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Abstract

This paper investigates the integration of response time data into human prefer-
ence learning frameworks for more effective reward model elicitation. While
binary preference data has become fundamental in fine-tuning foundation mod-
els, generative AI systems, and other large-scale models, the valuable temporal
information inherent in user decision-making remains largely unexploited. We
propose novel methodologies to incorporate response time information alongside
binary choice data, leveraging the Evidence Accumulation Drift Diffusion (EZ)
model, under which response time is informative of the preference strength. We
develop Neyman-orthogonal loss functions that achieve oracle convergence rates
for reward model learning, matching the theoretical optimal rates that would be
attained if the expected response times for each query were known a priori. Our
theoretical analysis demonstrates that for linear reward functions, conventional
preference learning suffers from error rates that scale exponentially with reward
magnitude. In contrast, our response time-augmented approach reduces this to
polynomial scaling, representing a significant improvement in sample efficiency.
We extend these guarantees to non-parametric reward function spaces, establishing
convergence properties for more complex, realistic reward models. Our extensive
set of experiments validate our theoretical findings in the context of preference
learning over images.

1 Introduction

Human preference feedback has emerged as a crucial resource for training and aligning machine
learning models with human values and intentions. Human preference learning systems—prevalent
in domains from recommender systems to robotics and natural language processing—typically
solicit binary comparisons between two options and use the chosen option to infer a user’s under-
lying utility function [BT52]. Such binary feedback is popular because it is simple, intuitive, and
imposes a low cognitive load on users [BJN+22]. This paradigm underpins a wide range of applica-
tions, including tuning recommendation engines [XAY23], teaching robots personalized objectives
[HIS23, WLH+22], fine-tuning large language models via reinforcement learning from human feed-
back (RLHF) [BJN+22, RSM+24, ZSW+19, OWJ+22b] and vision model [WDR+24, WSZ+23].
However, a single sample of binary choice conveys very limited information—it tells us which option
is preferred but not how strongly it is preferred [KK19]. As a result, learning reward functions or
preference models from pairwise choices can be sample-inefficient, often requiring many queries
to accurately capture nuanced human preferences. This issue is exacerbated in scenarios where one
outcome consistently dominates, yielding nearly deterministic choices and providing minimal insight
into the degree of preference [KK19, Cli18a, Cli18b]. In practice, reward models are often learned
either implicitly—by integrating the reward estimation directly into the policy optimization, as in
Direct Preference Optimization (DPO) [RSM+24], which minimizes a reward-learning objective by
plugging in a closed-form expression of the reward in terms of the policy—or explicitly—by first
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fitting a separate reward function to preference data and then using that function to fine-tune the
policy [KWBH24, BJN+22, TSS+24]. Researchers have explored augmenting binary feedback with
more expressive inputs like numerical ratings or confidence scores [BJN+22, WBSS22], but such
explicit feedback increases user effort and interface complexity [KAS21, JCB+24].

One promising implicit signal is the time a human takes to make each choice. Response times are
essentially free to collect and do not disrupt the user’s experience [Cli18b, AFFN21]. Moreover, a
rich literature in psychology and neuroscience suggests a strong link between decision response times
and the strength of underlying preferences [KK19, Tye79]. In particular, faster decisions tend to
indicate clearer or stronger preferences, whereas slower decisions often suggest the person found the
options nearly equally preferable [KK19, AFFN21]. This inverse relationship between decision time
and preference strength has been documented in cognitive experiments and is quantitatively modeled
by drift-diffusion models (DDMs) of decision making [WvdMG07a, PHS05]. DDMs interpret binary
choices as the result of an evidence accumulation process: when one option has a much higher
subjective value, evidence accumulates quickly toward that option, leading to a fast and confident
choice; conversely, if the options are nearly tied, the accumulation is slow, resulting in a longer
deliberation time [WvdMG07a, BKM+23, PHS05].

Recent work in preference-based linear bandits has shown that integrating response times with
choices—using a lightweight EZ-diffusion model from cognitive psychology—leads to substantially
more data-efficient learning compared to choice-only approaches [LZR+24]. These studies confirm
that response times can serve as a powerful additional feedback signal, providing valuable information
that boosts sample efficiency in inferring human preferences. While the prior works have broken
important new ground, their scope has been somewhat limited. [LZR+24] focuses on an active
preference-based linear bandit in which the algorithm controls the query distribution and assumes a
linear reward function. This setup does not cover more general human-in-the-loop settings—such
as training large generative models—where preference data are often collected passively and the
true reward function can be highly complex. In many state-of-the-art applications (e.g., RLHF for
LLMs or alignment of diffusion models), feedback is gathered on model outputs drawn from a broad
distribution, rather than by actively choosing each query, and the reward model is usually nonlinear,
implemented as a deep neural network.

Our technical innovation centers on a Neyman-orthogonal loss function that integrates binary choice
outcomes with response time observations. Neyman orthogonality ensures that small errors in
estimating the response-time model do not bias the reward learning, yielding fast convergence rates.
We prove that our method achieves the same asymptotic rate as an oracle that knows the true expected
response time for every query, and we demonstrate in experiments on image-preference benchmarks
that it significantly outperforms preference-only baselines.

Our Contributions:

• We propose a Neyman-orthogonal loss that jointly leverages response-time signals (via the
EZ diffusion model) and binary preference data to estimate reward functions. This con-
struction (i) enables integration of cognitive DDM insights into standard machine-learning-
from-human-feedback frameworks, and (ii) yields significant empirical and theoretical
improvements over the classical MLE-based log-loss estimator that uses only preference
data.

• For linear reward models, we derive asymptotic variance bounds showing that the estimation
error of the log-loss estimator scales exponentially with the norm of the true parameter,
whereas our orthogonal estimator’s variance grows only linearly. Moreover, unlike the
active-query method of [LZR+24], which requires carefully designed query selection,
our estimator achieves better variance scaling under passive, i.i.d. queries drawn from an
unknown distribution.

• We extend our analysis to nonparametric reward classes (e.g. RKHS and neural networks),
proving finite-sample convergence bounds in which errors in the response-time estimation
enter only as second-order terms.

