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Abstract
Cryo-electron microscopy (cryo-EM) is a pivotal
technique for elucidating protein structures, yet
particle picking remains a bottleneck due to in-
herent challenges such as specimen impurities,
sample preparation variability, and microscope pa-
rameter fluctuations. These factors result in micro-
graphs with diverse noise profiles, pixel character-
istics, and particle dimensions, posing significant
hurdles for conventional supervised methods that
struggle with generalization and necessitate labor-
intensive expert annotations. In this work we
present a self-supervised method that leverages a
Masked AutoEncoder’s representation space to se-
quentially denoise micrographs based on clusters
with different noise levels. Evaluation across 14
datasets demonstrates superior generalization ca-
pabilities compared to state-of-the-art supervised
methods, showcasing consistent performance in-
dependent of pre-training data. This underscores
self-supervised learning’s potential for advanc-
ing cryo-EM image analysis and enabling more
efficient structural biology research.

1. Introduction
Cryo-electron microscopy (cryo-EM) has revolutionized
the field of structural biology by enabling the visualization
of biological molecules at near-atomic resolution (Bai et al.,
2015). In cryo-EM, protein samples are rapidly frozen in a
thin layer of vitreous ice, preserving their native structures,
and then imaged in an electron microscope, producing
two-dimensional projection images called micrographs.
Each micrograph contains numerous randomly oriented
copies of the molecule of interest, the so-called particles
(Milne et al., 2013; Nogales & Scheres, 2015; Doerr,
2016). However, the analysis of cryo-EM data presents
several unique challenges that arise from the nature of
the technique and the biological samples being studied
(Bendory et al., 2020; Wu et al., 2021).

One of the most critical steps in cryo-EM data processing
is particle picking (Chung et al., 2022), which involves ac-
curately identifying and selecting individual particles from

noisy and heterogeneous micrographs. Particle picking
is complicated by several factors: (i) low signal-to-noise
ratio (SNR) images (Agard et al., 2014), resulting in high
noise levels (Baxter et al., 2009); (ii) heterogeneity in
particle appearance arising from differences in orientation,
conformational states, and complex samples imaged by
cryo-EM (Skalidis et al., 2022; Elferich et al., 2022);
and (iii) discrepancies in appearance and contrast due to
variations in data collection parameters.

We demonstrate that state-of-the-art approaches struggle
to generalize to unseen data and require costly annotations,
rendering them impractical for real-world applications with
limited data. In this work, we propose a self-supervised
Masked Auto-Encoder (MAE) method that denoises micro-
graphs using clustering on the MAE representation space,
while hierarchical clustering filters out micrograph-specific
noise in a sequential manner. Extensive evaluation on
14 datasets highlights the great generalization ability of
our method, reporting stable performance regardless of
pretrain data. In this way, our method is annotation-free
and independent of the pretrain data type.

The main contributions of this paper are summarized as
follows:

1. We introduce the first self-supervised method for parti-
cle picking in cryo-EM data that also does not require
any form of annotation.

2. Our method demonstrates stable generalization ca-
pabilities when applied to unseen data, outperforming
supervised methods. Highlighting the effectiveness of
our unsupervised approach in handling diverse cryo-
EM datasets.

3. We showcase the effectiveness of hierarchical denois-
ing in learning underlying structures and patterns from
noisy cryo-EM images.

2. Related work
Cryo-EM particle identification and picking are crucial steps
with various proposed approaches, spanning traditional com-
puter vision techniques and advanced machine/deep learning

1
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Figure 1. The pipeline starts with an input micrograph and follows these steps: (a) Pre-processing: the micrograph undergoes normalization
of background noise and is filtered to enhance particle contrast, (b) Micrograph representation: patches are extracted from the pre-
processed micrograph and used to map it onto the MAE representation space, (c) Denoising: the resulting embeddings form an image
where a k-means trained on the train set identifies pixels with the lowest noise levels. These images undergo further denoising through
micrograph-specific hierarchical clustering, (d) Post-processing: convolution-based smoothing is applied on the predictions of the particle
centres for greater accuracy.

pipelines. Traditional template-based methods (Scheres,
2012; 2015) rely on projections of the target particle,
introducing potential human bias through template selection.
Template-free approaches like Laplacian of Gaussian (LoG)
(Woolford et al., 2007b;a), Difference of Gaussians (DoG)
(Voss et al., 2009), and Blob picker (Punjani et al., 2017)
offer flexibility but often struggle with inherent variability
in cryo-EM data, leading to high false-positive rates.

