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ABSTRACT

Wavelet shrinkage is a powerful tool in neural signal processing. It has been ap-
plied to various types of neural signals, such as non-invasive signals and extracel-
lular recordings. For example, in Parkinson’s disease (PD), 3 burst activities in
local field potential signals indicate pathological information, which corresponds
to strong signal with higher wavelet coefficients. However, it has been found that
there also exists weak signal that should not be ignored. This weak signal refers
to the set of small coefficients, which corresponds to the non-burst/tonic activity
in PD. While it lacks the interpretability of the strong signal, neglecting it may
result in the omission of movement-related information during signal reconstruc-
tion. However, most existing methods are mainly focused on strong signals while
ignoring weak signals. In this paper, we propose Splitted Wavelet Differential In-
clusion, which is provable to achieve better estimation of both the strong signal
and the whole signal. Equipped with an /s splitting mechanism, we derive the
solution path of a couple of parameters in a newly proposed differential inclusion,
of which the sparse one can remove bias in estimating the strong signal and the
dense parameter can additionally capture the weak signal with the /5 shrinkage.
The utility of our method is demonstrated by the improved accuracy in a numerical
experiment and additional findings of tonic activity in PD.

1 INTRODUCTION

Neural signals are fluctuations in neuronal activity that play a crucial role in brain function and
communication |[Buzsaki et al.| (2012). To effectively preprocess these signals, wavelet analysis has
emerged as a powerful tool and has been widely applied across various neuroscience analysesPavlov
et al.[(2012), as wavelet functions proficiently characterize transient fluctuations in rhythmic neural
oscillations [Luo et al.| (2018)); Donoghue et al.| (2020). A typical example is to extract these neu-
ral oscillations at different frequency bands (e.g., o (8-12 Hz), 5 (12-35 Hz), and ~ (35-100 Hz)
bands) that are particularly important in neuropsychiatric disorders [Mathalon & Sohal (2015) and
movement disorders |Yin et al.| (2021). For such tasks, wavelet analysis facilitates the detection and
quantification of temporal dynamics among neuronal populations, as observed in epilepsy |Kalbhor,
& Harpale[(2016) and Parkinson’s Disease (PD) Lofredi et al.[(2023)); [Tinkhauser et al.|(2017b).

Of particular paramount application of wavelet analysis is Wavelet Shrinkage |Donoho & Johnstone
(1994; 1995 11998); IDonoho (1995)), which is often employed to neural signal denoising |Baldazzi
et al.| (2020). It projects the noisy data into the wavelet domain, followed by a hard or soft thresh-
olding method to force noisy coefficients to zeros. Apart from denoising, Wavelet Shrinkage is also
employed in decoding brain states from neural signals, particularly in subthalamic nucleus (STN)
local field potential (LFP) signals in PD [Khawaldeh et al.[(2020); Tinkhauser et al.| (2017b)). These
findings also support improved clinical efficacy in PD by an adaptive deep brain stimulation algo-
rithm involving thresholds in Wavelet Shrinkage Nie et al. (2021); |Guo et al.| (2024). To select the
threshold parameter, many methods have been proposed, such as Universal (o+/2logn) |Donoho
& Johnstone| (1994), Minimaxi |Verma & Vermal (2012), SureShrink Donoho & Johnstone| (1995)),
Bayesian Shrinkage Do & Vetterli| (2002); Simoncelli & Adelson! (1996); JOHNSTONE & SIL-
VERMAN] (2005)), non-parametric shrinkage /Antoniadis & Fan|(2001)); Gao|(1998)) such as SureLet
Luisier et al.|(2007) and Neigh Shrink Sure|Chen et al.|(2005). Most of these methods only selected
large coefficients since they are assumed to be all the information contains in the signal |Atto et al.
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(2011). However, it has been found that there may exist small coefficients Donoho & Johnstone
(1994), such as the non-burst activity in PD [Khawaldeh et al.| (2020).

In this paper, we call the signal composed by such small (resp. large) coefficients as the weak
(resp. strong) signal. Although the strong signal typically has more semantic meaning and is more
interpretable than the weak signal, ignorance of the latter can lead to the loss of information in
reconstruction. For example, exaggerated /3 oscillations (10-35 Hz), especially low /3 oscillations
(10-20 Hz) in STN are significant biomarkers in the Parkinson’s study Kiihn et al.| (2006); Lofredi
et al.[ (2023), but the non-burst activity restricts the capacity of encoding physiological informa-
tion in the basal ganglia network [Khawaldeh et al.|(2020); Brittain & Brown| (2014); Mallet et al.
(2008). At the mesoscopic scale, strong beta activities essentially come from the prolonged synchro-
nized state between neurons [Tinkhauser et al.| (2017a) and these non-burst activities coming from
low-frequency synchronized states might contain more information on motor movement Cole et al.
(2017);|[Khawaldeh et al.| (2020). Therefore, it is desirable to identify the strong signal as a semantic
part and meanwhile estimate the whole signal (including both strong and weak signals) well.

Towards this goal, existing methods with too small or too large thresholds either suffer from failing
to eliminate noise components in estimating the strong signal or ignoring the weak signal part in
estimating the whole signal. Specifically, the methods with too large threshold values (e.g., Univer-
sal, or Minimaxi) could eliminate the noise components, but they could induce large bias/errors in
estimating the strong signal; moreover, they might over-smooth the weak signal part with small co-
efficients. On the other, the methods with smaller thresholds (e.g. SureShrink Donoho & Johnstone
(1995)) might fail to eliminate noise components in estimating the strong signal for interpretation.

To resolve these problems, we propose a new method from the perspective of differential inclusion,
dubbed as Splitted Wavelet Differential Inclusion(SWDI), which is provable to achieve better es-
timation than Wavelet Shrinkage on both the strong signal and the whole signal. Specifically, we
introduce an /5 splitting mechanism appended to the signal reconstruction loss, which couples a
sparse parameter and a dense parameter to estimate the strong signal and the whole signal, respec-
tively. To update these parameters, we propose a differential inclusion with sparse regularization,
i.e., a dynamic approach with a unique closed-form solution. Equipped with an early stopping mech-
anism on this dynamics, the sparse parameter can recover the strong signal without bias, while the
dense parameter can additionally capture the weak signal via ¢, shrinkage. We also provide a dis-
cretization method that can efficiently generate the solution path, even if the wavelet decomposition
matrix is not orthogonal. The utility and effectiveness of our method are demonstrated in a numeri-
cal experiment and the effectiveness study of dopaminergic medication impact on PD. Particularly,
the signal recovered by our method is more significantly correlated to the medication, which can be
explained by the non-burst activity found by our method.

To summarize, our contributions are listed as follows:

* We propose the SWDI, which involves a dual parameter to simultaneously estimate the
strong and the whole signal.

* We theoretically show that the closed-form solution path can achieve better estimation than
Wavelet Shrinkage on both the strong signal and the whole signal. For the strong signal,
our estimation is bias-free, while for the whole signal, our dense parameter can accurately
capture the weak signal via an /5 shrinkage.

* We apply our method to neural signal recognition in PD and identify the non-burst activity
that has been recently found to be also responsive to the medication.

2 RELATED WORK

Wavelet Shrinkage. The threshold selection has been a challenging problem for Wavelet Shrinkage
methods, which can be traced back to|Donoho & Johnstone| (1994) that proposed a universal selec-
tion parameter o+/2logn where n denotes the length of the signal and ¢ denotes the noise level.
Although it can eliminate noise components, it can induce biases/errors in estimation. To address
this issue, many non-adaptive and adaptive methods have been proposed, such as Minimaxi |Verma
& Vermal(2012), SureShrinkage Donoho & Johnstone| (1995)) that leveraged the Jame-Stein Shrink-
age method for more accurate estimation, Bayesian shrinkage [Do & Vetterli| (2002); [Simoncelli &
Adelson| (1996); JOHNSTONE & SILVERMAN]| (2005); fter Braak| (2006), non-parametric shrink-



Under review as a conference paper at ICLR 2025

age |Antoniadis & Fan| (2001);|Gao| (1998)) including SureLet |Luisier et al.|(2007) and Neigh Shrink
Sure |Chen et al.| (2005)), etc.

Wavelet analysis in neural signal processing. Wavelet analysis has been widely applied in pro-
cessing brain signals |Li et al.| (2007); [Faust et al.| (2015)); |Ortiz-Rosario et al,| (2015). One notable
example is its use in establishing biomarkers for PD Wang et al.| (2004); [Tinkhauser et al.| (2018));
Luo et al|(2018); Nie et al.| (2021);|Guo et al.| (2024). Among these biomarkers, substantial 5 burst
activity have been clinically demonstrated to correlate with improvements in mobilityTinkhauser
et al.[|(2017b); Lofredi et al. (2023)).

