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ABSTRACT

Wavelet shrinkage is a powerful tool in neural signal processing. It has been ap-
plied to various types of neural signals, such as non-invasive signals and extracel-
lular recordings. For example, in Parkinson’s disease (PD), β burst activities in
local field potential signals indicate pathological information, which corresponds
to strong signal with higher wavelet coefficients. However, it has been found that
there also exists weak signal that should not be ignored. This weak signal refers
to the set of small coefficients, which corresponds to the non-burst/tonic activity
in PD. While it lacks the interpretability of the strong signal, neglecting it may
result in the omission of movement-related information during signal reconstruc-
tion. However, most existing methods are mainly focused on strong signals while
ignoring weak signals. In this paper, we propose Splitted Wavelet Differential In-
clusion, which is provable to achieve better estimation of both the strong signal
and the whole signal. Equipped with an ℓ2 splitting mechanism, we derive the
solution path of a couple of parameters in a newly proposed differential inclusion,
of which the sparse one can remove bias in estimating the strong signal and the
dense parameter can additionally capture the weak signal with the ℓ2 shrinkage.
The utility of our method is demonstrated by the improved accuracy in a numerical
experiment and additional findings of tonic activity in PD.

1 INTRODUCTION

Neural signals are fluctuations in neuronal activity that play a crucial role in brain function and
communication Buzsáki et al. (2012). To effectively preprocess these signals, wavelet analysis has
emerged as a powerful tool and has been widely applied across various neuroscience analysesPavlov
et al. (2012), as wavelet functions proficiently characterize transient fluctuations in rhythmic neural
oscillations Luo et al. (2018); Donoghue et al. (2020). A typical example is to extract these neu-
ral oscillations at different frequency bands (e.g., α (8-12 Hz), β (12-35 Hz), and γ (35-100 Hz)
bands) that are particularly important in neuropsychiatric disorders Mathalon & Sohal (2015) and
movement disorders Yin et al. (2021). For such tasks, wavelet analysis facilitates the detection and
quantification of temporal dynamics among neuronal populations, as observed in epilepsy Kalbhor
& Harpale (2016) and Parkinson’s Disease (PD) Lofredi et al. (2023); Tinkhauser et al. (2017b).

Of particular paramount application of wavelet analysis is Wavelet Shrinkage Donoho & Johnstone
(1994; 1995; 1998); Donoho (1995), which is often employed to neural signal denoising Baldazzi
et al. (2020). It projects the noisy data into the wavelet domain, followed by a hard or soft thresh-
olding method to force noisy coefficients to zeros. Apart from denoising, Wavelet Shrinkage is also
employed in decoding brain states from neural signals, particularly in subthalamic nucleus (STN)
local field potential (LFP) signals in PD Khawaldeh et al. (2020); Tinkhauser et al. (2017b). These
findings also support improved clinical efficacy in PD by an adaptive deep brain stimulation algo-
rithm involving thresholds in Wavelet Shrinkage Nie et al. (2021); Guo et al. (2024). To select the
threshold parameter, many methods have been proposed, such as Universal (σ

√
2 log n) Donoho

& Johnstone (1994), Minimaxi Verma & Verma (2012), SureShrink Donoho & Johnstone (1995),
Bayesian Shrinkage Do & Vetterli (2002); Simoncelli & Adelson (1996); JOHNSTONE & SIL-
VERMAN (2005), non-parametric shrinkage Antoniadis & Fan (2001); Gao (1998) such as SureLet
Luisier et al. (2007) and Neigh Shrink Sure Chen et al. (2005). Most of these methods only selected
large coefficients since they are assumed to be all the information contains in the signal Atto et al.
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(2011). However, it has been found that there may exist small coefficients Donoho & Johnstone
(1994), such as the non-burst activity in PD Khawaldeh et al. (2020).

In this paper, we call the signal composed by such small (resp. large) coefficients as the weak
(resp. strong) signal. Although the strong signal typically has more semantic meaning and is more
interpretable than the weak signal, ignorance of the latter can lead to the loss of information in
reconstruction. For example, exaggerated β oscillations (10-35 Hz), especially low β oscillations
(10-20 Hz) in STN are significant biomarkers in the Parkinson’s study Kühn et al. (2006); Lofredi
et al. (2023), but the non-burst activity restricts the capacity of encoding physiological informa-
tion in the basal ganglia network Khawaldeh et al. (2020); Brittain & Brown (2014); Mallet et al.
(2008). At the mesoscopic scale, strong beta activities essentially come from the prolonged synchro-
nized state between neurons Tinkhauser et al. (2017a) and these non-burst activities coming from
low-frequency synchronized states might contain more information on motor movement Cole et al.
(2017); Khawaldeh et al. (2020). Therefore, it is desirable to identify the strong signal as a semantic
part and meanwhile estimate the whole signal (including both strong and weak signals) well.

Towards this goal, existing methods with too small or too large thresholds either suffer from failing
to eliminate noise components in estimating the strong signal or ignoring the weak signal part in
estimating the whole signal. Specifically, the methods with too large threshold values (e.g., Univer-
sal, or Minimaxi) could eliminate the noise components, but they could induce large bias/errors in
estimating the strong signal; moreover, they might over-smooth the weak signal part with small co-
efficients. On the other, the methods with smaller thresholds (e.g. SureShrink Donoho & Johnstone
(1995)) might fail to eliminate noise components in estimating the strong signal for interpretation.

To resolve these problems, we propose a new method from the perspective of differential inclusion,
dubbed as Splitted Wavelet Differential Inclusion(SWDI), which is provable to achieve better es-
timation than Wavelet Shrinkage on both the strong signal and the whole signal. Specifically, we
introduce an ℓ2 splitting mechanism appended to the signal reconstruction loss, which couples a
sparse parameter and a dense parameter to estimate the strong signal and the whole signal, respec-
tively. To update these parameters, we propose a differential inclusion with sparse regularization,
i.e., a dynamic approach with a unique closed-form solution. Equipped with an early stopping mech-
anism on this dynamics, the sparse parameter can recover the strong signal without bias, while the
dense parameter can additionally capture the weak signal via ℓ2 shrinkage. We also provide a dis-
cretization method that can efficiently generate the solution path, even if the wavelet decomposition
matrix is not orthogonal. The utility and effectiveness of our method are demonstrated in a numeri-
cal experiment and the effectiveness study of dopaminergic medication impact on PD. Particularly,
the signal recovered by our method is more significantly correlated to the medication, which can be
explained by the non-burst activity found by our method.

To summarize, our contributions are listed as follows:

• We propose the SWDI, which involves a dual parameter to simultaneously estimate the
strong and the whole signal.

• We theoretically show that the closed-form solution path can achieve better estimation than
Wavelet Shrinkage on both the strong signal and the whole signal. For the strong signal,
our estimation is bias-free, while for the whole signal, our dense parameter can accurately
capture the weak signal via an ℓ2 shrinkage.

• We apply our method to neural signal recognition in PD and identify the non-burst activity
that has been recently found to be also responsive to the medication.

2 RELATED WORK

Wavelet Shrinkage. The threshold selection has been a challenging problem for Wavelet Shrinkage
methods, which can be traced back to Donoho & Johnstone (1994) that proposed a universal selec-
tion parameter σ

√
2 log n where n denotes the length of the signal and σ denotes the noise level.

Although it can eliminate noise components, it can induce biases/errors in estimation. To address
this issue, many non-adaptive and adaptive methods have been proposed, such as Minimaxi Verma
& Verma (2012), SureShrinkage Donoho & Johnstone (1995) that leveraged the Jame-Stein Shrink-
age method for more accurate estimation, Bayesian shrinkage Do & Vetterli (2002); Simoncelli &
Adelson (1996); JOHNSTONE & SILVERMAN (2005); ter Braak (2006), non-parametric shrink-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

age Antoniadis & Fan (2001); Gao (1998) including SureLet Luisier et al. (2007) and Neigh Shrink
Sure Chen et al. (2005), etc.

Wavelet analysis in neural signal processing. Wavelet analysis has been widely applied in pro-
cessing brain signals Li et al. (2007); Faust et al. (2015); Ortiz-Rosario et al. (2015). One notable
example is its use in establishing biomarkers for PD Wang et al. (2004); Tinkhauser et al. (2018);
Luo et al. (2018); Nie et al. (2021); Guo et al. (2024). Among these biomarkers, substantial β burst
activity have been clinically demonstrated to correlate with improvements in mobilityTinkhauser
et al. (2017b); Lofredi et al. (2023).

Most existing Wavelet Shrinkage methods relied on the strongly sparsity assumption Atto et al.
(2011), i.e., the signal (or each sub-band) is a representation of only a small proportion of strong
signal coefficients with large magnitude. However, as we will show below, there may exist smal-
l/weak coefficients in many applications including neural signal processing, and should not be ig-
noredKhawaldeh et al. (2020).

Weak signal coefficients refer to those small coefficients that have been found in many applications,
such as textures, contours in image denoising Atto et al. (2011), enlarged gray matter voxels in brain
diseases Sun et al. (2017), the non-burst component in dopamine-dependent motor symptoms with
Parkinson’s patients Khawaldeh et al. (2020); Brittain & Brown (2014); Mallet et al. (2008). In these
applications, these weak signal coefficients may not be as interpretable as strong signal coefficients
(e.g., burst component in PD analysis); however, the ignorance of these weak signals due to over-
smoothing may lose information in signal reconstruction in neuroscience analysis. Therefore, it is
desired to i) disentangle the strong signals as the semantic component of the signal, and meanwhile
ii) accurately estimate the whole signal by capturing the weak signal coefficients.

