then numerically
solving Equation (2.2) in reverse-time with our model of the score function with some kind of SDE
solver, e.g., Euler-Maruyama.
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3  MOTIVATION

A common task with diffusion models is to encode samples from the data distribution ¢(a) back into
the noise distribution p(x). This can be for tasks such as image editing (Meng et al., 2022; Nie et al.,
2024), or for performing the backward pass in solving the continuous adjoint equations (Blasingame
& Liu, 2024a; Pan et al., 2024). However, simply solving the diffusion ODE forwards in time'
can raise some issues due to truncation errors and stability concerns. Furthermore, integrating the
diffusion SDE in forwards time requires a bit more care due to the Itd stochastic integral.

Truncation errors. Suppose that we have some numerical scheme for sampling the diffusion model,
e.g., DDIM (Song et al., 2021a), DEIS (Zhang & Chen, 2023), or DPM-Solver (Lu et al., 2022a;b);
such that we can sample the solution trajectory {&;, }_, with timesteps {txy =T > tx_1--- >
to = 0} and where &, ~ g(x) and the rest of the trajectory is found via the numerical scheme. Now,
suppose we apply the same scheme forwards in time with initial condition &,, = &, to construct
the encoding trajectory {&;, }N_;, we have no guarantee that encoding trajectory will equal the
sampling trajectory for n > 0, i.e., &;, = &, does not necessarily hold for n > 0. This has a few
implications: a) a scheme which is used for encoding and then sampling is not guaranteed to have
exact inversion and b) the samples generated in the encoding trajectory differ from the samples in the
sampling trajectory, causing inaccurate gradients when using the continuous adjoint equations.

Stability. Similarly, there are concerns about the numerical stability of the numerical scheme solved
in both directions of time. Consider the test ODE 5(¢t) = Ay(t) with A < 0 defined in the interval
[0, T] with the initial condition yo. An ODE solver with a nontrivial region of convergence (see
Harier & Wanner, 2002) will be able to solve this ODE without much trouble, as the magnitude of the
errors decreases exponentially since ) is negative. However, the backwards in time solve from y(7")
will suffer numerical instability as the errors will grow exponentially. N.B., this problem is simply
reversed if the solver has good stability in reverse-time, with the solve in forward-time now suffering.
Furthermore, the poor stability in the backward solve is an issue for diffusion guidance techniques
which use continuous adjoint equations.

As such we desire a numerical solver for diffusion models which has alignment in truncation errors
in both directions of time along with reasonable numerical stability in both directions.

4 REVERSIBLE SOLVERS FOR DIFFUSION SDES

Now as we alluded earlier, there are some difficulties with solving Equation (2.2) in forward-time
as the It0 integral is adapted to the backward filtration induced by { W, }. Instead, it is much easier
to use the Fisk-Stratonovich symmetric integral (see Kunita, 2019), which has the nice property of
symmetry in time. Now as the It6 integral term in Equation (2.2) is only additive noise, we can
freely switch to the Stratonovich integral without consequence, thereby rewriting Equation (2.2) as
an integral equation of the form:
t t
X = [ )X+ (0 alogpn (X) dr+ [ g(r) o aw. @.1)
T T
N.B., the Wiener process {W;} is not the same process as the one used in Equation (2.1), but
we adopt it for a simpler notation, that we ask the reader to keep this in mind.” The drift and
diffusion coefficients, (f, g), are defined via the schedule (v, ;) in the Variance Preserving (VP)

formulation (Song et al., 2021b) with f(t) = %, g3 (t) = dgf —2d l‘zigto” o2

Let o (x) = E[Xo|X; = x| be the data prediction model. Following Lu et al. (2022a) we
let A := loga;/o; denote one-half the log-SNR (Signal to Noise Ratio). Since \; is a strictly
decreasing function of ¢, there exists an inverse function ¢y (-) such that ¢t = ¢ (\;) and, with abuse
of notation, we let ) = x;, (x) and Tx,A(Tx) = T, (1) (T4, (1)) We can then simplify the
integral equation in Equation (4.1) using exponential integrators (Hochbruck & Ostermann, 2010)—a

'N.B., due to the time conventions with diffusion models, sampling is performed backwards in time and
encoding is forwards in time.

*More technically, we define the Stratonovich integral w.r.t. to the natural two-sided filtration induced by
{W,} defined in forward-time. For more details we refer to Kunita (2019) and for an application in a modern
ML context we recommend Li et al. (2020).
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common technique for diffusion models (see Lu et al., 2022a; Zhang & Chen, 2023; Gonzalez et al.,
2023; Blasingame & Liu, 2024a)—to simplify the solution of the Stratonovich integral equation. This
result is presented in Proposition 4.1 with the full proof in Appendix B.