Most existing Wavelet Shrinkage methods relied on the strongly sparsity assumption |Atto et al.
(2011), i.e., the signal (or each sub-band) is a representation of only a small proportion of strong
signal coefficients with large magnitude. However, as we will show below, there may exist smal-
I/weak coefficients in many applications including neural signal processing, and should not be ig-
noredKhawaldeh et al. (2020).

Weak signal coefficients refer to those small coefficients that have been found in many applications,
such as textures, contours in image denoising Atto et al.|(2011), enlarged gray matter voxels in brain
diseases |Sun et al.| (2017), the non-burst component in dopamine-dependent motor symptoms with
Parkinson’s patients Khawaldeh et al.[(2020); Brittain & Brown|(2014); Mallet et al.|(2008). In these
applications, these weak signal coefficients may not be as interpretable as strong signal coefficients
(e.g., burst component in PD analysis); however, the ignorance of these weak signals due to over-
smoothing may lose information in signal reconstruction in neuroscience analysis. Therefore, it is
desired to i) disentangle the strong signals as the semantic component of the signal, and meanwhile
ii) accurately estimate the whole signal by capturing the weak signal coefficients.

Limitations of Wavelet Shrinkage and our specifications. Existing Wavelet Shrinkage methods
either suffered from failing to disentangle strong signals apart because of small thresholds (e.g.,
SureShrink), or ignoring weak signals because of large thresholds (e.g., Minimaxi or Universal
v/2logn). In contrast, the splitting mechanism in our Wavelet Differential Inclusion(WDI) decou-
ples sparse and dense parameters, enabling accurate estimation of both the strong signal and weak
signal coefficients. Note that our method is motivated by but different from the differential inclusion
method in signal recovery |[Osher et al.| (2005} 2016)). For the reason of coherence and space limit,
we leave the review of these methods in Appx. [A]

3 PRELIMINARY

Problem setup. Suppose we observe data {y;}"_, with n = 27 for some integer J > 1, such that
yi = f(t:) +e; with eq,...,en ~iiq N(0,0%), t; == % and f denoting the ground-truth signal
we would like to recover. One may construct a wavelet transformation to decompose the observed
signal y into an orthogonal wavelet basis, including stationary wavelet transform (SWT), discrete
wavelet transform (DWT), etc. For DWT, we obtain an inverse wavelet transform matrix W € R™*™
depending on the type of wavelet filters (such as Coiflets, Symlets, Daubechies |[Cohen et al.|(1993),
Beylkin Beylkin et al.| (1991), Morris minimum-bandwidth Morris & Peravali| (1999))), the number
of vanishing moments M and the coarsest resolution level L.

With such W, we can obtain the coefficients 6 up to the linear transformation of noise:
w=0"+¢, w=Wy, e =We~N(0,0%I,),

when W is orthogonal. Here, we assume the ground-truth signal 8* contains three types of elements:

1. Strong signal set. S := {i : |0;| > 20(1 + a)\/2log n} for some constant a > 0.
2. Weak signal set. T = {i: 1 < |0} = o(y/21logn)}.
3. Null set. N := {i : 6 = 0}.

The strong signal set corresponds to elements with large magnitudes and can be identified by the
Wavelet Shrinkage [Donoho & Johnstone| (1995). This definition aligns with the S-min condition
Zhang & Zhang| (2014) in variable selection, meaning that the signal should be strong[]_-] enough to
be identified. Correspondingly, we define the strong signal vector §*° as §;° = 67 fori € S

'In linear regression, it requires 6 > O(%) for 67 # 0.
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= 0 otherwise. The weak signal set refers to those non-zero elements with smaller magnitudes and
has been similarly introduced in wavelet denosing |Atto et al.| (2011) and beyond |L1 et al.| (2019);
Zhao et al.[(2018)). Despite with small magnitudes, this set may have a non-ignorable impact on the
reconstruction effect. However, it can be difficult for existing ¢;-regularization (e.g., the Wavelet
Shrinkage) to distinguish them from the Null set.

Wavelet shrinkage via soft-thresholding. The Wavelet Shrinkage method inDonoho & Johnstone

(1994); IDonoho| (1993)); Donoho & Johnstone| (1995) proposed the soft-thresholding estimator /9\2 =
N(wi, A) = sign(w;) max(|w;| — A, 0) for some A > 0, followed by inverse wavelet transformation

to recover the signal f := W ~1n(w, ). To remove the noise components, Donoho & Johnstone
(1994) selected A ~ O(+/21og n), which is provable to be minimax optimal.

~

Proposition 3.1 (Theorem 2 in Donoho & Johnstone| (1994)). Denote 0(\,) := n(w, Ay,), then the
minimax threshold \}, := arginf\>o supy. E[[|0()\) — 6*]|3] ~ v/2logn.

Although A ~ /2logn can effectively remove noise with high probability, it suffers from two
limitations: i) the estimation of strong signal coefficients is biased due to non-zero \; ii) it ignores
the weak signal coefficients, which leads to additional errors in estimating the whole signal 6*.
Specifically, for i), although the threshold /2 log n can identify the strong set S by removing others
with high probability, it can induce bias in estimating 6*-°. This is shown by the following result,
which states that once we identify .S, the optimal threshold value in estimating 8*° is A = 0.

Proposition 3.2. For strong and weak signals, i.e., i € S UT with |0} > 1, we have:

0 = arginf sup E(n(wi, \) — 07)2.
AjerI>1
Remark 3.3. This result shows that in terms of population error, the best optimal threshold value is
also 0 for weak coefficients. However, it does not mean we should select A = 0 to estimate 6*. First,
it fails to remove noise components in N. Moreover, even for weak signals, we will show that for
any fixed 6*, applying an appropriate non-zero {5 shrinkage would achieve better estimation.

For ii), A ~ v/2logn fails to account for weak signal coefficients that are o(1/2logn). To achieve
a more accurate estimation, [Donoho & Johnstone| (1995) proposed SureShrink (Stein’s unbiased
estimate of risk), which can reduce biases in 6*. However, it can mistakenly induce noise and weak
signals in identifying the strong signal 6*°. This may be undesired in neuroscience analysis where
identifying the strong signal is important for interpretation, such as the bust component identification
in Biomarker identification in Parkinson’s patients.

In summary, previous methods either have a bias of the strong signal and ignore the weak in esti-
mating 6*; or fail to remove non-signal coefficients in estimating 6*°.

4  SPLITTED WAVELET DIFFERENTIAL INCLUSION

We introduce a new method from the perspective of differential inclusiorﬂ which can simultane-
ously identify the strong signal 6*° and accurately estimate the whole signal 6*. In Sec. we
first introduce the WDI that can remove bias in estimating 8*°, followed by Sec. where an /5
splitting mechanism is additionally introduced to capture both 6*>° and 6*.

4.1 WAVELET DIFFERENTIAL INCLUSION FOR 6*¢

To estimate the strong signal §**, we introduce the squared error loss £(f) := |lw — 6|3 and
consider the following differential inclusion with an ¢; regularization:
p(t) = =Val(0(t)) = w — 6(1), (1a)
p(t) € 0]10(0)l]1, (1b)

where p is the sub-gradienf’|of ||0]|; and p(0) = 0(0) = 0. We call Eq.[I|as WDI. Note that it is a
special form of the Bregman Inverse Scale Space (ISS) |Osher et al.|(2016) when the design matrix

The ordinary differential inclusion is similar to the ordinary differential equation. For details about its role
in signal recovery, please refer to related works in Appx.
3The sub-gradient of f at z is defined as 8f (x0) := {g : f(x) — f(z0) > (g, f(x0)) for any x}.
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of 6 is set to the identity matrix in the linear model, and can be viewed as a continuous dynamics
of Bregman Iteration Osher et al.|(2005) in image denoising. Thanks to the identity matrix design,
the differential inclusion of Eq. in the wavelet scenario has a closed-form solution 6(¢), which can
illustrate the effectiveness of bias removal in estimating 6*-°.

Specifically, starting from p(0) = 0, Eq.|1| generates a unique solution path of (¢), in which more
elements become non-zeros as ¢ grows, as shown below:

Proposition 4.1. The solution of Eq. is 0;(t) = w;(t) fort > —; and = 0 otherwise for each j.

oo [”
Therefore, 0;(t) and p;(t) are right continuous w.r.t. t for each j.

