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Abstract

Training large language models (LLMs) and
multimodal LLMs necessitates significant com-
puting resources, and existing publicly avail-
able LLMs are typically pre-trained on di-
verse, privately curated datasets spanning vari-
ous tasks. For instance, LLaMA, Vicuna, and
LLaVA are three LLM variants trained with
LLaMA base models using very different train-
ing recipes, tasks, and data modalities. The
training cost and complexity for such LLM vari-
ants grow rapidly. In this work, we propose to
use a soup strategy to assemble these LLM vari-
ants into a single well-generalized multimodal
LLM (SoupLM) in a cost-efficient manner. As-
sembling these LLM variants efficiently brings
knowledge and specialities trained from differ-
ent domains and data modalities into an inte-
grated one (e.g., chatbot speciality from user-
shared conversations for Vicuna, and visual ca-
pacity from vision-language data for LLaVA),
therefore, to avoid computing costs of repetitive
training on several different domains. We pro-
pose series of soup strategies to systematically
benchmark performance gains across various
configurations, and probe the soup behavior
across base models in the interpolation space.

1 Introduction

Training large language models (LLMs) (Brown
et al., 2020; Achiam et al., 2023; Devlin et al.,
2018) presents several significant challenges, such
as how to deploy immense size models on infras-
tructures and make large-scale optimization (Xie
etal., 2024; Narayanan et al., 2021), and how to col-
lect and prepare massive training data to match the
model size (Swayamdipta et al., 2020; Wang et al.,
2022). As aresult, the computational cost and other
efforts of training such networks is rapidly grow-
ing. For example, training a model like LLaMA3-
7B (Touvron et al., 2023) requires an extensive
amount of computation with carefully defined data
and training recipe, not to mention a 70B model de-

mands even more resources and training complex-
ity, measured in thousands of H100 hours (Cho-
quette, 2023). Constraints caused by these substan-
tial computational costs mean that research into
new large language models is often restricted to a
limited number of teams with extensive resources,
which may hinder the community development.

Moreover, while extending the model capacities
for multiple domains by transitioning LLMs into
large multi-modal models (LMMs), additional chal-
lenges arise (Liu et al., 2024b; Zhu et al., 2023; Yan
et al., 2021). Training LMMs typically follows the
post-training approach, which involves finetuning
the base model with a multi-modal instructional
tuning dataset (Liu et al., 2024a; Li et al., 2024).
For example, LLaVA (Liu et al., 2024b) enable
its base Vicuna (Zheng et al., 2023) model to un-
derstand visual input by finetuning it on vision-
language instruction data. In addition, extending
the model with new architecture, such as branch
mixing and training (Sukhbaatar et al., 2024) under
Mixture-of-Experts (MoE) design (Shazeer et al.,
2017), further complicates the process. Overall,
as models become more unified and integrate di-
verse modalities, they face new issues like data
and modality drift. Such issues require even more
complicated data and optimization recipes, which
are more complex than traditional challenges and
further increase the multi-modal training costs.

In this context, the concept of model soup
emerges as an effective strategy to merge the base
model and its finetuned variants. It initially fo-
cuses on image classification task (Wortsman et al.,
2022). Instead of picking the model with highest
validation accuracy, model soup combines tuned
models of different hyperparameter configurations,
where all variants are trained from the same ran-
dom initialized model that seen as the base model.
The soup strategy obtains a robust model with the
highest performance, which can be generalized to
several visual backbones like CLIP (Radford et al.,



2021) and ViT (Dosovitskiy et al., 2020). Unlike
typical ensemble, the model soup directly merges
weights of model variants, resulting in no addi-
tional inference and memory costs.

Motivated by the challenges above with model
soup inspiration, in this paper, we systematically
study how to merge the model variants of different
domains in the context of the large language model.
More specifically, we focus on language (LLMs)
and vision-language (LMMs) domains upon the
autoregressive architecture (Radford et al., 2019).
‘We take Vicuna, and its variant LLaVA as two base
models for a study case to explore the model in-
tegration in LLMs and LMMs, namely, SoupLM.
We propose series of soup strategies from naive
weight average into finegrained learnable soup, and
find SoupLM improves both language and multi-
modal task performances as an integrated well-
generalized model. Such process has no additional
inference cost and requires almost ignorable extra
training cost, where naive soup has no training cost
and learnable soup has tiny effort to adjust the soup
weight. We systematically benchmark extensive
evaluations across different soup configurations to
fully explore its improvement potential, statistically
providing intuitions to find a better soup setting.