Proposition 4.1 (Exact solution of diffusion SDEs). Given an initial value X ;(w) = x5 at
time s € [0, T the exact solution of Equation (4.1) can be expressed as:

At
ag
X, = —LetMX, +2at/ 2 Mgy M(Xn) A+ V20 MW, (42)
A

Og B
Linear term Approximated term Brownian bridge
No truncation errors Truncation errors No truncation errors

where ¢, = 1 (e2M — e27).

Proof sketch. First we simplify the integral equation using the methodvariation-of-parameters
to get an exponential integrator (Hochbruck & Ostermann, 2010). We express the Stratonovich
integral as a continuous local martingale in backward time, enabling us to use the Dubins-Schwarz
theorem (Dubins & Schwarz, 1965) to rewrite the integral as a time-changed Brownian motion.

The exponential integral term in Equation (4.2) can be approximated via a truncated Stratonovich
Taylor expansion (Kloeden & Platen, 1991) and the time-changed Brownian bridge can be efficiently
calculated by using the Brownian interval (Kidger et al., 2021, Algorithm 3) in both reverse-time and
forward-time.

4.1 CONSTRUCTION OF THE REVERSIBLE SOLVER

Now equipped with a simplified form of the diffusion SDE we develop a reversible solver based
on approximations of the exponential integral in Equation (4.2). Taking inspiration from the recent
work of McCallum & Foster (2024), in which they design reversible solvers for neural ODEs with a
non-trivial region of convergence, we apply their insight of using a coupling parameter to construct
an algebraically reversible solver to Equation (4.2). Note that we assume that our data prediction
model is trained to zero loss, i.e., ff30|t = To|;-

Forward pass. Suppose that we have a single-step solver for the exponential integral term in Equa-
tion (4.2) given by ¥}, : R x R? — R? where h denotes the step size h := \; — \, and timesteps
{t,}N_, which is defined in reverse-time. Let ( € (0,1) be a coupling parameter that determines
the stability of the forward and backward passes, and let & be an augmented state for algebraic
reversibility. For notational simplicity, let x,, := x;, and likewise for other variables. We then define
the forward pass as

a. +1 _ KA A
~ € hmn+2@n+1\ph(tn7mn)

Tpy1 = (Ty + (1 - O"ﬁn +

+ V20,416 WL 4.3)

On

2 a h —A
Tnt+1 = Tp — € Tny1 — 2an\I/,h(tn+1, wn+1) + \/io'ne nW§n+17<n'

On+1

Backward pass. The backward solve can then be computed algebraically from Equation (4.3) as

On

S h “An
Tp = Tpt1 + €' Tnt1 + 20V _p(tnt1, Tnt1) — \/iane Wi im0

On+1
Zn = C appr + (1= CDdn — e Vg 4 200 11 C M (b, B) 44D

n

— \/50n+1€_)\n+1 C_1W§n+1,€n 0



Published as a conference paper at ICLR 2025

a

(a) DDIM inversion with 20 steps.

ES e

(c) Reversible diffusion SDE with 20 steps.

Figure 1: Comparison of different solvers for diffusion models on an image interpolation task with
interpolation values 0,0.1,0.25,0.5,0.75,0.9,1 (from left to right). The leftmost and rightmost
images are the original images: :cga) and :céb). The same number of steps are used for both the
encoding and sampling procedure. For the reversible methods ( = 0.999. Original faces from

FRLL (DeBruine & Jones, 2017).

S5 INTERPOLATION EXPERIMENT

Following Song et al. (2021a) we test our method with a small experiment of image interpolation, i.e.,
given two real images w((]a) and wgb) they are inverted to find wgil ) and zcgf’ ). These representations
are then interpolated via spherical linear interpolation (Shoemake, 1985) to obtain an interpolated
latent representation. For the reversible solvers we also interpolate @. For this experiment, we used a
Latent Diffusion Model (LDM) (Rombach et al., 2022) trained on the CelebA-HQ dataset (Karras

et al., 2018) at a 256 x 256 resolution. More details can be found in Appendix C.