• We validate our framework on synthetic and semi-synthetic benchmarks. Experiments show
that our orthogonal loss consistently outperforms both the log-loss and non-orthogonal
alternatives in estimating linear reward functions, three-layer neural network models, and an
image-based preference learning task.
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2 Notations and Preliminaries

Preference-Learning Setup We adopt the standard preference-learning framework. On each trial,
a user is presented with two alternatives, X1 and X2, drawn i.i.d. from an unknown distribution D.
The user then selects one option, which we encode as a binary preference Y ∈ {+1, −1}, and we
record the response time T . We further assume that both the preference Y and the response time
T are governed by an underlying reward function r. The learner’s objective is to learn r from the
observed data

{
(X1

i , X
2
i , Yi, Ti)

}n
i=1

.

Numerous prior works [GADGP+24, CLB+17, RSM+24] employ the Bradley–Terry model [BT52]
to link the binary preference Y to the latent reward function r. In this formulation, the probability
of selecting alternative Xi is proportional to exp

(
r(Xi)

)
. To capture both choice accuracy and

response-time variability, we adopt the EZ diffusion model, which extends this log-odds specification
by modeling response-time distributions alongside choice probabilities. By design, the EZ diffusion
model reduces to the Bradley–Terry model when only choice probabilities are considered. As
is common in current learning from human literature [OWJ+22a, ZJJ24, KWBH24], we assume
homogeneity in the samples, i.e., we assume that the reward function is uniform across samples and
the feature vectors encapsulate any user heterogeneity.

EZ diffusion model Given a query X1, X2, the EZ diffusion model [WVDMG07b, BKM+23]
treats decision making as a drift-diffusion process with drift µ = r(X1)− r(X2) and noise B(τ) ∼
N (0, τ). After an initial encoding delay tnd, evidence accumulates as E(τ) = µ τ +B(τ) until it
first reaches one of two symmetric absorbing barriers at +a or −a. The response time T and the
preference Y is given by

T = min{τ > 0 : E(τ) ∈ {±a}} Y =

{
1, if E(T ) = a,

−1, if E(T ) = −a.

In most applications, one observes the total response time tnd + T , where tnd, captures the non-
decision time required to perceive and encode the query. In vision-based preference tasks, tnd is
often treated as a constant [Cli18a, YK23], whereas in language or more complex cognitive tasks
it may depend on the properties of the text [BSH24, VT16]. The reward difference r(X1)− r(X2)
reflects the strength of preference for a given query, while the barrier a governs the conservativeness
inherent to both the task and individual characteristics [VT16]. For simplicity in notation, we use X
to denote the pair (X1, X2) Further, we overload r and say r(X) := r(X1)− r(X2) to denote the
difference of the rewards from choices X1 and X2. The EZ-diffusion model implies the following
key expressions as computed in [PHS05]:

P (Y = 1|X) =
1

1 + exp(−2a r(X))
E[T |X] =

{
a tanh(a r(X))

r(X) , if r(X) ̸= 0,

a2, otherwise
(1)

In applications to machine learning, both tnd and a may be informed by extensive psychology and
economics literature [vRO09, Cli18a, WVDMG07b, BSH24, FNSS20, XCSWC24]. For clarity, we
treat these parameters as known, fixing a = 1, in the main text and defer their estimation and
uncertainty analysis to Appendix A. In that appendix, we show that when a is unknown one may
equivalently learn the scaled reward function r(X)/a with identical guarantees, and that our proposed
loss is only second-order sensitive to misspecification of tnd.

Note that if we ignore response times and consider only the preferences Y , the EZ-diffusion model
reduces exactly to the Bradley-Terry model. Further, combining the choice and timing expressions in
(1) (and setting a = 1) gives a convenient identity

r(X) =
E[Y | X]

E[T | X]
. (2)

Additional Notations: Now that the model is defined, we introduce notation to distinguish true
functions from their estimators: we write ro(X) for the true reward-difference and r̂(X) for its
estimate, and similarly to(X) := E[T | X] with estimate t̂(X). We further define norms ∥f(·)∥L2(D)

and ∥f(·)∥L1(D) as
√
EX∼D[f(X)2] and EX∼D[|f(X)|] respectively. We also define the random

variable Z as the tuple Z := (X,Y, T ).
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Preference-Only Learning Estimating the reward function r(·) from binary preferences Y ∈
{−1,+1} reduces to logistic regression, since P (Y = 1 | X) = (1 + exp(−2 r(X)))−1. One can
compute the maximum-likelihood estimate, or equivalently minimize the logistic loss:

Llogloss(r) = E
[
log
(
1 + exp(−2Y r(X))

)]
. (3)

3 Incorporating Response Time

Using the identity in (2), a natural starting point is the “naive” squared-error loss

Lnon−ortho(r; t) = E
[
(Y − r(X)t(X))

2
]
, (4)

where t(X) estimates t0(X) := E[T | X]. However, this formulation suffers from a few serious
drawbacks. Estimation of ro is highly sensitive to any error in estimating to. Moreover the function
is often hard to estimate even when the reward function ro is linear. Second, even if r0 is linear, the
mapping to(X) = tanh(ro(X))

ro(X) is highly nonlinear , and the response time T does not admit a simple
closed-form density in terms of r(X). Moreover, T is also sensitive to the tnd assumed in the model.
For these reasons, the loss in (4) is generally impractical.

The function t(·) acts as a nuisance parameter in the naive loss (4) and any error in t(·) directly
contaminates the estimate of ro(·). To address this, we design a modified loss that is Neyman-
orthogonal to t, eliminating its first-order effect on the gradient with respect to r. In the next section,
we review the Neyman-orthogonality conditions and present our orthogonal loss.

3.1 Neyman-orthogonality and Orthogonal Statistical learning.

We consider a population loss L(θ, g) = E
[
ℓ(θ, g;Z)

]
, where θ is the target parameter and g is a

nuisance parameter. The loss is said to be Neyman-orthogonal at the true pair (θ0, g0) if its mixed
directional derivative 1 vanishes:

Dg Dθ L(θ0, g0)[h, k] = 0 for all directions h and k. (5)

This condition ensures that errors g − go have zero first-order impact on the estimator of θ, so that
any error from g influences estimation of θo only at a higher order (e.g., quadratic).