We are also curious about the finegrained soup
behavior across base models. For example, if the
base models are given, what is the learned « dis-
tributions under different tuning conditions? Cor-
respondingly, we make detailed analysis upon dif-
ferent settings and further use a simple regularized
soup strategy, to initially probe the soup dynamics.
To summarize our effort of this paper:

* We propose SoupLM to first investigate the
model soup strategy in the context of the au-
toregressive architecture. SoupLLM integrates
base models of different domains as a well-
generalized multi-modal model, introducing
ignorable training and no inference cost.

* We systematically benchmark the learnable
soup strategy across various configurations
to test the potential performance gain. It ob-
serves statistical patterns under the hyperpa-
rameter space, and inspires a principle design
to derive better soup settings.

* Finegrained soup behaviors are initially
probed by learnable and regularized soup, and
we find the interpolation distributions are sta-
ble under training constraints and certain fine-

tuning supervisions. It is expected to inspire
more soup mechanism studies to probe its be-
haviors in an interpretable way.

2 Method

This section introduces vanilla, learnable, and
regularized soup strategies for our SoupL.M explo-
ration, where vanilla initially explores the effec-
tiveness of soup, learnable serves as our central
method and regularized mainly for soup behav-
ior analysis to validate our hypothesis. Given a
set of base models with isomorphic model struc-
tures M = {f(0Y), f(6?),..., f(6™)}, where n is
the number of base models. Here, the model f(-)
generally represents network module at different
granularities (e.g., each weight, each MLP block,
and the whole model), which varies according to
different soup strategies. We keep the model struc-
ture f(-) fixed and merge 6* to obtain a souped
model f(6°). The merging also keeps the weight
0* fixed and only assign a bunch of « to bridge
base models. Then, the integrated one is given by

F0°) =" a'd, (1)
=1

where « is the critical factor of our study and ex-
plored by following soup strategies. In this study,
we specifically consider two autoregressive Trans-
former (Vaswani et al., 2017) base models, Vicuna
and LLaVA, for the following soup strategies and
the number of base models can be easily enlarged.
And we ensure ) ", o' = 1 to interpolate weight
in linear model space.

2.1 Vanilla Soup

We use vanilla soup as a simple baseline to ini-
tially explore if directly combining weights of two
base models improves the performance. Herein,
f(+) represents the whole model, which is the
largest granularity. We manually set different ra-
tios a! (e.g., 0.5) for the first base model and use
a? = 1 — o' for the second. The vanilla souped
model is given by

f(0°) = a'0! + (1 - ah)p?, )
where we use o' = {0.1,0.2, ...,0.9} in our exper-
iments (see Sec. 3.2)
2.2 Learnable Soup

Instead of merging base models using model-
level granularity as vanilla soup, we propose to re-
fine the process by decreasing the soup granularity



Table 1: Summary of five meta sets from language and vision-language domains.

Meta Set MMMU LLaVA665K MMLU GSMS8k Hellaswag
Number of validation 150 665K 99.8K 747K 39.9K
Number of test 900 60 (LLaVA-Bench) 14K 1.32K 10K

to bridge base models in a fine-grained way, which
is the central method in this paper. Concretely,
we choose each module in Transformer block as a
smaller soup unit f(-), such as the Q, K, V, O map-
pings in attention block and up, down mappings in
MLP block. In addition, we also include all nor-
malization layers, the very first embedding layer,
and the last LM head mapping as units for soup.
Basically, this process can be seen as a finegrained
soup at per-mapping granularity.