Limitations of Wavelet Shrinkage and our specifications. Existing Wavelet Shrinkage methods
either suffered from failing to disentangle strong signals apart because of small thresholds (e.g.,
SureShrink), or ignoring weak signals because of large thresholds (e.g., Minimaxi or Universal√
2 log n). In contrast, the splitting mechanism in our Wavelet Differential Inclusion(WDI) decou-

ples sparse and dense parameters, enabling accurate estimation of both the strong signal and weak
signal coefficients. Note that our method is motivated by but different from the differential inclusion
method in signal recovery Osher et al. (2005; 2016). For the reason of coherence and space limit,
we leave the review of these methods in Appx. A.

3 PRELIMINARY

Problem setup. Suppose we observe data {yi}ni=1 with n = 2J for some integer J > 1, such that
yi = f(ti) + ei with e1, ..., en ∼i.i.d N (0, σ2), ti := i

n and f denoting the ground-truth signal
we would like to recover. One may construct a wavelet transformation to decompose the observed
signal y into an orthogonal wavelet basis, including stationary wavelet transform (SWT), discrete
wavelet transform (DWT), etc. For DWT, we obtain an inverse wavelet transform matrix W ∈ Rn×n

depending on the type of wavelet filters (such as Coiflets, Symlets, Daubechies Cohen et al. (1993),
Beylkin Beylkin et al. (1991), Morris minimum-bandwidth Morris & Peravali (1999)), the number
of vanishing moments M and the coarsest resolution level L.

With such W , we can obtain the coefficients θ up to the linear transformation of noise:

ω = θ∗ + ε, ω = Wy, ε = We ∼ N (0, σ2In),

when W is orthogonal. Here, we assume the ground-truth signal θ∗ contains three types of elements:

1. Strong signal set. S :=
{
i : |θ∗i | > 2σ(1 + a)

√
2 log n

}
for some constant a > 0.

2. Weak signal set. T := {i : 1 < |θ∗i | = o(
√
2 log n)}.

3. Null set. N := {i : θ∗i = 0}.

The strong signal set corresponds to elements with large magnitudes and can be identified by the
Wavelet Shrinkage Donoho & Johnstone (1995). This definition aligns with the β-min condition
Zhang & Zhang (2014) in variable selection, meaning that the signal should be strong1 enough to
be identified. Correspondingly, we define the strong signal vector θ∗,s as θ∗,si = θ∗i for i ∈ S;

1In linear regression, it requires θ∗i ⪰ O( logn
p

) for θ∗i ̸= 0.
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= 0 otherwise. The weak signal set refers to those non-zero elements with smaller magnitudes and
has been similarly introduced in wavelet denosing Atto et al. (2011) and beyond Li et al. (2019);
Zhao et al. (2018). Despite with small magnitudes, this set may have a non-ignorable impact on the
reconstruction effect. However, it can be difficult for existing ℓ1-regularization (e.g., the Wavelet
Shrinkage) to distinguish them from the Null set.

Wavelet shrinkage via soft-thresholding. The Wavelet Shrinkage method in Donoho & Johnstone
(1994); Donoho (1993); Donoho & Johnstone (1995) proposed the soft-thresholding estimator θ̂i =
η(ωi, λ) = sign(ωi)max(|ωi| − λ, 0) for some λ > 0, followed by inverse wavelet transformation
to recover the signal f̂ := W−1η(ω, λ). To remove the noise components, Donoho & Johnstone
(1994) selected λ ∼ O(

√
2 log n), which is provable to be minimax optimal.

Proposition 3.1 (Theorem 2 in Donoho & Johnstone (1994)). Denote θ̂(λn) := η(ω, λn), then the
minimax threshold λ∗

n := arg infλ≥0 supθ∗ E[∥θ̂(λ)− θ∗∥22] ∼
√
2 log n.

Although λ ∼
√
2 log n can effectively remove noise with high probability, it suffers from two

limitations: i) the estimation of strong signal coefficients is biased due to non-zero λ; ii) it ignores
the weak signal coefficients, which leads to additional errors in estimating the whole signal θ∗.
Specifically, for i), although the threshold

√
2 log n can identify the strong set S by removing others

with high probability, it can induce bias in estimating θ∗,s. This is shown by the following result,
which states that once we identify S, the optimal threshold value in estimating θ∗,s is λ = 0.
Proposition 3.2. For strong and weak signals, i.e., i ∈ S ∪ T with |θ∗i | > 1, we have:

0 = arg inf
λ

sup
|θ∗

i |≥1

E(η(ωi, λ)− θ∗i )
2.

Remark 3.3. This result shows that in terms of population error, the best optimal threshold value is
also 0 for weak coefficients. However, it does not mean we should select λ = 0 to estimate θ∗. First,
it fails to remove noise components in N . Moreover, even for weak signals, we will show that for
any fixed θ∗, applying an appropriate non-zero ℓ2 shrinkage would achieve better estimation.

For ii), λ ∼
√
2 log n fails to account for weak signal coefficients that are o(

√
2 log n). To achieve

a more accurate estimation, Donoho & Johnstone (1995) proposed SureShrink (Stein’s unbiased
estimate of risk), which can reduce biases in θ∗. However, it can mistakenly induce noise and weak
signals in identifying the strong signal θ∗,s. This may be undesired in neuroscience analysis where
identifying the strong signal is important for interpretation, such as the bust component identification
in Biomarker identification in Parkinson’s patients.

In summary, previous methods either have a bias of the strong signal and ignore the weak in esti-
mating θ∗; or fail to remove non-signal coefficients in estimating θ∗,s.

4 SPLITTED WAVELET DIFFERENTIAL INCLUSION

We introduce a new method from the perspective of differential inclusion2, which can simultane-
ously identify the strong signal θ∗,s and accurately estimate the whole signal θ∗. In Sec. 4.1, we
first introduce the WDI that can remove bias in estimating θ∗,s, followed by Sec. 4.2 where an ℓ2
splitting mechanism is additionally introduced to capture both θ∗,s and θ∗.

4.1 WAVELET DIFFERENTIAL INCLUSION FOR θ∗.s

To estimate the strong signal θ∗,s, we introduce the squared error loss ℓ(θ) := 1
2∥ω − θ∥22 and

consider the following differential inclusion with an ℓ1 regularization:

ρ̇(t) = −∇θℓ(θ(t)) = ω − θ(t), (1a)
ρ(t) ∈ ∂∥θ(t)∥1, (1b)

where ρ is the sub-gradient3 of ∥θ∥1 and ρ(0) = θ(0) = 0. We call Eq. 1 as WDI. Note that it is a
special form of the Bregman Inverse Scale Space (ISS) Osher et al. (2016) when the design matrix

2The ordinary differential inclusion is similar to the ordinary differential equation. For details about its role
in signal recovery, please refer to related works in Appx. A.

3The sub-gradient of f at x0 is defined as ∂f(x0) := {g : f(x)− f(x0) ≥ ⟨g, f(x0)⟩ for any x}.
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of θ is set to the identity matrix in the linear model, and can be viewed as a continuous dynamics
of Bregman Iteration Osher et al. (2005) in image denoising. Thanks to the identity matrix design,
the differential inclusion of Eq. 1 in the wavelet scenario has a closed-form solution θ(t), which can
illustrate the effectiveness of bias removal in estimating θ∗,s.

Specifically, starting from ρ(0) = 0, Eq. 1 generates a unique solution path of θ(t), in which more
elements become non-zeros as t grows, as shown below:

Proposition 4.1. The solution of Eq. 1 is θj(t) = ωj(t) for t ≥ 1
|ωj | ; and = 0 otherwise for each j.

Therefore, θj(t) and ρj(t) are right continuous w.r.t. t for each j.

Remark 4.2. To better explain the effect of bias removal, we compare Eq. 1 with Wavelet Shrinkage,
whose solution θ(t) (t = 1

λ ) is equivalent to the Lasso estimator: 1
2∥ω − θ∥22 + 1

t ∥θ∥1. By taking
gradient w.r.t. θt, the solution satisfies ρ(t)

t = ω − θ(t) with ρ(0) = θ(0) = 0. When |ρj(t)|
becomes non-zero, then we have θj(t) = ωj− ρj(t)

t , where ρj(t)
t can induce the bias. As a contrast,

when |ρj(t)| = 1 of WDI at some t, since θj(t) is right continuous w.r.t. t, we have that if t′ is in
a small neighborhood of t, θj(t′) is non-zero and has the same sign of θj(t). Therefore, we have
ρ̇j(t) = limt′→t

θj(t
′)−θj(t)
t′−t = 0, which gives θj(t) = ωj according to Eq. 1a.

As shown in Prop. 4.1, t plays a similar role as 1/λ in disentangling the strong signal from oth-
ers. However, it is interesting to note that, unlike the Wavelet Shrinkage, the solution θj(t) =
ωj = η(ωj , λ = 0) is without additional threshold parameter! In contrast to θj(λ =

√
2 log n) :=

η(ωj ,
√
2 log n), this estimator can remove the bias caused by λ. Therefore, our differential inclu-

sion can not only remove noise and weak components when t is large enough but also can estimate
θ∗,s without bias induced by λ in Wavelet Shrinkage that is necessary for removing bias. Equipped
with such a bias removal of Eq. 1, we can achieve a smaller ℓ2 error than the Wavelet Shrinkage.

Theorem 4.3. Denote θ∗,smin := mini∈S |θ∗i | and s := |S|. Then at τ̄ := 1/((1 + a)
√
2 log n) and n

is large enough such that a
2

√
2 log n > θ∗j for j ̸∈ S. Denote θ(t) as the solution of Eq. 1, then with

probability at least 1− 2n−4a2 −max
(
exp

(
−sλ2/8

)
, n−(1+a)2/4

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2 for any λ > 0. (2)

Remark 4.4. The proof of Thm. 4.3 is left to Appx. D. We will show that stopping at τ̄ will remove
other components since maxj |εj | < (1 + a)

√
2 log n with high probability.