3.2 Orthogonal Loss for Preference learning

To prevent errors in estimating the decision-time function t from biasing the reward estimate r, we
define the orthogonalized loss

Lortho(r; r, t) = E
[
(Y − (T − t(X))r(X)− r(X)t(X))

2
]
, (6)

where r is a preliminary estimator of the true reward function ro(·). In Lemma 3.1 we prove that
Lortho satisfies Neyman-orthogonality with respect to the nuisance pair g = (r, t). Crucially, r need
only be a rough initial estimate (e.g. via logistic loss), since first-order errors in r are automatically
corrected in Lortho. As shown in Section 5, this yields a final estimator for r that is robust to
substantial nuisance-estimation error.
Lemma 3.1. The population loss Lortho is Neyman-orthogonal with respect to nuisance g := (r, t)
i.e. DgDrLortho(ro; go)[r − ro, g − go] = 0 ∀r ∈ R ∀g ∈ G.

Proof. Let ℓ(·) be the pointwise evaluation of Lortho at a data point Z = (X,Y, T ). A direct
calculation gives

DgDr ℓ
(
r, go;X,Y, T

)
[r − ro, g − go] = 2

(
−Y + T ro(X)

)(
t(X)− to(X)

)(
r(X)− ro(X)

)
+ 2
(
T to(X)− to(X)2

)(
r(X)− ro(X)

)(
r(X)− ro(X)

)
.

1The directional derivative of F : F → R at f in direction h is defined by DfF (f)[h] = d
dt
F (f + th)

∣∣
t=0

.
For a bivariate functional L(θ, g), we write DθL and DgL to indicate differentiation w.r.t. each argument.
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Because ro(X) =
E[Y | X]

to(X)
, we have E[−Y + T ro(X) | X] = 0. Similarly, by definition of to,

E
[
T to(X)− to(X)2 | X

]
= 0. Taking expectations of the directional derivative, therefore yields

E
[
DgDr ℓ

(
r, go;X,Y, T

)
[r − ro, g − go]

]
= 0,

which establishes the claimed Neyman-orthogonality.

We present a Meta-Algorithm to estimate the reward model using nuisance functions r(·) and t(·).

Input: S = {(X(1)
i , X

(2)
i , Yi, Ti)}ni=1 Goal: Estimate reward model r̂(·)

1: Compute nuisance functions r̂ and t̂ as an initial estimate of reward model and response time.
2: Now use these functions (r̂, t̂) as nuisance to minimize the orthogonalized loss function Lortho.

Meta-Algorithm 1: Estimate Reward Model via Orthogonal Loss

Different implementations of the Meta-Algorithm vary in how the nuisance functions r and t are
estimated, following [FS23, CNR18, DKSM21]. In data-splitting, the data is split into two halves:
nuisances are fitted on one half, and the orthogonal loss is minimized on the other. Cross-fitting
generalizes this to K folds, training nuisances out-of-fold and evaluating on each held-out fold before
aggregating. Data-reuse fits both nuisance and target models on the full dataset. In the subsequent
sections, we specify which variant is used for each theoretical guarantee and empirical experiment.

Furthermore, since the EZ diffusion model implies identities in (1), we may plug in t(·) = tanh(r(·))
r(·)

directly into Lortho, and the loss remains Neyman-orthogonal. This plug-in strategy offers further
flexibility: one can first train the reward model r (e.g. by minimizing the logistic loss on preference
data), then uses the fitted r as the nuisance in Lortho to exploit response-time information T for faster
convergence. While our work focuses on reward estimation, this framework also supports DPO-style
objectives [RSM+24], as discussed in Appendix A. Treating the estimation of t as a black box, our
theoretical guarantees hold with only mild second-order corrections; see Appendix C for details.

In the next two sections, we present theoretical guarantees for Meta-Algorithm 1. In Section 4, we
focus on linear reward models and state the results that show our orthogonal estimator achieves an
exponential improvement in estimation error—as a function of the true reward magnitude—strictly
outperforming the asymptotic rates of the preference-only estimator. In Section 5, we derive finite-
sample bounds for general non-linear reward classes, including non-parametric estimators. These
bounds essentially recover the oracle rates—that is, the rates one would attain if the true average
response-time function to(·) were known and the naive loss Lnon−ortho were used.

4 Asymptotic Rates for Linear Reward Function

We now restrict to the linear class R =
{
x 7→ ⟨x, θ⟩ : θ ∈ Rd

}
, so that rθ(X) = ⟨θ,X⟩ and the true

reward, ro(X) = ⟨θo, X⟩. Our goal is to estimate θo.

Preference-only estimator. Let θ̂log minimize the empirical version of the logistic loss in (3).
Under the condition that E

[
σ(−2⟨θ0, X⟩)σ(2⟨θ0, X⟩)XX⊤] is invertible, standard argument such

as the ones in [FK85] (see Appendix B for derivation) yield
√
n
(
θ̂log − θ0

) d−→ N
(
0,
[
4E
[
σ(−2⟨θ0, X⟩)σ(2⟨θ0, X⟩)XX⊤]]−1)

. (7)

Orthogonal estimator. Let θ̂ortho denote the resulting estimator from Meta-Algorithm 1 (either
with cross-fitting or data-splitting).

Theorem 4.1. Let θ̂ortho minimize the orthogonal loss Lortho. If E[ t0(X)2XX⊤ ] is invertible, then

√
n(θ̂ortho − θo)

d→ N (0,Σ)

where Σ = E
[(

tanh(⟨θo,X⟩)
⟨θo,X⟩

)2
XX⊤

]−2

E
[(

tanh(⟨θo,X⟩)
⟨θo,X⟩

)3
XX⊤

]
.
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Theorem 4.1 is proven in Appendix B using techniques developed in [CNR18] for asymptotic statis-
tics for debiased estimators. Furthermore, the asymptotic variance of θ̂ortho is point-wise smaller
than that of θ̂log, and this continues to hold for any barrier height a. This follows from the fact
4σ(2x)σ(−2x) ≤

( tanh(x)
x

)2
for all x ≥ 0 (see Appendix B). Because tanh(x)

x decays polynomi-
ally with |x| while σ(x)σ(−x) decays exponentially, the variance of the orthogonal estimator is
exponentially smaller than the log-loss estimator.