Remark 4.2. To better explain the effect of bias removal, we compare Eq.[T|with Wavelet Shrinkage,
whose solution 6(t) (t = 1) is equivalent to the Lasso estimator: |jw — 6|3 + 1]|6]|,. By taking

gradient w.r.t. 6;, the solution satisfies @ = w — O(t) with p(0) = 6(0) = 0. When |p;(t)]

becomes non-zero, then we have 6, (£) = w; — 2.2 where 224)

r S~ can induce the bias. As a contrast,

when [p;(t)| = 1 of WDI at some ¢, since ¢, (t) is right continuous w.r.t. ¢, we have that if ¢’ is in
a small neighborhood of ¢, #;(¢') is non-zero and has the same sign of 6;(¢). Therefore, we have
p;(t) = limy_yy %:fj(t) = 0, which gives 6;(t) = w; according to Eq.
As shown in Prop. t plays a similar role as 1/X in disentangling the strong signal from oth-
ers. However, it is interesting to note that, unlike the Wavelet Shrinkage, the solution §,(¢) =
wj = n(wj, A = 0) is without additional threshold parameter! In contrast to 6;(A = y/2logn) :=
n(wj, v/2logn), this estimator can remove the bias caused by A. Therefore, our differential inclu-
sion can not only remove noise and weak components when ¢ is large enough but also can estimate
6% without bias induced by A in Wavelet Shrinkage that is necessary for removing bias. Equipped
with such a bias removal of Eq.[I] we can achieve a smaller /5 error than the Wavelet Shrinkage.

Theorem 4.3. Denote 0777 = min;cg |0}| and s := |S|. Then at 7 := 1/((1 + a)y/2logn) and n

min

is large enough such that 5/2logn > 07 for j € S. Denote 0(t) as the solution of Eq.|l| then with
probability at least 1 — 2n—49" _ max (exp (75)\2/8) ,n7(1+a)2/4>, we have

10(F) = 6%z < [In(w, A) — 0%z for any A > 0. 2)

Remark 4.4. The proof of Thm. [4.3]is left to Appx.[D] We will show that stopping at 7 will remove
other components since max; |e;| < (1 + a)y/2log n with high probability.

Recall that n(w, A) refers to the soft-thresholding solution of Wavelet Shrinkage. Thm. means
that the WDI gives a more accurate estimation than Wavelet Shrinkage.

4.2  'WAVELET DIFFERENTIAL INCLUSION WITH {5-SPLITTING FOR BOTH #*° AND 6*

In this section, we proceed to capture the weak signal, in order to estimate the whole signal 0*
more accurately. To achieve this, we propose the SWDI, which generates a solution path of a sparse
parameter 6°(t) € R™ coupled with a dense parameter §(¢) introduced by an ¢5 splitting term. We
will show that the 6°(¢) maintains the same bias removal property as WDI in Eq. I} moreover, the
dense parameter can additionally capture the weak signal with the /5 shrinkage induced by the /5
splitting mechanism. Specifically, we consider the loss £, (6, 6°) := %|jw — 0|3+ 4|60 — 6°||3, where
2|16 — 6%||3 with v > 0 denotes the ¢, splitting term that introduces a couple of parameters, which
is expected to simultaneously estimate the strong signal 8*° and the whole signal 8* well. This is
achieved by the following differential inclusion:

0=—Vl,(0,0°) =w— (1 +v)0(t) + v6°(t), (3a)
p(t) = —Vg:0,(0,0°) = v(0(t) — 6°(t)), (3b)
p(t) € 9116° ()] (3c)

where p(0) = 6(0) = 6°(0). Similar to the WDI in Eq. |1} when ¢ is large enough, it can remove
the noise and weak signal components, i.e., T'U N to identify the strong signal component in 6°;
whereas the parameter 6 can additionally capture weak components as it is dense. Formally, this
property can be shown by the following solution path of Eq.
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Proposition 4.5. The solution of differential inclusion in Eq.[3)is

0(0) = 05(0) =wj,  t2 L
6(t) = 25, 03(5) =0 < v T

Prop. [4.5] suggests that when ¢ is large enough, the noise and weak components can be removed
in #° and meanwhile, which is the same as the solution in WDI in Eq. [I} can estimate the strong
components without bias. On the other hand, for the dense parameter 0(t), it keeps the strong
components in #° and meanwhile estimates

To explain in more detail, note that for the strong signal, when \ ,oj( )| = 1, we similarly have
pj(t) = 0 according to remark [4.2} Therefore, we have 6%(t) = 0;(t) = w; according to Eq.

When |p;(t)| < 1 for some j, we have 05 = 0 and Eq. n gives 6 “jrjy. For the whole signal
0, note that 0;(¢) at ¢ > ¢; given by Eq. .1s the minimizer of §(w;(t) — 6;(¢))% + %(6;(t))?,
where 2 (6, )2 can be viewed as an /5 regularization of ;. This 62 shrinkage, which is equivalent
to the maximum a posteriori (MAP) estimate with the Gauss1an prior v ~ N(0,1), resembles the
shrinkage effect in the Jame-Stein Estimator. With this shrinkage, we will show that (6°(¢), 6(t))
can estimate the 6** and 6* well.

Theorem 4.6 (Informal). Denote 0}, 1 = max;er |0]| and n is large enough such that 0, 7 <
ap\/Togn for some 0 < ag < 1. Then for (6(t),0°(t)) in Eq. 3| if n > 41/(1=a0) qr 7 .= (1 +
1)/((1 4 a)y/2Togn), the following holds with probability at least

1-0 (n7%) =0 (n7/5%) ~ 0 (w /1) 0 (exp(~[T1)) ~ O (exp(~IN])).

1. Strong signal recovery. For the strong signal 6°,
16°(7) = 6%l < [[n(w, A) = 6%[l2, VA > 0. )

2. Weak signal recovery. For the weak signal 0%, there exists oo > v* > 0 such that
10(F)r — 0%]l2 < ||0 — 6%]l2 = |10 ||2 i-e., v = oo shrinkage to O;
10(F)r — 0%]l2 < ||lwr — 0%]2 = |leT]|2 i-e., v = 0 no shrinkage.

3. Whole signal recovery. For 0*, under the same v* in item[2] we have
16(7) = 0%[|2 < [[n(w, A) = 6" [|2, YA = V/logn.

Item [T] inherits the property in Thm. 3] for WDI in Eq. [} Item [2] means we can better estimate
the weak components 67 via ¢, shrinkage. Finally, item [3| means our SWDI is more accurate than
the Wavelet Shrinkage method with A ~ /2logn. Although this conclusion may not hold for
A = o(y/log n), the Wavelet Shrinkage with these \’s fails to remove noise in identifying 6*°.

Selecting stopping time 7 and v*. The 7 := (1 + 1/v)/((1 4+ a)v/21ogn) involves an unknown
parameter a, which is used to define the level of strong signal coefficients §*>* Donoho & Johnstone
(1994). Empirically, we can set it to a small constant 1 > a > 0 so as to remove other components
and 1dent1fy as many strong components as possible. For v*, we will show in Appx [E that v* :=
(lerunlls + 22 er O5e) 107113 + 3 cr 05e5) ~ n/(\T|mean(9* )). This term is approximate

O(1) since the weak 51gnal is typically very dense Ge., | 7 ~ O(1)). For example, the non-burst
activity in the low 8 band should be dense enough to be responsive to the medication.

Solution path generation via linearization. One can generate a solution path according to
Prop. Here we consider another method to generate (6°(¢),6(t)); via linearization proposed
in|Yin et al.| (2008). Specifically, we consider the following differential inclusion:

ég) ==Vl (0,0°) = w — (1+ )0(t) + v0° (1), oo
B(t) =~V L,(0,6%) = w(6(1) — 0%(1)), o

0% (t)

o) €0 (10°0 + 516" 1E) = plo) + 50
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where we introduce an /5 norm iHBsH% for discretization, with £ > 0 denoting the damping
factor. We show in Appx. [E] that the solution (6%%(t), 8% (t)) of Eq.[5] converges to (6°(t),6(t)) in
Eq.[8las K — oo. Therefore, Thm.[&.6]still holds in Eq.[5]when & is large enough. By approximating
6(t)

K

and ©(t), we have the following discrete solution of Eq.

Ok +1)=0(k) + rd (w— (1 +v)0(k) + v0°(k)), (6a)
v(k+1) =v(k)+ov((t) — 0°()), (6b)
0°(k+ 1) = kn(v(k+1),1), (6¢)

where § denotes the step size. We show in Appx. [f] with sufficiently large x, Thm. [4.6] still holds
in Eq. |§| as long as 6 < 2/(x(1 4+ v)). Note that this discrete form can be extended to solve the
differential inclusion for the general objective function £, (6, 6%) := Z|ly — W3 + &6 — 6|3,
where the wavelet matrix may not be orthogonal and we do not have a closed-form solution.

Selecting damping factor . « trade-offs between estimation accuracy and computational effi-
ciency. In Appx. [E} we show that as k — oo, the solution (85" (t),6"(t)) of Eq. [5| converges to
(6°(t),0(t)). On the other hand, since ¢ is inversely proportional to &, a larger value of « will take
more iterations to find 7. Empirically, we find that x = 20 works well.