Rather than manually assignment, we propose
to optimize the finegrained « using a tiny develop-
ment set D. The optimization follows the typical
finetuning protocol of autoregressive model to min-
imize the next token prediction loss, but only tun-
ing the Q] while fixing both base models (9[1*,*],
0[2*7*}). It integrates the weights in the model space
spanned by two base models, which is formally
given by:

o = argmin L{a 0l 05,5, D). ()

where s represents different soup units (e.g., Q/up
project in attention/MLP) and [ means different
Transformer layer indices. L(-;-) is the autore-
gressive loss. It elaborates the merging process by
delicately tuning the soup weights following the
data supervision to better take advantages of both
base models. Such refinement with smaller soup
granularity firstly leads to a more flexible model
interpolation space to benefit further performance
gain. Furthermore, it provides an access to investi-
gate the functional mechanism of each soup unit by
analyzing their merging behaviors. Please note that
the learnable soup can be further elaborated by re-
ducing the soup granularity such as neuron or other
self-defined units and we keep the per-mapping
soup units for this study.

2.3 Regularized Soup

Learnable soup picks smaller granularity and
merges base models by fixing the original ones.
It also provides an intuitive way to investigate the
model merging behaviors in the model space. To do
so, we involve a regularization term to elaborate the

soup process and point out the merging behavior
for analysis. We use L1 normalization on the soup
« and augment Eq. 3 as

‘CTeg(a) :‘C(a;el’GQaD)+)‘|’a”la (4)

where we omit the subscript of [s, ] for .. A is the
regularization strength parameter and L, is the
final regularized training objective. Other regular-
ization formats (e.g., L2) can be easily extended
and we simply consider L1 here. Through adding
regularization on the «, its optimized values are
constrainted close to its initializations. In this way,
we set increasing regularization magnitudes to ob-
serve the changes of soup distribution, and validate
the hypothesis that model soup performs stable
behavior according to the given base models. Dif-
ferent from learnable soup above aiming to exhaust
the soup potential, regularized soup is mainly to
provide further intuitions of model soup behavior
among base models during finetuning.

3 Experiments

3.1 Principle Design

Since we study series finegrained soup strate-
gies based on multi-modal models with massive
parameters, it is critical to propose a feasible path
to manage the hyperparameter spaces for a reason-
able exploration pipeline. Therefore, we briefly
introduce base models, meta sets, and soup strate-
gies, then elaborate them in the following sections.
Base Models

We specifically consider vision-language do-
mains and choose representative Vicuna (Zheng
et al., 2024) and its visual variants LLaVA (Liu
et al., 2024b) as two base models. Vicuna is fine-
tuned from LLaMA (Touvron et al., 2023) using
human conversation instruction, which enable it
with chatbot function. LLaVA is further finetuned
from Vicuna using vision-language instructions,
therefore, the model can understand visual input
and interact with users by language. Basically, they
are both variants from original LLaMA, sharing the
isomorphical structures on language decoder, and
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(a) MMMU (b) LLaVA-Bench
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Figure 1: Vanilla soup evaluations on five meta sets, including MMMU, LLaVA-Bench for multi-modality, and
MMLU, GSMSK, Hellaswag for language. The x-axis shows increasing soup ratio from 0.1 to 0.9 of (') of LLaVA.
The y-axis means the evaluation performance. Green dots serve as soup performances. Two base models are shown
in blue and red lines. We find vanilla soup generally outperforms baselines, and direct average with o' = 0.5 often

obtains better results except for the MMMU dataset.

their weights are consistently optimized step-by-
step. Such consistencies benefits to further explore
model interpolation upon these two models. Specif-
ically, we use their 7B and V1.5 version to repre-
sent language and multi-modal domains. Among
our experiments, we fix two base models and only
investigate the interpolation weight « based on
different soup strategies. We also fix the visual
encoder and alignment MLP of LLaVA for both
training and test. Please note the base model candi-
dates can be easily generalized into other domains
(e.g., audio and video) and multiple (>2) base mod-
els, but we only take language and vision-language
ones in our study.
Meta Sets