Recall that η(ω, λ) refers to the soft-thresholding solution of Wavelet Shrinkage. Thm. 4.3 means
that the WDI gives a more accurate estimation than Wavelet Shrinkage.

4.2 WAVELET DIFFERENTIAL INCLUSION WITH ℓ2-SPLITTING FOR BOTH θ∗,s AND θ∗

In this section, we proceed to capture the weak signal, in order to estimate the whole signal θ∗
more accurately. To achieve this, we propose the SWDI, which generates a solution path of a sparse
parameter θs(t) ∈ Rn coupled with a dense parameter θ(t) introduced by an ℓ2 splitting term. We
will show that the θs(t) maintains the same bias removal property as WDI in Eq. 1; moreover, the
dense parameter can additionally capture the weak signal with the ℓ2 shrinkage induced by the ℓ2
splitting mechanism. Specifically, we consider the loss ℓν(θ, θs) := 1

2∥ω−θ∥22+ ν
2∥θ−θs∥22, where

ν
2∥θ − θs∥22 with ν > 0 denotes the ℓ2 splitting term that introduces a couple of parameters, which
is expected to simultaneously estimate the strong signal θ∗,s and the whole signal θ∗ well. This is
achieved by the following differential inclusion:

0 = −∇θℓν(θ, θ
s) = ω − (1 + ν)θ(t) + νθs(t), (3a)

ρ̇(t) = −∇θsℓν(θ, θ
s) = ν(θ(t)− θs(t)), (3b)

ρ(t) ∈ ∂∥θs(t)∥1, (3c)

where ρ(0) = θ(0) = θs(0). Similar to the WDI in Eq. 1, when t is large enough, it can remove
the noise and weak signal components, i.e., T ∪ N to identify the strong signal component in θs;
whereas the parameter θ can additionally capture weak components as it is dense. Formally, this
property can be shown by the following solution path of Eq. 3:

5
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Proposition 4.5. The solution of differential inclusion in Eq. 3 is{
θj(t) = θsj (t) = ωj , t ≥ 1+1/ν

ωj

θj(t) =
ωj

1+ν , θ
s
j (t) = 0 t < 1+1/ν

ωj

∀j.

Prop. 4.5 suggests that when t is large enough, the noise and weak components can be removed
in θs and meanwhile, which is the same as the solution in WDI in Eq. 1, can estimate the strong
components without bias. On the other hand, for the dense parameter θ(t), it keeps the strong
components in θs and meanwhile estimates the weak signals with ωj

1+ν via the ℓ2 shrinkage.

To explain in more detail, note that for the strong signal, when |ρj(t)| = 1, we similarly have
ρ̇j(t) = 0 according to remark 4.2. Therefore, we have θsj (t) = θj(t) = ωj according to Eq. 3b.
When |ρj(t)| < 1 for some j, we have θsj = 0 and Eq. 3a gives θj =

ωj

1+ν . For the whole signal
θ, note that θj(t) at t > tj given by Eq. 3a is the minimizer of 1

2 (ωj(t) − θj(t))
2 + ν

2 (θj(t))
2,

where ν
2 (θj)

2 can be viewed as an ℓ2 regularization of θj . This ℓ2 shrinkage, which is equivalent
to the maximum a posteriori (MAP) estimate with the Gaussian prior ν ∼ N (0, 1), resembles the
shrinkage effect in the Jame-Stein Estimator. With this shrinkage, we will show that (θs(t), θ(t))
can estimate the θ∗,s and θ∗ well.
Theorem 4.6 (Informal). Denote θ∗max,T := maxi∈T |θ∗i | and n is large enough such that θ∗max,T <

a0
√
log n for some 0 < a0 < 1. Then for (θ(t), θs(t)) in Eq. 3, if n > 41/(1−a0) at τ̄ := (1 +

1
ν )/((1 + a)

√
2 log n), the following holds with probability at least

1−O
(
n−4a2

)
−O

(
n−s/32

)
−O

(
n−(1+a)2/16

)
−O (exp(−|T |))−O (exp(−|N |)) ,

1. Strong signal recovery. For the strong signal θ∗,sS ,

∥θs(τ̄)− θ∗,S∥2 < ∥η(ω, λ)− θ∗,s∥2, ∀λ > 0. (4)

2. Weak signal recovery. For the weak signal θ∗T , there exists ∞ > ν∗ > 0 such that

∥θ(τ̄)T − θ∗T ∥2 < ∥0− θ∗T ∥2 = ∥θ∗T ∥2 i.e., ν = ∞ shrinkage to 0;
∥θ(τ̄)T − θ∗T ∥2 < ∥ωT − θ∗T ∥2 = ∥εT ∥2 i.e., ν = 0 no shrinkage.

3. Whole signal recovery. For θ∗, under the same ν∗ in item 2, we have

∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2, ∀λ ≥
√
log n.

Item 1 inherits the property in Thm. 4.3 for WDI in Eq. 1. Item 2 means we can better estimate
the weak components θ∗T via ℓ2 shrinkage. Finally, item 3 means our SWDI is more accurate than
the Wavelet Shrinkage method with λ ∼

√
2 log n. Although this conclusion may not hold for

λ = o(
√
log n), the Wavelet Shrinkage with these λ’s fails to remove noise in identifying θ∗,s.

Selecting stopping time τ̄ and ν∗. The τ̄ := (1 + 1/ν)/((1 + a)
√
2 log n) involves an unknown

parameter a, which is used to define the level of strong signal coefficients θ∗,s Donoho & Johnstone
(1994). Empirically, we can set it to a small constant 1 ≥ a ≥ 0 so as to remove other components
and identify as many strong components as possible. For ν∗, we will show in Appx. E that ν∗ :=
(∥εT∪N∥22 +

∑
j∈T θ∗j εj)(∥θT ∥22 +

∑
j∈T θ∗j εj) ∼ n/(|T |mean(θ∗T )). This term is approximate

O(1) since the weak signal is typically very dense (i.e., |T |
n ∼ O(1)). For example, the non-burst

activity in the low β band should be dense enough to be responsive to the medication.

Solution path generation via linearization. One can generate a solution path according to
Prop. 4.5. Here we consider another method to generate (θs(t), θ(t))t via linearization proposed
in Yin et al. (2008). Specifically, we consider the following differential inclusion:

θ̇(t)

κ
= −∇θℓν(θ, θ

s) = ω − (1 + ν)θ(t) + νθs(t), (5a)

v̇(t) = −∇θsℓν(θ, θ
s) = ν(θ(t)− θs(t)), (5b)

v(t) ∈ ∂

(
∥θs(t)∥1 +

1

2κ
∥θs(t)∥2

2

)
= ρ(t) +

θs(t)

κ
, (5c)
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where we introduce an ℓ2 norm 1
2κ

∥θs∥2
2 for discretization, with κ > 0 denoting the damping

factor. We show in Appx. E that the solution (θs,κ(t), θκ(t)) of Eq. 5 converges to (θs(t), θ(t)) in
Eq. 3 as κ → ∞. Therefore, Thm. 4.6 still holds in Eq. 5 when κ is large enough. By approximating
θ̇(t)
κ and v̇(t), we have the following discrete solution of Eq. 5:

θ(k + 1) = θ(k) + κδ (ω − (1 + ν)θ(k) + νθs(k)) , (6a)
v(k + 1) = v(k) + δν(θ(t)− θs(t)), (6b)
θs(k + 1) = κη(v(k + 1), 1), (6c)

where δ denotes the step size. We show in Appx. F with sufficiently large κ, Thm. 4.6 still holds
in Eq. 6 as long as δ < 2/(κ(1 + ν)). Note that this discrete form can be extended to solve the
differential inclusion for the general objective function ℓν(θ, θ

s) := 1
2∥y − Wθ∥22 + ν

2∥θ − θ2∥22,
where the wavelet matrix may not be orthogonal and we do not have a closed-form solution.

Selecting damping factor κ. κ trade-offs between estimation accuracy and computational effi-
ciency. In Appx. E, we show that as κ → ∞, the solution (θs,κ(t), θκ(t)) of Eq. 5 converges to
(θs(t), θ(t)). On the other hand, since δ is inversely proportional to κ, a larger value of κ will take
more iterations to find τ̄ . Empirically, we find that κ = 20 works well.

Selecting step size α. As shown in Appx. E, as long as δ < 2/(κ(1 + ν)), we have Thm. 4.6 for
Eq. 6. Empirically, we set it to δ = 1/(κ(1 + ν)).

5 NUMERICAL EXPERIMENTS

In this section, we apply our method to synthetic data in estimating both the sparse signal θ∗,s and
the whole signal θ∗.

Figure 1: Visualization of Signal Recovery of Wθ∗,s (top) and Wθ∗ (bottom). The blue curve
represents the original signal (Wθ∗,s in the top row and Wθ∗ in the bottom row), and the red curve
represents the estimated one.

Data generation. We set n = 1024 and the 1-d DWT matrix W ∈ Rn×n as the Daubechies 6 with
level 5, which is orthogonal. For the coefficients θ∗ ∈ Rn, we respectively set the strong signal
index set and the weak signal index set as S := {1, 4, 7, ..., 199} and T := {401, 403, ..., n}. We
set a = 0.3 and θ∗i = 2(1 + a)

√
2 log (n) if i ∈ S; = 2 if i ∈ T ; and = 0 otherwise. The sequence

f = Wθ∗ + ε with ε1, ..., εn ∼i.i.d N (0, 1) is generated, and we report the ℓ2 error over 20 times
in estimating θ∗,s and θ∗.