Selecting step size . As shown in Appx.[E| as long as § < 2/(k(1 + v)), we have Thm. [4.6] for
Eq.[6] Empirically, we setitto § = 1/(k(1 + v)).

5 NUMERICAL EXPERIMENTS

In this section, we apply our method to synthetic data in estimating both the sparse signal 8% and
the whole signal 6*.

Signal Recovery (only strong) W§**

Noisy data y Ours (Sparse 0°(7)) SURE Universal ((v/2Tog(n) Mixture Minimax
20 20/ 20 20 20 20

. 10 10! 10 10 10 ‘ 10

';UW DJ”I l UWN'WM ofi-d I Lo “JM-' I UMJWI gl

0 500 1000 0 500 1000 0 500 1000 0 500 100 0 500 1000 0 1000
t t t t t

Signal Recovery W6*

Noisy data y Ours (Dense (7)) SURE Universal (v”!‘”ul",‘) Mixture Minimax
20 20 20 20 20 20

Figure 1: Visualization of Signal Recovery of W&** (top) and W6&* (bottom). The blue curve
represents the original signal (W6*° in the top row and W6* in the bottom row), and the red curve
represents the estimated one.

Data generation. We set n = 1024 and the 1-d DWT matrix W € R™*" as the Daubechies 6 with
level 5, which is orthogonal. For the coefficients #* € R", we respectively set the strong signal
index set and the weak signal index set as S := {1,4,7,...,199} and T' := {401,403, ...,n}. We
seta =0.3and 0 = 2(1 + a)y/2log (n) ifi € S; = 2if i € T; and = 0 otherwise. The sequence
f=W60*+ewithey,...,e, ~iia N(0,1) is generated, and we report the 5 error over 20 times
in estimating 6*-° and 6*.

Implementation details. We compare with the following threshold value methods that estimate
0 := n(W'f, \), which includes i) SURE Donoho & Johnstone|(1995)) that selects A based on Stein’s
Unbiased Risk Estimate; ii) Universal method that constantly sets A = y/2log (n) [Donoho &
Johnstone| (1994); iii) Mixture method that/Verma & Verma/(2012)) combines SURE and Universal,
depending on the signal-to-noise (SNR) ratio. Specifically, if the SNR is high, the Universal adopts
the same threshold value with the Universal method; and iv) Minimax|Verma & Verma! (2012)) that
selects A using a minimax rule, i.e., A = (0.3936 + 0.10829 log, n) if n > 32 and = 0 otherwise.
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v = % and the stopping time t= QIH/V s.t. our

For our method, we set x = 1000, § = AT

final estimations are 6(%), 6°(t).

1
r(14v)?

Visualization of reconstructed signals. As shown in Fig. [I] our method can well recover W6*:*
(top row) and W6* (bottom row); as a contrast, SURE induces additional errors accounted by weak
signals and noise in estimating 0*° while other methods with excessive shrinkage strategy will suffer
from inaccurate estimations of *° and the ignorance of the weak signals in estimating 6*.

Results analysis. We report the relative ¢ error of 6*° and 6* in Tab.[I] As shown, our method has
a smaller error compare to others. Specifically, for the strong signal 6*°, all methods except SURE
adopt an overly large threshold value (~ O(logn)) which can induce errors in estimating strong
signals. The SURE method with a smaller threshold value, however, induces noise components into
the estimation, which can explain why SURE also suffers from a large error. For 8*, our method is
comparable to the SURE and outperforms others that drop the weak signals.

Table 1: Average + Std of relative ¢5-error of 6* and 6*-°.

Sparse Error (%) Dense Error (”151’ E!lz)
SURE 0.4195 £ 0.0180 0.3001 £ 0.0073
Universal (\/2 log (n)) 0.3991 £ 0.0099 0.5437 £+ 0.0060
Mixture 0.3991 £ 0.0099 0.5437 £+ 0.0060
Minimax 0.2849 £ 0.0099 0.4297 £ 0.0058
Ours (6(t)) 0.4686 £ 0.0114 0.2918 + 0.0063
Ours (6%(t)) 0.1400 £ 0.0373 0.3742 £ 0.0064

{5 error along the solution path. As shown in Fig.[2] ||6(¢) — 6*||2 (blue curve in the right) and
|02 (t) — 6*%||2 (red curve in the left) first decreases then increases as t grows. For 8%, the 6°(t)
continuously identifies more signals until all strong signals are picked up. Meanwhile, the dense
parameter 6(¢) can additionally learn weak signals, therefore showing a smaller error in estimating
6*. If ¢ continues to increase, §°(t) will learn weak signals and finally both 6°(¢) and 6(¢) converge
to the noisy coefficients W’y. Moreover, our estimated stopping time t (blue vertical line) yields a
comparable estimation error to the minimum in the solution path (red vertical line).

0.6 T
0.55, ¥

(Relative) Estimation Error of 6%° (Relative) Estimation Error of *

Figure 2: /5 error of G*i (left) and 6* (right) along the path. The blue (resp. red) curve represents

the MSE of 4(t) (resp. 6(t)). The blue (resp. red) vertical represents the estimated (resp. ground-
truth) stopping time ¢ (resp., t*).

6 NEURAL SIGNAL RECOGNITION IN PARKINSONIANS

We apply our method to the signal neural signals reconstruction in P]ﬂ which distinguish patho-
logical conditions in PD patients (ON/OFF medication).

*We also apply to Electroencephalography (EEG) signal denoising in Appx. El
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Figure 3: Two-sample T-test on the change of signal’s energy after medication.

Data & problem description. We consider 8 band LFP signals recorded in the STN Brown &
‘Williams| (2005)), which are pathologically associated with the clinical condition denoted by the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) in individuals with PD Maling & MclIntyre| (2016);
Kiihn et al.|(2006); [Little et al.| (2013). For such signals, the 8*° corresponds to beta burst activity
that contains prolonged synchronization activities from clusters of hundreds of neurons [Tinkhauser
et al.|(2017Db); Buzsaki et al.| (2012) while 6* contains both burst and tonic/non-burst activities. Al-
though increased burst activity of S band signals (especially low 8 band Khawaldeh et al.| (2022))
has been the most typical biomarker of PD |Lofredi et al| (2023)); |Tinkhauser et al.| (2017b), the
non-burst signal may further help predict the upcoming movement |[Khawaldeh et al.| (2020).

In total, 17 PD patients (32 hemispheres) are included in this study [Nie et al.[| (2021); Wiest et al.
(2023); \Guo et al.| (2024). Bipolar LFP signals of STNs are recorded in 17 patients (four females)
with advanced PD who underwent the bilateral implantation of deep brain stimulation electrodes for
clinical treatment before (i.e., “OFF”) and after (i.e., “ON”) taking levodopa. We adopt Guo et al.
(2024) to process these signals. Artifacts, including large baseline shifts and muscle movement
artefacts, are rejected through visual inspection. The recordings are further processed through a
90 Hz low-pass filter and a 2 Hz high-pass filter, followed by resampling at 320 Hz, therefore
positioning low-beta oscillations into the fourth layer of stationary wavelet coefficients.

P=0.0408
R=0.3635
60- 60:

Original Signal Wavelet Shrinkage  P~0.0832 Ours (6°(7))  P=0.0400 Ours (6(i)) P00

R=0.3110 R=0.3576 R=0.3633
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Figure 4: Correlation between changes of signal’s energy and the UPDRS that measures the im-
provement of motor symptoms.

Implementation details. We follow [Luo et al| (2018) to perform a 1-d SWT on LFP sig-
nals as the Symlet 8 with level 6. We follow |Donoho & Johnstone| (1995) to estimate o as
& = Median(WW;)/0.6745. For Wavelet shrinkage, we select A according to the minimax rule
in |Donoho & Johnstone| (1994). To well adapt to each layer, we follow Baldazzi et al.| (2020) to
multiply A with 1/(Inj + 1) for the layer j. For SWDI, we set k = 20, § = 1/(k(1 + v)) with
v = 0.1 and the stopping time as t = (1 +1/v)/(5/(Inj + 1)).

Energy in ON vs. OFF medication. With reconstructed signals by inverse wavelet transformation,

we implement a two-sample T-test to measure whether the signal’s energy is significantly reduced
before and after receiving medications. Here, the energy is defined as the power of low 3, i.e.,
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Figure 5: Estimated Signal Coefficients by Wavelet Shrinkage (left) and ours (right).

