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Abstract
A series of pretrained models have demonstrated
promising results in point cloud understanding
tasks and are widely applied to downstream tasks
through fine-tuning. However, full fine-tuning
leads to the forgetting of pretrained knowledge
and substantial storage costs on edge devices. To
address these issues, Parameter-Efficient Transfer
Learning (PETL) methods have been proposed.
According to our analysis, we find that existing
3D PETL methods cannot adequately align with
semantic relationships of features required by
downstream tasks, resulting in suboptimal perfor-
mance. To ensure parameter efficiency while in-
troducing rich semantic cues, we propose a novel
fine-tuning paradigm for 3D pretrained models.
We utilize frozen 2D pretrained models to pro-
vide vision semantic prompts and design a new
Hybrid Attention Adapter to efficiently fuse 2D
semantic cues into 3D representations with mini-
mal trainable parameters(1.8M). Extensive exper-
iments conducted on datasets including ScanOb-
jectNN, ModelNet40, and ShapeNetPart demon-
strate the effectiveness of our proposed paradigm.
In particular, our method achieves 95.6% accu-
racy on ModelNet40 and attains 90.09% perfor-
mance on the most challenging classification split
ScanObjectNN(PB-T50-RS).

1. Introduction
With the growing of training data and model parameters,
large foundation models have achieved success across vari-
ous domains and tasks. Point clouds, as direct representa-
tions of the real world, play a crucial role in various fields (Li
et al., 2024; Pan et al., 2024). Inspired by pretrained models
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in natural language processing (Devlin et al., 2018; Raffel
et al., 2020; Achiam et al., 2023; Floridi & Chiriatti, 2020)
and vision understanding (He et al., 2022; Radford et al.,
2021; Oquab et al., 2023; Dehghani et al., 2023), similar
methods of point cloud understanding have been proposed,
such as PointBERT (Yu et al., 2022), PointMAE (Pang et al.,
2022) and PointGPT (Chen et al., 2024). These works utilize
large amounts of unlabeled data to learn general represen-
tations and apply them to downstream tasks through full
fine-tuning. However, the full fine-tuning strategy faces two
significant shortcomings: (1) Fine-tuning the entire model
leads to the forgetting of pretrained knowledge; (2) Full
fine-tuning imposes a significant storage burden.

To address the aforementioned constraints, a series of
Parameter-Efficient Transfer Learning (PETL) (Hu et al.,
2021; Jia et al., 2022; Chen et al., 2022) methods have been
proposed. In point cloud understanding tasks, researchers
have also proposed a series of PETL approaches, such as
IDPT (Zha et al., 2023), DAPT (Zhou et al., 2024), and
Point-PEFT (Tang et al., 2024). However, as shown in Fig-
ure 1(b), performance of the 3D PETL method on complex
tasks remains unsatisfactory. Upon analysis, we believe
this limitation may stem from the differences in feature re-
quirements between point cloud pretraining tasks and down-
stream tasks. As shown in Figure 1(a), point cloud features
of pretrained models are limited to local structural informa-
tion and exhibit positional preferences. In contrast, features
obtained through full fine-tuning contain rich semantic in-
formation, with consistent representations for components
of the same structure. However, in PETL methods, the
main backbones are frozen, resulting in output features with
limited semantic cues, which constrains networks general-
ization ability in downstream tasks.

Compared to point clouds, 2D images contain richer seman-
tic details. Currently, there are many existing 2D models
pretrained on large-scale image datasets. These models not
only learn rich semantic cues but are also widely deployed
on edge devices. This raises an intriguing question worth
exploring: Can we leverage 2D semantics to enhance the
performance of efficient 3D understanding? We believe that
effectively integrating 2D semantic cues with 3D features
could significantly improve model performances, even with
minimal trainable parameters. To explore the feasibility of
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Figure 1. (a) The feature colors are transformed into feature space using PCA, where the same color indicates feature consistency. Features
in red circles fail to maintain consistent. (b) IDPT (Zha et al., 2023) underperform Full FT approaches on the most challenging real-world
classification tasks. (c) The inherent limitations of the 2D perspective during 3D-to-2D projection introduce ambiguities between local
and global structures.

this design, we conduct an analysis of technical challenges:

• Ambiguities in 3D-to-2D projection: The 2D pro-
jections of point clouds from different viewpoints in-
troduce local and global ambiguities. As shown in
Figure 1(c), two points that are far apart in 3D space
may appear very close to each other on 2D planes from
certain viewpoints, which causes local ambiguities.
Additionally, viewpoint variations induce changes in
the projected 2D geometry of 3D objects, resulting in
global ambiguities due to inconsistent representations
across perspectives.

• Multimodal Fusion in PETL: Traditional multi-
modal approaches typically rely on learnable modality-
specific feature extractors to achieve feature fusion
across modalities. However, in PETL, most parameters
of the feature extractors are frozen. Achieving effec-
tive multimodal feature fusion with minimal tunable
parameters presents a significant challenge.