Our asymptotic guarantee differs fundamentally from [LZR+24, Theorem 3.1]. Li et al. establish
point-wise convergence for a fixed query x as the number of observations of that specific query
approaches infinity, whereas our result is framed in terms of the overall sample size n accumulated
by the learner. Basing the limit on n rather than on per-query counts better reflects how data are
gathered in practical preference-learning scenarios.

Moreover, while this guarantee also covers the setting described in [LZR+24], the guarantees are sig-

nificantly tighter. In particular the variance of their estimator decays with
(

min
x∈Xsample

tanh(⟨θo,x⟩)
⟨θo,x⟩

)−1

where Xsample denotes the set of distinct pairs of queries x. In contrast, in our case, this term is inside
expectation and thus results in stronger guarantees.

One may naturally ask how our rates depend on the accuracy of the nuisance estimates r̂(·) and t̂(·).
We prove that the asymptotic guarantees hold, provided∥∥t̂− to

∥∥
L2(D)

= o
(
n−β1

)
, β1 ≥ 1

4 ,
∥∥r̂− ro

∥∥
L2(D)

= o
(
n−β2

)
, β2 ≥ 1

2 − β1.

(8)

For linear rewards, one can achieve the required “slow” convergence rates for estimating t by applying
kernel ridge regression with a Sobolev kernel associated with the RKHS W s,2 [AF03, Wai19].

Alternatively, one may first fit r̂ via logistic-loss minimization and then set t̂(X) =
tanh

(
r̂(X)

)
r̂(X) .

Linearity of r and the Lipschitz continuity of the mapping x 7→ tanh(x)
x then ensure the required

slow-rate bounds (see Appendix C).

5 Finite Sample Guarantees for General Reward Functions

We denote the joint nuisance pair as g = (r, t). In this section we bound the estimation error
∥r̂ − ro∥L2(D) in terms of the population pseudo-excess risk defined as Lortho(r̂; ĝ)− Lortho(ro, ĝ)
plus higher-order terms depending on nuisance estimation error. We assume ro ∈ R and to ∈ T , and
let G = R×T denote the joint nuisance class (and g ∈ G). Further let star{X , x′} := {(1−t)x+tx′ :
x ∈ X ; t ∈ [0, 1]}. Further, we adopt the standard Lp norm for functions i.e.

∥f∥L2(D) =
√
EX∼D

[
f(X)2

]
, ∥f∥L1(D) = EX∼D

[
|f(X)|

]
, ∥f∥L∞ = sup

x
|f(x)|.

Next we define a pre-norm (R, α) (need not satisfy triangle inequality) on the nuisance function g(·)
to first present a general guarantee in term of this norm for any function class, and then further bound
it with L2(D) norm, attaining different rates for different function classes such as RKHS balls and
finite-VC subclasses following the general theorem and in Appendix C.

∥g∥2(R,α) = sup
r∈R

(∥∥r(·)t(·)r(·)∥∥
L1(D)

∥r∥ 1−α
L2(D)

+

∥∥t(·)2r(·)∥∥
L1(D)

∥r∥ 1−α
L2(D)

)
(9)

While Neyman orthogonality ensures higher-order dependence on nuisance error, defining the pre-
norm this way gives additional robustness with respect to errors in r. The product r(·)t(·) couples the
estimation errors of r̂ and t̂: even if r is poorly estimated—say, under large reward magnitudes—a
sufficiently accurate estimate of t can keep the product of errors small, yielding low nuisance error in
the (R, α) norm.
Theorem 5.1. Suppose r̂ minimizes the orthogonal population loss Lortho and satisfies

Lortho(r̂; ĝ)− Lortho(ro; ĝ) ≤ ϵ(r̂, ĝ).

6



Let S be an absolute bound on ro. Then the two-stage Meta-Algorithm 1 guarantees

∥r̂ − ro∥2L2(D) ≤ 4S2 ϵ(r̂, ĝ) + 4S
4

1+α ∥ĝ − go∥
4

1+α

(R,α).

The proof of the theorem follows by instantiating [FS23, Theorem 1]. The details can be found in
Appendix C.

Now we instantiate the above theorem for specific function classes.

5.1 Nuisance estimation error ||ĝ − go||(R,α)

Let ∥r∥R denote the RKHS norm of r. First, if r ∈ R lies in an RKHS ball of bounded radius and with
a kernel whose eigenvalues decay as j−1/α, then by [MN10] we have ∥r∥∞ ≤ C ∥r∥αH ∥r∥1−α

L2(D),
which in turn implies ∥g∥(R,α) ≤ C

√
∥t(·)r(·)∥L1(D) + ||t(·)2||L1(D).

Second, if we have ∥t∥L4(D)

∥t∥L2(D)
≤ C2→4 and ∥r∥L4(D)

∥r∥L2(D)
≤ C2→4, then setting α = 0 and applying

Cauchy–Schwarz gives

∥g∥2(R,α) ≤ C2
2→4

(
∥t∥L2(D) · ∥r∥L2(D) + ∥t∥2L2(D)

)
.

Under these two cases, any bound ζ on ||t̂ − to||L2(D) and ||̂r − ro|| shows up as ζ
4

1+α in reward
estimation error.
Remark 5.2. The finite-sample excess-risk bounds in Corollaries 5.3 and 5.4 are obtained via a
critical-radius argument and Talagrand’s concentration inequality, both of which require the loss to be
uniformly bounded point-wise. However, our original (pointwise) orthogonal loss: ℓortho(r, g;Z) =(
Y − (T − t(X)) r(X)− r(X) t(X)

)2
, can be unbounded when the decision time T is unbounded,

violating these assumptions.

To remedy this, in Appendix C, we introduce a simple modification where we cap the contribution
of any single decision time T at a large constant B̆. This puts an additional bias on the ℓ2 error in
Theorem 5.1 decaying fast with threshold B̆. Moreover, in any real-world use case, all the recorded
response times would always be bounded; this modeling choice aligns with a real-world application
of the framework. Details of the capped-loss construction, its effect on finite-sample rates appears in
Appendix C.

