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ABSTRACT

The Abstraction and Reasoning Corpus (ARC) is a popular benchmark focused
on visual reasoning in the evaluation of Artificial Intelligence systems. In its orig-
inal framing, an ARC task requires solving a program synthesis problem over
small 2D images using a few input-output training pairs. In this work, we adopt
the recently popular data-driven approach to the ARC and ask whether a Vision
Transformer (ViT) can learn the implicit mapping, from input image to output
image, that underlies the task. We show that a ViT—otherwise a state-of-the-art
model for images—fails dramatically on most ARC tasks even when trained on
one million examples per task. This points to an inherent representational defi-
ciency of the ViT architecture that makes it incapable of uncovering the simple
structured mappings underlying the ARC tasks. Building on these insights, we
propose VITARC, a ViT-style architecture that unlocks some of the visual reason-
ing capabilities required by the ARC. Specifically, we use a pixel-level input rep-
resentation, design a spatially-aware tokenization scheme, and introduce a novel
object-based positional encoding that leverages automatic segmentation, among
other enhancements. Our task-specific VITARC models achieve a test solve rate
close to 100% on more than half of the 400 public ARC tasks strictly through su-
pervised learning from input-output grids. This calls attention to the importance
of imbuing the powerful (Vision) Transformer with the correct inductive biases for
abstract visual reasoning that are critical even when the training data is plentiful
and the mapping is noise-free. Hence, VITARC provides a strong foundation for
future research in visual reasoning using transformer-based architectures.

1 INTRODUCTION

Developing systems that are capable of performing abstract reasoning has been a long-standing
challenge in Artificial Intelligence (AI). Abstract Visual Reasoning (AVR) tasks require AI models
to discern patterns and underlying rules within visual content, offering a rigorous test for evalu-
ating AI systems. Unlike other visual reasoning benchmarks such as Visual Question Answering
(VQA) (Antol et al., 2015) and Visual Commonsense Reasoning (VCR) (Kahou et al., 2018) that
rely on natural language inputs or knowledge of real-world physical properties, AVR tasks do not
include any text or background knowledge. Instead, they focus purely on visual abstraction and
pattern recognition (Małkiński & Mańdziuk, 2023). One prominent example of AVR is the Abstrac-
tion and Reasoning Corpus (ARC) (Chollet, 2019), which is designed to evaluate an AI’s capacity
for generalization in abstract reasoning. Each ARC task involves transforming input grids into out-
put grids by identifying a hidden mapping often requiring significant reasoning beyond mere pattern
matching (cf. Figure 2). While the ARC’s original setting is one of few-shot learning, there has been
recent interest in studying the ARC in a data-rich setting where task-specific input-output samples
can be generated (Hodel, 2024), allowing for the evaluation of deep learning-based solutions.

In this paper, we explore the potential of vision transformers to solve ARC tasks using supervised
learning. We assess how well transformers can learn complex mappings for a single task when pro-
vided with sufficient training data. Our exploration highlights fundamental representational limita-
tions of vision transformers on the ARC, leading to three high-level findings that we believe provide
a strong foundation for future research in visual reasoning using transformer-based architectures:
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Figure 1: Overview of our ViTARC framework contribution. An ARC input image is first to-
kenized into pixels and padded with visual tokens including end-of-grid tokens that mark the end
of the image grid, newline tokens that indicate the end of one row, and pad tokens which are used
to pad the image into a fixed maximum size (not drawn in full to maintain clarity). 2D Positional
Encodings and Object Positional Encodings are then added to each token before being passed into
the transformer. The output tokens are reconstructed into a valid two-dimensional grid.

1. A vanilla Vision Transformer (ViT) fails on the ARC: Despite the ARC grids’ relatively simple
structure compared to the much larger, noisier natural images they are typically evaluated on, a
vanilla ViT performs extremely poorly on 90% of the tasks with an overall test accuracy of
18% (cf. Figure 3, Section 3). This is despite using a training set of one million examples per task.
Following a failure analysis, we hypothesize that the vanilla ViT fails because it cannot accurately
model spatial relationships between the objects in an ARC grid and the grid boundaries.

2. A 2D visual representation significantly boosts ViT reasoning performance: Using a 2D
representation strategy based on visual tokens to represent the ARC input-output pairs, VITARC
solves 66% of all test instances – a marked improvement (cf. Section 4). About 10% of the
tasks remain poorly solved. After further failure analysis on these tasks, we discover that certain
complex visual structures are difficult for VITARC. We hypothesize this is due to limitations
of the transformer architecture itself in that it is designed to prioritize token embeddings over
positional encodings that can make it challenging to capture intricate spatial relationships.

3. Positional Information further enhances ViT reasoning abilities: We improved VITARC’s
spatial awareness by learning to combine absolute, relative, and object positional information (cf.
Section 5), resulting in substantial performance boosts, with some ARC tasks progressing from
unsolved to fully solved (Figure 3). The final test accuracy is 75%, with more than half of the
tasks being solved to an accuracy of 95% or more.

Task B: 49d1d64f Task C: f25fbde4Task A: 6e02f1e3

Figure 2: Three example ARC tasks. For each task, the first columns contain example input-output
pairs from the “training” instances, and the last column contains the “test” instance. The goal is to
use the training instances to solve the test instance. The Vanilla ViT setup (Section 3) was only able
to solve Task A1. Our ViTARC-VT (Section 4) was able to solve Task A and B but still failed at
Task C. Our final model ViTARC (Section 5) achieves near 100% accuracy on all three tasks.
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Figure 3: Model performances on 400 ARC tasks. Three models are shown: ViT-Vanilla (red) rep-
resents the vanilla vision transformer setup (cf. Section 3); ViTARC-VT (light green) and ViTARC
(dark green) represent the variants of our framework introduced in Sections 4 and 5, respectively.
(Left) Distribution of Solve Rates: The horizontal axis shows the solve rate (percentage of test in-
stances that are solved correctly) on 1000 test instances per task. The vertical axis displays the
number of tasks at each solve rate level. (Right) Distribution Statistics: The stars and corresponding
values are the overall solve rates across all test instances from all tasks. VITARC-VT and VITARC
show significant improvement in performance over the vanilla ViT.

2 RELATED WORK

Abstract Visual Reasoning (AVR) is an emerging field that seeks to measure machine “intelli-
gence” (Małkiński & Mańdziuk, 2023). Unlike many popular studies that focus on visual reasoning
with multi-modal input (Antol et al., 2015; Johnson et al., 2017; Zellers et al., 2019; Bakhtin et al.,
2019; Li et al., 2024), AVR focuses on reasoning tasks where the inputs are strictly images. The
goal of AVR tasks is to discover abstract visual concepts and apply them to new settings. While
the ARC is a generation task using abstract rules, other AVR tasks include classification tasks with
explicit rules, such as the Raven’s Progressive Matrices (Raven, 2003) and Odd-One-Out (Gard-
ner & Richards, 2006). We refer the readers to Małkiński & Mańdziuk (2023) for a more detailed
introduction to AVR.

Vision Transformers & Positional Encoding. A Transformer architecture is based on the atten-
tion mechanism (Vaswani et al., 2017). Following successes in natural language processing (Brown
et al., 2020; Achiam et al., 2023; Devlin et al., 2019), recent studies have extended the Transformer
to the vision domain (Han et al., 2023). State-of-the-art approaches involve dividing the image into
rectangular “patches”(Dosovitskiy et al., 2021), where various techniques such as dynamic patch
sizes allow for more effective capture of local information (Havtorn et al., 2023; Zhou & Zhu,
2023). Vision Transformers have been successfully used to perform various image-to-image gener-
ation tasks such as inpainting (Li et al., 2022), image restoration (Liang et al., 2021), colorization
(Kumar et al.), and denoising (Wang et al., 2022).