Implementation details. We compare with the following threshold value methods that estimate
θ̂ := η(W ′f, λ), which includes i) SURE Donoho & Johnstone (1995) that selects λ based on Stein’s
Unbiased Risk Estimate; ii) Universal method that constantly sets λ =

√
2 log (n) Donoho &

Johnstone (1994); iii) Mixture method that Verma & Verma (2012) combines SURE and Universal,
depending on the signal-to-noise (SNR) ratio. Specifically, if the SNR is high, the Universal adopts
the same threshold value with the Universal method; and iv) Minimax Verma & Verma (2012) that
selects λ using a minimax rule, i.e., λ = (0.3936 + 0.10829 log2 n) if n > 32 and = 0 otherwise.
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For our method, we set κ = 1000, δ = 1
κ(1+ν) , ν = 1

2 and the stopping time t̂ = 1+1/ν

2
√
2 logn

s.t. our

final estimations are θ(t̂), θs(t̂).

Visualization of reconstructed signals. As shown in Fig. 1, our method can well recover Wθ∗,s

(top row) and Wθ∗ (bottom row); as a contrast, SURE induces additional errors accounted by weak
signals and noise in estimating θ∗,s while other methods with excessive shrinkage strategy will suffer
from inaccurate estimations of θ∗,s and the ignorance of the weak signals in estimating θ∗.

Results analysis. We report the relative ℓ2 error of θ∗,s and θ∗ in Tab. 1. As shown, our method has
a smaller error compare to others. Specifically, for the strong signal θ∗,s, all methods except SURE
adopt an overly large threshold value (∼ O(log n)) which can induce errors in estimating strong
signals. The SURE method with a smaller threshold value, however, induces noise components into
the estimation, which can explain why SURE also suffers from a large error. For θ∗, our method is
comparable to the SURE and outperforms others that drop the weak signals.

Table 1: Average ± Std of relative ℓ2-error of θ∗ and θ∗,s.

Sparse Error (∥θ̂−θ∗,s∥2

∥θ∗,s∥2
) Dense Error (∥θ̂−θ∗∥2

∥θ∗∥2
)

SURE 0.4195 ± 0.0180 0.3001 ± 0.0073
Universal (

√
2 log (n)) 0.3991 ± 0.0099 0.5437 ± 0.0060

Mixture 0.3991 ± 0.0099 0.5437 ± 0.0060
Minimax 0.2849 ± 0.0099 0.4297 ± 0.0058

Ours (θ(t̂)) 0.4686 ± 0.0114 0.2918 ± 0.0063
Ours (θs(t̂)) 0.1400 ± 0.0373 0.3742 ± 0.0064

ℓ2 error along the solution path. As shown in Fig. 2, ∥θ(t) − θ∗∥2 (blue curve in the right) and
∥θs(t) − θ∗,s∥2 (red curve in the left) first decreases then increases as t grows. For θ∗,s, the θs(t)
continuously identifies more signals until all strong signals are picked up. Meanwhile, the dense
parameter θ(t) can additionally learn weak signals, therefore showing a smaller error in estimating
θ∗. If t continues to increase, θs(t) will learn weak signals and finally both θs(t) and θ(t) converge
to the noisy coefficients W ′y. Moreover, our estimated stopping time t̂ (blue vertical line) yields a
comparable estimation error to the minimum in the solution path (red vertical line).

Figure 2: ℓ2 error of θ∗,s (left) and θ∗ (right) along the path. The blue (resp. red) curve represents
the MSE of θ(t) (resp. θ̃(t)). The blue (resp. red) vertical represents the estimated (resp. ground-
truth) stopping time t̂ (resp., t∗).

6 NEURAL SIGNAL RECOGNITION IN PARKINSONIANS

We apply our method to the signal neural signals reconstruction in PD4, which distinguish patho-
logical conditions in PD patients (ON/OFF medication).

4We also apply to Electroencephalography (EEG) signal denoising in Appx. H.
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Figure 3: Two-sample T-test on the change of signal’s energy after medication.

Data & problem description. We consider β band LFP signals recorded in the STN Brown &
Williams (2005), which are pathologically associated with the clinical condition denoted by the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) in individuals with PD Maling & McIntyre (2016);
Kühn et al. (2006); Little et al. (2013). For such signals, the θ∗,s corresponds to beta burst activity
that contains prolonged synchronization activities from clusters of hundreds of neurons Tinkhauser
et al. (2017b); Buzsáki et al. (2012) while θ∗ contains both burst and tonic/non-burst activities. Al-
though increased burst activity of β band signals (especially low β band Khawaldeh et al. (2022))
has been the most typical biomarker of PD Lofredi et al. (2023); Tinkhauser et al. (2017b), the
non-burst signal may further help predict the upcoming movement Khawaldeh et al. (2020).

In total, 17 PD patients (32 hemispheres) are included in this study Nie et al. (2021); Wiest et al.
(2023); Guo et al. (2024). Bipolar LFP signals of STNs are recorded in 17 patients (four females)
with advanced PD who underwent the bilateral implantation of deep brain stimulation electrodes for
clinical treatment before (i.e., “OFF”) and after (i.e., “ON”) taking levodopa. We adopt Guo et al.
(2024) to process these signals. Artifacts, including large baseline shifts and muscle movement
artefacts, are rejected through visual inspection. The recordings are further processed through a
90 Hz low-pass filter and a 2 Hz high-pass filter, followed by resampling at 320 Hz, therefore
positioning low-beta oscillations into the fourth layer of stationary wavelet coefficients.

Figure 4: Correlation between changes of signal’s energy and the UPDRS that measures the im-
provement of motor symptoms.

Implementation details. We follow Luo et al. (2018) to perform a 1-d SWT on LFP sig-
nals as the Symlet 8 with level 6. We follow Donoho & Johnstone (1995) to estimate σ as
σ̃ = Median(Wj)/0.6745. For Wavelet shrinkage, we select λ according to the minimax rule
in Donoho & Johnstone (1994). To well adapt to each layer, we follow Baldazzi et al. (2020) to
multiply λ with 1/(ln j + 1) for the layer j. For SWDI, we set κ = 20, δ = 1/(κ(1 + ν)) with
ν = 0.1 and the stopping time as t̂ = (1 + 1/ν)/(σ̃/(ln j + 1)).

Energy in ON vs. OFF medication. With reconstructed signals by inverse wavelet transformation,
we implement a two-sample T-test to measure whether the signal’s energy is significantly reduced
before and after receiving medications. Here, the energy is defined as the power of low β, i.e.,

9
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Figure 5: Estimated Signal Coefficients by Wavelet Shrinkage (left) and ours (right).

E(t) = 1
w̄

∑t
i=t−w̄+1 f̂

2(i) in Maling & McIntyre (2016), with w̄ denoting the window size. We
report the p-values in Fig. 3. As shown, the reconstructed strong signal (resp. correspond to “Burst”
in Wavelet Shrinkage and “θ∗,s” of our SWDI) of our method is more significant (p = 0.0023)
than Wavelet Shrinkage (p = 0.0053) in the response to medications, which may due to the effec-
tiveness in bias removal. On the other hand, the effect of the “noise” component is also significant
(p = 0.0117), which can be attributed to the non-burst component that also exhibits a significant
correlation, i.e., p = 0.0065.

Correlation with motor symptoms improvement. To explain the energy reduction from signals
recovered by SWDI, Fig. 4 reports the correlation between the “reduction in the low β power” (i.e.,
energy) and the improvement of motor symptoms measured by the change of clinical UPDRS score
defined in Goetz et al. (2008). As shown, our reconstructed strong signal with θs is correlated to
the improvement of motor symptoms (p = 0.0400, R = 0.3576) while the one given by Wavelet
Shrinkage is not significant (p = 0.0832, R = 0.3110). Besides, with additional learned non-burst
components which are recognized as noise by Wavelet Shrinkage, the θ(t̂) shows an even stronger
correlation (p = 0.0410, R = 0.3633).

Results analysis. Fig. 3,. 4 suggest that the reconstructed signals by our method contain more
physiological and clinical information. Specifically, the whole signal we learn is not only composed
of synchronized/burst activity (in the Low β band) that corresponds to high amplitude components;
but also other lower components called the non-burst activity. Traditional methods mainly focus on
the effectiveness of medication in inhibiting burst activity Lofredi et al. (2023); Tinkhauser et al.
(2017b); while our method additionally shows that such an inhibition also happens on non-burst
activity, which echos a recent finding in Khawaldeh et al. (2020). To explain how such a non-burst
activity affects the LFP signals, a recent study Kajikawa & Schroeder (2011) hypothesized that such
a non-burst activity may correspond to the electric field environment of neuron clusters. Since the
LFP signal, which appears as a mixture of local potentials from neuron clusters, has been found
to be affected by the fluctuation of this field environment Caruso et al. (2018), the change of this
non-burst activity after medications may lead to the change of the LFP signals and energy within.

Signal recovery. To further explain the above results, we visualize the recovered coefficients. As
shown in Fig. 5, our reconstructed strong signal (marked by blue) can remove the bias. Meanwhile,
the estimated θ(t) (marked by red) can capture the information of the weak signal.

7 CONCLUSION

In this paper, we propose the SWDI for neural signal recovery, which can simultaneously remove
bias in estimating the strong signal and capture weak components in estimating the whole signal.
Our method has a unique closed-form solution and can achieve better estimations than Wavelet
Shrinkage. Besides, we provide an efficient discretization algorithm that can efficiently obtain the
whole solution path. In PD analysis, our method identifies the non-burst/tonic activity in the low β
band, which has been recently found to be responsive to medical treatment.