5.2 Bounding excess-risk ϵ(r̂, ĝ)

We consider two nuisance estimation schemes for Meta-Algorithm 1: data-splitting (independent
nuisance and target estimation) and data-reuse (joint estimation). We start by defining critical radius
of a function class and provide the guarantees in terms of the critical radius. Further, let ℓortho denote
the point-wise loss version of population loss Lortho.

Critical radius. Following [Wai19], define the localized Rademacher complexity of a function
class F by

Radn(F , δ) := Eϵ,z1:n

[
sup
f∈F

∥f∥L2(D)≤δ

∣∣∣∣ 1n
n∑

i=1

ϵi f(zi)

∣∣∣∣
]
.

The critical radius δn is the smallest δ > 0 satisfying Radn(F , δ) ≤ δ2.

We now present the rates in terms of moment function M(ζ) which is an upper bound on moment
of E[T ζ | X] assuming that r(X) ≤ S for every ζ > 1. From [WY08], we know that every ζth

moment exists. One can choose ζ to get the tightest bound.

Corollary 5.3 (Data-splitting). Let δn be the critical radius of the star-shaped class

star
{
r − ro : r ∈ R, 0

}
,
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Figure 1: Performance of the linear-reward model as the true parameter magnitude ∥θ0∥ varies. Left:
d = 5; right: d = 10.

and define δdsn = max
{
δn,

√
c/n
}

for some constant c > 0. Then under data-splitting, with
probability at least 1− c1 exp

(
−c2n(δ

ds
n )2

)
, Meta-Algorithm 1 satisfies

ϵ(r̂, ĝ) ≤ 9S B̆δdsn ∥r̂ − ro∥L2(D) + 10S2 (δdsn )2,

for universal constants c1, c2 > 0. Consequently for every ζ ≥ 1,

∥r̂ − ro∥2L2(D) ≤ poly(S)

(
B̆
(
δdsn
)2

+
M(ζ)

ζB̆ζ−1

)
+ 4S

4
1+α ∥ĝ − go∥

4
1+α
(R,α),

holds with the same probability.

For the case of data-reuse we have,

Corollary 5.4 (Data-reuse). Let δn be the critical radius of

star
{
ℓortho(r, g; ·)− ℓortho(ro, g; ·) : r ∈ R, g ∈ G

}
,

and define δdrn = max{δn,
√

c/n} for some constant c > 0. Then under data-reuse, with probabil-
ity at least 1− c1 exp

(
−c2n(δ

dr
n )2

)
, Meta-Algorithm 1 satisfies

ϵ(r̂, ĝ) ≤ 9S δdrn ∥r̂ − ro∥L2(D) + 10 (δdrn )2,

for universal constants c1, c2 > 0. Consequently for every ζ ≥ 1,

∥r̂ − ro∥2L2(D) ≤ poly(S)

(
(δdrn )2 +

M(ζ)

ζB̆ζ−1

)
+ 4S

4
1+α ∥ĝ − go∥

4
1+α
(R,α),

holds with the same probability.

The full proof of the critical-radius bounds and further discussion appear in Appendix C2. Our
analysis follows [Wai19, Theorem 14.20], leveraging uniform law for Lipschitz loss functions.

The critical radius differs between data-splitting and data-reuse: with data reuse, each observation
Z = (X,Y, T ) influences both the reward model r(·) and the nuisance g(·), creating conditional
dependence that increases the critical radius and slows convergence, whereas under data splitting the
two estimates remain independent, yielding a smaller radius and faster rates.

6 Experiments

We organize our experiments into three settings: (a) linear reward models, (b) neural net-
work–parameterized reward models, and (c) a semi-synthetic text-to-image preference dataset.

2Above bounds in Corollary 5.4 and Corollary 5.3 are loose in S and can be tightened via a careful analysis.
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Figure 2: Left: mean-squared error; right: cumulative regret (over M = 3000 new queries) on
randomly sampled non-linear (neural network) reward models, both plotted against training-set size
N .

Linear rewards. We evaluate on synthetic data where each query pair (X1, X2) is drawn uniformly
from the unit-radius sphere and the true reward is r0(X) = ⟨θo, X⟩ with ∥θo∥2 = B. Preferences Y
and response times T are generated via the EZ diffusion model. For each B, we draw θo at random,
generate 10 independent datasets, and fit θ by minimizing the logistic loss, non-orthogonal loss
and orthogonal loss. Further to estimate the nuisance parameter r(·) and t(·) for orthogonal and
non-orthogonal loss, we use logistic regression and a 3 layered neural network respectively. We
report the average error ∥θ̂ − θo∥2 as we vary B in Figure 1. Full experimental details are provided
in Appendix D. We observe that the estimation error under the logistic loss grows rapidly with B and
the orthogonal loss Lortho consistently outperforms the other two losses.

Non-linear rewards—neural networks We generate synthetic data from random three-layer neural
networks with sigmoid activations, fixed input dimension, and hidden-layer widths. For each training
size N , we sample a new network (details in Appendix D) as the true reward model and draw N query
pairs X1, X2 uniformly from the unit sphere. We evaluate all three losses—logistic, non-orthogonal,
and orthogonal—and for the orthogonal loss we compare both a simple data-split implementation
and a data-reuse implementation. Figure 2 reports the mean squared error of the estimated reward
under each of the three loss functions and the corresponding policy regret after thresholding r̂ into a
binary decision. Regret measures the gap between the learned policy and the optimal binary policy.
Denoting by X̂i the option selected by our policy for query i, the regret over M new queries is

Regret =

M∑
i=1

(
max{ro(X1

i ), ro(X
2
i )} − ro(X̂i)

)
, X̂i =

{
X1

i , r̂(X1
i ) ≥ r̂(X2

i ),

X2
i , otherwise.

Text-to-image preference learning. We evaluate our approach on a real-world text-to-image
preference dataset - Pick-a-pick [KPS+23], which contains an approx 500k text-to-image dataset
generated from several diffusion models. Furthermore, we use the PickScore model [KPS+23] as
an oracle reward function, we simulate binary preferences Y ∈ {+1,−1} and response times T
via the EZ-diffusion process conditioned on the PickScore difference between each image-test pair.
To learn the reward model we extract 1024-dimensional embeddings from both the text prompt
and the generated image using the CLIP model [RKH+21]. On top of these embeddings, we train
a 4-layered feed-forward neural network with hidden layers of sizes 1024, 512, 256, under three
training objectives: our proposed orthogonal loss, a non-orthogonal response-time loss, and the
standard log-loss on binary preferences. Further experiment details are available in Appendix D. As
shown in Figure 3, the orthogonal loss consistently achieves significantly lower Mean squared error
and regret compared to the non-orthogonal and log-loss baselines.