Due to the set-based (permutation-invariant) nature of attention, Positional Encodings are used to
inject positional information in a Transformer (Vaswani et al., 2017). State-of-the-art Positional
Encodings include Absolute Positional Encodings (APEs) where unique encodings are added to the
inputs directly (Devlin et al., 2019), Additive Relative Positional Encodings (RPEs) (Shaw et al.,

1Task A follows a rule based on color count: if the input grid has two distinct colors, the output contains
a grey diagonal from the top-left to the bottom-right. Conversely, if the input grid has three colors, the grey
diagonal is from the top-right to the bottom-left.
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2018; Raffel et al., 2020; Li et al.) that measure the relative positions between tokens by modifying
the attention logits, and various hybrid methods (Su et al., 2024; Zhou et al., 2024). Vision Trans-
former research has adapted these concepts, implementing both APEs (Dosovitskiy et al., 2021) and
RPEs (Wu et al., 2021) to incorporate positional information about the image patches.

Solvers for the ARC. Since the introduction of the ARC (Chollet, 2019), the development of
solvers has been an active research area. The earliest successful approaches consisted of an ex-
pressive Domain Specific Language (DSL) and a program synthesis algorithm that searched for a
valid solution program expressed in the DSL. These include DAG-based search (Wind, 2020), graph-
based constraint-guided search (Xu et al., 2023), grammatical evolution (Fischer et al., 2020), library
learning (Alford et al., 2021), compositional imagination (Assouel et al., 2022), inductive logic pro-
gramming (Hocquette & Cropper, 2024), decision transformers (Park et al., 2023), generalized plan-
ning (Lei et al., 2024), reinforcement learning (Lee et al., 2024), and several others (Ainooson et al.,
2023; Ferré, 2021). These models achieved up to 30% on the private ARC test set (Chollet et al.,
2020; Lab42, 2023).

Recently, Transformer-based Large Language Models (LLMs) were shown to exhibit an apparent
ability to perform “reasoning” (Wei et al., 2022) spurring interest in using LLMs as part of an ARC
solver. Such methods were prompted to perform program synthesis on a DSL (Min Tan & Motani,
2024; Barke et al., 2024) as well as general-purpose languages such as Python (Butt et al., 2024;
Wang et al., 2024), with the best-performing model achieving 42% on the public ARC evaluation
set (Greenblatt, 2024). LLMs were also explored as standalone solvers, where they were asked
to produce the output grids directly instead of outputting a program. Although pre-trained LLMs
proved ineffective when generating the output grid pixels directly (Camposampiero et al., 2023;
Mirchandani et al., 2023; Moskvichev et al., 2023), its performance was shown to be improved by
object representation (Xu et al., 2024). The vision variant of a state-of-the-art LLM, GPT-4V was
shown to be ineffective (Mitchell et al., 2023; Xu et al., 2024).

The current state-of-the-art solver has achieved 46% on the private test set at the time of writing (ar-
cprize, 2024) but is not publicly available or described in detail. We do know that it is a pre-trained
LLM that is fine-tuned on millions of synthetic ARC tasks generated using the RE-ARC gener-
ator (Hodel, 2024) and combined with test-time fine-tuning (Cole & Osman, 2023). Despite the
visual nature of ARC tasks, Transformer-based LLM approaches convert the images into strings,
which does not fully capture all relevant structural information (Xu et al., 2024).

3 VANILLA VISION TRANSFORMER FOR THE ARC: AN INITIAL APPROACH

We first implement a vanilla Vision Transformer architecture as detailed in Dosovitskiy et al. (2021)
and Touvron et al. (2021) as a solver for the ARC. Consider an input image I divided into P × P
non-overlapping patches. Each patch pi is flattened in raster order and indexed by i before being
projected into a d-dimensional embedding space. Let h0

i denote the initial input to the Transformer
for patch pi. For the n-th Transformer layer, n ∈ {1, . . . , N}, and for a single attention head, the
following operations are performed:

h0
i = Epi

+Eposi (1)

ĥn
i = LayerNorm(hn−1

i ) (2)

qni , k
n
i , v

n
i = ĥn

i W
n
q , ĥn

i W
n
k , ĥn

i W
n
v (3)

An
i,j =

qni · knj√
d

(4)

oni =
∑
j

Softmax(An
i,j)v

n
j + hn−1

i (5)

fn
i = FeedForward(LayerNorm(oni )) + oni (6)
hn
i = LayerNorm(fn

i ) (7)

Here, Epi
is the embedding of patch pi and Eposi is the positional encoding. Following the stan-

dard ViT implementation of Dosovitskiy et al. (2021), the Absolute Positional Encoding (APE) is
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calculated as a learnable 1D encoding:

Eposi = Wi, Eposi ∈ Rd, W ∈ RL×d

where W is a learned matrix assigning a d-dimensional vector to each of the possible L positions;
L is the maximum input length.

As seen in Figure 2, ARC tasks are generative and require mapping an input image to an output
image. Because image dimensions may vary across instances of the same task and even between
the input and output grids of the same instance, any model that generates candidate solutions to an
ARC input must be able to “reason” at the pixel level. We adapt the ViT architecture to this setting
by making the following key modifications:

– We introduce a decoder with cross-attention using the same positional encoding and attention
mechanisms of the encoder. After the final decoder layer N , the output embedding hN

i of
patch i is projected linearly and a softmax function is applied to predict pixel-wise values ŷi
as ŷi = Softmax(Linear(hN

i )). The cross-entropy loss is computed as the sum over pixels,
−
∑

i yi log(ŷi).

– To achieve the required pixel-level precision for the ARC task, we employ a patch size of 1 × 1,
effectively treating each pixel as an independent input token.

– To handle variable-sized grids, the flattened list of tokens is padded to a fixed maximum length.
This configuration enables the model to process and generate ARC task outputs pixel-by-pixel.

3.1 EXPERIMENTS

Data. To evaluate ViT’s reasoning capabilities comprehensively, we treat each of the 400 public
training ARC tasks as an individual AVR problem. We generate a dataset of 1 million input-output
pairs per task using the RE-ARC generator (Hodel, 2024) and train all of our models (the vanilla
ViT and VITARC models) in a supervised manner from scratch.

Hyperparameters and training protocol. The ViT baseline consists of three layers with eight
attention heads and a hidden dimension of 128. We trained the model on various single-core GPU
nodes, including P100, V100, and T4, using a batch size of 8 for one epoch. We chose to train for one
epoch because most models showed signs of convergence within the epoch. Due to computational
resource limitations, we evaluated our major milestone models on the full set of 400 tasks. However,
for the ablation studies hereafter, we used a randomly sampled subset of 100 tasks. For more details
on the training process, please refer to Appendix B. Our code is available in the supplementary
materials and will be open-sourced upon publication.

Evaluation metric. We evaluate the model primarily on the percentage of solved instances, using
a strict criterion: an instance is considered solved only if all generated pixels, including padding
and border tokens, exactly match the ground truth. This approach is stricter than the original ARC
metric which permits up to three candidate solutions.

Results. Figure 3 shows that the vanilla ViT performs poorly: a significant percentage of tasks
have a near 0% solve rate despite the million training examples per task. This points to fundamental
limitations of the ViT architecture that inhibit abstract visual reasoning. In the following sections,
we analyze failure cases and investigate methods for enhancing the visual reasoning ability of ViT.

4 VISUAL TOKENS: A BETTER REPRESENTATION FOR VIT

The basic version of our VITARC framework builds on the vanilla ViT but includes three simple yet
highly effective changes to the representation of the ARC grids. We refer to these changes as visual
tokens to emphasize a departure from the language-based tokenization perspective in the particular
setting of the ARC.

5
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Input Outputs

ViT-Vanilla ViTARC-VTExpected

20 Tokens 20 Tokens19 Tokens

Figure 4: Visualization of ViT-Vanilla failure case (Task
B from fig. 2). The output of ViT-Vanilla has an incorrect
number of tokens (19) compared to the expected 20. For
better visualization, the output pixels are arranged to match
the grid, although the model generates the pixels in a contin-
uous sequence in raster order. This makes the task a relaxed
output prediction for ViT-Vanilla, where the flattened output
sequence is compared with the expected output sequence.

2D padding. We observed that a
large portion of the incorrect outputs
from the vanilla ViT had incorrect
grid sizes, a flagrant failure mode;
An example is visualized in Figure 4
(ViT-Vanilla). We hypothesize that
this is due to the vanilla ViT imple-
menting padding in a “1D” manner,
where <pad> tokens are applied to
the sequence after flattening, thus los-
ing the two-dimensional context. To
address this issue, we implemented
2D padding, where <pad> tokens
are applied to the image first before
being flattened in raster order into a
sequence for transformer processing
(see Figure 1).