Various evaluation benchmarks are designed
for both language and vision-language models
from different purposes, we choose a few rep-
resentative ones as our meta (development) sets
for benchmarking. Such meta sets fulfil: 1) they
are well-prepared and robust evaluation datasets
for certain general purposes, 2) they cover both
language and vision-language multi-modal do-
mains, 3) they contain training and corresponding
test set. In this study, we choose MMMU (Yue
et al., 2023), LLaVA665K (Liu et al., 2023a) for
vision-language domain; MMLU (Hendrycks et al.,
2021), GSM8K (Cobbe et al., 2021), and Hel-
laswag (Zellers et al., 2019) for language domain.
We use their given training set for finetuning and
test set for evaluation'. The meta sets information
is summarized in Tab. 1
Soup Strategies

We study a series of soup strategies that inter-
polate two base models while fixing their original
weights based on five meta sets. At first, we simply

'"LLaVAG665K is the instruction finetuning data for LLaVA
without corresponding test set, we regard the LLaVA-
Bench (Liu et al., 2024b) as its in-domain test set.

use vanilla soup as a initial baseline (Sec. 2.1) to
test if such a naive method improves performance
on 5 meta sets without complicated experimen-
tal designs. Then, we expound learnable soup
(Sec. 2.2) as the central role in our experiments
to 1) fully explore the soup potential for perfor-
mance gain, 2) statistically depict the soup per-
formance patterns under multiple hyperparameter
dimensions. Finally, other than pursuing better per-
formance, we deploy regularized soup (Sec. 2.3)
to intuitively probe the stability of soup behavior
under various regularized training scenarios.

3.2 Vanilla Soup

Our exploration begins with the simplest vanilla
soup. Given Vicuna and LLaVA as base models, we
set o' = {0.1,0.2,...,0.9} (o® correspondingly
obtained by Eq. 2) to merge them and test on meta
sets. Fig. 1 shows the soup performance (green
dots) and two base models as baselines (blue and
red lines). We conclude 1) LLaVA naturally im-
proves vision-language tasks (MMMU and LLaVA-
Bench), as it is visually finetuned. Further, since
the visual finetuning also contain language parti-
tion, it also enhances two general language-only
tasks (MMLU and Hellaswag), but not for GSM8K
which is more specific in math. 2) Vanilla soup
performs generally better than two baselines prov-
ing the soup strategy effectiveness. 3) For 4 out
of 5 meta sets (except MMMU), the trending of
vanilla soup performance shows half-half average
of base models obtains better results compared with
other ratios, especially certain extreme cases (e.g.,
a' = 0.1,0.9). However, this is not for MMMU
which highly relies on the visual finetuning for im-
provement. We track the performance comparison
in Tab. 2



Table 2: Performance summary of different soup strategies on five meta sets. It includes two base model baselines
and records the best performance of three soup strategies among various configurations.

MMMU LLaVA-Bench MMLU GSM8k Hellaswag

Model
Vicuna-7B-v1.5 31.00
LLaVA-7B-v1.5 34.22
Vanilla Soup* 34.89
Single Meta-Set*  35.78
Pair Meta-Set* 35.11 -

53.90
65.20
71.20
72.10

48.75 19.33 73.80
49.54 17.89 74.37
50.22 20.32 74.85
51.24 21.15 74.86
51.65 21.38 74.82

3.3 Learnable Soup

After vanilla soup as a simple proof-of-concept
validation, we then go into details of learnable
soup method, where we elaborate extensive ab-
lation study. This ablation aims to firstly find if
such fine-grained soup can 1) further obtain perfor-
mance gain compared with vanilla soup, and 2) find
statistical soup patterns across several hyperparam-
eter dimensions, helping to understand the soup
sensitivity under different settings. Specifically,
given five meta sets for finetuning and evaluation,
we cover 1) datasets, 2) epoch, 3) learning rate, 4)
sample number, 5) sample ratio, and 6) activation
aspects for ablations. It is hard to systematically
discover the global oracle setting, as all dimensions
are entangled together. Therefore, we heuristically
design a path to search for the best combination
from several rounds of ablation study. Along with
them, we summarize the soup performance patterns
in a statistical way.