Based on our above analysis, we propose a novel paradigm
that leverages visual semantic prompts to improve the gener-
alization of pretrained 3D models while keeping parameter
efficiency. The new paradigm includes three new designs:
3D-to-2D Projection, Vision Semantic Prompt and Hybrid
Attention Adapter (HAA). We first map point clouds into
2D depth maps from three orthogonal viewpoints to mitigate
global ambiguities. Then, both point clouds and their corre-
sponding depth maps are fed into the network. We adopt a
multi-scale semantic cues injection strategy, as shown in Fig-
ure 3, each layer consists of two parallel transformers with
different modality weights, each transformer handles infor-

mation from one of two modalities. On each scale, vision
semantic prompts are generated by a non-linear layer with
2D class tokens, and we employ HAA to achieve modality
fusion. In HAA, prompts are passed through non-linear
layers to generate two learnable parameters, α and β. 3D
features are modulated by these parameters to achieve Se-
mantic Transfer (ST), which decouples semantic cues from
global contextual features to mitigate local ambiguities. The
modulated features are then used as queries and keys to
compute the self-similarity. The unaltered 3D features serve
as values, which are updated using the similarity matrixes
acquired above. This approach enhances the semantic asso-
ciations of 3D features while effectively filtering out redun-
dant 2D noise, and the trainable parameters are kept at an
extremely low level (1.8M).

In summary, our main contributions are as follows: (1) We
propose a new paradigm that, for the first time, leverages 2D
semantic cues to improve the generalization of pretrained 3D
models with minimal trainable parameters. (2) We utilize
2D class tokens at multiple scales to generate prompts, and
we design a Hybrid Attention Adapter to adopt efficient
modality fusion while keeping the trainable parameters at an
extremely low level. (3) Extensive experiments on datasets
such as ScanObjectNN, ModelNet40, and ShapeNetPart
demonstrate the effectiveness of our proposed paradigm.

2. Related Work
Large-scale Pretrained Models: Large-scale pretrained
models have demonstrated exceptional performance on
downstream tasks across various domains, including nat-
ural language processing (NLP) (Devlin et al., 2018; Raffel
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et al., 2020; Achiam et al., 2023; Floridi & Chiriatti, 2020),
2D vision (Radford et al., 2021) (Dehghani et al., 2023),
and point cloud understanding (Zhang et al., 2022). DI-
NOv2 (Oquab et al., 2023) employed visual transformers to
perform self-supervised pre-training, while MAE (He et al.,
2022) achieved pre-training by randomly masking parts of
an image and reconstructing the masked pixels using the
remaining visible portions. Recently, many self-supervised
pre-training methods for point clouds have been proposed.
Existing methods primarily follow two research paths, con-
trastive learning method (Xie et al., 2020; Zhang et al.,
2021; Dong et al., 2023) and generative methods (Yu et al.,
2022; Pang et al., 2022; Zhang et al., 2023b). Contrastive
learning methods guide the model in learning discriminative
features by distinguishing positive and negative samples.
For example, PointContrast (Xie et al., 2020) constrains
the consistency between the same points in different views.
CrossNet (Wu et al., 2023) conducts cross-modal contrastive
learning between point clouds and their corresponding ren-
dered images. Motivated by BERT (Devlin et al., 2018) and
MAE (He et al., 2022), generative methods mainly adopt
the Masked Point Modeling (MPM) to encourage models
to infer the randomly masked regions with the visible re-
gions, thereby guiding the model to learn the relationships
between point cloud patches in the process, such as Point-
MAE (Pang et al., 2022), PointMamba (Liang et al., 2024)
and PointBERT (Yu et al., 2022) However, these point cloud
pretrained models may forget pre-training knowledge after
full fine-tuning, and impose a significant storage burden.

Parameter-effective Transfer Learning: The pre-training
and fine-tuning paradigm has demonstrated remarkable ef-
fectiveness across a wide range of tasks. However, as
model sizes grow exponentially, full fine-tuning the entire
model can cause significant storage burdens. In contrast,
Parameter-Efficient Transfer Learning (PETL) methods (Hu
et al., 2021; Jia et al., 2022; Chen et al., 2022; Liu et al.,
2023; Houlsby et al., 2019) update only a small subset
of the model’s parameters while keeping the rest frozen.
These approaches have demonstrated both effectiveness and
efficiency across various widely-used pretrained models,
including BERT (Devlin et al., 2018), GPT series (Achiam
et al., 2023; Floridi & Chiriatti, 2020), ViT (Dosovitskiy
et al., 2020), CLIP (Radford et al., 2021), and Stable Diffu-
sion (Rombach et al., 2022). PETL methods can typically
be divided into three main categories: prompt tuning (Jia
et al., 2022; Yang et al., 2024), reparameterization (Hu et al.,
2021), and adapters (Chen et al., 2022; Zhang et al., 2023a).
These techniques adapt pretrained models to specific tasks
by fine-tuning prompts, adjusting parameters without chang-
ing the model architecture, or inserting lightweight trainable
layers, respectively. Recently, PETL techniques have been
introduced into the 3D domain, such as IDPT (Zha et al.,
2023), DAPT (Zhou et al., 2024) and Point-PEFT (Tang

et al., 2024). However, in 3D PETL methods, the backbones
are frozen, resulting in output features with limited semantic
cues, which constrains the network’s generalization ability
in downstream tasks. We believe that the rich semantic cues
in 2D pretrained models can effectively compensate for the
missing semantic information in 3D PETL, and this area of
exploration remains untapped.

3. Method
We first introduce the transformer-based paradigms of
3D pretrained models in Sec. 3.1. Next, we discuss the
paradigms of fine-tuning in Sec. 3.2, including Parameter-
Efficient Transfer Learning. Then we elaborate on the pro-
cess of projecting 3D point clouds onto 2D planes in Sec. 3.3.
Finally, we delve into the details of the multi-scale modality
fusion framework in Sec. 3.4, including Tokenizer, Vision
Semantic Prompt Generation and Hybrid Attention Adapter.