However, this design introduces a
new drawback: the model must now
predict <pad> tokens as part of the
output grid. In initial experiments, we observed that the model tends to ignore these <pad> tokens
(that do not receive attention), erroneously predicting over the entire hmax × wmax grid rather than
focusing on the valid input region. An example of this issue is shown in Figure 8 of Appendix A. To
address this, we define <2d pad> tokens and enable attention to these tokens, allowing the model
to properly account for the padded regions as well as the valid output region.

Border tokens for spatial awareness. The implementation of 2D padding did not completely al-
leviate the previously observed failure cases. We further observed that for some tasks, when the
output is cropped to the true grid dimensions, the predictions within the valid region are correct,
underscoring the importance of proper boundary handling. We show an example in Figure 8 of Ap-
pendix A. Inspired by the use of end-of-sequence (EOS) tokens like </s> in Natural Language
Processing (NLP), we introduce border tokens to explicitly define the grid boundaries (cf. Figure 1):

– Newline tokens (<2d nl>) mark row transitions in the hmax × wmax grid.

– End-of-grid tokens (<2d endxgrid>, <2d endygrid>, and <2d endxygrid>) delin-
eate the true h× w grid boundaries.

The introduction of border tokens enables the model to more effectively distinguish the task grid
from the padding. Without these tokens, the model would need to count tokens to determine bound-
aries, which becomes unreliable—especially in ARC tasks with dynamically defined output grid
sizes (e.g., task C in Figure 2). Furthermore, as we see in ViT-Vanilla failure cases (Figure 4), it
is ambiguous to recover the 2D positions from a 1D sequence of predicted tokens alone. Border
tokens also provide a fixed 2D template to fill in, which implicitly helps reconstruct the correct 2D
positions and makes it easier to debug the related grid logic.

2D Absolute Positional Encoding. With the introduction of 2D padding and border tokens, our
setup now operates on fixed-size, two-dimensional input-output pairs that are aligned with a univer-
sal (x, y) coordinate system. This allows us to adopt existing positional encoding (PE) strategies
from the literature (see Section 2). After empirical analysis, we implement a (non-learned) 2D
sinusoidal APE for VITARC, which is defined as follows:

Sinusoid(p) =
[
sin

(
p

100002k/d

)
cos

(
p

100002k/d

)] , k = 0, . . . , d/2, (8)

Epos(x,y)
= concat (sinusoid(x), sinusoid(y)) , (9)

where p represents either the x or y coordinate, k is the index of the positional encoding dimension,
and d is the total embedding dimension.
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Figure 5: Improvement in percentage of solved test instances per task. (a) From ViT-Vanilla
to ViTARC-VT: We observe that over 85% of tasks benefit from the introduction of 2D Visual
Tokens, showing consistent gains compared to the vanilla ViT. (b) From ViTARC-VT to ViTARC:
We observe that more than half of all tasks show further improvement. Improvement from ViT-
Vanilla to ViTARC is shown in Figure 9 in Appendix C.1 where a 57.36% average improvement is
observed.

4.1 RESULTS

Figure 3 shows substantial improvements in test accuracy due to the 2D visual tokens just de-
scribed. Figure 5(a) illustrates the improvement in the percentage of solved instances for each task.
We observe an average performance boost of 48.34% compared to the baseline ViT across the 400
tasks. This model, referred to as ViTARC-VT, demonstrates that the new representation with 2D
visual tokens significantly enhances the model’s ability to handle AVR tasks.

A key driver of this improvement is the use of 2D padding, which creates a fixed schema for 2D
positions. This ensures consistent spatial alignment and effectively addresses the challenge of ap-
plying 2DAPE to variable-sized grids, where unknown output positions during inference complicate
accurate mapping.

To quantify the contribution of border tokens, we performed an ablation study. As seen in Figure 7,
the absence of border tokens leads to a 4.59% decrease in accuracy, emphasizing their importance
in helping the model delineate task grid boundaries and maintain spatial consistency in the input
representation. For more detailed numerical results, refer to Table 6 in Appendix C.2.

4.2 ANALYSIS

While ViTARC-VT delivers strong results—approximately 40% of ARC tasks achieved over 90%
solved test instances—there remain certain tasks where the model struggles. Specifically, around
10% of ARC tasks have less than 5% of test instances solved, even after training on a large dataset
containing one million examples per task. Closer examination reveals that tasks involving complex
visual structures, such as concave shapes, holes, or subgrids, are consistently problematic. These
challenges highlight certain architectural limitations, particularly the model’s difficulty in segment-
ing multi-colored objects, where positional information should ideally play a more dominant role.

7
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Figure 6: VITARC-VT failure analysis for ARC task (#1cf80156). Cross-attention heatmap
across all attention heads in the final layer at the step predicting the color-3 pixel within the dark
blue box. The task requires finding the maximum rectangular subgrid in the input. The attention,
visualized in a thermal heatmap, shows that none of the heads successfully distinguish the subgrid
(orange bounding box) from its surroundings that motivates the PEMixer and OPE, nor do they
differentiate the color-3 pixel inside the cyan box (within the subgrid) from the pixel in the yellow
box (outside the subgrid) that motivates the 2D-RPE directional bias.

To better understand this behavior, we refer back to Equation (1): h0
i = Epi

+ Eposi . In this
setup, the absolute positional encoding, Eposi , is directly added to the input embedding, Epi

, so
that it adjusts the token’s representation without overwhelming its semantic content. This works
effectively in NLP tasks, where the semantic meaning of tokens generally takes precedence over
their position. However, in vision tasks, especially those requiring detailed visual reasoning, spatial
relationships often carry as much importance as, if not more than, the content of the tokens. For
tasks in the ARC that involve complex multi-colored objects, such as subgrids, accurately encoding
positional information becomes crucial. Figure 6 illustrates a specific case where the model fails
to group pixels within a multi-colored subgrid correctly. The cross-attention map reveals that the
model overly relies on color similarity, resulting in confusion between similarly colored pixels in
different positions. This indicates a lack of sufficient attention to spatial relationships, which is
essential for such tasks and guides us to develop further enhancements in the next section.

5 RECENTERING POSITIONS & OBJECTS FOR SPATIAL REASONING IN VIT

Our observations on the failure cases of ViTARC-VT lead us to implement further enhancements
to tackle tasks with complex visual structures by better encapsulating the positional information of
pixels and objects.

Positional Encoding Mixer (PEmixer). To better balance the importance of positional informa-
tion and tokens, we modify Equation (1) by learning weight vectors for the encodings, i.e.,

h0
i = α⊙Epi

+ β ⊙Eposi , (10)

where α and β are learnable vectors of the same dimension as the encoding vectors, and ⊙ denotes
element-wise multiplication. This effectively allows the model to learn the optimal balance between
input tokens and positional encoding.

Furthermore, our implementation of 2D APE as described in Section 4, where Epos(x,y)
is the con-

catenation of Eposx and Eposy , allows the vector-based mixing coefficients to focus on specific coor-
dinates, which further improves the model’s reasoning capability over specific pixels.

8
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2D Relative Positional Encoding (2D-RPE). Motivated by the example in Figure 6, we aim to
enable the model to distinguish between pixels in different spatial regions, such as the color-3 (green)
pixel in the cyan box versus the one in the yellow box. In this example, the positional difference
between the two pixels is just 1 along the y-coordinate. APE encodes this difference as a small shift;
while the transformer is theoretically capable of capturing these spatial relationships, in practice
often requires many training epochs (Hahn, 2020).

To better account for spatial relationships in two-dimensional grids, we adapt the Relative Positional
Encoding (RPE) approach from ALiBi (Press et al., 2021) and extend it to 2D. ALiBi introduces
additive positional biases to the attention scores based on the relative positions of tokens. In its
original 1D form, ALiBi defines the positional bias as the following:

An
i,j =

qni · knj√
d

+BPi,j , BPi,j = r · |i− j|, (11)

where Pi,j represents the relative positional offset between tokens i and j, and r is a predefined
slope that penalizes tokens based on their distance.