9



Figure 3: Left: mean-squared error; right: cumulative regret (over M = 10000 new queries) on the
Pick-a-Pic text-to-image task, both plotted against training-set size N .
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A Discussion on Barrier a and Non-Decision Time tnd

A.1 Properties of the EZ Diffusion Model

Recall the EZ diffusion model for a decision between two options X1, X2, with drift µ = r(X1)−
r(X2) and symmetric absorbing barriers at ±a. Writing X = (X1, X2) and overloading r(X) =
r(X1)− r(X2), the choice and response-time moments are given by [WvdMG07a]:

P
(
Y = 1 | X

)
=

1

1 + e−2a r(X)
, E

[
Y | X

]
= tanh

(
a r(X)

)
, Var

(
Y | X

)
= 1− tanh2

(
a r(X)

)
,

E
[
T | X

]
=


a tanh

(
a r(X)

)
r(X)

, r(X) ̸= 0,

a2, r(X) = 0,

Var
(
T | X

)
=


a
(
e4a r(X) − 1− 4a r(X)e2a r(X)

)
r(X)3

(
e2a r(X) + 1

)2 , r(X) ̸= 0,

2a4

3
, r(X) = 0.

A.2 Loss Functions for General Barrier a

When a is known, a natural non-orthogonal baseline loss is

Lnon−ortho(r; t) = E
[(
Y − r(X) t(X)

a

)2]
,

where t(X) ≈ E[T | X]. This also results in the following orthogonal loss

Lortho(r; r, t) = E
[(
Y − (T − t(X)) r(X)

a − r(X) t(X)
a

)2]
, (10)

where r(·) is a crude estimate of the reward function ro(·) (which can be calculated by minimizing
the loss using the log loss) specified below

Llogloss(r) = E
[
log
(
1 + exp(−2Y a r(X))

)]
. (11)

A.3 Reward Learning When a Is Unknown

If the barrier a is unknown, one can still estimate the scaled reward r(·)/a with identical guarantees.
Note that this suffices for any standard machine learning tasks involving learning from human
feedback. Indeed, minimizing the log-loss (11) yields an estimate of a ro(·), and hence of ro(·) up
to scale. However, the loss (10) cannot be applied directly because it requires the nuisance r(·)/a,
which is not identifiable without knowing a.

Instead, we introduce a new nuisance pair (y, t), where y(X) approximates E[Y | X]. We also
define the notation yo(X) := E[Y | X]. One can then define an alternative orthogonal loss,

Lortho−2(r; y, t) = E
[(
Y − (T − t(X))y(X)

t(X) − r(X) t(X)
a

)2]
. (12)

Equation (12) is also Neyman-orthogonal with respect of (y, t) as we show in the lemma below
3.1. Moreover, the error rate guarantees for 10 and 12 are identical for the linear case, as shown in
Appendix B.

Lemma A.1. The population loss Lortho−2 is Neyman-orthogonal with respect to nuisance g := (y, t)
i.e. DgDrLortho−2(yo; go)[r − ro, g − go] = 0 ∀r ∈ R ∀g ∈ G.

Proof. Let ℓ(·) be the pointwise evaluation of Lortho−2 at a data point Z = (X,Y, T ). A direct
calculation gives

DgDr ℓ
(
r, go;X,Y, T

)
[r − ro, g − go] =

−2

a

(
Y + yo(X)− 2

ro(X)

a
to(X)

)(
t(X)− to(X)

)(
r(X)− ro(X)

)
+

2

a

(
T − to(X)

)(
y(X)− yo(X)

)(
r(X)− ro(X)

)
.
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Because ro(X)
a =

E[Y | X]

to(X)
, we have E

[
Y + yo(X)− 2 ro(X)

a to(X) | X
]

= 0. Similarly, by

definition of to, E[T − to(X) | X] = 0. Taking expectations of the directional derivative, therefore
yields

E
[
DgDr ℓ

(
r, go;X,Y, T

)
[r − ro, g − go]

]
= 0,

which establishes the claimed Neyman-orthogonality.

A.4 Experiment for varying a

We conduct experiments for varying barrier levels a for the case where the barrier a is unknown.
Similar the synthetic neural network experiment in the main paper, we generate synthetic data from
random three-layer neural networks with sigmoid activations, fixed input dimension (= 10), and
hidden-layer widths (32, 16). We sample a random neural network (details in Appendix D) as the
true reward model and draw 2000 query pairs X1, X2 sampled from a spherical guassian distribution.
We evaluate all three losses—logistic, non-orthogonal, and orthogonal Lortho−2 for different values
of barrier a. We find that the mean squared error of the estimated reward under each of the three
loss functions and the corresponding policy regret (after thresholding r̂ into a binary decision) is
consistently better for Lortho−2. 3

Table 1: Mean squared error for different losses across barrier values

Barrier
a

Log-loss
Llogloss

Non-orthogonal
Lnon−ortho

Orthogonal
Lortho−2

0.5 13.1047 10.3015 9.2564
0.7 14.8284 10.8872 9.3922
0.9 16.1897 11.2413 9.2729
1.1 17.0966 11.7575 9.5093
1.3 17.8099 11.8773 9.6774
1.5 18.4114 12.3013 9.7517
1.7 18.9334 12.4945 9.8271
1.9 19.2903 12.6231 9.8571
2.1 19.6200 12.8721 9.8152
2.3 19.8787 13.1132 9.9202
2.5 20.1948 13.1526 10.1428

A.5 Second order dependence in errors in tnd

Theorem 5.1 directly implies the following corollary when tnd is misspecified

Corollary A.2. Let t̃nd be any estimate of the non-decision time satisfying∣∣t̃nd − tnd
∣∣ ≤ ϵ.

and nuisance t̂(ϵ) is estimated using mis-specified decision times by

T̃ = Ttotal − t̃nd,

and let r̂(ϵ) be the reward estimator obtained by replacing T with T̃ in the orthogonal loss. Then
under the same conditions as Theorem 5.1,∥∥r̂(ϵ) − ro