Deep learning methods to date rely on supervised learn-
ing, mostly employing convolutional neural networks. They
address particle picking from three main perspectives: (i)
Binary classification of micrograph windows as containing
centered particles or not (DeepEM (Zhu et al., 2017), Topaz
(Bepler et al., 2019), Warp (Tegunov & Cramer, 2019),
DeepCryoPicker (Al-Azzawi et al., 2020)). (ii) Segmenta-
tion of micrographs into background and particle classes
(DeepPicker (Wang et al., 2016), Pixer (Zhang et al., 2019),
PARSED (Yao et al., 2020), DRPnet (Nguyen et al., 2021),
CryoSegNet (Gyawali et al., 2023)). (iii) Object detection
problem (crYOLO (Wagner et al., 2019), EPicker (Zhang
et al., 2022), CryoTransformer (Dhakal et al., 2024)).

3. Method
3.1. Micrograph preprocessing

Analyzing Cryo-EM micrographs necessitates capturing
intricate high-frequency details, that is however hindered

by fluctuating levels of high-frequency noise. To enhance
such information, a filtering process is vital. We employ
a normalization technique (Scheres, 2015) to standardize
the background noise to a zero-mean and unit standard
deviation noise by adjusting for noise variations according
to the particle diameter. This mitigates the influence of
experimental variables, enhancing micrograph analysis
consistency. Additionally, we apply a Weiner filter for de-
noising, Contrast Limited Adaptive Histogram Equalization
(CLAHE) for contrast enhancement, and guided filtering
using the CLAHE-enhanced image as reference (Dhakal
et al., 2024; Gyawali et al., 2023). This selectively smooths
the image while retaining structural details, balancing noise
reduction and information preservation. All images are
resized to 1024×1024.

3.2. Representation learning

Self-Supervised methods like Contrastive Learning (Chen
et al., 2020), Self-Distillation (Caron et al., 2021) and
Canonical Correlation (Zbontar et al., 2021) rely on data
augmentations that preserve semantic content. However,
common augmentations like Gaussian blur may not
maintain the semantics of micrographs, posing a challenge
in designing effective augmentations. Conversely, we
speculate that learning to reconstruct random local patches
of a micrograph can yield representations that capture
particle-oriented local invariances, without resorting to
augmentations. Given this, we propose using Masked
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Autoencoders (MAEs) (He et al., 2022), which have demon-
strated the ability to learn representations that encompass a
broad spectrum of semantics relevant to downstream tasks,
for representation learning on micrographs.

An ideal encoder should be invariant across noise levels.
When clustering the representation space, distinct clusters
should emerge corresponding to different noise levels
and distances from particle centers. We employ k-means
with four clusters on the training set, then we identify the
particle cluster by reference annotations from just one
micrograph. The cluster that has the higher population
of particle annotations is considered to be the cluster that
represents the lowest noise levels.

3.3. Inference

Given an unseen micrograph, the inference process is
performed in two stages (i) denoising based on the learned
representation space and (ii) smoothing and filtering of
predictions.

Various noise levels in micrographs complicate accurate
particle prediction. To address this, we adopt a two-stage
approach during inference. First, we tackle common
high-frequency noise across micrographs by denoising
the input using four clusters derived from the training set.
Then, to address differing noise levels in micrographs, we
train micrograph-specific clusters hierarchically, enabling
sequential denoising of different noise levels. Hierarchical
clustering is performed on three levels based on 3, 4, and
5 clusters respectively.

The denoised image undergoes post-processing to extract
the final predictions. First, convolution with a 3x3 kernel
is applied to smooth the predictions, while bilinear
interpolation restores the image to an appropriate resolution
(512x512) for particle picking. Subsequently, a threshold
is applied to the smoothed predictions to generate segmen-
tation masks. Predicted segmentation masks are computed
using various thresholds within [0, 1] range. The optimal
threshold is determined by ensuring the resulting mask
aligns with the statistical properties of the training data,
specifically that particles occupy approximately 4% of the
micrograph. Finally, further post-processing is performed
to filter out (i) neighbouring predictions based on particle
diameter (ii) filter predictions who are at the edges of the
micrograph, and (iii) filter predictions whose size exceeds
by a threshold the expected particle size.