Extending to 2D, we introduce distinct slopes for the “left” and “right” directions, efficiently cap-
turing directional biases along the x and y axes. This design leverages the inherent 2D structure of
the data while aligning with the sequential raster order of the generation process. Specifically:

– Pixels located above or to the left of the current pixel in 2D space are assigned a bias rleft.
– Pixels located below or to the right are assigned a bias rright.

Hence, the 2D-RPE bias is computed as:

BPi,j
=

{
rleft · d ((xi, yi), (xj , yj)) , if j ≤ i,

rright · d ((xi, yi), (xj , yj)) , if j > i,
(12)

where d ((xi, yi), (xj , yj)) represents the 2D Manhattan distance between coordinates (xi, yi) and
(xj , yj). The slope values rleft and rright are derived following the ALiBi setup, forming a geometric
sequence of the form 2−8/n for n heads. rleft starts at 1/21, while rright starts at 1/20.5, both using
the same ratio.

In this work, we leverage both 2D-RPE and 2D sinusoidal APE within our model. In contrast
to observations made in Swin (Liu et al., 2021), where a degradation in performance was noted
when combining RPE with APE, our results demonstrate a marked improvement. The inclusion
of 2D-RPE allows for more precise modeling of relative spatial relationships, complementing the
global positional information provided by APE. This synergy proves particularly effective for tasks
demanding fine-grained spatial reasoning.

Object-based Positional Encoding (OPE). For tasks involving multi-colored objects, or more
generally, tasks that require objectness priors (Chollet, 2019), external sources of knowledge about
object abstractions can be integrated into the model. We inject this information through a novel
object-based positional encoding. We extend the 2D sinusoidal APE defined in Equation (9) by
introducing the object index o as an additional component to the pixel coordinates (x, y). This
results in a modified positional encoding:

Epos(o,x,y)
= concat (sinusoid(o), sinusoid(x), sinusoid(y)) . (13)

In object detection models, two primary segmentation methods are bounding box segmentation and
instance segmentation, the latter of which captures precise object boundaries. For simplicity, we
adopt bounding box segmentation to derive the object index o, as fine-grained distinctions at the
instance level can already be addressed by the model’s attention mechanism, as illustrated in Fig-
ure 6. Figure 1 demonstrates how bounding box information is obtained and incorporated into the
positional encoding.

This design integrates seamlessly with the PEmixer introduced earlier, as it enables the model to
dynamically adjust its reliance on the object index o based on the task’s needs. In scenarios where
the object index provides valuable abstraction, the model can prioritize it, while in cases where the
object-based method is less effective, the model can fall back on the (x, y) positional information.

9
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Figure 7: Distribution statistics of solve rates on 100 random tasks for ablation. 7 Models
are shown: ViT-Vanilla, ViTARC-VT, and ViTARC are the models introduced in Sections 3, 4
and 5 respectively. Ablated components are prefixed as − and ablate the full model to the left,
i.e., −BorderTokens is an ablation of this component from ViTARC-VT and each of −PEmixer,
−2D-RPE, and −OPE ablate these respective components from ViTARC.

For our experiments, OpenCV’s contour detection (Bradski, 2000) proved sufficient for generating
object indices in the ARC tasks, demonstrating the practical effectiveness of OPE. This novel ap-
proach not only addresses challenges related to complex object shapes but also establishes a method
for injecting external objectness knowledge into vision models, enhancing their reasoning capabili-
ties.

5.1 RESULTS

We arrive at our final model, ViTARC, which contains all the improvements mentioned in Section 4
and Section 5. The final encoding combines all three components: 2DAPE, 2DRPE, and OPE,
leveraging their complementary strengths to enhance spatial reasoning. As shown in Figure 3, the
model is a significant improvement over both the baseline ViT-Vanilla and ViTARC-VT due to the
proposed positional enhancements.

Furthermore, Figure 5(b) highlights the generalization of these improvements across tasks, with an
additional 9.02% increase in solved instances compared to ViTARC-VT. ViTARC-VT itself already
achieved a significant boost over ViT-Vanilla, culminating in a total improvement of 57.36% over
the baseline ViT-Vanilla.

Figure 7 further illustrates the impact of each enhancement on task performance. All three contribute
to the overall improvement, with 2D-RPE providing the largest gain, followed by PEmixer and OPE.
Notably, without 2D-RPE, the model’s performance drops below that of ViTARC-VT. This occurs
because OPE, while effective in specific tasks, is not consistently reliable. In these cases, ViTARC
must fall back on the (x, y) embeddings from 2D-APE, which are less expressive due to their lower
dimensionality compared to ViTARC-VT. The inclusion of 2D-RPE recovers these positional signals
at the attention level, ensuring robust performance even when object-based cues are insufficient.

For a comprehensive breakdown of the task-level performance and the numerical details of these
ablations, please refer to Appendix C.2.

6 CONCLUSION

This paper introduced VITARC, a Vision Transformer architecture designed to address the unique
challenges posed by the Abstraction and Reasoning Corpus. A key finding of our work is that po-
sitional information plays a critical role in visual reasoning tasks. While often overlooked when
adapting transformers from NLP to vision, our results demonstrate that even simple enhancements

10
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to positional encoding can significantly improve performance on ARC tasks. Furthermore, we show
that incorporating object indices as additional positional information via OPEs provides a meaning-
ful improvement in handling complex spatial relationships in ARC tasks.

Additionally, we introduced 2D padding and border tokens to handle variable-sized images requir-
ing high precision in visual reasoning. Given ARC’s pixel-level precision and abstract reasoning
requirements (e.g., 1x1 pixel tasks in ARC, but potentially n x n pixels in more generalized visual
reasoning), resizing or cropping—commonly used in standard vision tasks—is infeasible. VITARC
reveals limitations in current ViT structures under these conditions and suggests necessary adapta-
tions for such tasks.

Moreover, we believe that our insights into the importance of positional encodings for visual reason-
ing tasks have implications beyond ARC, particularly for applications such as physical reasoning in
vision generation tasks. In these contexts, accurate spatial relationships are equally critical, and our
findings provide a foundation for further exploration of how Vision Transformers can be adapted to
meet these challenges.

It is important to note that VITARC solves task-specific instances of ARC in a data-driven approach,
treating each ARC task independently. This method does not fully solve ARC, which requires the
ability to generalize across different tasks—a challenge that remains open for future research. How-
ever, since the current state-of-the-art (SOTA) in ARC relies on LLM-based transduction models
that handle tasks through supervised input-output transformations (arcprize, 2024), integrating the
2D inductive bias from ViTARC could provide an orthogonal benefit. This is especially relevant as
prior studies indicate that the sequential nature of 1D methods in LLMs can limit ARC performance;
for example, because the input grid is processed in raster order, LLMs experience a significant drop
in success rates when horizontal movement/filling tasks are rotated 90 degrees (Xu et al., 2024).

In summary, this work highlights the importance of 2D positional information and object-based en-
codings in abstract visual reasoning that leads to our novel contribution of the VITARC architecture.
VITARC advances the application of Vision Transformers for pixel-level reasoning and suggests
further avenues for improving generalization capabilities in models tackling visual reasoning tasks.

11
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Yoshua Bengio. Figureqa: An annotated figure dataset for visual reasoning. In 6th International
Conference on Learning Representations, Workshop Track Proceedings, 2018.

Manoj Kumar, Dirk Weissenborn, and Nal Kalchbrenner. Colorization transformer. In International
Conference on Learning Representations.

Lab42, Dec 2023. URL https://lab42.global/past-challenges/
2023-arcathon/.

13

https://lab42.global/community-model-efficiency/
https://lab42.global/community-model-efficiency/
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://lab42.global/past-challenges/2023-arcathon/
https://lab42.global/past-challenges/2023-arcathon/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hosung Lee, Sejin Kim, Seungpil Lee, Sanha Hwang, Jihwan Lee, Byung-Jun Lee, and Sundong
Kim. Arcle: The abstraction and reasoning corpus learning environment for reinforcement learn-
ing. arXiv preprint arXiv:2407.20806, 2024.

Chao Lei, Nir Lipovetzky, and Krista A Ehinger. Generalized planning for the abstraction and
reasoning corpus. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 20168–20175, 2024.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. In The Twelfth International Conference
on Learning Representations.

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. Mat: Mask-aware transformer for
large hole image inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 10758–10768, June 2022.