E(t) =1 Z::t—u’;-i-l F2(i) in Maling & Mclntyre| (2016), with @ denoting the window size. We
report the p-values in Fig.[3] As shown, the reconstructed strong signal (resp. correspond to “Burst”
in Wavelet Shrinkage and “6**” of our SWDI) of our method is more significant (p = 0.0023)
than Wavelet Shrinkage (p = 0.0053) in the response to medications, which may due to the effec-
tiveness in bias removal. On the other hand, the effect of the “noise” component is also significant
(p = 0.0117), which can be attributed to the non-burst component that also exhibits a significant
correlation, i.e., p = 0.0065.

Correlation with motor symptoms improvement. To explain the energy reduction from signals
recovered by SWDI, Fig. 4] reports the correlation between the “reduction in the low 8 power” (i.e.,
energy) and the improvement of motor symptoms measured by the change of clinical UPDRS score
defined in [Goetz et al.[(2008). As shown, our reconstructed strong signal with 6° is correlated to
the improvement of motor symptoms (p = 0.0400, R = 0.3576) while the one given by Wavelet
Shrinkage is not significant (p = 0.0832, R = 0.3110). Besides, with additional learned non-burst
components which are recognized as noise by Wavelet Shrinkage, the 6(#) shows an even stronger
correlation (p = 0.0410, R = 0.3633).

Results analysis. Fig. [3]. f] suggest that the reconstructed signals by our method contain more
physiological and clinical information. Specifically, the whole signal we learn is not only composed
of synchronized/burst activity (in the Low [ band) that corresponds to high amplitude components;
but also other lower components called the non-burst activity. Traditional methods mainly focus on
the effectiveness of medication in inhibiting burst activity |[Lofredi et al| (2023)); |Tinkhauser et al.
(2017b)); while our method additionally shows that such an inhibition also happens on non-burst
activity, which echos a recent finding in|[Khawaldeh et al.|(2020). To explain how such a non-burst
activity affects the LFP signals, a recent study |[Kajikawa & Schroeder| (201 1)) hypothesized that such
a non-burst activity may correspond to the electric field environment of neuron clusters. Since the
LFP signal, which appears as a mixture of local potentials from neuron clusters, has been found
to be affected by the fluctuation of this field environment |Caruso et al.| (2018), the change of this
non-burst activity after medications may lead to the change of the LFP signals and energy within.

Signal recovery. To further explain the above results, we visualize the recovered coefficients. As
shown in Fig.[3] our reconstructed strong signal (marked by blue) can remove the bias. Meanwhile,
the estimated 6(¢) (marked by red) can capture the information of the weak signal.

7 CONCLUSION

In this paper, we propose the SWDI for neural signal recovery, which can simultaneously remove
bias in estimating the strong signal and capture weak components in estimating the whole signal.
Our method has a unique closed-form solution and can achieve better estimations than Wavelet
Shrinkage. Besides, we provide an efficient discretization algorithm that can efficiently obtain the
whole solution path. In PD analysis, our method identifies the non-burst/tonic activity in the low 3
band, which has been recently found to be responsive to medical treatment.

Limitations and future work. We only discuss the signal recovery in a non-adaptive way. However,
the sub-band and spatially adaptive wavelet decomposition can achieve better reconstruction results.
While saying so, we have shown promising results in real applications. Moreover, by considering
the strong and the weak signals on each sub-band, our method can be potentially applied to adaptive
decomposition and will be carefully investigated in the future.

10
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A RELATED WORK OF DIFFERENTIAL INCLUSION IN SIGNAL RECOVERY

The differential inclusion method in signal recovery was proposed in (Osher et al.| (2016), which is
called (Linearized) Bregman Inverse Scale Space and can be viewed as a continuous dynamics of
the Linearized Bregman Iteration (LBI) proposed in|Osher et al.| (2005); |Yin et al.| (2008)) for image
denoising. From the perspective of differential inclusion, Osher et al.| (2016) firstly showed the
model selection consistency property, recovering the true signal set under irrepresentable conditions.
The Huang & Yaol| (2018]) later generalized this result to from the linear model to a general convex
function. Moreover, |Huang et al.| (2016; |2020) proposed the variable splitting method which leads
to better model selection consistency. The [Sun et al.| (2017) further applied them to Alzheimer’s
Disease and found there exists another type of lesion feature (which they called “procedural bias™)
that can help disease diagnosis. Our method is motivated by differences from this method in the
Wavelet Denoising scenario, in which our primary goal is to reconstruct the signal. Besides, thanks
to the orthogonality of the Wavelet Matrix, our method has a closed-form solution, which leads to
theoretical advantages over Wavelet Shrinkage.

B SUPPORTING LEMMAS

Lemma B.1 (Concentration for Lipschitz functions). Let (X, ..., X, ) be avector of i.i.d. standard
Gaussian variables, and let f : R™ — R be L-Lipschitz with respect to the Euclidean norm. Then
the variable f(X) — E[f(X)] is sub-Gaussian with parameter at most L, and hence
+2
Pllf(X) —E[f(X)]| > t] <2 22 forallt > 0.

Lemma B.2 (Hoeffding bound). Suppose that the variables X;,v = 1,...,n are independent, and
X; has mean p; and sub-Gaussian parameter o;. Then for all t > 0, we have

P [i(xi ) = t] < exp{mi:(j?}.

i=1
Lemma B.3 (y?-variables). Let (X1,...,Xn) be avector of i.i.d. standard Gaussian variables.
Then (X 2 X,%) are i.i.d Chi-squared variables with 1 degree of freedom. Then we have

IP’|;L ZXf—n

i=1
Lemma B.4 (Expectation of Maximum Gaussian (Theorem 1 in Kamath| (2015))). Ler Let
(X1,...,Xp) be avector of i.i.d. standard Gaussian variables, then

E[ max X;] < +/2logn.

1<i<n

nt2
> t] <e v, Vte(0,1).

F(A) ~ f(Ay) < [ max (ATA) 1o~ ylo, .y € B

C PROOF OF SECTION[3]
Proposition C.1. We have 0 = arginf supg. > E(n(wi, ) — 6;)%

Proof. Since 0 > 1, then

: E(n(wiv >‘) 9*)2 . 2
f G =a nf sup E(n(w;, ) — 9;
ae H/{ OS;*u>p1 n=1 min ((0:()27 1) e 1/\ 987*>p1 (77( ) )

According to Theorem 2 in|Donoho & Johnstone|(1994), we have
E(n(wi, A) = 0;)% = 1+ X2+ ((6;)* = \> = 1) {&(A = 6]) — D(=A - 6))}
= (A=07)p(A+07) — (A +07)p(A — 67).
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Denote g(\, 6;%) := E(n(w;, A) — 67)2. Then it is sufficient to show that for each 6}, we have
g(A, 0;%) > g(A\,0) > g(0,0) = g(0, 8;%). (7

According to Lemma 1 inDonoho & Johnstone| (1994), we have g(A, 0;%) is increasing w.r.t. |0}],
therefore we have g(), 6;) > g(X,0). The ”="in Eq.[7]is also obvious since

9(0,0;%x) =1,V 0; *.
It is left to prove the 2nd ”>" in Eq.[/} It is suffcient to show that
gA0) = (14 X2) (1 - B(N) + B(~N) — 226(N)
is non-increasing w.r.t. A. Take the gradient of g(\, 0) w.r.t. A, we have

99(A.0) _ —2(1 4+ MA)p(A) +2X (1 — D(A) + (=) — 26(A) + 22\2p(N)

B
= —4p(\) +2X (1 — B(N) + B(—N)).

Then it is sufficient to show that %’f\’o) < (. To show this, we first consider the 2nd derivative of

g(A, 0), which gives
9%g(N\,0
% = AAG(N) +2(1 = ®(A) + B(=N)) + 2A(=26()))

=2(1—®(\)+d(—A) >0.

This means [(\) := w is non-decreasing. We consider lim_, . [()), according to the Hopital’s

rule, we have

_ limiooe 21 = 8 + B(2Y) _ Hiasao 400N _ iy a2

limy oo % limy o0 byl A—o0

lim I(\)

A—00
This means [(\) := w < 0. Therefore, we have g(X,0) > ¢(0,0). Hence,
arginf sup E(n(w;, \) — 0)? =0
A or>1

The proof is finished. O

D PROOF OF SECTION (1]

Proposition D.1. The solution of differential inclusion in Eq. is 0;(t) = w;(t) fort > ‘w—l_‘; and
= 0 otherwise for each j.

Proof. Note that p(0) = 6(0) = 0. We define t; := sup,{p;(0) + tw; € 0/0;(0)|}. Then we define
0;(t) =0fort < tj and = w; fort > ¢; and p;(t) = wjt fort < t; and = sign(w;) fort > ¢;. It
can be shown that this defined {p(t), 8(¢)} is the solution of Eq.[l| This solution is unique since the
loss £(0(t)) == %|lw — 6(t)||3 is strictly convex w.r.t. §. According to Theorem 2.1 in|Osher et al.