3.1. Transformer-based 3D Pretrained Model

In pretrained transformer-based point cloud models, a point
cloud P ∈ RN×3 with N points is first divided into n point
patches p ∈ Rn×k×3 via Farthest Point Sampling (FPS) and
K-Nearest Neighborhood (KNN) algorithms, where each
patch contains k local points. Then, all point patches will
be embedded into a token sequence T3D ∈ Rn×C through
mini-PointNet (Qi et al., 2017). The sequence is further
processed by L-layer transformer blocks. After that, point
tokens are updated through attention layers. Outputs of
attention layers are passed through a FeedForward Network
(FFN) with residual connections to extract channel-wise
information. The transformer block can be written as:

T̂i = Attention(LN(Ti−1) + Ti−1),

Ti = FFN(LN(T̂i)) + T̂i,
(1)

where Ti is the output of i-th transformer block, LN is a
Layer Normalization layer.

3.2. Fine-Tuning Paradigms

Full Fine-tuning: Full fine-tuning is the most commonly
used fine-tuning paradigm. Assuming the training setup
for the downstream task is configured as Γ(x; y) (i.e., x
are training data and y are labels) and pretrained model
weights as θ. After fine-tuning, all trainable parameters θ
of pretrained models are updated to θ̂. Specifically, the full
fine-tuning paradigm can be formulated as:

θ̂ = arg min
θ
`
(
F (x; θ), y

)
, (2)

where ` represents the loss function for downstream tasks.
Each fine-tuning iteration requires storing the entire model’s
parameters. As the model size increases, this results in
significant storage consumption.
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Figure 2. The illustration of Adapter Tuning: (a) The overview
of Adapter for trnasformer-based architecture. (b) The details of
transformer block with Adapter.

Parameter-Efficient Transfer Learning: PETL methods
offer an efficient approach to adapting pretrained models for
downstream tasks. Existing PETL methods focus on tuning
only a tiny subset of model weights or some lightweight
additional parameters, we denote these tunable parameters
as θ∗. The optimized parameters θ̂∗ can be represented as:

θ̂∗ = arg min
θ∗

`
(
F (x; θ, θ∗), y

)
, |θ∗| << |θ|. (3)

The shape of θ∗ is significantly smaller than pretrained
model weights θ. During fine-tuning, the pretrained param-
eters θ remain fixed while only θ∗ are updated to θ̂∗.

There are two common PETL paradigms: Adapter Tuning
(AT) (He et al., 2021; Zhang et al., 2023a; Chen et al.,
2022) and Prompt Tuning (PT) (Jia et al., 2022; Yang et al.,
2024). Here, we briefly introduce the AT paradigm. As
illustrated in Figure 2(a), AT incorporates a small number of
parameters into the transformer architecture by introducing
a lightweight bottleneck module. Specifically, as shown
in Figure 2(b), it consists of a downward projection Wd

to reduce the feature dimension, a non-linear activation
function φ(·), and an upward projection Wu to restore the
features to their original dimension. During fine-tuning, the
T3D are concatenated with a learnable class token and form
Tinput ∈ R(n+1)×C . Specifically, on the i-th layer, given
input tokens Ti−1 ∈ R(n+1)×C , the calculation process
inside Adapter can be formulated as:

Tada = (Wu(φ(WdT̂i
T

)))T . (4)

where the T̂i ∈ R(n+1)×C is the output of the attention
module, and the Tada is the output of the adapter. Denote
the Wd ∈ Rd×C and the Wu ∈ RC×d, the d << C.
Besides, T̂i ∈ R(n+1)×C are fed into the FFN layer, and the
output of the FFN are summed with Tada and T̂i, forming
the final output of the transformer block Ti.

3.3. 3D-to-2D Projection

To enable 2D pretrained models to capture the semantic
information of point clouds, we first map the point cloud
into 2D depth maps. Given a point cloud P and a cam-

era pose V , we aim to generate a 2D depth map DV (P )
whose pixels P ’s geometry that is visible in V . With the
extrinsic and intrinsic parameters of the pose V , we can
obtain a projective relationship between each 3D point and
its corresponding 2D coordinate(i.e., deitals in B.2). Each
3D point p(u, v, z) ∈ P is projected onto a projection plane,
retrieving a 2D pixel location (û, v̂) and a depth ẑ (a.k.a.
distance from the projection). Projected 2D points p̂(û, v̂)
with depth ẑ are used to generate a rendered image. Let
(x, y) be the coordinate of the rendered pixel, the generation
process of whole 2D images DV can be formulated as:

DV
x,y(P ) = max

p∈P
{||(x, y), p̂||2 × ẑneg, 0}.

ẑneg = 1− (ẑ −min
p∈P

ẑ)/(max
p∈P

ẑ −min
p∈P

ẑ),
(5)

The ẑneg is a negative point depth normalized within [0,
1]. In our model, to overcome the ambiguity caused by
viewpoint limitations, we project point clouds into 2D depth
maps from three orthogonal viewpoints and feed all of them
into the network with corresponding point clouds.

3.4. Multi-Scale Modality Fusion

In this section, we provide a detailed introduction to our
proposed paradigm, which, for the first time, achieves en-
hanced 3D model performance by integrating 2D semantic
cues with minimal trainable parameters.

Tokenizer: Given point clouds P , after 3D-to-2D projec-
tion, we can acquire depth projections of P from three or-
thogonal viewpoints. Point clouds and their corresponding
depth maps are fed into the model simultaneously. The point
cloud is processed into tokens T3D ∈ Rn×C through the
patch embedding of the 3D pretrained model, while three
depth maps are separately processed by the 2D pretrained
model into r patch tokens follow the patch embedding of
ViT (Dosovitskiy et al., 2020) and form I ∈ R3×r×D. The
T3D and I are each concatenated with learnable class to-
kens. These combined tokens Tinput ∈ R(n+1)×C and
Iinput ∈ R3×(r+1)×D are then updated layer by layer using
their modality-specific transformers.