Xiaochuan Li, Baoyu Fan, Runze Zhang, Liang Jin, Di Wang, Zhenhua Guo, Yaqian Zhao, and Ren-
gang Li. Image content generation with causal reasoning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 13646–13654, 2024.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV) Workshops, pp. 1833–1844, October 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
G7UtIGQmjm.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 17683–17693, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

J S Wind. 1st place solution + code and official documentation. https://www.kaggle.
com/competitions/abstraction-and-reasoning-challenge/discussion/
154597, 2020.

Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and Hongyang Chao. Rethinking and improv-
ing relative position encoding for vision transformer. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 10033–10041, October 2021.

Yudong Xu, Elias B Khalil, and Scott Sanner. Graphs, constraints, and search for the abstraction and
reasoning corpus. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pp. 4115–4122, 2023.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias Boutros Khalil. LLMs and
the abstraction and reasoning corpus: Successes, failures, and the importance of object-based
representations. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=E8m8oySvPJ.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Qiqi Zhou and Yichen Zhu. Make a long image short: Adaptive token length for vision transformers.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
69–85. Springer, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou.
Transformers can achieve length generalization but not robustly. In ICLR 2024 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2024. URL https:
//openreview.net/forum?id=DWkWIh3vFJ.

15

https://aclanthology.org/N18-2074
https://api.semanticscholar.org/CorpusID:13756489
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://openreview.net/forum?id=E8m8oySvPJ
https://openreview.net/forum?id=DWkWIh3vFJ
https://openreview.net/forum?id=DWkWIh3vFJ


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A VANILLA VIT FAILURE ANALYSIS

Input

Expected Output Vanilla ViT Output

Figure 8: Failure case of ViT-Vanilla with NLP <pad> tokens. ViT-Vanilla with 2D padding and
NLP <pad> tokens fails to account for the actual inner grid size, filling the entire hmax×wmax space.
When the output is cropped to the true grid dimensions, the predictions within the valid region are
correct, underscoring the importance of proper boundary handling.

B TRAINING DETAILS

This section provides a comprehensive overview of the training setup, including hyperparameters,
hardware specifications, and other relevant details regarding the training process.

Our model consists of 3 layers with 8 attention heads and a hidden dimension of 128. The model
was trained on various single-core GPU nodes, including P100, V100, and T4, with a batch size of
8 for 1 epoch. The typical training time per task ranges from 6 to 10 hours (wall clock).

The dataset was generated using Hodel’s generators (Hodel, 2024), producing 1 million samples,
which were then split into training, validation, and test sets with 998,000, 1,000, and 1,000 in-
stances, respectively. The generation time varies between 3 and 12 hours, depending on the task.
A fixed random seed (1230) was used for both dataset generation and model training to ensure
reproducibility.

Due to computational resource constraints, the ablation study was performed on a randomly sampled
subset of 100 tasks from the total 400, also selected using seed 1230.

C FULL RESULTS FOR TASK-SPECIFIC ACCURACIES

C.1 MAIN MODELS ON FULL 400 TASKS

Table 1: Solved Test Instances (%) Across Models on all 400 tasks.

Model Solved Test Instances (%)
Mean Med. 25th Pctl. 75th Pctl.

Baseline (ViT-Vanilla) 17.68 3.20 0.10 22.85
ViTARC-VT 66.03 87.85 27.55 99.30
ViTARC (Full Model) 75.04 95.10 58.07 99.80
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Table 2: Model accuracies across tasks (100/400)
Task ViT ViTARC ViTARC Task ViT ViTARC ViTARC

-Vanilla -VT -Vanilla -VT

ce22a75a 0.00 0.94 1.00 444801d8 0.00 0.98 1.00
1f876c06 0.00 0.99 1.00 b27ca6d3 0.00 0.99 1.00
68b16354 0.00 0.99 1.00 2c608aff 0.00 1.00 1.00
d037b0a7 0.00 1.00 1.00 0ca9ddb6 0.00 1.00 1.00
543a7ed5 0.00 1.00 1.00 952a094c 0.00 1.00 1.00
af902bf9 0.00 1.00 1.00 49d1d64f 0.00 1.00 1.00
0962bcdd 0.00 1.00 1.00 d364b489 0.00 1.00 1.00
b60334d2 0.00 1.00 1.00 a9f96cdd 0.00 1.00 1.00
95990924 0.00 1.00 1.00 54d82841 0.00 0.80 0.99
25d487eb 0.00 0.95 0.99 5c0a986e 0.00 0.96 0.99
d687bc17 0.00 0.97 0.99 363442ee 0.00 0.98 0.99
6cdd2623 0.00 0.98 0.99 db93a21d 0.00 0.93 0.97
5168d44c 0.00 0.94 0.97 3befdf3e 0.00 0.97 0.97
22233c11 0.00 0.97 0.97 67a3c6ac 0.00 1.00 0.97
ae3edfdc 0.00 0.72 0.96 ded97339 0.00 0.92 0.96
a2fd1cf0 0.00 0.95 0.96 d4a91cb9 0.00 0.98 0.96
d4f3cd78 0.00 0.99 0.96 6cf79266 0.00 0.96 0.95
e98196ab 0.00 0.99 0.95 56ff96f3 0.00 0.90 0.94
694f12f3 0.00 0.91 0.94 93b581b8 0.00 0.99 0.94
39e1d7f9 0.00 0.42 0.93 8403a5d5 0.00 1.00 0.93
ecdecbb3 0.00 0.76 0.92 31aa019c 0.00 0.82 0.90
ec883f72 0.00 0.87 0.90 36fdfd69 0.00 0.75 0.89
b7249182 0.00 0.74 0.88 e9614598 0.00 0.86 0.88
e76a88a6 0.00 0.00 0.87 3ac3eb23 0.00 0.71 0.87
a64e4611 0.00 0.98 0.87 50846271 0.00 0.84 0.86
928ad970 0.00 0.97 0.86 40853293 0.00 0.99 0.86
6ecd11f4 0.00 0.00 0.84 b527c5c6 0.00 0.66 0.84
1e0a9b12 0.00 0.69 0.84 7ddcd7ec 0.00 0.75 0.84
2013d3e2 0.00 0.95 0.84 e50d258f 0.00 0.70 0.83
1caeab9d 0.00 0.42 0.82 5ad4f10b 0.00 0.62 0.82
98cf29f8 0.00 0.66 0.82 264363fd 0.00 0.79 0.82
5521c0d9 0.00 0.75 0.79 0a938d79 0.00 0.86 0.78
f8a8fe49 0.00 0.68 0.74 a48eeaf7 0.00 0.76 0.73
aba27056 0.00 0.59 0.70 2bcee788 0.00 0.64 0.70
47c1f68c 0.00 0.45 0.68 b548a754 0.00 0.95 0.68
890034e9 0.00 0.59 0.67 508bd3b6 0.00 0.66 0.64
6aa20dc0 0.00 0.33 0.63 2dd70a9a 0.00 0.33 0.59
7c008303 0.00 0.48 0.58 6d58a25d 0.00 0.33 0.56
f8c80d96 0.00 0.13 0.55 6855a6e4 0.00 0.44 0.51
4093f84a 0.00 0.31 0.49 90c28cc7 0.00 0.42 0.48
db3e9e38 0.00 0.34 0.47 05f2a901 0.00 0.04 0.46
5c2c9af4 0.00 0.51 0.46 d06dbe63 0.00 0.57 0.46
5daaa586 0.00 0.17 0.43 f1cefba8 0.00 0.19 0.43
3906de3d 0.00 0.28 0.42 caa06a1f 0.00 0.19 0.41
75b8110e 0.00 0.62 0.40 e8dc4411 0.00 0.28 0.39
8731374e 0.00 0.22 0.38 e48d4e1a 0.00 0.30 0.38
f35d900a 0.00 0.65 0.38 f15e1fac 0.00 0.10 0.37
6e19193c 0.00 0.12 0.37 3de23699 0.00 0.00 0.35
6b9890af 0.00 0.00 0.35 a78176bb 0.00 0.26 0.32
1b60fb0c 0.00 0.14 0.28 e509e548 0.00 0.02 0.27
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Table 3: Model accuracies across tasks (200/400)
Task ViT ViTARC ViTARC Task ViT ViTARC ViTARC