Limitations and future work. We only discuss the signal recovery in a non-adaptive way. However,
the sub-band and spatially adaptive wavelet decomposition can achieve better reconstruction results.
While saying so, we have shown promising results in real applications. Moreover, by considering
the strong and the weak signals on each sub-band, our method can be potentially applied to adaptive
decomposition and will be carefully investigated in the future.
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A RELATED WORK OF DIFFERENTIAL INCLUSION IN SIGNAL RECOVERY

The differential inclusion method in signal recovery was proposed in Osher et al. (2016), which is
called (Linearized) Bregman Inverse Scale Space and can be viewed as a continuous dynamics of
the Linearized Bregman Iteration (LBI) proposed in Osher et al. (2005); Yin et al. (2008) for image
denoising. From the perspective of differential inclusion, Osher et al. (2016) firstly showed the
model selection consistency property, recovering the true signal set under irrepresentable conditions.
The Huang & Yao (2018) later generalized this result to from the linear model to a general convex
function. Moreover, Huang et al. (2016; 2020) proposed the variable splitting method which leads
to better model selection consistency. The Sun et al. (2017) further applied them to Alzheimer’s
Disease and found there exists another type of lesion feature (which they called “procedural bias”)
that can help disease diagnosis. Our method is motivated by differences from this method in the
Wavelet Denoising scenario, in which our primary goal is to reconstruct the signal. Besides, thanks
to the orthogonality of the Wavelet Matrix, our method has a closed-form solution, which leads to
theoretical advantages over Wavelet Shrinkage.

B SUPPORTING LEMMAS

Lemma B.1 (Concentration for Lipschitz functions). Let (X1, . . . , Xn) be a vector of i.i.d. standard
Gaussian variables, and let f : Rn → R be L-Lipschitz with respect to the Euclidean norm. Then
the variable f(X)− E[f(X)] is sub-Gaussian with parameter at most L, and hence

P[|f(X)− E[f(X)]| ≥ t] ≤ 2e−
t2

2L2 for all t ≥ 0.

Lemma B.2 (Hoeffding bound). Suppose that the variables Xi, i = 1, . . . , n are independent, and
Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
.

Lemma B.3 (χ2-variables). Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables.
Then

(
X2

1 , ..., X
2
n

)
are i.i.d Chi-squared variables with 1 degree of freedom. Then we have

P

[
1

n

∣∣∣∣∣
n∑

i=1

X2
i − n

∣∣∣∣∣ ≥ t

]
≤ e−

nt2

8 , ∀t ∈ (0, 1).

Lemma B.4 (Expectation of Maximum Gaussian (Theorem 1 in Kamath (2015))). Let Let
(X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, then

E[ max
1≤i≤n

Xi] ≤
√
2 log n.

|f(Ax)− f(Ay)| ≤
√

max
i=1,...,n

(ATA)ii∥x− y∥2, x, y ∈ Rn.

C PROOF OF SECTION 3

Proposition C.1. We have 0 = arg infλ sup|θ∗
i |≥1 E(η(ωi, λ)− θ∗i )

2.

Proof. Since θ∗i ≥ 1, then

arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2

n−1 +min ((θ∗i )
2, 1)

= arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2

According to Theorem 2 in Donoho & Johnstone (1994), we have

E(η(ωi, λ)− θ∗i )
2 = 1 + λ2 +

(
(θ∗i )

2 − λ2 − 1
)
{Φ(λ− θ∗i )− Φ(−λ− θ∗i )}
− (λ− θ∗i )ϕ(λ+ θ∗i )− (λ+ θ∗i )ϕ(λ− θ∗i ).
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Denote g(λ, θi∗) := E(η(ωi, λ)− θ∗i )
2. Then it is sufficient to show that for each θ∗i , we have

g(λ, θi∗) ≥ g(λ, 0) ≥ g(0, 0) = g(0, θi∗). (7)

According to Lemma 1 in Donoho & Johnstone (1994), we have g(λ, θi∗) is increasing w.r.t. |θ∗i |,
therefore we have g(λ, θi∗) ≥ g(λ, 0). The ”=” in Eq. 7 is also obvious since

g(0, θi∗) = 1,∀ θi ∗ .

It is left to prove the 2nd ”≥” in Eq. 7. It is suffcient to show that

g(λ, 0) = (1 + λ2) (1− Φ(λ) + Φ(−λ))− 2λϕ(λ)

is non-increasing w.r.t. λ. Take the gradient of g(λ, 0) w.r.t. λ, we have

∂g(λ, 0)

∂λ
= −2(1 + λ2)ϕ(λ) + 2λ (1− Φ(λ) + Φ(−λ))− 2ϕ(λ) + 2λ2ϕ(λ)

= −4ϕ(λ) + 2λ (1− Φ(λ) + Φ(−λ)) .

Then it is sufficient to show that ∂g(λ,0)
∂λ ≤ 0. To show this, we first consider the 2nd derivative of

g(λ, 0), which gives

∂2g(λ, 0)

∂λ2
= 4λϕ(λ) + 2 (1− Φ(λ) + Φ(−λ)) + 2λ(−2ϕ(λ))

= 2 (1− Φ(λ) + Φ(−λ)) ≥ 0.

This means l(λ) := ∂g(λ,0)
∂λ is non-decreasing. We consider limλ→∞ l(λ), according to the Hôpital’s

rule, we have

lim
λ→∞

l(λ) =
limλ→∞ 2 (1− Φ(λ) + Φ(−λ))

limλ→∞
1
λ

=
limλ→∞ 4ϕ(λ)

limλ→∞
1
λ2

= lim
λ→∞

4λ2ϕ(λ) = 0.

This means l(λ) := ∂g(λ,0)
∂λ ≤ 0. Therefore, we have g(λ, 0) ≥ g(0, 0). Hence,

arg inf
λ

sup
θ∗
i ≥1

E(η(ωi, λ)− θ∗i )
2 = 0.

The proof is finished.

D PROOF OF SECTION 4.1

Proposition D.1. The solution of differential inclusion in Eq. 1 is θj(t) = ωj(t) for t ≥ 1
|ωj | ; and

= 0 otherwise for each j.

Proof. Note that ρ(0) = θ(0) = 0. We define tj := supt{ρj(0) + tωj ∈ ∂|θj(0)|}. Then we define
θj(t) = 0 for t < tj and = ωj for t ≥ tj and ρj(t) = ωjt for t < tj and = sign(ωj) for t ≥ tj . It
can be shown that this defined {ρ(t), θ(t)} is the solution of Eq. 1. This solution is unique since the
loss ℓ(θ(t)) := 1

2∥ω − θ(t)∥22 is strictly convex w.r.t. θ. According to Theorem 2.1 in Osher et al.
(2016), we know that the θ(t) is unique.

Theorem D.2. Denote θ∗,smin := mini∈S |θ∗i |. Then at τ̄ := 1
(1+a)

√
2 logn

for some a > 0 and

θ∗,smin ≥ 2(1+ a)
√
2 log n and a

2

√
2 log n > θ∗j for j ̸∈ S. Then with probability at least 1− 2

n4a2 −

max

(
exp

(
− sλ2

8

)
, 1

n
(1+a)2

4

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2, (8)

where θ(t) is the solution of Eq. 1.

Proof. First we show the model selection consistency: supp(θ(τ̄)) = S. According to Prop. D.1,
it is sufficient to show that τ̄ ≥ 1

|ωj :=θ∗,s
j +εj |

for all j ∈ S and τ̄ < 1
|ωj :=θ∗

j+εj | for all j ̸∈ S.

Since |θ∗j | ≤ a
2

√
2 log n, it is sufficient to show that max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n with high
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probability, which can ensure that |θ∗,sj + εj | ≥ θ∗,smin −max1≤j≤n |εj | > (1 + a)
√
2 log n = 1

τ̄ for
j ∈ S and |θ∗j +εj | < a

2

√
2 log n+max1≤j≤n |εj | ≤ (1+a)

√
2 log n = 1

τ̄ . Since max1≤j≤n |εj | <
max{max1≤n εj ,max1≤n −εj}, then we have

P ( max
1≤j≤n

|εj | > (1 +
a

2
)
√
2 log n)

≤P

(
max
1≤j≤n

εj > (1 +
a

2
)
√
2 log n)

)
+ P

(
max
1≤j≤n

−εj > (1 +
a

2
)
√

2 log n)

)
≤2P

(
max
1≤j≤n

εj > (1 +
a

2
)
√
2 log n)

)
= 2P

(
max
1≤j≤n

εj −
√

2 log n >
a

2

√
2 log n)

)
≤2P

(
max
1≤j≤n

εj − E
[
max
1≤j≤n

εj

]
>

a

2

√
2 log n)

)
.

According to lemma ?? and lemma B.1, we have

P

(
max
1≤j≤n

εj − E
[
max
1≤j≤n

εj

]
>

a

2

√
2 log n)

)
<

1

n
a2

4

.

To prove Eq. 25, without loss of generality we assume that θ∗,sj > 0 for j ∈ S. Then we have

∥θ(τ̄)− θ∗,s∥22 = ∥εS∥22 (9)

and that (
η(ω, λ)j − θ∗,sj

)2
=

{
(θ∗,sj )2, λ ≥ θ∗,sj + εj
(εj − λ)2, λ < θ∗,sj + εj

We denote I := {j : λ ≥ θ∗,sj + εj} and II = S − I. Then we have

∥η(ω, λ)− θ∗,s∥22 ≥ ∥η(ω, λ)S − θ∗,s∥22 = ∥θ∗,sI ∥22 + ∥εII∥22 − 2λ
∑
j∈II

εj + λ2(s− |I|) (10)

If λ < (1 + a)
√
2 log n, then condition on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n, we have I = ∅.

Combining Eq. 9 and Eq. 10, it is sufficient to show that∑
j∈S

εj <
sλ

2
,

which has probability at least 1 − exp
(

−sλ2

8

)
applying Lemma B.2. Otherwise, if λ ≥ (1 +

a)
√
2 log n, then condition on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n, we have ∥εI∥22 < ∥θ∗,sI ∥22. Com-

bining Eq. 9 and Eq. 10, it is sufficient to show that∑
j∈II

εj <
|II|λ
2

,

which has probability at least 1− 1

n
(1+a)2

4

applying Lemma B.2. The proof is completed.