Vision Semantic Prompt Generation: During fine-tuning,
each of the three depth maps independently performs self-
attention computations, generating three separate 2D class
tokens Icls ∈ R3×D. This operation reduces computa-
tional overhead and mitigates semantic ambiguities caused
by viewpoint variations.

Taking one of the model layers as an example, after obtain-
ing the updated 2D class tokens Icls with the depth maps,
we first apply max-pooling on three tokens to select a sin-
gle 2D class token icls ∈ R1×D, The icls is then passed
through a shared Multi-Layer Perceptron (MLP) across all
layers to map the high-dimensional 2D semantic features
into the 3D semantic feature space. The whole process can
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Figure 3. Pipeline of our proposed framework. Each layer consists of two parallel transformers, each transformer handles information
from one of two modalities. For i-th layer, we employ HAA to achieve modality fusion. The Icls are processed through max pooling to
obtain icls, and icls are updated by an MLP to acquire vision semantic prompts ipro. Then, ipro are passed through two parallel non-linear
layers to generate two learnable parameters, α and β. These parameters are fed into HAA and modulate 3D tokens T̂ ∗i to acquire Tmixed.
Tmixed are then used as queries and keys to compute the self-similarity. The unaltered T̂ ∗i serve as values, which are updated using the
calculated similarity matrix. We use the ipro of the last scale to perform the classification task to align modality semantics.

be formulated as:

ipro = MLP(max(Icls)). (6)

The updated 2D semantic prompt ipro ∈ R1×C is then fed
into the Hybrid Attention Adapter within the same layer.

Hybrid Attention Adapter: Inspired by Adapter Tuning,
we propose Hybrid Attention Adapter (HAA) to achieve effi-
cient modality fusion. After obtaining 2D semantic prompts
from frozen 2D pretrained models, both ipro and part of
T̂i, the T̂ ∗i ∈ Rn×C (i.e., T̂i without class token) are fed
into HAA simultaneously. Inside the HAA, the ipro under-
goes two parallel non-linear layers to generate two learnable
parameters, α and β. These parameters transfer 2D visual se-
mantic cues to the 3D modal by modulating the normalized
3D features and obtain Tmixed. This operation decouples
semantic information from global contextual features, miti-
gates the inherent local ambiguities in 3D-to-2D projection.
The Semantic Transfer (ST) process can be formulated as:

Tmixed = α ∗ (
T̂ ∗i − µ(T̂ ∗i )

σ(T̂ ∗i )
) + β, (7)

where µ(·) and σ(·) are mean and standard deviation. Sub-
sequently, we perform hybrid attention computations to
achieve efficient modality fusion. We use the semantically

enriched 3D features Tmixed as the query and key, and the
unaltered T̂ ∗i as the value, The novel attention mechanism
can be formulated as:

T ∗ada = Softmax(
T q(T k)T√

s
)T v,

T q = (W q
dT

T
mixed)

T ,

T k = (W k
d T

T
mixed)

T ,

T v = (W v
u (φ(W v

d T̂
∗
i

T
)))T ,

(8)

where s is the attention scale. This process updates the
semantic relationships of the 3D features while filtering
out redundant noise from the 2D modal. Inspired by For-
mula 4, we replace linear layers in transformer blocks with
BottleNeck (BN) modules, this design allows us to conve-
niently balance the size of trainable parameters and model
performance.

Modality Semantic Alignment: In the final layer of the
model, 2D semantic prompts ipro are combined with 3D
features. The combination are then fed into the downstream
head to achieve alignment between two modality features.
In classification tasks, ipro are concatenated with input of
task head. In the part segmentation task, 2D prompts are
used to perform classification tasks independently without
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Table 1. Classification on three variants of the ScanObjectNN (Uy et al., 2019) and the ModelNet40 (Wu et al., 2015), including the
number of trainable parameters, FLOPs and overall accuracy (OA). ALL methods utilize the default data argumentation as the baseline.
Red indicates the best performance among all methods, while Black denotes the highest performance within PETL methods. D represents
DINOv2 and C represents CLIP. Methods with † using rotation data augmentation on ScanObjectNN.

Method Reference Tunable params. (M)
ScanObjectNN ModelNet40

OBJ BG OBJ ONLY PB T50 RS Points Num. OA (%)

Supervised Learning Only

PointNet CVPR 17 3.5 73.3 79.2 68.0 1k - / 89.2
PointNet++ NeurIPS 17 1.5 82.3 84.3 77.9 1k - / 90.7
DGCNN TOG 19 1.8 82.8 86.2 78.1 1k - / 92.9
MVTN ICCV 21 11.2 - - 82.8 1k - / 93.8
PointNeXt NeurIPS 22 1.4 - - 87.7 1k - / 94.0
PointMLP ICLR 22 13.2 - - 85.4 1k - / 94.5
RepSurf-U CVPR 22 1.5 - - 84.3 1k - / 94.4
ADS ICCV 23 - - - 87.5 1k - / 95.1

Self-Supervised Representation Learning (Full fine-tuning)