∥∥2
L2(D)

= Oϵ

(
ϵ

4
1+α
)
+ on(1),

where on(1) is the estimation-error from Theorem Theorem 5.1 and α is as in that theorem.
3Recall that the regret over M new queries is

Regret =

M∑
i=1

(
max{ro(X1

i ), ro(X
2
i )} − ro(X̂i)

)
, X̂i =

{
X1

i , r̂(X1
i ) ≥ r̂(X2

i ),

X2
i , otherwise.
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Table 2: Regret for M = 2000 queries for different losses across different barrier values

Barrier
a

Log-loss
Llogloss

Non-orthogonal
Lnon−ortho

Orthogonal
Lortho−2

0.5 0.2980 0.2537 0.2538
0.7 0.3437 0.2987 0.2971
0.9 0.3635 0.3000 0.3016
1.1 0.3732 0.3152 0.3044
1.3 0.3686 0.3142 0.3120
1.5 0.3807 0.3148 0.3115
1.7 0.3787 0.3155 0.3105
1.9 0.3751 0.3216 0.3037
2.1 0.3750 0.3198 0.3082
2.3 0.3772 0.3203 0.3028
2.5 0.3763 0.3171 0.3085

Proof. Apply Theorem 5.1 with the nuisance pair ĝ = (r̂, t̂(ϵ)). Observe that:

1. The misspecification |t̃nd− tnd| ≤ ϵ induces at most an O(ϵ) error in the estimated nuisance
function t̃(X).

2. By Neyman-orthogonality, the orthogonal loss incurs only higher-order dependence on any
nuisance error; in particular, a perturbation of order ϵ in t̂ contributes O(ϵ4) to the final
reward-estimation error.

3. The debiasing term (T − t(X)) is unaffected by the shift in non-decision time, since t̃nd
cancels in the difference.

Moreover, we can write

∥ĝ − go∥2(R,α) = on(1) + C sup
r∈R

(∥∥ϵ2r(·)∥∥
L1(D)

∥r∥ 1−α
L2(D)

)
(13)

where C depends only on the uniform bound S = ∥r∥∞. Combining these observations with the
on(1) estimation rate from Theorem 5.1 yields the stated bound.

A.6 Estimating the nuisance t via a plug-in of r

A convenient way to estimate t(·) is to exploit the EZ-diffusion identity

t(X) =
tanh

(
r(X)

)
r(X)

.

Substituting this directly into the orthogonal loss Lortho preserves Neyman-orthogonality. Concretely,
one proceeds in two stages:

1. Fit a preliminary reward model r̂ (for example by minimizing the logistic loss on preference
data).

2. Define the plug-in nuisance

t̂(X) =
tanh

(
r̂(X)

)
r̂(X)

,

and minimize the orthogonalized squared loss with r̂ as the nuisance

Lortho(r; r) = E

(Y − T r(X) + tanh
(
r(X)

)
− r(X)

tanh
(
r(X)

)
r(X)

)2
 . (14)
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This plug-in strategy retains the first-order robustness to errors in r and yields faster convergence by
leveraging response-time information T in the second stage.

Hence, one can extend this idea to directly learn a policy on preference data. In Direct Preference
Optimization (DPO) [RSM+24], one obtains the reward function in closed form from a learned policy
π:

r(X) = r(X1)− r(X2) = c

(
log

π(X1)

πref(X1)
− log

π(X2)

πref(X2)

)
where πref is the reference policy and c is a constant. We can embed these into the two-stage
procedure: 1) Train π̂ by minimizing the logistic-loss (DPO-loss) on the observed preferences,
yielding r(X) = log π̂(X)

πref(X) . 2) Plug r into (14). Since r itself is a known function of π, this directly
learns a new policy that incorporates response time. Adapting Lortho for directly learning a policy
from preference data can be an interesting direction for future work.
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B Asymptotic guarantee for the linear reward model classes

B.1 Guarantees for Llogloss

We now give asymptotic guarantees on the convergence of the choice-only estimator using the
idea of influence functions [Hub11, Ham74]. For the choice-only estimator, the logistic regression
loss function ℓ(θ,X, Y ) := log (σ(2aY ⟨θ,X⟩)) as described in (11). 4 The informal lemma
shows asymptotic results on the estimator θ̂ minimize the loss function ℓ(., X, Y ) over an iid
dataset. Further, we assume that this dataset is generated using a model parametrized by θ0. i.e.
E
[

∂
∂θ ℓ(θ0, X, Y )

]
= 0. Further, we often overload ||.||2 with L2(D) norm when operated on a

function formally, ||t||2 =
√
EX [(t(X))2].

Lemma B.1. Define the IF(θ,X, Y ) := −
(
E
[

∂2

∂θ2 ℓ(θ,X, Y )
])−1

∂
∂θ ℓ(θ,X, Y ). Let the estima-

tor θ̂n minimize the loss function ℓ(.) over the dataset {Xi, Yi}ni=1. Under standard regularity
assumptions,

√
n(θ̂n − θ0)

d→ N (0,Var(IF(θ0, X, Y )))

We now compute the influence function for logistic losses ℓ(θ,X, Y ) := log (σ (2aY ⟨θ,X⟩)).
Now, observe that ∂

∂θ ℓ(θ,X, Y ) = 2σ (−2aY ⟨θ,X⟩)XY . Further, ∂2

∂θ2 ℓ(θ,X, Y ) =

4a2σ (2aY ⟨θ,X⟩)σ (−2aY ⟨θ,X⟩)XXT . This argument is fairly standard and we restate the
derivation below for expository purposes.

Since E
[

∂
∂θ ℓ(θ0, X, Y )

]
= 0, the variance of ∂

∂θ ℓ(θ0, X, Y ) equals

E
[

∂
∂θ0

ℓ(θ0, X, Y ) ∂
∂θ0

ℓ(θ0, X, Y )T
]
.