D.1 LINEARIZED WAVELET DIFFERENTIAL INCLUSION

Similar to SWDI, we also provide a linearized version in the following:

ρ̇(t) +
θ̇(t)

κ
= ω − θ(t), (11a)

ρ(t) ∈ ∂∥θ(t)∥1. (11b)

Proposition D.3. The solution of differential inclusion in Eq. 11 is

θj(t) =

{
ωj

(
1− exp

(
−κ
(
t− 1

ωj

)))
, t ≥ 1

|ωj |

0, otherwise
∀j.
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Proof. Similar to Prop. D.1, we define tj for each j and ρj(t) = ωjt for t < tj and = sign(θj)
for t ≥ tj . It is easy to validate that such defined (ρ(t), θ(t)) is the solution of Eq. 11. To see the
uniqueness, we denote v(t) := ρ(t) + θ(t)

κ , then we have

ż(t) = ω − κη(z(t), 1) := g(z(t)).

Since g(·) is Lipschitz continuous, the solution is unique according to the Picard-Lindelöf Theorem.

Theorem D.4. Under the same conditions and the definition of τ̄ in Thm. D.2. Then with probability

at least 1− 2
n4a2 −max

(
exp

(
− sλ2

32

)
, 1

n
(1+a)2

16

)
, we have

∥θ(τ̄)− θ∗,s∥2 < ∥η(ω, λ)− θ∗,s∥2, (12)

where θ(t) is the solution of Eq. 11.

Proof. Similar to Thm. D.2, conditioning on max1≤j≤n |εj | ≤ (1+ a
2 )
√
2 log n (with probability at

least 1 − 2
n4a2 ), we have that supp(θ(τ̄)) = S, by additionally noting that τ̄ is exactly greater than

1
ωj

for any j ∈ S. Next, we show that with probability at least 1−max

(
exp

(
− sλ2

32

)
, 1

n
(1+a)2

16

)
,

we have

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 −min

(
λ2

2
, (1 + a)2 log n

)
, (13)

where θ(t) = limκ→∞ θκ(t) with θκ(t) being the solution of Eq. 11 with a fixed κ > 0. According
to Prop. D.1, D.3, the θ(t) is the solution of Eq. 11. If Eq. 13 holds, then due to the continuity
of θκ(t) with respect to κ, we have Eq. 12 as long as κ is large enough. Similar to the proof for
Thm. D.2, when λ < (1 + a)

√
2 log n, conditioning on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n we have∑

j∈S εj <
sλ
4 and hence

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 −
λ2

2

with probability at least 1 − exp
(

−sλ2

32

)
. When λ ≥ (1 + a)

√
2 log n, we have

∑
j∈II εj < |II|λ

2

and therefore

∥θ(τ̄)− θ∗,s∥22 < ∥η(ω, λ)− θ∗,s∥22 − (1 + a)2 log n

with probability at least 1− 1

n
(1+a)2

16

.

E PROOF OF SECTION 4.2

Proposition E.1. The solution of differential inclusion in Eq. 3 isθj(t) = γj(t) = ωj , t ≥ 1+ 1
β

ωj

θj(t) =
ωj

1+β , γj(t) = 0 t <
1+ 1

β

ωj

∀j.

Proof. Note that γ(0) = ρ(0) = 0. Then we define tj for each j as

tj := sup
t>0

{ρj(0) +
tωj

1 + β
̸∈ ∂|γj(0)|}.

When t < tj , we have |ρj(t)| < 1 thus γj(t) = 0 and also θj =
ωj

1+β according to Eq. 3a. For
t ≥ tj , we have |ρj(t)| = 1 and thus ρ̇j(t) = 0. Therefore, we have γj(t) = θj(t) = ωj . It is

easy to see such defined (ρ(t), θ(t), γ(t)) is the solution of Eq. 3. We can obtain that tj =
1+ 1

β

ωj
.

According to Huang et al. (2016), this solution is unique.
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Theorem E.2. Denote θ∗max,T := maxi∈T |θ∗i | and n is large enough such that θ∗max,T < a0
√
log n

for some 0 < a0 < 1. Then for (θ(t), θs(t)) in Eq. 3, if n > 41/(1−a0) at τ̄ :=
1+ 1

ρ

(1+a)
√
2 logn

, the
following holds with probability at least

1− 2

n4a2 −max

(
1

n
s
32

,
1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(
−n1−a0

∑
i∈T (θ

∗
i )

2

24(2 + logn)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗i )2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗i )2

|T | − 1
)

8

 :

1. Strong Signal Recovery. For the strong signal coefficients θ∗,sS ,

∥θs(τ̄)− θ∗,S∥2 = ∥θS(τ̄)− θ∗,sS ∥2 < ∥η(ω, λ)− θ∗,s∥2, ∀λ > 0. (14)

2. Weak Signal Recovery. For the weak signal coefficients θ∗T , there exists ∞ > ρ∗ > 0 such that

∥θ(τ̄)T − θ∗T ∥2 < ∥0− θ∗T ∥2 = ∥θ∗T ∥2 i.e., ρ = ∞ Shrinkage to 0;
∥θ(τ̄)T − θ∗T ∥2 < ∥ωT − θ∗T ∥2 = ∥εT ∥2 i.e., ρ = 0 No Shrinkage.

We can obtain a similar result for θ∗Sc , where Sc := T ∪ N contains the weak and null compo-
nents.

3. Whole Signal Recovery. For θ∗, under the same ρ∗ in item 2, we have

∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2, ∀λ ≥
√
log n.

Proof. The proof of Strong Signal Recovery is the same as the proof for Thm. D.2. For Weak
Signal Recovery, we define I(p) = ∥(1− p)ωT − θ∗T ∥22 = ∥pθ∗T − (1− p)εT ∥22. We then have

I ′(p) = 2p
∑
i∈T

(θ∗i + εi)
2 − 2

∑
i∈T

εi(θ
∗
i + εi).

We obtain the minimizer of I(p) as p∗ =
∑

i∈T ε2i+
∑

i∈T εiθ
∗
i∑

i∈T (θ∗
i +εi)2

by setting I(p′) = 0. If we can show

that 0 < p∗ < 1, then there exists a β∗ such that p∗ = β∗

1+β∗ . Then it is sufficient to show that∑
i

εiθ
∗
i +

∑
i

ε2i > 0, (15)

∑
i

εiθ
∗
i +

1

6

∑
i

θ∗i > 0. (16)

For Eq. 15, we have that:

P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0

)

=P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0,
∑
i

ε2i <
|T |
2

)
+ P

(∑
i

εiθ
∗
i +

∑
i

ε2i < 0,
∑
i

ε2i ≥ |T |
2

)

≤P

(∑
i

ε2i <
|T |
2

)
+ P

(∑
i

εiθ
∗
i < −|T |

2

)
Applying Lemma B.3 to the first term and Lemma B.2 to the second term, we have that

P

(∑
i

ε2i <
|T |
2

)
< exp

(
−|T |

8

)
, P

(∑
i

εiθ
∗
i < −|T |

2

)
< exp

(
− |T |2

8
∑

i∈T (θ
∗
i )

2

)
.

For Eq. 16, we have

P

(∑
i

εiθ
∗
i +

1

4

∑
i

(θ∗i )
2 < 0

)
= P

(∑
i

εiθ
∗
i < −

∑
i(θ

∗
i )

2

6

)
.
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Applying Lemma B.2, we have that

P

(∑
i

εiθ
∗
i < −

∑
i∈T (θ

∗
i )

2

4

)
≤ exp

(
−
∑

i∈T (θ
∗
i )

2

72

)
.

Since ∥θ∗T ∥2 is the ℓ2 error of 0T with p = 1 and ∥εT ∥2 is the ℓ2 error of ωT with p = 0, we obtain
the conclusion. To extend this result to θ∗Sc , following the same procedure, we can obtain that

p∗ =

∑
i∈T ε2i +

∑
i∈T εiθ

∗
i +

∑
j∈N ε2j∑

i∈T (θ
∗
i + εi)2 +

∑
j∈N ε2j

,

which is < 1 and > 0 if Eq. 15, 16 holds. Finally, we prove the Whole Signal Recovery. According
to the above results, it is sufficient to show that there exists a β such that

∥θ(τ̄)Sc − θ∗Sc∥2 < ∥η(ω, λ)T − θ∗T ∥2 < ∥η(ω, λ)Sc − θ∗Sc∥2.
condition on ∥θ(τ̄)S − θ∗S∥2 < ∥η(ω, λ)S − θ∗S∥2 that holds with high probability. We first show
that

∥η(ω, λ)T − θ∗T ∥22 >
1

3
∥θ∗T ∥22, (17)

∥θ(τ̄)Sc − θ∗Sc∥22 <
2

3
∥θ∗T ∥22, (18)

for some ∞ > β > 0. For Eq. 17, we denote bi := η(ω, λ)i, then we have

∥η(ω, λ)T − θ∗T ∥22 =
∑
i∈T

b2i +
∑
i∈T

2θ∗i bi +
∑
i∈T

(θ∗i )
2 ≥

∑
i∈T

2θ∗i bi +
∑
i∈T

(θ∗i )
2,

which holds as long as
∑

i∈T θ∗i bi ≥ − 1
6

∑
i∈T (θ

∗
i )

2. We then have

P

(∑
i∈T

θ∗i bi ≤ −1

6

∑
i∈T

(θ∗i )
2

)
= P

(∑
i∈T

θ∗i bi −
∑
i∈T

θ∗i E[bi] ≤ −1

6

∑
i∈T

(θ∗i )
2 −

∑
i∈T

θ∗i E[bi]

)

≤ exp

(
−
(
1
6

∑
i∈T (θ

∗
i )

2 +
∑

i∈T θ∗i E[bi]
)2

2
∑

i∈T (θ
∗
i )

2E[b2i ]

)
. (19)

Without loss of generality, we assume θ∗i > 0. Then for E[bi], we have

E[bi] =
1√
2π

(∫ +∞

√
logn−θ∗

i

x exp

(
−x2

2

)
dx+

∫ −
√
logn−θ∗

i

−∞
x exp

(
−x2

2

)
dx

)

= − 1√
2π

∫ −
√
logn+θ∗

i

−
√
logn−θ∗

i

x exp

(
−x2

2

)
dx

> − 1√
2π

1

n
1−

θ∗
i√

log n

≥ − 1√
2π

1

n1−a0
.