OcCo ICCV 21 22.1 84.85 85.54 78.79 1k - / 92.1
Point-BERT CVPR 22 22.1 87.43 88.12 83.07 1k - / 93.2
MaskPoint ECCV 22 22.1 89.70 89.30 84.60 1k - / 93.8
Point-MAE ECCV 22 22.1 90.02 88.29 85.18 1k - / 93.8
Point-M2AE NeurIPS 22 15.3 91.22 88.81 86.43 1k - / 94.0
ACT† ICLR 23 22.1 93.29 91.91 88.21 1k - / 93.7
RECon† ICML 23 43.6 94.15 93.12 89.73 1k - / 93.9
PointMamba† NeurIPS 24 12.3 94.32 92.60 89.31 1k 93.6 / -

Self-Supervised Representation Learning (Parameter-Efficient Transfer Learning)

Point-BERT (baseline) CVPR 22 22.1 87.43 88.12 83.69 1k 92.7 / 93.2
+ IDPT ICCV 23 1.7 (7.69%) 88.12 88.30 83.69 1k 92.6 / 93.4
+ Point-PEFT AAAI 24 0.6 (2.71%) - - 85.00 1k 93.4 / -
+ DAPT CVPR 24 1.1 (4.97%) 91.05 89.67 85.43 1k 93.1 / 93.6
+ Ours(C) - 1.8 (1.04%) 92.08 90.83 89.03 1k 94.7 / 95.2
+ Ours(D) - 1.8 (1.66%) 91.88 90.85 88.79 1k 94.2 / 94.7

Point-MAE (baseline) ECCV 22 22.1 90.02 88.29 85.18 1k 93.2 / 93.8
+ IDPT ICCV 23 1.7 (7.69%) 91.22 90.02 84.94 1k 93.3 / 94.4
+ Point-PEFT AAAI 24 0.6 (2.71%) - - 85.50 1k 94.2 / -
+ DAPT CVPR 24 1.1 (4.97%) 90.88 90.19 85.08 1k 93.5 / 94.0
+ Ours(C) - 1.8 (1.04%) 91.86 91.20 89.14 1k 95.2 / 95.6
+ Ours(D) - 1.8 (1.66%) 91.95 90.89 89.07 1k 94.6 / 95.2
+ Ours(C)† - 1.8 (1.04%) 92.33 91.83 90.09 - -

affecting segmentation pipeline (i.e., details in B.1).

4. Experiments
In this section, we first present the implementation details in
Sec. 4.1. After that, in Sec. 4.2, to demonstrate the effective-
ness of the proposed paradigm, we evaluate its performance
using four combinations of 2D and 3D pre-trained models
on four downstream tasks, including synthetic object classi-
fication, real-world object classification, part segmentation
and few-shot learning. We also carry on ablation studies for

the proposed paradigm in Sec. 4.3 to verify the effectiveness
of proposed modules.

4.1. Implementation Details

For a fair comparison, all baselines adopt the same exper-
imental setting: Freezing the pretrained 2D and 3D back-
bones while only updating identical newly inserted adapters
and position embedding layer of the 2D pretrained model.
We select two 2D and two 3D pretrained models respec-
tively, and conduct four sets of experiments on each down-
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Table 2. Part segmentation on the ShapeNetPart (Yi et al., 2016).
The mIoU for all classed (Cls.) and for all instances (Inst.) are
reported. #TP represents the tunable parameters. Red indicates
the best performance among all methods, while Black denotes the
highest performance within PETL methods. D represents DINOv2
and C represents CLIP.

Method Reference #TP (M) Cls.mIoU (%) Inst.mIoU (%)

Supervised Learning Only

PointNet CVPR 17 - 80.39 83.7
PointNet++ NeurIPS 17 - 81.85 85.1
DGCNN TOG 19 - 82.33 85.2
APES CVPR 23 - 83.67 85.8

Self-Supervised Representation Learning (Full fine-tuning)

OcCo ICCV 21 27.06 83.42 85.1
Point-BERT CVPR 22 27.06 84.11 85.6
MaskPoint ECCV 22 - 84.60 86.0
Point-MAE ECCV 22 27.06 84.19 86.1
ACT ICLR 23 27.06 84.66 86.1
PointMamba NeurIPS 24 - 84.40 86.2

Self-Supervised Representation Learning (Parameter-Efficient Transfer Learning)

Point-BERT (baseline) CVPR 22 27.06 84.11 85.6
+ IDPT ICCV 23 5.69 83.50 85.3
+ DAPT CVPR 24 5.65 83.83 85.5
+ Ours(C) - 6.65 84.61 86.2
+ Ours(D) - 6.65 84.52 86.1

Point-MAE (baseline) ECCV 22 27.06 84.19 86.1
+ IDPT ICCV 23 5.69 83.79 85.7
+ DAPT CVPR 24 5.65 84.01 85.7
+ Ours(C) - 6.65 84.70 86.3
+ Ours(D) - 6.65 84.73 86.2

stream task to validate the generalizability of the proposed
paradigm. For the 3D pretrained models, we chose Point-
MAE (Jiang et al., 2023) and PointBERT (Yu et al., 2022).
For the 2D pretrained models, we select the CLIP (Rad-
ford et al., 2021) image encoder and DINOv2 (Oquab et al.,
2023), where we use the ViT-B/16 version for CLIP and
the ViT-B/14 version for DINOv2. All experiments are
conducted on a single GeForce TRX 3090.

4.2. Effectiveness on Downstream Tasks

For all tasks, we report the results of four combinations:
PointMAE + CLIP, PointMAE + DINOv2, PointBERT +
CLIP and PointBERT + DINOv2.