(2016)), we know that the 6(t) is unique. O
Theorem D.2. Denote 05 = minjes |0F]. Then at 7 := s"s— for some a > 0 and

070 > 2(14a)y/2logn and 5v2logn > 07 for j ¢ S. Then with probability at least 1 — ml% —
max <exp (—%) , era)i,), we have
noa
16(7) = 0%z < [In(w, A) = 0|2, (8)
where 0(t) is the solution of Eq.

Proof. First we show the model selection consistency: supp(6(7)) = S. According to Prop.

. . . — 1 . — 1 .
it is sufficient to show that 7 > To=07" 75,1 forall j € Sand T < To;=87 7,1 forall j &€ S.

Since |07| < §+/2logn, it is sufficient to show that max;<;<n |¢;| < (1 + §)v/2logn with high

17
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probability, which can ensure that [07° +¢;] > 07 — maxi<j<n |g;] > (14 a)y/2logn = £ for

j € Sand |07 +¢;| < $v/2logn+maxi<j<n |e;] < (14a)y/2logn = £. Since maxi<;<n |¢;| <
max{maxi <, €;, maxi<, —¢; }, then we have

P(max |¢;| > (1+ 5)/2logn)
SJsn

1

<P ( max ¢; > (1+ ;)\/M)> +P ( max —e; > (14 Z)M)>

1<j<n 1<j<n
<2P <1g1a<>< g > 1+ ;)\/QIOgn)> =2P <1I£1a<x gj —+/2logn > f\/210gn )
<j<n
a
< - =/ .
<2P (1r$1]a<xnsj E Lrgaécnsj} > 5 210gn))

According to lemma ?? and lemma[B.1] we have

1
P(max sj—]E{max E]:| >(21\/210gn)> < —.

1<j<n <j< n%

To prove Eq. 25| without loss of generality we assume that 9;’5 > 0 for j € S. Then we have

10(7) — )

and that
02, A0t
N — o) = L0 ~ e
(U(M )] 7 ) {(53' _)\)2’ A\ < 9]'78_"53'
We denote I := {j : A > 0;°° +¢;} and Il = S — L. Then we have
(e, X) = 67115 = [[nw, N)s — 0[5 = 67113 + llentll3 =225 + A*(s = [1]) ~ (10)
jell

If X < (1 + a)y/2logn, then condition on maxi<j<y, g;| < (1 + §)v/2logn, we have I = ().
Combining Eq.[9and Eq.[T0} it is sufficient to show that

Z€j < %,

JjES

which has probability at least 1 — exp (’S’\2> applying Lemma Otherwise, if A > (1 +

a)v/2logn, then condition on max; <<y ¢;] < (14 %)v/2logn, we have [l1|3 < [|6;*||3. Com-
bining Eq.[9]and Eq.[I0] it is sufficient to show that

S < |II|)\

jell

which has probability at least 1 — W applying Lemma The proof is completed. [
noa

D.1 LINEARIZED WAVELET DIFFERENTIAL INCLUSION

Similar to SWDI, we also provide a linearized version in the following:

p(t)—l—&;) =w—0(t), (11a)
p(t) € 016(t)]1- (11b)

Proposition D.3. The solution of differential inclusion in Eq.[I1)is

9j(t)={;uj(l‘eXp<"‘(t‘i))>’ P2 v

otherwise

18
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Proof. Similar to Prop. [D.1} we define ¢; for each j and p;(t) = w;t fort < t; and = sign(6;)
for t > t;. It is easy to validate that such defined (p(t),0(t)) is the solution of Eq To see the

uniqueness, we denote v(t) := p(t) + @, then we have

t) = w = wn(z(1), 1) := g(2(1))-

Since g(+) is Lipschitz continuous, the solution is unique according to the Picard-Lindelof Theorem.
O

Theorem D.4. Under the same conditions and the definition of 7 in Thm.[D.2] Then with probability
at least 1 — n42a2 — max (exp (—%) , (L:}l»a)2> we have
n 16

16(T) = 67"z < [In(w, A) = 672, (12)
where 0(t) is the solution of Eq.

Proof. Similar to Thm. conditioning on maxi <<y |e;| < (1+ %)v/2logn (with probability at
least 1 — M%), we have that supp(0(7)) = S, by additionally noting that 7 is exactly greater than

w%- for any j € S. Next, we show that with probability at least 1 — max (exp (—%) , M),
no16
we have

_ 22
I5(7) =018 < e ) = 613 ~min (%, (1 + ) log ). (13)

where 0(t) = lim,_,. 0, (t) with 0, (¢) being the solution of Eq. . with a fixed x > 0. According
to Prop. - the 0 is the solutlon of Eq. [11] . It Eq . holds, then due to the continuity
of 6, Wlth respect to m we have Eq. (12| as long as « is large enough. Similar to the proof for

Thm.[D.2} when A < (1 4 a)+/2logn, conditioning on max;<j<n |£;| < (1+ §)v/2logn we have
Yies€i < 2 and hence

i 112 gz A

16(7) = 0™z < lln(w, A) = 073 = =

with probability at least 1 — exp (’S’\ ) When A > (1 +a)y/2logn, wehave >, re; < ‘HM
and therefore

10(7) = 013 < lIn(w,X) = 013 = (1 + a)*logn

with probability at least 1 — T
n

E PROOF OF SECTION 4.2]

Proposition E.1. The solution of differential inclusion in Eq.[3|is

1+%
91 (t) = ’yj(t) = wj, t> o vj
) 1+% :

0;(t) = 155, H(t) =0 t<

Proof. Note that v(0) = p(0) = 0. Then we define tj for each j as

o € o).

When ¢t < t;, we have |p;(t)| < 1 thus ;(¢t) = 0 and also §; = 1+B according to Eq. For

t > t;, we have |p;(t)] = 1 and thus p;(¢t) = 0. Therefore, we have v;(t) = 0;(t) = w;. Itis
1+%

t; :=sup{p;(0) +
t>0

easy to see such defined (p(t),6(t),~y(t)) is the solution of Eq.[3] We can obtain that t; =
According to|/Huang et al.|(2016), this solution is unique.
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Theorem E.2. Denote 0}, 1 := max;er |0} | and n is large enough such that 0}, . + < agv/logn
1
for some 0 < ag < 1. Then for (6(t),0°(t)) in Eq. ifn > 4Y/0-a0) gt 7 .= %, the
following holds with probability at least
_ 2 — max L 1 —ex _ZiGT (93)2 ~ex —n!~e0 Z:ieT(oi*)2
n4a2 nsiz ’ n(141rg)2 P 72 p 24(2 + 10g n)
) 0%)2 ) 0%)2
I max (1, =520 — 1) [NV max (1, =g 005 - 1)
— exp —exp | —
8 8

1. Strong Signal Recovery. For the strong signal coefficients 0g°,

16°(7) — 65|z = 105 (7) = 05" [l2 < [In(w, A) = §™*l2, YA > 0. (14)

2. Weak Signal Recovery. For the weak signal coefficients 0%, there exists oo > p* > 0 such that
10(T)r — 0%]|2 < ||0 — 0%]l2 = 107 ||2 i-e., p = co Shrinkage to 0,
10(T)r — 072 < ||lwr — 0F]l2 = |ler]|2 i-e., p = 0 No Shrinkage.

We can obtain a similar result for 0%., where S¢ := T'U N contains the weak and null compo-
nents.

3. Whole Signal Recovery. For 0*, under the same p* in item[2] we have
16(7) = 0%[|2 < [[n(w, A) = 0%[|2, YA = y/logn.

Proof. The proof of Strong Signal Recovery is the same as the proof for Thm. For Weak
Signal Recovery, we define I(p) = (1 — p)wr — 043 = ||pd% — (1 — p)er||3. We then have

I'(p)=2p» (07 +&:)* =2 ei(0] +¢).

€T i€T
2 %
We obtain the minimizer of I(p) as p* = Eg % JE%ET_)Z% by setting I(p’) = 0. If we can show
i€T\74 z
that 0 < p* < 1, then there exists a 8* such that p* = % Then it is sufficient to show that
> el +> el >0, (15)
Ser 40 >0 (16)
i b

For Eq.[I3] we have that:
P <ZE¢92‘ +Z€? < 0)
=P <Zi:ei6;“+zi:e? < O,Zi:ef < |:2F|> +P <Zi:ei9;f+zi:5§ < o,zi:gg > Z2F|>
or(Ee <) oo (o< )

Applying Lemma B.3]to the first term and Lemma[B.2]to the second term, we have that

o _ |T| 17 o Tl s
P<;€i< 2><exp< 3 , P Z;EZGZ-< 5 < exp 8, (02 .