First Round

We begin with searching for the best meta sets
combination by: 1) using each individual meta set
to finetune, 2) fixing the total sample number as
1000, 3) ablating the epoch from 1 to 9, 4) ablating
the learning rate from 0.001 to 0.3, 5) evaluating
on 5 meta sets. We representatively show a bunch
of visualization in Fig. 2, which uses MMMU as
finetuning set. The rest visualizations are sup-
plemented in Fig. 7 in appendix due to the lim-
ited space. Corresponding performances are also
tracked in Tab. 2. To summarize all visualizations,
we calculate the mean and maximum performance
of 5 meta sets across epochs and learning rates
in Tab. 3. We conclude 1) finegrained learnable
soup outperforms vanilla soup for each evaluation
task, obtaining further performance gain compared
with two baselines. However, the best results of
each meta set are based on different hyperparam-
eter settings. Due to the different properties of

training and evaluation sets, the soup performance
varies significantly among them. 2) There are clear
trends of performance changes with ablated learn-
ing rates and epochs (color changes in heatmap
plots), indicating a clear hyperparameter patterns
at least within one meta set, but may change across
meta sets. 3) The soup patterns dramatically differs
across different training-evaluation sets combina-
tion. For example, MM-MM observes the best
combination in the middle with the worst at bottom
right corner, but MM-ML shows completely differ-
ent clues. 4) Based on the results in Tab. 3, we find
LLaVA665K is better than MMMU to be chosen
in multi-modal domain. MMLU and Hellaswag
show their advantages in language-only domain.
Considering, MMLU follows the multiple-choice
task instead of typical natural language, thus we
choose MMLU instead of Hellaswag.

As a summary, the first round ablation results
in 1) learnable soup further improves the evalua-
tion performance, 2) soup performance patterns
change dramatically across different finetuning and
test set combinations, but show clear pattern given
a fixed training and test pair, and 3) overall, we
use LLaVA665K and MMLU as training sets for
following ablation rounds.

Second Round

Using LLaVA665K and MMLU as meta sets, we
conduct the second round ablation study. It aims
to find the best hyperparameter setting including
1) learning rate, 2) epoch, 3) sample number, and
4) activation. Concretely, we 1) fixing the training
data as LLaVA665K and MMLU, 2) ablating sam-
ple numbers from 10 to 1000, 2) ablating learning
rate from 0.001 to 0.3, 3) ablating epoch from 1
to 9, 4) ablating activation using sigmoid, linear,
clamp, and softmax options. Please note, from

’The implementation details of activation: We initialize
the a as 0, 0.5, 0.5, and (0.5, 0.5) for sigmoid, linear, clamp,
and softmax, respectively, where we finetune ot and o? for
softmax and only learn o' and a® = 1 — o for the rest.
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Figure 2: Representative MMMU single set evaluation. MM, L, ML, G, and H represent MMMU, LLaVA-Bench,
MMLU, GSK8K, and Hellaswag, respectively. For each heatmap, x/y axis means ablated learning rates and epochs.
Different colors show the performance variances on evaluation sets.

Table 3: Statistical summary of first round ablation: mean/max accuracy across epochs and learning rates

Meta\Eval MMMU LLaVA-Bench MMLU GSM8k Hellaswag Sum
MMMU 33.68/34.56  69.77/72.10  50.17/50.37 20.29/21.00 74.77/74.86 248.68/252.89
LLaVA665k 34.63/35.78  69.55/72.10  49.99/50.20 20.13/21.08 74.72/74.84 249.02/254.00
MMLU 32.48/34.89  64.56/71.30  50.53/51.13 19.46/21.15 74.58/74.81 241.61/253.28
GSMSK 31.65/34.33  60.97/71.80  50.37/51.24 19.24/21.00 74.51/74.86 236.74/253.23
Hellaswag  31.64/35.11  60.02/71.80  50.21/51.03 18.98/21.00 74.35/74.84 235.20/253.78