Real-World Shape Classification: ScanObjectNN (Uy
et al., 2019)is one of the most challenging 3D datasets,
which covers 15K real-world objects from 15 categories.
We report classification results of three variants. As Shown
in Table 1, with comparable trainable parameters, the per-
fomance of proposed paradigm boost performances of 3D
pretrained models on real-world shape classification tasks.
It is worth noting that the combination “PointMAE + CLIP”
achieves a performance of 89.14% on the most challenging
split (PB-T50-RS), representing a 3.64% improvement over
the previous state-of-the-art method Point-PEFT (85.5%).

Besides, if we adopt the same data augmentation strategy
with Recon and ACT, the performance of “PointMAE +
CLIP” surpasses all results. This demonstrates that the in-
troduced vision semantic cues significantly enhance the gen-
eralization of 3D pretrained models on downstream tasks.

Synthetic Shape Classification: In addition to the experi-
ments conducted on a real-world dataset, we perform experi-
ments on a synthetic dataset, ModelNet40 (Wu et al., 2015),
which consists of 12,311 clean 3D CAD models, covering
40 object categories. For testing the fine-tuned model, we
provide results with and without the voting trick (Liu et al.,
2019). The voting trick involves sampling multiple point
clouds for the same sample and making model predictions
multiple times, then aggregating the predictions through
voting to obtain the final classification result. As Shown
in Table 1, it can be observed that the proposed paradigm
effectively improve the perfomance of pretrained across dif-
ferent combinations. The combination “PointMAE + CLIP”
achieves a performance of 95.2%/95.6%, which is the high-
est perfomance across all full fine-tuning and supervised
methods.

Part Segmentation: We conduct part segmentation exper-
iments on the challenging ShapeNetPart (Yi et al., 2016)
dataset, which comprises 16880 models with 16 different
shape categories and 50 part labels. Experimental results
on the ShapeNetPart dataset are shown in Table 2. The
proposed paradigm boost the performence of 3D pretrained
on the dataset, which is one of the hardest task. The ”Point-
MAE + CLIP” combination outperforms all methods in
various experimental settings, demonstrating that vision se-
mantic prompts can effectively introducing part semantics.

Few-shot Classification: To evaluate the effectiveness of
the proposed modules with limited finetuning data, we con-
duct experiments for few-shot classification on ModelNet40.
As shown in Table 3, the proposed paradigm boost the per-
formance of models on 10-way k-shot settings, and achieve
comparable result on 5-way k-shot. The results illustrate
that our approach can augment pretrain models generaliza-
tion capabilities by introducing semantic cues.

4.3. Ablation Study

As shown in Table 4, we systematically evaluate the con-
tribution of each component in our proposed framework
through four-phase ablation studies. (1) 2D Baseline: To
evaluate 2D model capabilities, we exclusively utilize the
CLIP image encoder for classification, with inputs being
three orthogonal depth maps projected from point clouds.
(2) + 3D Model: Building upon phase 1, we concatenate
features from both the frozen Point-MAE encoder with
DAPT (Zhou et al., 2024) and CLIP encoder before feeding
them to the classification head. (3) + Semantic Transfer: To
evaluate the influence of vision semantic prompts, we use
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Table 3. Few-shot learning on ModelNet40 (Wu et al., 2015). We
report overall accuracy (%) ± the standard deviation (%) over ten
runs. D represents DINOv2 and C represents CLIP.

Method Reference
5-way 10-way

10-shot 20-shot 10-shot 20-shot

Self-Supervised Representation Learning (Full fine-tuning)

OcCo ICCV 21 94.0±3.6 95.9±2.3 89.4±5.1 92.4±4.6
Point-BERT CVPR 22 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint ECCV 22 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-MAE ECCV 22 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
Point-M2AE NeurIPS 22 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0
ACT ICLR 23 96.8±2.3 98.0±1.4 93.3±4.0 95.6±2.8
RECon ICML 23 97.3±1.9 98.9±3.9 93.3±3.9 95.8±3.0

Self-Supervised Representation Learning (Parameter-Efficient Transfer Learning)

Point-BERT (baseline) CVPR 22 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
+ IDPT ICCV 23 96.0±1.7 97.2±2.6 91.9±4.4 93.6±3.5
+ DAPT CVPR 24 95.8±2.1 97.3±1.3 92.2±4.3 94.2±3.4
+ Ours(C) - 96.3±3.2 97.5±2.5 93.1±4.2 95.0±4.8
+ Ours(D) - 96.1±3.5 97.1±3.2 93.0±5.5 95.2±3.8

Point-MAE (baseline) ECCV 22 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
+ IDPT ICCV 23 97.3±2.1 97.9±1.1 92.8±4.1 95.4±2.9
+ DAPT CVPR 24 96.8±1.8 98.0±1.0 93.0±3.5 95.5±3.2
+ Ours(C) - 97.0±3.2 98.3±1.8 93.8±4.0 96.8±3.2
+ Ours(D) - 96.8±2.5 98.0±2.0 93.6±3.8 96.5±3.0

Table 4. Ablation learning of the proposed paradigm. The detail of
the table are described in section 4.3.

Method #TP (M) PB T50 RS

3D Baseline 1.07 85.18
+ 2D Model 1.09 86.95
+ Semantic Transfer 1.31 88.02
+ Self Attention 1.83 88.26
+ Hybrid Attention 1.83 89.14

Tmixed as the adapter outputs without any attention mecha-
nism. (4) + Self Attention: In this phase, we adopt standard
self attention with Tmixed only. (5) + Hybrid Attention: We
replace the attention module in the last phase with proposed
hybrid attention. We can observed that neither standalone
2D nor 3D models achieve satisfactory results, while their
naive combination yields significant performance improve-
ments. Besides, our proposed multi-scale 2D semantic trans-
fer and hybrid attention adapter effectively enhance model
capabilities. More ablation studies are presented in Sec. D.