-Vanilla -VT -Vanilla -VT

a1570a43 0.00 0.54 0.25 3e980e27 0.00 0.02 0.22
88a10436 0.00 0.00 0.20 9aec4887 0.00 0.02 0.19
7df24a62 0.00 0.10 0.19 e21d9049 0.00 0.10 0.19
8a004b2b 0.00 0.02 0.18 1f0c79e5 0.00 0.14 0.16
045e512c 0.00 0.06 0.14 ce602527 0.00 0.00 0.12
b775ac94 0.00 0.03 0.12 8eb1be9a 0.00 0.03 0.07
fcb5c309 0.00 0.00 0.06 a61ba2ce 0.00 0.00 0.06
36d67576 0.00 0.04 0.06 846bdb03 0.00 0.00 0.05
234bbc79 0.00 0.00 0.05 e40b9e2f 0.00 0.02 0.05
57aa92db 0.00 0.03 0.05 5117e062 0.00 0.00 0.04
8efcae92 0.00 0.00 0.04 72322fa7 0.00 0.02 0.04
623ea044 0.00 0.02 0.04 4938f0c2 0.00 0.07 0.04
3bd67248 0.00 0.08 0.04 48d8fb45 0.00 0.00 0.03
a87f7484 0.00 0.00 0.03 447fd412 0.00 0.01 0.03
e6721834 0.00 0.01 0.03 4c5c2cf0 0.00 0.08 0.03
be94b721 0.00 0.00 0.02 a8c38be5 0.00 0.00 0.02
d07ae81c 0.00 0.00 0.01 97a05b5b 0.00 0.01 0.01
99b1bc43 0.00 0.00 0.00 137eaa0f 0.00 0.00 0.00
c8cbb738 0.00 0.00 0.00 e5062a87 0.00 0.00 0.00
60b61512 0.01 0.83 1.00 e8593010 0.01 0.83 1.00
a79310a0 0.01 0.98 1.00 d43fd935 0.01 0.98 1.00
253bf280 0.01 0.99 1.00 dbc1a6ce 0.01 1.00 1.00
4c4377d9 0.01 1.00 1.00 8be77c9e 0.01 1.00 1.00
77fdfe62 0.01 1.00 1.00 ed36ccf7 0.01 1.00 1.00
25ff71a9 0.01 1.00 1.00 f5b8619d 0.01 1.00 1.00
dc1df850 0.01 1.00 1.00 10fcaaa3 0.01 0.99 0.99
178fcbfb 0.01 1.00 0.99 3428a4f5 0.01 0.79 0.98
11852cab 0.01 0.92 0.98 4612dd53 0.01 0.96 0.98
fcc82909 0.01 0.96 0.97 dc433765 0.01 0.91 0.96
39a8645d 0.01 0.01 0.94 6fa7a44f 0.01 1.00 0.94
834ec97d 0.01 0.94 0.93 321b1fc6 0.01 0.55 0.92
4522001f 0.01 0.22 0.88 88a62173 0.01 0.97 0.85
d9f24cd1 0.01 0.67 0.74 a65b410d 0.01 0.69 0.74
9edfc990 0.01 0.33 0.48 6455b5f5 0.01 0.22 0.27
72ca375d 0.01 0.01 0.14 3f7978a0 0.01 0.04 0.14
f9012d9b 0.01 0.02 0.02 0e206a2e 0.01 0.02 0.02
a8d7556c 0.02 0.93 1.00 74dd1130 0.02 1.00 1.00
d13f3404 0.02 1.00 1.00 6d0aefbc 0.02 1.00 1.00
c9e6f938 0.02 1.00 1.00 913fb3ed 0.02 1.00 1.00
41e4d17e 0.02 0.83 0.99 94f9d214 0.02 0.74 0.96
83302e8f 0.02 0.75 0.94 b94a9452 0.02 0.45 0.85
1f85a75f 0.02 0.03 0.81 b6afb2da 0.02 1.00 0.77
6e82a1ae 0.02 0.24 0.63 00d62c1b 0.02 0.46 0.63
82819916 0.02 0.20 0.60 63613498 0.02 0.02 0.16
228f6490 0.02 0.03 0.06 09629e4f 0.02 0.02 0.03
6d75e8bb 0.03 0.99 1.00 bc1d5164 0.03 1.00 1.00
bdad9b1f 0.03 1.00 1.00 eb281b96 0.03 1.00 1.00
e26a3af2 0.03 0.92 0.99 8d510a79 0.03 0.99 0.99
f2829549 0.03 0.89 0.98 6430c8c4 0.03 0.89 0.98
f25fbde4 0.03 0.02 0.96 fafffa47 0.03 0.92 0.94
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Table 4: Model accuracies across tasks (300/400)
Task ViT ViTARC ViTARC Task ViT ViTARC ViTARC

-Vanilla -VT -Vanilla -VT

6773b310 0.03 0.78 0.91 a740d043 0.03 0.84 0.84
56dc2b01 0.03 0.43 0.58 d2abd087 0.03 0.09 0.15
681b3aeb 0.03 0.04 0.05 5bd6f4ac 0.04 1.00 1.00
8d5021e8 0.04 1.00 1.00 3c9b0459 0.04 1.00 1.00
6150a2bd 0.04 1.00 1.00 62c24649 0.04 1.00 0.99
3af2c5a8 0.04 1.00 0.99 1a07d186 0.04 0.84 0.98
855e0971 0.04 0.96 0.98 4258a5f9 0.04 0.97 0.98
3aa6fb7a 0.04 1.00 0.98 6d0160f0 0.04 0.03 0.97
29ec7d0e 0.04 0.62 0.83 ae4f1146 0.04 0.14 0.67
760b3cac 0.04 0.66 0.64 29623171 0.04 0.37 0.44
673ef223 0.04 0.30 0.26 2281f1f4 0.05 1.00 1.00
cf98881b 0.05 1.00 1.00 ce4f8723 0.05 0.97 0.99
6c434453 0.05 0.93 0.96 c1d99e64 0.05 0.99 0.95
2dc579da 0.05 0.38 0.69 c909285e 0.05 0.20 0.58
73251a56 0.05 0.66 0.39 776ffc46 0.05 0.03 0.16
3345333e 0.05 0.08 0.14 beb8660c 0.05 0.09 0.09
80af3007 0.06 0.98 1.00 7f4411dc 0.06 0.95 0.99
32597951 0.06 0.98 0.99 7468f01a 0.06 0.42 0.84
810b9b61 0.06 0.70 0.82 a5313dff 0.06 0.61 0.76
ef135b50 0.07 0.99 1.00 dae9d2b5 0.07 0.95 0.97
1c786137 0.07 0.05 0.75 d8c310e9 0.07 0.72 0.74
d22278a0 0.07 0.70 0.66 d0f5fe59 0.08 0.09 1.00
d5d6de2d 0.08 0.98 1.00 a416b8f3 0.08 1.00 1.00
1f642eb9 0.08 1.00 1.00 c444b776 0.08 0.96 0.99
cbded52d 0.08 0.97 0.97 780d0b14 0.08 0.97 0.96
0b148d64 0.08 0.26 0.62 b782dc8a 0.08 0.30 0.28
9f236235 0.09 0.98 0.88 0dfd9992 0.09 0.67 0.84
7837ac64 0.09 0.82 0.82 aabf363d 0.09 0.12 0.73
b8cdaf2b 0.09 0.64 0.61 a61f2674 0.10 0.75 0.84
ce9e57f2 0.10 0.75 0.83 7b6016b9 0.10 0.65 0.80
0520fde7 0.11 1.00 1.00 496994bd 0.11 1.00 0.97
150deff5 0.11 0.91 0.95 25d8a9c8 0.12 0.46 1.00
1b2d62fb 0.12 0.99 1.00 1bfc4729 0.12 1.00 1.00
3618c87e 0.12 0.98 0.99 90f3ed37 0.12 0.83 0.84
484b58aa 0.12 0.54 0.66 662c240a 0.12 0.77 0.42
b2862040 0.12 0.30 0.39 d90796e8 0.13 1.00 1.00
6a1e5592 0.13 0.18 0.22 42a50994 0.14 0.98 1.00
2bee17df 0.14 0.99 1.00 67e8384a 0.14 1.00 1.00
017c7c7b 0.14 0.95 0.99 a3325580 0.14 0.01 0.00
ddf7fa4f 0.15 0.78 0.95 23b5c85d 0.16 0.03 0.24