this round, we only evaluate four meta sets except
for LLaVA-Bench here due to its massive request
of OpenAl API. We show the representative visu-
alization in Fig. 3 and the rest visualizations are
supplemented in the appendix (Fig. 8) due to the
limited space. We conclude 1) using LLaVA665K
and MMLU as paired meta sets further improve
the performance but not significantly. Similarly,
the best setting for each evaluation task varies, in-
dicating the soup process is sensitive to specific
test set. 2) The performance changes are still clear
given a fixed finetuning and test combination across
learning rate, epoch, and activation, however, not
consistent while varying the number of samples.
Especially for MMLU task, the trend changes re-
versely as the number of sample increases. 3) The
activation choice affects performances by a large
margin such as the linear activation dramatically af-
fect the performance, and overall the other options
perform better than linear. We track the pair meta
sets results in Tab. 2 and we search the best setting
based on overall performance on meta sets. The
statistical summary is given by Fig. 9 in appendix
and we choose the best setting with 3 epoch, 50
sample, 0.1 learning rate, and softmax activation.
As a summary, given LLaVA665K and MMLU
as meta sets, the second round ablation search the

For sigmoid, linear, and clamp, we apply sigmoid, keep
it the same, or clamp (from O to 1) operation on o', then,
obtain a? = 1 — o' For softmax, we directly apply softmax
operation on o' and o,

epoch, sample number, learning rate, and activa-
tions. We find the little performance gain compared
with the first round and the soup performances vary
across differen settings. The best overall setting is
picked for the next round ablation.

Third Round

We finally make ablation on the ratio of given
meta sets as the last round. Given the setting from
first and second round, we adjust the sample ratio
from LLaVA665K and MMLU from 5-95 to 95-5
to test if the ratio is a sensitive factor for evaluation.
Performance variances are shown in Fig. 4. We
conclude there are no clear trend according to the
sample ratio based on the given setting, except for
the MMLU task. Overall, the 50-50 ratio achieves
the averagely better results than others. Through
the three rounds heuristic ablations, we benchmark
the soup performance on 5 meta sets, covering sev-
eral hyperparameter configurations and fully ex-
ploring the model soup potential. Statistically, we
find the better configurations and provide intuitions
of the hyperparameter properties for SoupLM.

More Evaluations

Using the best soup setting from three rounds
ablation, we evaluate its soup performance on more
diverse evaluation tasks other than given five meta
sets. We choose Winoground (Thrush et al., 2022),
PiQA (Bisk et al., 2020), MathQA (Amini et al.,
2019), BoolQA (Clark et al., 2019), and BBH (Suz-
gun et al., 2022) for language and POPE (Li et al.,
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Figure 3: Second round ablation for epoch, sample number, learning rate, and activation. MM, ML, G, H are for
MMMU, MMLU, GSM8K, Hellaswag. Colors show performance changes. X-axis is learning rate. Y-axis is number
of epoch and activation function. Here, we use 50 samples for LLaVA665K and 50 samples for MMLU.

(2) MMMU

(b) MMLU

(c) GSM8K (d) Hellaswag

Figure 4: Ratio ablation on MMMU, MMLU, GSMS8K, and Hellaswag on LLaVA665K and MMLU meta sets.

2023) and MM-Bench (Liu et al., 2023b) for vision-
language domains. Tab. 4 in appendix shows model
soup generally outperforms baselines, but may also
drop the performance for certain tasks, which may
due to severe domain drift such as MathQA.

4 Soup Behavior

Beside of discussing performance gain, we ini-
tially study the soup behavior based on empirical
results (Sec. 3) and regularized soup (Sec. 2.3). We
are curious if the soup dynamics follow certain
patterns under different training constraints and su-
pervisions. We first probe such behavior through
visualizing the learned o from different meta sets.
Since we are only curious about its distribution, we
tune the o with 0.3 learning rate, 9 epochs, and
1000 samples to ensure it is fully optimized. We vi-
sualize an exemplar case of key mapping across the
language decoder layers (Fig. 5). We visualize the
rest of visualizations in the appendix (Sec. A.5) in-
cluding other mappings, normalization layers, etc.
Furthermore, we set series of regularization magni-
tudes to observe if the soup behavior varies under
training constraints. We visualize the regularized
soup of key mapping with 0.0001 magnitude in
Fig. 6 and leave the rest magnitudes in appendix
(Sec. A.6). Figures show how the two base models
are integrated into the souped model. Through the
x-axis, they show different meta sets across dif-