5. Discussion
According to our proposed modules, semantic prompts from
2D models can introduce additional semantic cues to 3D
pretrained models through semantic transfer. However, an
intriguing question arises: what does the 3D model actually
learn from these semantic prompts? We visualize the 3D
features processed by Hybrid Attention Adapter in the last
layer of the proposed paradigm. As shown in Figure 4, the
feature colors are transformed into feature space using PCA,

Origin 3D Features

Mixed Features

Updated 3D Features

ST 

Process
HA

Figure 4. We select features from the final layer of HAA for vi-
sualization. Short ST denotes semantic transfer, and HA denotes
hybrid attention.

where the same color indicates feature consistency. The
visualization results show that the injected 2D semantic in-
formation effectively aligns features of identical structures,
and such feature distributions significantly enhance the gen-
eralization capability of pretrained models on downstream
tasks. Meanwhile, the newly proposed hybrid attention
mechanism strengthens semantic associations while preserv-
ing the integrity of 3D information, further improving the
effectiveness of cross-modal fusion.

6. Limitations
As shown in Table 8, we calculate the FLOPs of models.
Due to the participation of 2D pretrained models (ViT-B/16
& ViT-B/14), our method exhibits relatively high FLOPs.
To adopt off-the-shelf 2D pretrained models for saving stor-
age and computational costs, this limitation cannot be re-
solved by our current design. However, our new paradigm is
compatible with any combination of transformer-based 3D
and 2D pretrained models, if more lightweight and higher-
performing 2D pretrained models are proposed in the future,
the proposed paradigm can achieve better inference speed
and performance without any modifications.

7. Conclusions
We propose a new paradigm that, for the first time, explores
the integration of 2D visual semantic cues from frozen 2D
pretrained models into efficient point cloud understanding,
significantly improving their perfomance on downstream
tasks while maintaining parameter efficiency. Our results
shown that the porposed paradigm boosts the performance
of 3D pretrained models on downstream tasks while keeping
minimal trainable parameters. With off-the-shelf 2D and
3D pretrained models, our paradigm outperforms all models
across different training and fine-tuning stratgies on the syn-
thetic shape classification and challenging real-world 3D
object recognition. Our method is compatible with any com-
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bination of transformer-based 3D and 2D pretrained mod-
els, as more powerful large foundation pretrained models
emerge in the future, our approach holds limitless potential.

Impact Statement
This paper explores the transfer of rich semantic knowl-
edge from 2D pre-trained models to enhance the general-
ization capability of 3D pre-trained models on downstream
tasks, under a parameter-efficient paradigm. To the best
of our knowledge, this represents the first attempt in the
field of parameter-efficient transfer learning for point cloud
understanding. Besides, the proposed paradigm is compati-
ble with any combination of transformer-based 3D and 2D
pretrained models, as more powerful large foundation pre-
trained models emerge in the future, the approach holds
limitless potential.
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A. Additional Relatedwork
We have briefly introduced the AT paradigm in the Section 3.2. Here, we introduce another paradigm, Prompt Tuning (PT).
As shown in Figure 5, PT generates a set of tokens as prompts through random initialization. These prompts are added to
the input of transformer blocks or attention layers and interact with the original tokens through the self-attention mechanism.
During fine-tuning, the weights of the backbone network remain frozen, and only the weights of the prompts are updated.

Patch Embedding

Transformer Layer

Transformer Layer

…

…

Downstream Task Head

Prompt Class Token

3D Token

Figure 5. The illustration of Prompt Tuning.

B. Additional Module Explanation
B.1. Modality Alignment

Here, we will introduce the classification task for aligning modality semantics in detail. As shown in Figure 6(a), in shape
classification tasks, such as downstream tasks on ScanObjectNN and ModelNet40, we concatenate 2D semantic prompts ipro
of the last layer with origin classification head inputs Tinput. Besides, in the part segmentation task, we add an additional
classification head for performing semantic alignment of 2D semantic prompts. As shown in Figure 6(b), Ipro are fed into a
classification head, and the pipeline of part segmentation is not affected.

Classification Head

Segmentation Head Classification Head

（a）

（b）

Downstream Head

Semantic Prompt

Class Token

3D Token

Figure 6. The details of semantic alignment.

B.2. 3D-to-2D Projection

First, when the intrinsic and extrinsic parameters of view v are determined, we can establish the camera coordinate system
and the target 2D image coordinate system for projection. Given the point cloud, we can also determine the world coordinate
system. The first step involves transforming the point cloud into the camera coordinate system. Let the mapped point
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coordinate be (Xw, Yw, Zw), with R representing the rotation matrix and t the translation vector in the extrinsic parameters
matrix, we can obtain the point coordinate (Xc, Yc, Zc) in camera coordinate system:


Xc

Yc
Zc
1

 =


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

 ·

Xw

Yw
Zw
1

 (9)

After obtaining the coordinates of points (Xc, Yc, Zc) in the point cloud within the camera coordinate system, we can project
them onto the 2D image plane using the camera’s intrinsic matrix.

u · Zcv · Zc
Zc

 =

fx s cx
0 fy cy
0 0 1


︸ ︷︷ ︸

Intrinsic Matrix

·

Xc

Yc
Zc

 ⇒


u =

fxXc + sYc
Zc

+ cx

v =
fyYc
Zc

+ cy

(10)

The (u, v) is the corresponding 2D coordinate of 3D point (Xw, Yw, Zw).