In Figure | we plot an example interpolation with three different solvers: a) the standard DDIM
inversion which serves as the baseline, b) McCallum and Foster’s method applied to DDIM, and c)
the reversible solver described in Equations (4.3) and (4.4) with first-order truncated Stratonovich-
Taylor expansion. Notice how the DDIM solver struggles to accurately invert the original images;
whereas the same solver when used in conjunction with McCallum and Foster’s method yields
exact inversion. The poor performance of the DDIM inversion is not surprising, as we used a low
number of discretization steps to stress test the solvers. The SDE solver with only 20 sampling steps
performs better than the ODE-based inversion with fewer visible distortions, while still achieving
exact inversion.

6 CONCLUSION

In this work, we propose a novel algebraically reversible solver for diffusion SDEs allowing the
exact inversion of samples into the latent space with diffusion SDEs. To the best of our knowledge,
we are the first to propose a method to exactly invert diffusion SDEs that does not store the entire
realization of the Wiener process in memory. We illustrate the utility of our solver on the experiment
of image interpolation. This work has many potential applications in the editing of samples with
diffusion SDEs and for eliminating truncation errors in guided generation methods which use the
continuous adjoint equations.

Limitations. As preliminary work we have only explored a proof of concept experiment with image
interpolation to illustrate the stability under perturbations and exact inversion of our method. In the
future, we plan to explore using this solver for guided generation via the continuous adjoint equations
and perform a more detailed analysis of the stability.
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A RELATED WORKS

In this section we provide a small discussion on related work.

Reversible solvers. The asynchronous leapfrog method (Zhuang et al., 2021) and the reversible
Heun (Kidger et al., 2021) were the standard reversible solvers until recently (¢f. McCallum & Foster,
2024), with the former applicable to general neural ODEs and the latter applicable to neural ODEs,
CDEs and SDEs. Recent work by McCallum & Foster (2024) has improved upon these older solvers
for neural ODEs by showing it is possible to construct reversible solvers with a non-trivial region of
stability.

Exact inversion with diffusion models. The work of Wallace et al. (2023) proposes a reversible
solver for diffusion ODEs by solving a dual auxiliary state of the model and then interpolating
between the two states. Later work by Zhang et al. (2024) explores a reversible solver by using
a bidirectional integration approximation scheme as a sort of leapfrog method. More recent work
by Wang et al. (2024) has explored the exact inversion of diffusion ODEs using bidirectional linear
multistep methods. However, linear multi-step methods and leapfrog methods often suffer from poor
stability (Shampine, 2009).

Inversion with diffusion SDEs. More closely related to our work Wu & De la Torre (2022) propose
a method for the exact inversion of diffusion SDEs. Given a particular realization of the Wiener
process that admits z; ~ N (ayxg | 021), then given x and noise €; ~ A (0, I) we can calculate

@, = %m + 200 (" = Vdogis(xs) + 01/ €2 — e, (A.1)

Wu & De la Torre (2022) propose to invert this by first calculating for two samples x; and x the
noise €, can be calculated by rearranging the previous equation to find

T — Stas + 204 (e — 1)ep(xs, 2, 5) A2)
€ = : .
° OtV €2h -1
With this the sequence {e€;, } Y, of added noises can be calculated which can be used to reconstruct
the original input from the initial realization of the Wiener process. However, unlike our approach,
this process requires storing the entire realization in memory.

B PROOF OF PROPOSITION 4.1

We restate Proposition 4.1 here:

Proposition B.1 (Exact solution of diffusion SDESs). Given an initial value X (w) = x, at time
s € [0,T) the exact solution of Equation (4.1) can be expressed as:

At
Ot x—A 2= Y
X, = —eMMXg 420 [ MMy (X)) AN+ V200 MW, (B.1)
Og As
Linear term Approximated term Brownian bridge
No truncation errors Truncation errors No truncation errors

where ¢y = %(62)“ — P,

We also restate the Dubins-Schwarz representation theorem (Dubins & Schwarz, 1965) (sometimes
referred to as the Dambis representation theorem) below:

Theorem B.2 (Dubins-Schwarz representation theorem). Let M be a continuous local martingale
adapted to a filtration {F }1c(0,00) vanishing at zero that satisfies (M), = oo almost surely. Define

the stopping times {74 }1c[0,00) DY
7 =1inf {s € [0,00) : (M)s >t} =sup {s € [0,00) : (M)s =t}
Then, { M-, }+c(0,00) is a standard Brownian motion { Bt },c[0,o0) and, for every t € [0, 00),
M, = By,

Now we state our proof for Proposition 4.1.
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Proof. First we restate our Stratonovich integral equation from Equation (4.1):

t t
X=X+ [ f0X, 4 P OValogp (X ) dr b [ g(n)odW,, B2
where ( ‘
_dlogay
ft)=—3— (B.3)

do? dlog a dA
2 t t 2 2 t
g [ o;f = —20; —. B.4
(t) de dt ¢ ¢ dt ( )