ferent layers. Y-axis indicates the learned ratios
between Vicuna and LLaVA. If the ratio is more
than 0.5, meaning the corresponging base model
dominates the soup process for this mapping, we
color it as green, otherwise, as red. According to
these figures, we observe 1) for some layers, the
color distributions are very neat across different
meta set, while for some others, these consistencies
are not stable. 2) For the « under regularized soup,
we find the soup trends are not vulnerable, only gen-
erally close to the initial value 0.5 as constrained
by the regularization. 3) Please note different map-
pings may show varied distributions and see more
cases in the appendix. Overall, we draw the conclu-
sions that the soup behaviors are not vulnerable un-
der regularized constraints, and show consistency
across certain layers but may vary different lay-
ers and mappings. In this study, we initially probe
the soup behavior to provide intuitions by visualiza-
tions, and hope it inspires more model interpolation
mechanism explorations.

5 Related Work

5.1 Large Language and Multi-Modal Models

Large-scale language models (LLMs) show that
large-scale pretraining enables model with strong
language capacity with massive knowledge (Rad-
ford et al., 2018, 2019; Brown et al., 2020; De-
vlin et al., 2018; Liu et al., 2019; Touvron et al.,



Figure 5: Learned alpha distribution on LLaVA-Vicuna model space of key mapping across different meta sets and
Transformer layers. This set of « is tuned on 9 epochs, 0.3 learning rate, and 1000 samples. Certain layers show

stable consistency across different meta sets.

lava

Figure 6: Learned alpha distribution with 0.0001 regularization. It follows the same finetuning settings as figure
above. The regularization limits the o values close to the initial 0.5 but shows the same « distribution with the

unregularized one.

2023). Downstream finetuning improves task per-
formances and aligns the model behavior with
human preference (Ouyang et al., 2022; Zheng
et al., 2024; Zhang et al., 2023; Taori et al., 2023;
Wang et al., 2022; Ziegler et al., 2019; Stien-
non et al., 2020). Centered around pretrained
LLMs, their model variants are widely extended
to other domains by finetuning with instruction
datasets (Achiam et al., 2023; Reid et al., 2024;
Huang et al., 2024; Xu et al., 2023; Liu et al.,
2024b; Lin et al., 2023). Instead of finetuning a pre-
trained LM, multi-modal capacity can be also ob-
tained simultaneously by training a unified model
from scratch (Lu et al., 2022, 2023; Luo et al.,
2020; Tang et al., 2024; Pan et al., 2023; Jin et al.,
2023; Koh et al., 2024). SoupLM proposes to effi-
ciently assemble model variants to deliver a well-
generalized one without extra training cost.

5.2 Model Soup

Model soup (weight averaging) is widely used
to study optimization process (Ahmadianfar et al.,
2022; Bansal et al., 2011). Many works study how
it works on improving neural network capacity or
analyze the model behavior (Nowlan and Hinton,
2018; Blundell et al., 2015). For large-scale net-
works, model soup is firstly studied by (Wortsman
et al., 2022). It benchmarks the soup method on
image classification task on different backbones,

and obtain free performance gain with no infer-
ence cost, which is critical for large-scale models.
Soup strategy also benefits to enhance adapter struc-
ture (Chronopoulou et al., 2023), personalized fine-
tuning (Jang et al., 2023), continue training (Akiba
et al., 2024), etc, for language models. Different
from existing works, our work explores model soup
for large language and vision-language models in a
cross-domain fashion with more general purposes.

6 Conclusion

We propose SoupLLM to first explore the model
soup strategy in autoregressive large language mod-
els (LLMs) and large multi-modal models (LMMs).
This study takes Vicuna and LLaVA as a study
case to 1) propose series soup strategies to fully
explore the model soup potential pursuing perfor-
mance gain, 2) statistically benchmark learnable
soup capacity across systematically designed con-
figuration space and observe comprehensive hy-
perparameter patterns, 3) initially probe the soup
behavior to observe its consistent property across
configurations and regularizations. SoupLLM effi-
ciently assembles isomorphical model variants into
a well-generalized one that handles multiple do-
mains, with no inference and ignorable training
costs. It inspires to fast integrate and iterate large-
scale models with multiple domain capacities while
avoiding costly additional training efforts.