05269061 0.16 0.12 0.22 22168020 0.17 1.00 1.00
23581191 0.17 0.92 0.96 53b68214 0.17 0.94 0.96
7e0986d6 0.18 0.97 1.00 b190f7f5 0.18 0.97 0.98
a3df8b1e 0.18 0.14 0.22 ea786f4a 0.19 0.98 0.98
28bf18c6 0.19 0.07 0.81 3eda0437 0.19 0.68 0.69
22eb0ac0 0.20 0.96 1.00 3631a71a 0.20 0.99 1.00
aedd82e4 0.20 1.00 1.00 025d127b 0.20 1.00 1.00
08ed6ac7 0.20 0.99 0.95 44d8ac46 0.20 0.59 0.86
ff805c23 0.21 0.10 0.28 e179c5f4 0.22 0.01 0.01
1cf80156 0.23 0.12 0.83 f8ff0b80 0.23 0.33 0.65
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Table 5: Model accuracies across tasks (400/400)
Task ViT ViTARC ViTARC Task ViT ViTARC ViTARC

-Vanilla -VT -Vanilla -VT

1fad071e 0.23 0.24 0.59 9ecd008a 0.23 0.16 0.24
67385a82 0.24 1.00 1.00 868de0fa 0.24 1.00 1.00
c9f8e694 0.24 1.00 1.00 d6ad076f 0.24 0.98 0.99
dc0a314f 0.24 0.14 0.24 27a28665 0.26 0.24 0.94
9af7a82c 0.26 0.00 0.00 4290ef0e 0.27 0.24 0.80
539a4f51 0.28 0.72 0.76 cdecee7f 0.28 0.04 0.11
99fa7670 0.29 1.00 1.00 e73095fd 0.29 0.98 0.99
9dfd6313 0.29 0.99 0.99 b0c4d837 0.29 0.21 0.97
963e52fc 0.30 1.00 1.00 941d9a10 0.30 0.98 0.99
b230c067 0.30 0.44 0.46 b9b7f026 0.31 0.37 1.00
06df4c85 0.31 1.00 1.00 67a423a3 0.32 1.00 0.99
54d9e175 0.33 1.00 1.00 28e73c20 0.33 1.00 0.98
6f8cd79b 0.33 1.00 0.98 ea32f347 0.34 0.65 0.71
97999447 0.35 1.00 1.00 a85d4709 0.35 0.00 0.83
a5f85a15 0.36 0.99 1.00 c59eb873 0.36 1.00 1.00
7b7f7511 0.36 0.89 0.95 d10ecb37 0.39 1.00 1.00
d89b689b 0.41 0.96 0.98 de1cd16c 0.41 0.37 0.97
29c11459 0.43 1.00 1.00 9172f3a0 0.43 1.00 1.00
a68b268e 0.44 1.00 1.00 ba97ae07 0.44 1.00 1.00
ff28f65a 0.44 0.70 0.96 1190e5a7 0.44 0.81 0.91

d406998b 0.46 0.98 1.00 ba26e723 0.47 1.00 1.00
f25ffba3 0.50 0.99 1.00 c3f564a4 0.52 0.94 1.00

2204b7a8 0.52 0.96 0.98 272f95fa 0.54 1.00 1.00
91714a58 0.54 0.94 0.98 1e32b0e9 0.56 0.99 1.00
d9fac9be 0.57 0.68 0.97 44f52bb0 0.57 0.55 0.84
d23f8c26 0.59 1.00 1.00 b8825c91 0.60 0.99 0.99
ac0a08a4 0.61 0.99 1.00 bb43febb 0.61 1.00 1.00
c0f76784 0.61 1.00 1.00 e9afcf9a 0.62 1.00 0.98
b91ae062 0.64 1.00 1.00 cce03e0d 0.64 1.00 1.00
007bbfb7 0.65 0.99 1.00 91413438 0.65 0.38 0.32
c3e719e8 0.66 0.99 1.00 e3497940 0.66 1.00 1.00
d631b094 0.66 0.41 0.64 50cb2852 0.68 1.00 1.00
8e1813be 0.70 0.99 1.00 9565186b 0.74 0.96 1.00
a699fb00 0.74 1.00 1.00 4347f46a 0.76 1.00 0.99
469497ad 0.76 0.92 0.95 239be575 0.76 0.74 0.82
8f2ea7aa 0.81 0.23 0.98 5614dbcf 0.82 1.00 1.00
9d9215db 0.83 0.96 0.97 85c4e7cd 0.84 0.99 0.90
8e5a5113 0.85 0.98 0.99 46442a0e 0.86 1.00 1.00
7fe24cdd 0.86 1.00 1.00 445eab21 0.86 0.92 0.96
bd4472b8 0.89 0.49 0.58 3bdb4ada 0.92 1.00 1.00
bda2d7a6 0.94 0.98 1.00 f76d97a5 0.94 1.00 1.00
2dee498d 0.95 1.00 1.00 46f33fce 0.96 1.00 1.00
746b3537 0.96 0.99 0.99 eb5a1d5d 0.97 1.00 1.00
0d3d703e 0.98 1.00 1.00 5582e5ca 0.98 0.95 0.99
f8b3ba0a 0.98 0.99 0.97 feca6190 0.98 0.11 0.79
794b24be 0.98 0.24 0.23 d511f180 0.99 1.00 1.00
b1948b0a 0.99 1.00 1.00 c8f0f002 0.99 1.00 1.00
995c5fa3 1.00 0.00 1.00 6e02f1e3 1.00 1.00 1.00
bbc9ae5d 1.00 1.00 1.00 d4469b4b 1.00 1.00 1.00
7447852a 1.00 1.00 1.00 4be741c5 1.00 1.00 1.00

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400
Tasks

75

50

25

0

25

50

75

100

+57.36% avg improvement

ViT-Vanilla to ViTARC

-100

0

100

De
lta

 S
ol

ve
d 

Te
st

 In
st

an
ce

s (
%

)

Figure 9: Improvement in percentage of solved test instances per task, from ViT-Vanilla to ViTARC.

C.2 ABLATION MODELS ON SAMPLED 100 TASKS

Table 6: Solved test instances (%) across models on sampled 100 tasks and ablation of sub-steps.
The Delta (Mean) column shows the change in the mean solved instances: the ”Border Tokens” is
compared to ViTARC-VT, while the three positional encoding ablations (PEmixer, 2D RPE, and
OPE) are compared to ViTARC. Note that the numbers for ViT-Vanilla, ViTARC-VT, and ViTARC
differ from the 400-task table as these are based on the 100-task subset.

Model Solved Test Instances (%) Delta (Mean)Mean Median 25th Pctl. 75th Pctl.

Baseline (ViT-Vanilla) 15.98 3.65 0.10 15.90 -

ViTARC-VT 67.30 90.00 32.77 99.42 base
- Border Tokens 62.71 79.60 28.62 98.80 -4.59

ViTARC (Full Model) 78.77 95.50 78.20 99.83 base
- Positional Encoding Mixer (PEmixer) 73.03 91.25 54.90 99.05 -5.74
- 2D Relative Positional Encoding (2D RPE) 60.78 73.30 28.85 97.30 -17.99
- Object-based Positional Encoding (OPE) 75.39 95.45 64.22 99.72 -3.38
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Table 7: Exact Match Scores for each task on 100 sampled tasks across different models and abla-
tions.