We can express the score function in terms of the data prediction model o, (x) = E[X(|X; = x]:

1 ol
Valogpi(z) = @ — —aq (). (B.5)
t t

Using Equation (B.5) we can rewrite Equation (4.1) as

t 2(r o, g2 (T t
X, =X, +/ (f(r) + 90(2 )>XT — TgT()mO\t(XT) dr —|—/ g(1) 0 dW,. (B.6)

T T
Then we can write the Stratonovich integral equation as

t t
X, = X, + / a(r) X, + b(r)zo, (X,) dr + / o(7) 0 AW, (B.7)
where
dlogay  ¢?(t) 1 do? dlogoy
£ = = =t _ B.8
®) a o? o? dt e’ (B-8)
2
g (t) dAs

b(t) = — =204 —. B.9
( ) o_tg Qt dt ( )

Then we can use the variation-of-parameters formula to find

t t

X, = ®(s,1) X, +/ By (7, )b(r)zorr (X,) dr +/ Bo(r,t)g(r) 0 dW,,  (B.10)

where ®,(s,t) = exp f; a(7) dr is the integrating factor. This technique has been employed by
other works to separate the linear and non-linear component of diffusion models (Lu et al., 2022a;
Gonzalez et al., 2023; Blasingame & Liu, 2024a). We then simplify ®, (s, t) such that

b1 do? t dlog ar
@a(s,t):exp( - d(:-T dT—/ (;gToz d7')7

S

ot 1 t
= exp / ) do? —/ dlogaT),
o S

s

Il
o
i
o]

= exp <logof —logo? — (log a; — log ocs)>,
( o

= exp
2
oro
=1 (B.11)
o350
Another useful form to express the integrating factor in, is in terms of A;, which we find:
2
_ ojas
¢a(s7 t) - Ugolt )
o ( ows>
= —exp | log ,
Os 05O
Ot Qg (677
= —exp <log — log>7
Os Os (7
o
= Zleds = (B.12)

Os
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Using this expression for @, (s, t) we can rewrite Equation (B.10) as:

t t
~dAs _ d\,
X, = ﬁe)‘s_’\tXS—i—QUt/ e’\*_’\ta— (XT)dT+\/§at/ err M —d—odWT.
S

O o, dr R T
(B.13)
We first simplify the integral term
t
rdAs _
QUt/ e)‘f_’\‘j— - (X dT—QO‘t/ e AreAr wO‘T(X ) dr,
d)\
>\t
_20,5/)\ e My (X)) d,
_zat/ 2y (X)) d (B.14)
As
At
- QOTt ez, (X)) dX. (B.15)
As

To simplify the stochastic integral term we first define a continuous martingale M, via the stochastic

integral:
_ / foan A
— [ e —
T d'r

We choose time 7' as our starting point for the martingale rather than 0 and then integrate in reverse-
time, hence the negative sign. We can then express our stochastic integral in Equation (B.13) as

N d\,
A\ =g o AW, = M, — M. (B.17)
s T

Next we establish a few properties of this martingale. First, M = 0 by construction. Second, the
quadratic variation of M is found to be

(B.16)

¢ dr, )2
M), = — A== d
o= [ (B
t
[t
T dT
At
:/ e d,
Ar
71 2Xe _ 2A7
gth(e e ) (B.18)

where we let ¢; denote our new time variable. Now we have a deterministic mapping from the original
time to our new time via:
St ot [Oa T] - [Oa OO),
t— (M),

Notice that as ¢ — 0 and oy — 0 we have (M); — co. Such a martingale can be expressed as
time-changed Brownian motion, see Theorem B.2, such that M; = W/, . For notational simplicity
we define the Brownian bridge in this time-changed as

(B.19)

We e =W, - W,. (B.20)
Thus we have
At
Xy = 2L TN, + 20y / Oz 3 (X)) AN+ V2ore MW, (B.21)
S Ao
thereby finishing the proof.
O
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C EXPERIMENTAL DETAILS

All experiments were performed on a single NVIDIA Telsa V100 32GB. We used the Brownian
interval (Kidger et al., 2021) from the t orch—sde package. The faces are from the Face Research
Lab London (FRLL) dataset (DeBruine & Jones, 2017). We used the pre-trained LDM model
from Rombach et al. (2022) which can be found here: https://huggingface.co/CompVis/
ldm-celebahg-256.
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