For Eq.[16, we have

(o it <o) -r(Sem < )
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Applying Lemma|[B.2] we have that

e ier(07)? Dier(0)?
(Z €8] < 1) < exp (—;2) .

Since ||67|2 is the ¢5 error of O with p = 1 and ||er||2 is the ¢5 error of wy with p = 0, we obtain

the conclusion. To extend this result to 6%., following the same procedure, we can obtain that

p* _ ZzeT 7 +ZZET€ 9 +Z]€N J
dier(0; +&i)? +ZjeN i 7

whichis < 1 and > 0 if Eq.[T5][I6]holds. Finally, we prove the Whole Signal Recovery. According

to the above results, it is sufficient to show that there exists a 3 such that
[0(T)se — O5ell2 < lIn(w, \)r — 07[l2 < |In(w, A)se — O 2.

condition on ||0(T)s — 0%]l2 < [In(w,\)s — 0%]|2 that holds with high probability. We first show

that
* 1 *
[n(w, Nz = 073 > §||€TH§7

— * 2 *
16(7)se = 05115 < 3116715,
for some co > 3 > 0. For Eq.[17] we denote b; := n(w, A);, then we have
In(w, e = 0515 =Y 07 + Y 207bi+ Y (67)* = > 2070+ »_(67)°
i€T i€T ieT ieT i€T
which holds as long as >, 07b; > —& >, . (67)%. We then have

<Z€b<—z ) (Ze*b—Zm <—62(9j)2—29;“E

ieT €T €T €T €T €T

< exp <—(é Zier(07)” + Yier O7EDb) )

23 ier(07)°E[b7]

Without loss of generality, we assume 6} > 0. Then for E[b;], we have

b 1 +oo 22 —Vlogn—0; 22
Elb;]| = — / T exp (—> dx—i—/ x exp (—) dx
v2m \Jyiogn—o; 2 —o0 2

VIogn+0; 22
rexp | —— | dzx
\/Qw/\/@ o ( 2)

1 1 S 1 1
V2 nl_ﬁejﬁ ~  V2rni-a’

>7

For E[b?], we have

) 1 too 2 _/logn—07 2
Ejb;] = — / T exp <—) da:+/ T exp (—) dx
V2m | Jytegn—o: 2 —o0 2

J1 Ja

For J;, we have
1

75 75 e (2 ()

1 T ) oo
=—— —zexp|—— P(g; > +/logn — 0)
V2 ( 2 ) | /iogn-o;

2
=P(e; > \/logn — 607) +<\/@—9*>exp< (\/ICVTT;_QL‘) )

21

a7

(18)

[bi]>

(19)
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Similarly, for J,, we have

1

— X 1 . (\/@4-6;‘)2
T2 = Pl > Viogn+ 67) + o= (Viogn +67) exp <_2
2
Ple > Vg 01+ i (Viogm+ 0w (- P00
™

Therefore, we have

V2r

Substituting these results into Eq.[T9] we have:

E[b?] < 2P(g; > v/logn — 6F) +

nlfao

2
%lognexp (_ (\/logT;—Hi) ) < 2—|—logn.

=70 (§ — o ) Sier(97)?
P (Z 0:b; < _éZ(eW) <exp (6 5 Var 0) €T

i€T i€T
—nlme0 S (6%)2
o (1 S0P
24(2 +logn)

as long as n > 41/(1=0) Next we prove Eq.[18} which is equivalent to showing that

St Yoy o < U S

€T JEN €T €T

If we take 8 = n/|T, then it is sufficient to show that

Z‘eT e
== < (07)? (20)
S Z;
djen e
——— < 9* 2n
NS Z;
* 1 *\2
Zgiei +5 Z(ei) > 0. (22)
ieT jeT

Conditioning on ) _, 619*+ > (07)% > 0, ZleT 2> ITI and ||0(T)s—0%]l2 < |In(w, X\)s—0%||2.
we have that Eq. @]hold For Eq.[20] we have

Sier(6)?
ier € |T'| max (1, Sespi 1)
P J <exp| —
(Zrt gy

|T‘ €T 8

Similarly, for Eq. 21] we have

Sier(65)?
o | V| max (1, Zuer i) 1)

P JjE J 9* < —

< INT 7T 5 Z = &P 8

Summarizing these conclusions together, we have with probability at least

2 1 1 (692 _plmao S ()2
1—ﬁ—max (S’ 2> — exp _Z’LGT( z) —exp( n ZzGT( z) )
nia nsz ' QF0? 72 24(2 + logn)

*\ 2 12
|T|max(1,%—l) |N|max(1,%_1)
—exp | — S —exp | — - 7
we have [|6(7) — 0%, < [[n(w, A) — *||, for any XA > /log n. 0
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Proposition E.3. Denote

tj:rgig{t:/ot 1”4(3)}3 <l—exp<—/€(1—|—ﬂ) (E—%)))d£>0}.

Then there exists a unique {C}, ..., C7} with CJ > 0 and {C}, ..., C3} with C} > 0 such that

* Strong Signal Coefficients. For each j, whent > t;,

7m§<1+2f3—m) m(1+2ﬁ+m)

~(t) = Cf exp ) +Clexp | — ) +w(j);

(23a)
o m(1+25—\/1+4,32) mf(1+25—,/1+4ﬁ2)
0;(t) = C{ +—=1- exp | —
95) 2 2
o wt (1+25+\/1+4ﬁ2) st (1+26+\/1+462)
+Ci+—= |- exp | — + w(7).
5] 2 2

(23b)

» Weak Signal Coefficients. For each j, whent < t;,

0;(t) = 1%7')6 (1 —exp <_H(1 +5) (t - w)» and ;(t) = 0. (24)

Proof. Tt can be directly checked that that the Eq. for any positive {C1{,...,CT'} and
{C3,...,C2}. To ensure the continuity of 6(¢) and v(¢) (they are continuous since they are differ-
entiable) at ¢;, we can determine {C1, ...,C'} and {Cj, ...,C5}. The uniqueness of {C1, ..., C7'}
and {C3,...,C¥} comes from the uniqueness of the solution (6(t),~(t)), which can be similarly
obtained by Picard-Lindelof Theorem. O

Theorem E.4. Under the same assumptions in Thm. Suppose k is sufficiently large, then we
can obtain the same results in Thm. [E.2] for Eq. 3]

Proof. We can know from the solution of Eq.[5|given by Prop. and the solution of Eq.[3|given by
Prop. [E.1] that the solution of (6(t),~(t)) in Eq.[23] 24]is continous with respect to « and converges
to the solution of Eq. [3| given by Prop. Therefore the conclusions in Thm. hold when x is
sufficiently large. O

F THEORETICAL ANALYSIS FOR DISCRETE FORM

Proposition F.1. The (;(0(k), y(k)) := 4(w; — 0;(k))* +
2 .
long as § < Fmax(TF) " Eq.

@

(0;(k) — ~v:(k))? is non-increasing as
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Proof. Denote H := V2(;(0(k),~v(k)) = ( ljﬂﬁ _ﬂﬁ ) Denote ( z’:(k—’— 1) —91'.(14:) ) =
A; (k). We have

Ok + 10,70k + 1)) — 66008, 4(8) = (VE(O0R).A(K)). A (R) + S ()T HAL(R)
< L oo A0, Ak + T2y
1 ei(kﬂ‘);ei(k) HH||2
a << pill+ 1) = py (k) + U2 (B) ) ’Ai(k)> 015
< 3 bt 1) = i) v+ 1) =) + (V2 ) s
Since

(pi(k +1) = pi(k),7i(k + 1) = 7i(k)) = [k + D) + [vi(k)]

= pi(k) - vi(k+1) = pi(k +1) - 7i(k) =0,
we have £;(0(k+1),v(k+1)) < £(0(k),~(k)) as long as k6| H |2 < 2. Since | H||2 < max(1, §),
2 O

we have that § < W'

7
Theorem F.2. Denote K : LMJ with § = m and T defined in Thm Denote
Orax = max; |07|. Besides, we inherit the definition 0}, in Thm.|E.2) . For (6 in Eq. @
ifn > 4Y/(=90) and k is sufficiently large, then with probability at least

2 1 1 oF _pml—ao ) 0*)2
1_T_max (S7 - 2> —exp _ZlET( ) —exp< n ZzeT( z) )
niae nsz U= 72 24(2 +logn)

e (6)? e (07)?
|| max (1, Zuer () _ 1) |N| max (1, Zuer () _ 1)

—exp | — 3 —exp | — 3 ,

we have

1. Strong Signal Recovery. For the strong signal coefficients 05",
105 (K) = 05°[|2 < [In(w, \)s — 05" ||z, (25)

Sforany A > 0.
2. Weak Signal Recovery. For the weak signal coefficients and nulls 0%, there exists co >
B* > 0 such that
10(K)r — 072 < ||07 |2 i-e., B = oo Shrinkage to 0,
10(K)r — 072 < |ler||2 i-e., 8 =0 No Shrinkage.
We can obtain a similar result for 6%., the weak signal coefficients and null coefficients.
3. The Whole Signal Recovery. For the whole signal coefficients 0%, there exists co > * > 0
such that
16(K) =02 < [In(w, A) = 072

for any A > \/logn. That means Eq. |3| can be more accurate than Minimax and similar
approaches in|Donoho & Johnstone|(1994)).