7 Limitations

We propose SoupLLM to merge LLM and LMM
into a well-generalized model that handles both
language and vision-language domains. However,
due to the massive computational requirements to
benchmark the model soup for large-scale mod-
els, 1) we only take two base models with 7B
model size as a study case, which can be easily
extended into more general cases, 2) we only pro-
vide a heuristic design to benchmark the soup per-
formance on base models, since it is almost not
feasible to find the oracle setting among several
configuration dimensions. We leave more general
studies in our future work.
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A Supplementary Material

A.1 More Implementation Details

Our experiments are conducted on A6000 GPUs.
We borrow the code of LLaVA and use its provided
model checkpoints for Vicuna and LLaVA base
models, and the LLaVA665K instruction dataset.
We directly use the training split of meta sets from
Huggingface (Wolf et al., 2020). For language eval-
uation, we leverage on the organized lm-evaluation-
harness (Gao et al., 2023) codebase, and for vision-
language tasks, we follow the evaluation instruction
from LLaVA or use their official evaluation proto-
cols. Our exploration is mainly based on 7B model
with their V1.5 version, but it can easily extended
to larger model size and other versions of models.

A.2 More Evaluation Performances

Due to the limited space in the main draft, we
provide more evaluation performances on language
and vision-language domains (More Evaluations
section in Sec. 3) in Tab. 4

A.3 Complete First Round Ablation
Visualizations

We provide complete first round ablation visual-
izations in Fig. 7. It contains the complete finetun-
ing and test set combinations, which is discussed
in the First Round section in Sec. 3.

A4 Complete Second Round Ablation
Visualizations

We provide complete second round ablation visu-
alization in Fig. 8. It contains the complete number
of samples settings from 10 to 1000, which is dis-
cussed in the Second Round section in Sec. 3.

The statistical summary of the second round ab-
lation is shown in Fig. 9, used to choose the best
hyperparameter combanitions of the second round
ablation.

A.5 Complete o Distribution Visualizations

We provide complete « distribution visualiza-
tions for different mappings in Fig. 10, Fig. 11,
and Fig. 12. They include the mappings of atten-
tion, MLP, and normalization blocks, which are
discussed in Sec 4. We also include visualizations
of other mappings in Fig. 13.
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A.6 Complete Regularized o Distribution
Visualizations

We provide complete regularized o distribution
visualizations in Fig. 14, Fig. 15, Fig. 16, Fig. 17.
They include 0.0001 and 0.001 regularization mag-
nitudes for attention and MLP blocks, which are
discussed in Sec. 4.



Table 4: More evaluations on language and vision-language evaluation benchmarks.

Model Winogrande PiQA MathQA BoolQA BBH POPE MM-Bench
Vicuna-7B-v1.5 69.46 7726  27.14 80.95 4279 80.03 1.98
LLaVA-7B-v1.5 70.64 77.53 28.11 81.71  42.14 85.86 64.69

Vanilla-Soup (' = 0.5) 70.71 77.80  27.37 82.57 4351 86.76 62.29
Meta-Soup 70.72 7748  27.27 8245 4396 86.90 61.86

(d) MM-G

(w) H-MM (v) H-L (w) H-ML - (y) HH

Figure 7: Complete visualization results of the first round ablation for each individual meta set.

14



(d) 10:H

(h) 50:H

(j) 100:ML (k) 100:G (1) 100:H

(n) 500:ML

(q) 1000:MM (r) 1000:ML (s) 1000:G (t) 1000:H

Figure 8: Complete visualization results of the second round ablation for number of samples, epochs, learning rates,
and soup activation under LLaVA665K-MMLU meta sets.
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Figure 13: « distribution visualizations of other mappings.
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Figure 14: Regularized (0.0001) « distribution visualizations for attention.
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Figure 15: Regularized (0.0001) o distribution visualizations for MLP.
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Figure 16: Regularized (0.001) « distribution visualizations for attention.
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