C. Additional Implementation Details

Table 5. Training recipes for Parameter-Efficient Transfer Learning.

Config ScanObjectNN ModelNet40 ModelNet40-FewShot ShapeNetPart

optimizer AdamW AdamW AdamW AdamW
learning rate 2e-5 1e-5 1e-5 2e-4
weight decay 5e-2 5e-2 5e-2 5e-2
learning rate scheduler cosine cosine cosine cosine
training epochs 300 300 150 300
warmup epochs 10 10 10 10
batch size 32 32 32 16
drop path rate 0.2 0.1 0.1 0.1
Generator rank 16 16 16 16
q rank of HAA 18 18 18 18
k rank of HAA 18 18 18 18
BN-v rank of HAA 64 72 32 128

image resolution 224×224 224×224 224×224 224×224
image patch size 16/14 16/14 16/14 16/14
number of points 2048 1024 1024 2048
number of point patches 128 64 64 128
point patch size 32 32 32 32

augmentation Scale&Trans/Rotation Scale&Trans Scale&Trans -

GPU device GTX 3090 GTX 3090 GTX 3090 GTX 3090

We adopt downstream fine-tuning configuration following pioneer work PointMAE (Jiang et al., 2023). More details are
provided in 5. Performing fine-tuning on ScanObjectNN (Uy et al., 2019) as an example, the overall training includes
300 epochs, with a cosine learning rate (Loshchilov & Hutter, 2016) of 5e-4, and a 10-epoch warm-up period. We adopt
AdamW (Loshchilov, 2017) as the optimizer. Besides, we show the BN rank of our proposed Hybrid Attention Adapter
(HAA) and the rank of α and β generator, which is the dimension of the feature passed through downward projection. We
also provide relevant setup of 3D-to-2D projection and 2D pretrained models, such as the resolution of 2D depth maps and
the image patch size of 2D transformers.
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D. Additional Ablation Studies
D.1. Ablation Study of Self Attention in Adapter

In this section, we conduct experiments on ScanObjectNN (Uy et al., 2019) to investigate the effectiveness of incorporating
self-attention mechanisms within the adapter architecture without introducing 2D semantic cues. This exploration aims
to determine whether the self-attention mechanism can enhance the model’s generalization capability in the absence of
additional semantic cues. We chose PointMAE (Pang et al., 2022) with DAPT (Zhou et al., 2024) as our 3D baseline. As
shown in Table 7, adopting self attention only bring limited performance improvement, which clarifies the importance of 2D
semantic cues.

Table 6. Additional ablation study of the attention mechanism.

Method #TP (M) PB T50 RS

3D Baseline 1.09 85.08
+ Self attention 1.61 85.53

D.2. Ablation Study of BN-v Rank

We design the BN-v follow the configuration of adapter in DAPT (Zhou et al., 2024).

Table 7. Ablation study of BN-v rank.

Method #TP (M) PB T50 RS

8 1.32 87.82
16 1.39 87.98
32 1.54 88.31
64 1.83 89.14

D.3. Ablation Study of FLOPs

Table 8. Ablation study of FLOPs

Method FlOPs PB T50 RS

PointMLP 31.4 85.40
PointMAE+IDPT 7.2 84.94
PointMAE+DAPT 5.0 85.05
PointMAE+CLIP(ViT-B/32) 12.9 88.82
PointMAE+CLIP(ViT-B/16) 22.6 89.14

D.4. Ablation Study of Hybrid Attention

In some cross-modal attention mechanisms (Lu et al., 2019), features from one modality are typically used as queries, while
features from the other modality serve as keys and values. However, after enhancing the features through Semantic Transfer,
this approach is no longer the optimal solution.

Table 9. Ablation study of hybrid attentinon

Method #TP (M) PB T50 RS

Cross-modal attention 1.8 88.22
Hybrid attention 1.8 89.14
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E. Additional Discussion
During our investigation, we observed that the performance improvements brought by our proposed paradigm on ScanOb-
jectNN’s hardest split and ModelNet40 significantly surpass those achieved on the objbg and objonly splits. To analyze the
underlying reasons, we visualize the 2D depth maps generated through our 3D-to-2D projection. As shown in Figure 7, the
ModelNet40, as a synthetic dataset, produces exceptionally high-quality depth maps through rendering. This characteristic
fully leverages the capabilities of 2D models, consequently yielding substantial performance gains in synthetic classification
and segmentation tasks. Furthermore, as demonstrated in Figure 9, Figure 10 and Figure 8, the additional noise introduced
in the hardest split exhibits minimal impact on imaging quality and 2D model classification performance (Table 10) after
planar projection. This observation suggests that 2D models can effectively filter noise patterns that prove challenging for
3D models to process, thereby significantly enhancing model robustness in complex environments.

Table 10. Additional shape classification results on ScanObjectNN and Modelnet40 with only CLIP.

Dataset #TP (M) Accuracy (%)

OBJ ONLY(Scan) 0.27 84.22
OBJ BG(Scan) 0.27 84.48
PB T50 RS(Scan) 0.27 84.13
Modelnet40 0.27 92.78

Figure 7. Depth maps of Modelnet40.
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Figure 8. Depth maps of ScanObjectNN-objonly.

Figure 9. Depth maps of ScanObjectNN-objbg.
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Figure 10. Depth maps of ScanObjectNN-hardest.
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