Proof. 1t is sufficient to prove that for any residue e > 0, there exists a x° such that as long as
K > k°, the following condition holds:

~i(k) =0, VkE < K and i € S°. (26)
w;
(K 2
0;(K) — 155 <e, Vi. 27
10:(K) — wi| <e, [0;(K) —7i(K)| <e, VieS. (28)
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We first prove Eq. With z;(k) := pi(k) + % and z;(0) = 6;(0) = 0, it follows from Eq.|§|
that

nk+1) —z(k) B (Hi(k+1) —0i(k) )

5 T 115 s ci
where &; := 07 +¢; Vi € S¢and 0] = 0if ¢ € N. Therefore, we have
0;(k ~

148 & 1+
Note that £;(k) := £;(0(k),v(k)) == & (w;—0;(k))*+ g (0;(k)—~i(k))?in Eq.is non-increasing

since 6 < m therefore, we have

16:(k)| < |wi] < 0% + (14 a/2)\/2logn £ B

— max
condition on maxi<;<n |;] < (1 + §)v/2]ogn. Then we have
pB B BB _
+ ko g < +7(1+ a)y/2logn,
T+ RO B5 < e pps TTUTOV2Ios
since |&;] < §+/2Iogn and we have conditioned on max; <<, |€;| < (1 + §)+/2logn. Then there
exists k(1) > 0 such that for any K > %1 we have

|z: (k)| < (lf-BB)n +7(1+a)y/2logn < 1,

for any k& < K. This can prove Eq.[26] Next we prove Eq.[27] Note that Eq. [6b]is equivalent to:
0i(k +1) = 0i(k) — k0 (1 + B)0:(k) — wi) ,

|2i(k)| <

which implies

0;(k+1) — 1:036 — (1 ko) (@(k)— 1‘:35).

, we have err;(k) = (1 — xd)*err;(0). Denote K, := min{k :

Denote err;(k) := ‘91(]9’) — 113

err;(k) < e, then we have

log e — log err;(0) < log e — log err;(0)

K. <
°~  log(l—wd) —log2
loge — log B (1+%)7_' L, _
< = — =
S m « [ = s+ )7 K @9)

which will holds for any x > x( for some x(2) > 0. Finally we prove Eq. Denote K ; :=
min{k : |z (k)| > 1} fori € S. When k < K ;, we have

zi(k) =08 0i(k).
k=0

Denote K¢ ; := min{|6;(k)| > %, where [0;(k)| > % can be implied
by
w; a/2v/2logn a
BTN L W
for i € S conditioning on max; <<y ;| < (1 + £)y/2logn. According to Eq.[29 we have
1

Ko0 < (14 B)i

when £ > k® for some x(® > 0. Besides, it follows from the non-increasing property of
2;(0(k),~(k)) that we have

|0 (k) b

sign(6;(k)) = sign(w;)
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for any k once 6;(k) # 0. If this does not hold, then at some k, we have
Li(0(k),~(k)) > £:(0(0),7(0)),

which contradicts to the non-increasing property. This means 6;(k) = 0 or does not change the sign
once it becomes non-zero. Therefore, the |z;(k)| is non-decreasing and moreover, if K7 ; > Ko ;,
then for any k < K ;

Ko,i
(k) = 0B (| D 0i(k)+ > 0u(k) || =38 DY [0:(k)]
k=0 k=Ko ;+1 k=Ko,;+1
1 2)v/21
Za(k'—KOi)IB< +3a/2)y2logn.
’ 1+p
Therefore, we have
1
1+ % .

(K1, —Ko;) < <
(K, 04) (14 3a/2)/2logn

Since |z;(k)| is non-decreasing, then once it is greater than 1, we have z;(k) = ~;(k). Therefore,

we have (recall that we define A; (k) = ( zzgllz i 3 B %Ei)) > in Prop.

Aik) s (( w ) —Hdi(k)) ,

where d; (k) := < %EIZ% ) and H is defined in Prop. Denote 8; := ( %i ), then multiplying
K2

H on both sides, we have

Hdb(k + 1) —W; = (12 — KZ(SH)(Hdz(k') - (IJZ)

Since kd||H||2 < 1, then we have Is — k0H > 0 and that ||[Iz — k6H |2 < w 2 o<l
Denote err;(k) := || Hd;(k) — @;

2, we have
erri(k) < cFerr;(k).

Applying the same technique in proving Eq. , we have that efr;(K) < § for any x > x4 for
some (4 > 0, which is sufficient to obtain Eq. O

G RECONSTRUCTED NEURAL SIGNALS IN SEC. ??

We visualize the reconstructed signals in Fig.[6] Specifically, if we denote the SWT transformation
as g, then for the Wavelet Shrinkage that is shown in the left-hand image, we visualize the original
signal y (marked by blue), the reconstructed sparse signal g~*(6,) (marked by orange) and the noise
y — g~ (0y) (marked by yellow); for our SWDI that is shown in the right-hand image, we visualize
the original signal y (marked by blue), the reconstructed strong signal ¢~ '6° (marked by orange)
and the weak signal g~ 10— g~10° (marked by yellow), and the noise y — g~ !(#) (marked by purple).

As shown, the sparse signal of the Wavelet Shrinkage shows a large difference from the original
signal, especially at the peaks and valleys of oscillations. Therefore, it may miss a lot of information
that may be mainly accounted for by the weak signal and the bias due to the threshold parameter. In
contrast, the reconstructed strong signal by our SWDI can learn more information due to the ability
to remove bias. More importantly, we are pleasantly surprised to find that the reconstructed weak
signal shares a similar trend to the original signal. In this regard, it can well capture the pattern
encoded in the neural signal. This result suggests that the weak signal, which may refer to the non-
burst signal that can encode the conduct effect of the electric field, has a non-ignorable affection
on the formation of neural signals. Such an effect, together with the additional information learned
by the strong signal of SWDI over the sparse signal of the Wavelet Shrinkage, can well explain the
more significant medication response achieved by our method than the Wavelet Shrinkage.
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Figure 6: Visualization of reconstructed signals. Left: the original signal y (marked by blue), the
reconstructed sparse signal g~1(6,) (marked by orange) by the Wavelet Shrinkage and the noise
y — g (0,) (marked by yellow); besides the original signal, the right image presents the strong
signal g~1(#*) (marked by orange), the weak signal g~ 1(#) — g~ *(6*) (marked by yellow) learned
by SWDI, and the noise y — g~ *(#) (marked by purple).

H ELECTROENCEPHALOGRAPHY SIGNAL DENOISING

Data & Problem Description We extract one subject with 80 trials from Walters-Williams & Li|
(2011), which comprises a 32-channel Electroencephalography (EEG) signal recorded from a single
subject. We added Gaussian white noise to each channel with the signal-to-noise ratio set to 20.
We present the mean-squared error (MSE) for the signal reconstruction achieved by our method
compared to Wavelet Shrinkage.

Implementation Details. Similar to Sec. ??, we perform a 1-d stationary wavelet transform (SWT)
on EEG as the Symlet 8 with level 6. We follow |Donoho & Johnstone| (1995) to estimate o as
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& = Median(W,)/0.6745. For Wavelet shrinkage, we select A according to the minimax rule in
Donoho & Johnstone| (1994). For SWDI, we set £ = 20, § = 1/(k(1 + p)) with p = 0.1 and the

stopping time as t = (1 4+ 1/p) /5.

Results Analysis. Fig.[7] shows that our method, especially the dense parameter, can significantly
outperform the Wavelet Shrinkage and the sparse parameter, which suggests the importance of cap-
turing weak signals and the capability of our method in learning such weak signals. It’s worth men-
tioning that even when neglecting weak signals, the sparse parameter can still surpass the Wavelet
Shrinkage method, thanks to the reduced biases inherent in our methods, as asserted in Thm. @l

and[D.4]

Denoising on EEG signal

300 — Wavelet Shrinkage
— SWDI (6*%)

200~ — SWDI (8"
w
7]
=

100~

0 oo T T T
0 10 20 30

Channel/No.

Figure 7: MSE (Microvolts) of the sparse parameter of SWDI #°(#) (red), dense parameter 6(%)
(blue) and the Wavelet Shrinkage (black).
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