Task ViT-Vanilla ViTARC −BorderTokens ViTARC −PEmixer −RPE −OPE
-VT

0ca9ddb6 0.00 1.00 1.00 1.00 0.27 1.00 1.00
543a7ed5 0.00 1.00 1.00 1.00 1.00 1.00 1.00
952a094c 0.00 1.00 0.98 1.00 0.99 1.00 0.17
49d1d64f 0.00 1.00 1.00 1.00 1.00 1.00 1.00
25d487eb 0.00 0.95 0.99 0.99 0.08 0.95 0.37
d687bc17 0.00 0.97 0.40 0.99 0.38 0.99 0.78
67a3c6ac 0.00 1.00 0.84 0.97 0.99 1.00 1.00
e98196ab 0.00 0.99 0.96 0.95 0.92 1.00 0.09
8403a5d5 0.00 1.00 0.98 0.93 0.72 0.97 0.94
31aa019c 0.00 0.82 0.69 0.90 0.89 0.99 0.81
ec883f72 0.00 0.87 0.87 0.90 0.79 0.95 0.82
b7249182 0.00 0.74 0.61 0.88 0.81 0.90 0.32
e76a88a6 0.00 0.00 0.91 0.87 0.00 0.06 0.00
3ac3eb23 0.00 0.71 0.71 0.87 0.85 0.87 0.57
a64e4611 0.00 0.98 0.97 0.87 0.90 0.99 0.99
40853293 0.00 0.99 0.92 0.86 0.98 0.98 0.96
b527c5c6 0.00 0.66 0.74 0.84 0.56 0.76 0.53
2013d3e2 0.00 0.95 0.92 0.84 0.11 0.94 0.94
1caeab9d 0.00 0.42 0.78 0.82 0.48 0.58 0.36
5521c0d9 0.00 0.75 0.69 0.79 0.76 0.80 0.71
6aa20dc0 0.00 0.33 0.52 0.63 0.38 0.51 0.23
2dd70a9a 0.00 0.33 0.32 0.59 0.35 0.51 0.30
5c2c9af4 0.00 0.51 0.40 0.46 0.53 0.53 0.31
5daaa586 0.00 0.17 0.48 0.43 0.22 0.37 0.12
6e19193c 0.00 0.12 0.18 0.37 0.29 0.08 0.08
1b60fb0c 0.00 0.14 0.17 0.28 0.06 0.12 0.04
9aec4887 0.00 0.02 0.11 0.19 0.01 0.03 0.00
8a004b2b 0.00 0.02 0.10 0.18 0.02 0.11 0.00
1f0c79e5 0.00 0.14 0.06 0.16 0.02 0.29 0.11
a87f7484 0.00 0.00 0.01 0.03 0.00 0.14 0.00
be94b721 0.00 0.00 0.02 0.02 0.01 0.00 0.00
c8cbb738 0.00 0.00 0.01 0.00 0.00 0.01 0.00
e5062a87 0.00 0.00 0.00 0.00 0.00 0.00 0.00
d43fd935 0.01 0.98 0.98 1.00 0.97 0.99 0.99
dbc1a6ce 0.01 1.00 0.92 1.00 0.99 1.00 0.99
dc1df850 0.01 1.00 1.00 1.00 1.00 1.00 1.00
dc433765 0.01 0.91 0.92 0.96 0.68 0.97 0.94
39a8645d 0.01 0.01 0.99 0.94 0.70 0.16 0.01
4522001f 0.01 0.22 0.62 0.88 0.74 0.79 0.76
3f7978a0 0.01 0.04 0.12 0.14 0.06 0.11 0.01
d13f3404 0.02 1.00 1.00 1.00 1.00 1.00 1.00
913fb3ed 0.02 1.00 1.00 1.00 0.98 1.00 0.99
94f9d214 0.02 0.74 0.51 0.96 0.08 0.98 0.93
228f6490 0.02 0.03 0.06 0.06 0.04 0.04 0.02
bdad9b1f 0.03 1.00 1.00 1.00 1.00 1.00 1.0
eb281b96 0.03 1.00 1.00 1.00 1.00 1.00 1.00
6430c8c4 0.03 0.89 0.53 0.98 0.43 0.99 0.96
a740d043 0.03 0.84 0.65 0.84 0.64 0.82 0.46
d2abd087 0.03 0.09 0.12 0.15 0.09 0.11 0.07
5bd6f4ac 0.04 1.00 1.00 1.00 1.00 1.00 1.00
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Table 8: Exact Match Scores for each task on 100 sampled tasks across different models and abla-
tions.

Task ViT-Vanilla ViTARC −BorderTokens ViTARC −PEmixer −RPE −OPE
-VT

8d5021e8 0.04 1.00 1.00 1.00 1.00 0.96 1.00
6150a2bd 0.04 1.00 0.57 1.00 0.69 1.00 1.00
3af2c5a8 0.04 1.00 1.00 0.99 1.00 1.00 0.98
6d0160f0 0.04 0.03 0.93 0.97 0.02 0.98 0.56
29ec7d0e 0.04 0.62 0.69 0.83 0.64 0.88 0.64
760b3cac 0.04 0.66 0.60 0.64 0.11 0.78 0.47
6c434453 0.05 0.93 0.92 0.96 0.41 0.93 0.91
c1d99e64 0.05 0.99 0.92 0.95 0.90 0.95 0.96
2dc579da 0.05 0.38 0.55 0.69 0.43 0.71 0.16
beb8660c 0.05 0.09 0.06 0.09 0.08 0.13 0.06
7f4411dc 0.06 0.95 0.98 0.99 0.90 1.00 0.97
32597951 0.06 0.98 0.98 0.99 0.97 1.00 0.99
1c786137 0.07 0.05 0.76 0.75 0.05 0.80 0.44
d5d6de2d 0.08 0.98 1.00 1.00 0.30 0.99 0.92
1f642eb9 0.08 1.00 0.92 1.00 0.89 1.00 0.98
c444b776 0.08 0.96 0.98 0.99 0.93 0.98 0.82
0dfd9992 0.09 0.67 0.82 0.84 0.73 0.83 0.66
7837ac64 0.09 0.82 0.85 0.82 0.85 0.79 0.60
a61f2674 0.10 0.75 0.71 0.84 0.84 0.86 0.54
ce9e57f2 0.10 0.75 0.80 0.83 0.76 0.71 0.50
b2862040 0.12 0.30 0.35 0.39 0.34 0.39 0.32
d90796e8 0.13 1.00 1.00 1.00 0.85 1.00 1.00
42a50994 0.14 0.98 0.97 1.00 0.82 0.99 0.24
2bee17df 0.14 0.99 1.00 1.00 0.01 1.00 0.98
ddf7fa4f 0.15 0.78 0.87 0.95 0.86 0.81 0.85

7e0986d6 0.18 0.97 1.00 1.00 1.00 0.99 0.99
ea786f4a 0.19 0.98 0.99 0.98 0.39 0.99 0.99
44d8ac46 0.20 0.59 0.70 0.86 0.79 0.74 0.63
868de0fa 0.24 1.00 1.00 1.00 1.00 0.99 1.00
dc0a314f 0.24 0.14 0.24 0.24 0.28 0.35 0.01
9af7a82c 0.26 0.00 0.00 0.00 0.00 0.00 0.00
99fa7670 0.29 1.00 1.00 1.00 0.97 1.00 1.00
b0c4d837 0.29 0.21 0.91 0.97 0.21 0.93 0.13
d89b689b 0.41 0.96 0.97 0.98 0.93 0.98 0.38
de1cd16c 0.41 0.37 0.97 0.97 0.60 0.96 0.38
a68b268e 0.44 1.00 0.93 1.00 1.00 1.00 0.98
d406998b 0.46 0.98 1.00 1.00 0.39 1.00 0.73
c3f564a4 0.52 0.94 0.94 1.00 0.88 1.00 0.92
44f52bb0 0.57 0.55 0.78 0.84 0.66 0.66 0.54
ac0a08a4 0.61 0.99 0.98 1.00 1.00 1.00 1.00
cce03e0d 0.64 1.00 1.00 1.00 1.00 1.00 1.00
007bbfb7 0.65 0.99 1.00 1.00 0.84 1.00 1.00
91413438 0.65 0.38 0.34 0.32 0.33 0.32 0.92
d631b094 0.66 0.41 0.43 0.64 0.64 0.73 0.05
445eab21 0.86 0.92 0.97 0.96 0.92 0.92 0.90
46f33fce 0.96 1.00 1.00 1.00 0.84 1.00 1.00
5582e5ca 0.98 0.95 1.00 0.99 0.98 0.97 0.96
c8f0f002 0.99 1.00 1.00 1.00 1.00 1.00 1.00
995c5fa3 1.00 0.00 1.00 1.00 1.00 0.02 1.00
6e02f1e3 1.00 1.00 0.89 1.00 1.00 1.00 0.96
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