For E[b2i ], we have

E[b2i ] =
1√
2π


∫ +∞

√
logn−θ∗

i

x exp

(
−x2

2

)
dx︸ ︷︷ ︸

J1

+

∫ −
√
logn−θ∗

i

−∞
x exp

(
−x2

2

)
dx︸ ︷︷ ︸

J2

 .

For J1, we have

1√
2π

J1 =
1√
2π

∫ +∞

√
logn−θ∗

i

xd

(
− exp

(
−x2

2

))
=

1√
2π

− x exp

(
−x2

2

)∣∣∣∣+∞

√
logn−θ∗

i

+ P (εi >
√
log n− θ∗i )

=P (εi >
√
log n− θ∗i ) +

1√
2π

(√
log n− θ∗i

)
exp

(
−
(√

log n− θ∗i
)2

2

)
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Similarly, for J2, we have

1√
2π

J2 = P (εi >
√
log n+ θ∗i ) +

1√
2π

(√
log n+ θ∗i

)
exp

(
−
(√

log n+ θ∗i
)2

2

)

≤P (εi >
√
log n− θ∗i ) +

1√
2π

(√
log n+ θ∗i

)
exp

(
−
(√

log n− θ∗i
)2

2

)
.

Therefore, we have

E[b2i ] ≤ 2P (εi >
√
log n− θ∗i ) +

2√
2π

√
log n exp

(
−
(√

log n− θ∗i
)2

2

)
≤ 2 + log n

n1−a0
.

Substituting these results into Eq. 19, we have:

P

(∑
i∈T

θ∗i bi ≤ −1

6

∑
i∈T

(θ∗i )
2

)
≤ exp

−n1−a0

(
1
6 − 1√

2πn1−a0

)∑
i∈T (θ

∗
i )

2

2(2 + log n)

 ,

≤ exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)
,

as long as n > 41/(1−a0). Next we prove Eq. 18, which is equivalent to showing that∑
i∈T

ε2i +
∑
j∈N

ε2j − 2β
∑
i∈T

θ∗i εi <
2(2β + 1)

3

∑
i∈T

(θ∗i )
2.

If we take β = n/|T |, then it is sufficient to show that∑
i∈T ε2i
|T |

≤ 1

|T |
∑
i∈T

(θ∗i )
2, (20)∑

j∈N ε2j

|N |
≤ 1

|T |
∑
j∈T

(θ∗j )
2, (21)

∑
i∈T

εiθ
∗
i +

1

6

∑
j∈T

(θ∗i )
2 > 0. (22)

Conditioning on
∑

i εiθ
∗
i +

1
6

∑
i(θ

∗
i )

2 > 0,
∑

i∈T ε2i ≥ |T |
2 and ∥θ(τ̄)S−θ∗S∥2 < ∥η(ω, λ)S−θ∗S∥2,

we have that Eq. 22 hold. For Eq. 20, we have

P

(∑
i∈T ε2i
|T |

>
1

|T |
∑
i∈T

(θ∗i )
2

)
≤ exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 .

Similarly, for Eq. 21, we have

P

(∑
j∈N ε2j

|N |
>

1

|T |
∑
i∈T

(θ∗i )
2

)
≤ exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 .

Summarizing these conclusions together, we have with probability at least

1− 2

n4a2 −max

(
1

n
s
32
,

1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 ,

we have ∥θ(τ̄)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2 for any λ ≥
√
log n.
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Proposition E.3. Denote

t∗j = min
t>0

{
t :

∫ t

0

ω(j)

1 + 1
β

(
1− exp

(
−κ (1 + β)

(
t̃− 1 + β

ω(j)

)))
dt̃ > 0

}
.

Then there exists a unique {C1
1 , ..., C

n
1 } with Cj

1 > 0 and {C1
2 , ..., C

n
2 } with Cj

2 > 0 such that

• Strong Signal Coefficients. For each j, when t > tj ,

γj(t) = Cj
1 exp

−
κt
(
1 + 2β −

√
1 + 4β2

)
2

+ Cj
2 exp

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

+ ω(j);

(23a)

θj(t) =

Cj
1 +

1

κβ

−
κt
(
1 + 2β −

√
1 + 4β2

)
2

 exp

−
κt
(
1 + 2β −

√
1 + 4β2

)
2


+

Cj
2 +

1

κβ

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

 exp

−
κt
(
1 + 2β +

√
1 + 4β2

)
2

+ ω(j).

(23b)

• Weak Signal Coefficients. For each j, when t ≤ tj ,

θj(t) =
ω(j)

1 + β

(
1− exp

(
−κ (1 + β)

(
t− 1 + β

ω(j)

)))
and γj(t) = 0. (24)

Proof. It can be directly checked that that the Eq. 23a, 23b, 24 for any positive {C1
1 , ..., C

n
1 } and

{C1
2 , ..., C

n
2 }. To ensure the continuity of θ(t) and γ(t) (they are continuous since they are differ-

entiable) at tj , we can determine {C1
1 , ..., C

n
1 } and {C1

2 , ..., C
n
2 }. The uniqueness of {C1

1 , ..., C
n
1 }

and {C1
2 , ..., C

n
2 } comes from the uniqueness of the solution (θ(t), γ(t)), which can be similarly

obtained by Picard-Lindelöf Theorem.

Theorem E.4. Under the same assumptions in Thm. E.2. Suppose κ is sufficiently large, then we
can obtain the same results in Thm. E.2 for Eq. 5.

Proof. We can know from the solution of Eq. 5 given by Prop. E.3 and the solution of Eq. 3 given by
Prop. E.1 that the solution of (θ(t), γ(t)) in Eq. 23, 24 is continous with respect to κ and converges
to the solution of Eq. 3 given by Prop. E.1. Therefore the conclusions in Thm. E.2 hold when κ is
sufficiently large.

F THEORETICAL ANALYSIS FOR DISCRETE FORM

Proposition F.1. The ℓi(θ(k), γ(k)) :=
1
2 (ωi − θi(k))

2 + β
2 (θi(k) − γi(k))

2 is non-increasing as
long as δ < 2

κmax(1,β) in Eq. 6b.
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Proof. Denote H := ∇2ℓi(θ(k), γ(k)) =

(
1 + β −β
−β β

)
. Denote

(
θi(k + 1)− θi(k)
γi(k + 1)− γi(k)

)
:=

∆i(k). We have

ℓi(θ(k + 1), γ(k + 1))− ℓi(θ(k), γ(k)) = ⟨∇ℓi(θ(k), γ(k)),∆i(k)⟩+
1

2
∆i(k)

⊤H∆k(k)

≤ −1

δ
⟨−δ∇ℓ(θ(k), γ(k)),∆i(k)⟩+

∥H∥2
2

∥∆i(k)∥22

≤ −1

δ

〈(
θi(k+1)−θi(k)

κ

ρi(k + 1)− ρi(k) +
γi(k+1)−γi(k)

κ

)
,∆i(k)

〉
+

∥H∥2
2

∥∆i(k)∥22

≤ −1

δ
⟨ρi(k + 1)− ρi(k), γi(k + 1)− γi(k)⟩+

(
∥H∥2
2

− 1

κδ

)
∥∆i(k)∥22.

Since
⟨ρi(k + 1)− ρi(k), γi(k + 1)− γi(k)⟩ = |γi(k + 1)|+ |γi(k)|

− ρi(k) · γi(k + 1)− ρi(k + 1) · γi(k) ≥ 0,

we have ℓi(θ(k+1), γ(k+1)) ≤ ℓ(θ(k), γ(k)) as long as κδ∥H∥2 ≤ 2. Since ∥H∥2 ≤ max(1, β),
we have that δ < 2

κmax(1,β) .

Theorem F.2. Denote K := ⌊ (1+ 1
β )τ̄

δ ⌋ with δ = 1
κ(1+β) and τ̄ defined in Thm. D.2. Denote

θ∗max := maxi |θ∗i |. Besides, we inherit the definition θ∗max,T in Thm. E.2. For (θ(k), γ(k)) in Eq. 6,
if n > 41/(1−a0) and κ is sufficiently large, then with probability at least

1− 2

n4a2 −max

(
1

n
s
32
,

1

n
(1+a)2

16

)
− exp

(
−
∑

i∈T (θ∗i )
2

72

)
− exp

(−n1−a0
∑

i∈T (θ
∗
i )

2

24(2 + log n)

)

− exp

−
|T |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

− exp

−
|N |max

(
1,

∑
i∈T (θ∗

i )
2

|T | − 1
)

8

 ,

we have

1. Strong Signal Recovery. For the strong signal coefficients θ∗,sS ,

∥θS(K)− θ∗,sS ∥2 < ∥η(ω, λ)S − θ∗,sS ∥2, (25)
for any λ > 0.

2. Weak Signal Recovery. For the weak signal coefficients and nulls θ∗T , there exists ∞ >
β∗ > 0 such that

∥θ(K)T − θ∗T ∥2 < ∥θ∗T ∥2 i.e., β = ∞ Shrinkage to 0;
∥θ(K)T − θ∗T ∥2 < ∥εT ∥2 i.e., β = 0 No Shrinkage.