4. Experimental evaluation
In this section, we compare our method with Topaz and
crYOLO for particle picking, using a part of the CryoPPP
dataset for training and evaluation (Dhakal et al., 2023).

4.1. Experimental set up

We compare our method to Topaz and crYOLO (Bepler
et al., 2019; Wagner et al., 2019), the most widely used
deep learning tools for particle picking in Single Particle
Analysis (SPA) of cryo-EM micrographs, representing
two distinct approaches: Topaz as an image classification
model and crYOLO as an object detection model. Both
utilize convolutional neural networks to learn features from
cryo-EM micrographs.

All three methods were trained from scratch using four
diverse EMPIAR datasets (10291, 10077, 10590, 10816)
provided by CryoPPP (Dhakal et al., 2023), containing
proteins of different diameters (160-250Å), types and
functions. Evaluation was performed on the test sets of
these four datasets and an additional set of 10 EMPIAR
datasets (10028, 10081, 10096, 10240, 10406, 10289,
10737, 10059, 11183, 10017) annotated by CryoPPP, with
particle diameters ranging from 100-300Å. Each training
dataset consists of 300 micrographs, randomly divided into
60% training, 20% validation, 20% testing. The 14 datasets
represent wide variance in protein characteristics, noise
levels and micrograph concentrations.

Particle picking can be perceived as an object detection
problem, therefore we use the following common evaluation
metrics in the literature (Wagner et al., 2019; Xu et al.,
2024): (i) Intersection over Union (IoU) between annotated
and predicted particles, using the particle diameter as the
box size, (ii) recall, precision, and F1 score where true
positives (TP) are only counted for predicted particles that
uniquely overlap with ground truth particles by more than
60% of their surface area, while all other predicted particles
are classified as false positives (FP).

Micrographs used for training all three methods underwent
identical preprocessing steps as discussed in Section 3.1
ensuring a fair comparison across the methodologies. For
the training of Topaz, we employed the default ResNet8
model with the default training parameters, running for
400 epochs. The epoch yielding the highest area under the
precision-recall curve on the validation set was selected.
Micrographs were resized according to (Bepler et al.,
2019). For the training of the crYOLO, micrographs were
resized to the recommended resolution of 1024x1024, with
anchor the particle size in each dataset relative to resolution.
The number of epochs and the final model checkpoint is
adjusted in the code based on validation loss during training.
Our method was trained for 400 epochs.

4.2. Experimental results

Our main results include training on 4 datasets and
evaluation on 14 datasets (Figure 2).

Comparison under supervised setup. When trained and
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Figure 2. Bar plots depict the comparative performance of Topaz, crYOLO, and our method across four key metrics (IoU, Recall, Precision,
F1), trained on distinct datasets (10291, 10077, 10590, 10816), distinguished by colour. Evaluation is conducted on 14 datasets, illustrated
on the horizontal axis.

evaluated on the same datasets (10291, 10077, 10590,
10816), our method outperforms Topaz in F1 metric and
closely matches crYOLO in 3 out of 4 cases, except dataset
10291. However, both supervised methods surpass ours in
the IoU metric. Therefore, in the supervised setting, while
our method is comparable in identifying particles, it under-
performs in predicting precisely the center of the particles.

Generalization ability. The results in Figure 2 suggest
that supervised methods struggle to generalize to unseen
data, often exhibiting exceptionally low performance across
metrics like F1 score, IoU, precision, or recall.

In contrast, our method demonstrates notable cross-dataset
generalization capabilities, with nearly stable performance
across various evaluation datasets, regardless of the training
data. This suggests our method effectively mitigates the
impact of dataset-specific noise levels and micrograph

characteristics. These findings imply our method can
learn the necessary invariances irrespective of the inherent
experimental nuances in cryo-EM procedures.

5. Conclusion
We have introduced the first self-supervised approach for
particle picking in cryo-EM micrographs. Our method
leverages hierarchical denoising to effectively filter out
different levels and types of noise present in the data. As
demonstrated by our extensive experimental evaluation,
our method exhibits robust generalization capabilities
when applied to unseen datasets, outperforming supervised
methods by a substantial margin. Our work alleviates the
need for costly expert annotations, a significant bottleneck
in cryo-EM data analysis, thus enabling more accessible
and automated solutions in this domain.
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