We can obtain a similar result for θ∗Sc , the weak signal coefficients and null coefficients.

3. The Whole Signal Recovery. For the whole signal coefficients θ∗, there exists ∞ > β∗ > 0
such that

∥θ(K)− θ∗∥2 < ∥η(ω, λ)− θ∗∥2
for any λ ≥

√
log n. That means Eq. 3 can be more accurate than Minimax and similar

approaches in Donoho & Johnstone (1994).

Proof. It is sufficient to prove that for any residue e > 0, there exists a κo such that as long as
κ > κo, the following condition holds:

γi(k) = 0, ∀k ≤ K and i ∈ Sc. (26)∣∣∣∣θi(K)− ωi

1 + β

∣∣∣∣ < e, ∀i. (27)

|θi(K)− wi| < e, |θi(K)− γi(K)| < e, ∀i ∈ S. (28)
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We first prove Eq. 26. With zi(k) := ρi(k) +
γi(k)
κ and zi(0) = θi(0) = 0, it follows from Eq. 6

that
zi(k + 1)− zi(k)

δ
= − β

1 + β

(
θi(k + 1)− θi(k)

κδ
− ε̃i

)
.

where ε̃i := θ∗i + εi ∀i ∈ Sc and θ∗i = 0 if i ∈ N . Therefore, we have

zi(k) = − β

1 + β

θi(k)

κ
+

β

1 + β
kδε̃i.

Note that ℓi(k) := ℓi(θ(k), γ(k)) :=
1
2 (ωi−θi(k))

2+ β
2 (θi(k)−γi(k))

2 in Eq. F.1 is non-increasing
since δ < 2

κmax(1,β) , therefore, we have

|θi(k)| ≤ |ωi| ≤ θ∗max + (1 + a/2)
√

2 log n
∆
= B

condition on max1≤j≤n |εj | ≤ (1 + a
2 )
√
2 log n. Then we have

|zi(k)| ≤
βB

(1 + β)κ
+ kδ

β

1 + β
ε̃i <

βB

(1 + β)κ
+ τ̄(1 + a)

√
2 log n,

since |ε̃i| < a
2

√
2 log n and we have conditioned on max1≤j≤n |εj | ≤ (1 + a

2 )
√
2 log n. Then there

exists κ(1) > 0 such that for any κ > κ(1), we have

|zi(k)| <
βB

(1 + β)κ
+ τ̄(1 + a)

√
2 log n < 1,

for any k ≤ K. This can prove Eq. 26. Next we prove Eq. 27. Note that Eq. 6b is equivalent to:

θi(k + 1) = θi(k)− κδ ((1 + β)θi(k)− ωi) ,

which implies

θi(k + 1)− ωi

1 + β
= (1− κδ)

(
θi(k)−

ωi

1 + β

)
.

Denote erri(k) :=
∣∣∣θi(k)− ωi

1+β

∣∣∣, we have erri(k) = (1 − κδ)kerri(0). Denote Ke := min{k :

erri(k) < e, then we have

Ke ≤
log e− log erri(0)

log(1− κδ)
≤ log e− log erri(0)

− log 2

≤ log e− logB

− log 2
≪ ⌊

(1 + 1
β )τ̄

δ
⌋ = ⌊κ(1 + 1

β
)τ̄⌋ := K, (29)

which will holds for any κ > κ(2) for some κ(2) > 0. Finally we prove Eq. 28. Denote K1,i :=
min{k : |zi(k)| ≥ 1} for i ∈ S. When k < K1,i, we have

zi(k) = δβ
∑
k=0

θi(k).

Denote K0,i := min{|θi(k)| > (1+3a/2)
√
2 logn

1+β , where |θi(k)| > (1+3a/2)
√
2 logn

1+β can be implied
by

|θi(k)−
ωi

1 + β
| < a/2

√
2 log n

1 + β

∆
= b

for i ∈ S conditioning on max1≤j≤n |εj | ≤ (1 + a
2 )
√
2 log n. According to Eq. 29, we have

K0,iδ ≪ (1 +
1

β
)τ̄ ,

when κ > κ(3) for some κ(3) > 0. Besides, it follows from the non-increasing property of
ℓi(θ(k), γ(k)) that we have

sign(θi(k)) = sign(ωi)
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for any k once θi(k) ̸= 0. If this does not hold, then at some k, we have

ℓi(θ(k), γ(k)) > ℓi(θ(0), γ(0)),

which contradicts to the non-increasing property. This means θi(k) = 0 or does not change the sign
once it becomes non-zero. Therefore, the |zi(k)| is non-decreasing and moreover, if K1,i > K0,i,
then for any k < K1,i

|zi(k)| = δβ

∣∣∣∣∣∣
K0,i∑

k=0

θi(k) +
∑

k=K0,i+1

θi(k)

∣∣∣∣∣∣ ≥ δβ
∑

k=K0,i+1

|θi(k)|

≥ δ(k −K0,i)
β(1 + 3a/2)

√
2 log n

1 + β
.

Therefore, we have

δ(K1,i −K0,i) ≤
1 + 1

β

(1 + 3a/2)
√
2 log n

< τ̄ .

Since |zi(k)| is non-decreasing, then once it is greater than 1, we have zi(k) = γi(k). Therefore,

we have (recall that we define ∆i(k) =

(
θi(k + 1)− θi(k)
γi(k + 1)− γi(k)

)
in Prop. F.1)

∆i(k)

κ
= δ

((
ωi

0

)
−Hdi(k)

)
,

where di(k) :=

(
θi(k)
γi(k)

)
and H is defined in Prop. F.1. Denote δ̃i :=

(
ωi

0

)
, then multiplying

H on both sides, we have

Hdi(k + 1)− ω̃i = (I2 − κδH)(Hdi(k)− ω̃i).

Since κδ∥H∥2 < 1, then we have I2 − κδH ⪰ 0 and that ∥I2 − κδH∥2 ≤ max(1,β)
1+β

∆
= c < 1.

Denote ˜erri(k) := ∥Hdi(k)− ω̃i∥2, we have

˜erri(k) ≤ ck ˜erri(k).

Applying the same technique in proving Eq. 27, we have that ˜erri(K) < e
2 for any κ > κ(4) for

some κ(4) > 0, which is sufficient to obtain Eq. 28.

G RECONSTRUCTED NEURAL SIGNALS IN SEC. ??

We visualize the reconstructed signals in Fig. 6. Specifically, if we denote the SWT transformation
as g, then for the Wavelet Shrinkage that is shown in the left-hand image, we visualize the original
signal y (marked by blue), the reconstructed sparse signal g−1(θλ) (marked by orange) and the noise
y − g−1(θλ) (marked by yellow); for our SWDI that is shown in the right-hand image, we visualize
the original signal y (marked by blue), the reconstructed strong signal g−1θs (marked by orange)
and the weak signal g−1θ−g−1θs (marked by yellow), and the noise y−g−1(θ) (marked by purple).

As shown, the sparse signal of the Wavelet Shrinkage shows a large difference from the original
signal, especially at the peaks and valleys of oscillations. Therefore, it may miss a lot of information
that may be mainly accounted for by the weak signal and the bias due to the threshold parameter. In
contrast, the reconstructed strong signal by our SWDI can learn more information due to the ability
to remove bias. More importantly, we are pleasantly surprised to find that the reconstructed weak
signal shares a similar trend to the original signal. In this regard, it can well capture the pattern
encoded in the neural signal. This result suggests that the weak signal, which may refer to the non-
burst signal that can encode the conduct effect of the electric field, has a non-ignorable affection
on the formation of neural signals. Such an effect, together with the additional information learned
by the strong signal of SWDI over the sparse signal of the Wavelet Shrinkage, can well explain the
more significant medication response achieved by our method than the Wavelet Shrinkage.
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Figure 6: Visualization of reconstructed signals. Left: the original signal y (marked by blue), the
reconstructed sparse signal g−1(θλ) (marked by orange) by the Wavelet Shrinkage and the noise
y − g−1(θλ) (marked by yellow); besides the original signal, the right image presents the strong
signal g−1(θs) (marked by orange), the weak signal g−1(θ)− g−1(θs) (marked by yellow) learned
by SWDI, and the noise y − g−1(θ) (marked by purple).

H ELECTROENCEPHALOGRAPHY SIGNAL DENOISING

Data & Problem Description We extract one subject with 80 trials from Walters-Williams & Li
(2011), which comprises a 32-channel Electroencephalography (EEG) signal recorded from a single
subject. We added Gaussian white noise to each channel with the signal-to-noise ratio set to 20.
We present the mean-squared error (MSE) for the signal reconstruction achieved by our method
compared to Wavelet Shrinkage.

Implementation Details. Similar to Sec. ??, we perform a 1-d stationary wavelet transform (SWT)
on EEG as the Symlet 8 with level 6. We follow Donoho & Johnstone (1995) to estimate σ as
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σ̃ = Median(Wj)/0.6745. For Wavelet shrinkage, we select λ according to the minimax rule in
Donoho & Johnstone (1994). For SWDI, we set κ = 20, δ = 1/(κ(1 + ρ)) with ρ = 0.1 and the
stopping time as t̂ = (1 + 1/ρ)/σ̃.

Results Analysis. Fig. 7 shows that our method, especially the dense parameter, can significantly
outperform the Wavelet Shrinkage and the sparse parameter, which suggests the importance of cap-
turing weak signals and the capability of our method in learning such weak signals. It’s worth men-
tioning that even when neglecting weak signals, the sparse parameter can still surpass the Wavelet
Shrinkage method, thanks to the reduced biases inherent in our methods, as asserted in Thm. D.2
and D.4.

Figure 7: MSE (Microvolts) of the sparse parameter of SWDI θs(t̂) (red), dense parameter θ(t̂)
(blue) and the Wavelet Shrinkage (black).
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