Now,

Var
(

∂

∂θ0
ℓ(θ0, X, Y )

)
= 4a2E[σ (−2aY ⟨θ0, X⟩)σ (−2aY ⟨θ0, X⟩)XXT ]

(a)
= 4a2E[σ (−2a⟨θ0, X⟩)σ (−2a⟨θ0, X⟩)σ (2a⟨θ0, X⟩) (15)

+ σ (2a⟨θ0, X⟩)σ (2a⟨θ0, X⟩)σ (−2a⟨θ0, X⟩)XXT ] (16)

= 4a2E
[
σ (−2a⟨θ0, X⟩)σ(2a⟨θ0, X⟩)XXT

]
(17)

(a) follows via conditioning on X and the fact that P(Y = 1 | X) = σ(2aY ⟨θo, X⟩). (b) follows
from the fact that σ(r) + σ(−r) = 1

Using similar arguments, one can show that

E
[
∂2

∂θ2
ℓ(θ0, X, Y )

]
= 4a2E

[
σ (−2a⟨θ0, X⟩)σ(2a⟨θ0, X⟩)XXT

]
(18)

Since Var(IF(θ0, X, Y )) =
(
E
[

∂2

∂θ2 ℓ(θ,X, Y )
])−2

Var
(

∂
∂θ0

ℓ(θ0, X, Y )
)

, applying lemma B.1,
we have

Lemma B.2.
√
n(θ̂CH − θ0)

d→ N (0,
(
4a2E

[
σ (−2a⟨θ0, X⟩)σ(2a⟨θ0, X⟩)XXT

])−1
) where the

estimator θ̂CH denotes the estimator obtained from logistic regression on the preference data.

Since σ(r)σ(−r) scales asymptotically as exp(−|r|), one can above that the variance term can scale
exponentially in S asymptotically for larger norms of θ0 where S denotes the ℓ2 bound on θ0.

4The constant 2a follows from the probability P (Y | X) in (1).
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B.2 Computing Rates for Orthogonal Loss (6) and (12)

We first restate the notations from Appendix B. In this section, we consider the linear class R =
{x → ⟨x, θ⟩ : θ ∈ Rd} so that rθ(X) = ⟨θ,X⟩ and the true reward model ro(X) = ⟨θo, X⟩ and the
goal is to estimate θo. We further assume that the ℓ2 norm of queries x satisfies ||x||2 ≤ 1. Further
recall that Z denotes the tuple (X,Y, T ).

Recall from Section 4 that the asymptotic rates for linear function classes holds under cross-fitting
and data-splitting. We now restate cross-fitting from [CNR18] for expository purposes which involves
training nuisances out-of-fold and evaluating on each held-out fold before aggregating. Further we
denote ℓortho and ℓortho−2 as the point-wise versions of orthogonal losses Lortho and Lortho−2.

While we state cross-fitting under the orthogonal loss Lortho, one can easily state it for the orthogonal
loss Lortho−2 with the only difference in the nuisance functions computed.

Input: S = {(X(1)
i , X

(2)
i , Yi, Ti)}ni=1

Goal: Estimate reward model r(·)
1: Partition the training data into B equally sized folds (call it {Sp}Bp=1).
2: For each fold Si, estimate the nuisance reward function r̂(·)(p) and time function t̂(·)(p) using

the out of fold data points.
3: Use r̂(·) and t̂(·) as nuisance to estimate the reward model r(·) using an orthogonal loss by

minimising 1
n

∑B
p=1

∑
i∈Sp

ℓ(r; t̂(p), r̂(p);Zi) over observed data points Zi = (Xi, Yi, Ti) for
orthogonal loss ℓ = ℓortho

Meta-Algorithm 2: Estimate Reward Model via Orthogonal Loss and cross-fitting

Under data-reuse the nuisance is fitted on one half of the data and the orthogonalized loss is minimized
on the other.

Before we present the asymptotic rates for linear reward classes for orthogonal losses, we first state
the following theorem from [CNR18, Section 3.2]. Recall that g(·) is the nuisance function, given
by the tuple (y(·), t(·)) under the orthogonal loss Lortho−2, and by the tuple (r(·), t(·)) under the
orthogonal loss Lortho.

B.2.1 Moment function and Neyman orthogonality setup from [CNR18, Section 3]

Further, following the notation in Section 5, we define the nuisance function class by G and we also
assume that the nuisance estimates also belong to this class.

Define the sample moment function

m(θ, g, Z) = j(g, Z) θ + v(g, Z),

and the associated population moments

M(θ, g) = E
[
m(θ, g, Z)

]
, J(g) = E

[
j(g, Z)

]
, V (g) = E

[
v(g, Z)

]
.

Let θo be the (unique) parameter solving the population moment condition

M(θo, go) = 0,

where go denotes the true nuisance function.

We refer to j(g, Z) as the sample Jacobian matrix and to its expectation J(g) as the population
Jacobian matrix.

To map to our set up where we minimize the pointwise loss ℓortho(θ, g, Z) or ℓortho−2(θ, g, Z), we
can compute the function m(.) by taking the gradient with respect to the first component of the loss
function.

We now state assumption 3.1 from [CNR18]. Because we focus on the moment function m(·),
Neyman orthogonality is defined solely with respect to the nuisance function, whereas for a loss
function ℓ(.) it is defined with respect to both the nuisance function and the target parameter.
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Assumption B.3 (Neyman Orthogonality and continuity). The directional derivative
DgM(θo, go)[g−go] equals zero (satisfying Neymann orthogonality) and further, DggM(θ, g)[g−go]
is continuous in a small neighborhood of go. Further, the eigen values of the Jacobian matrix J(go)
lie between constants c1 and c2.

We now let c0 > 0, c1 > 0, s > 0 and q > 2 be some finite constants such that c0 ≤ c1; and let δn be
some sequences of positive constants converging to zero such that δn ≥ n−1/2. Recall that ĝ denotes
the nuisance parameters estimated from the first stage.

Assumption B.4 (Score Regularity and Quality of Nuisance Estimates). The following moment
conditions hold:

• The qth order moment conditions hold i.e. supg∈G

(
E [||m(θo, g, Z)||q]1/q

)
and

supg∈G

(
E [||j(g, Z)||q]1/q

)
are bounded by constant c.

• The Jacobian J(·) satisfies ||J(ĝ)− J(go)||2op ≤ δn where ||.||op denotes the operator norm.

• The moment function satisfies
(
||m(θo, ĝ, Z)−m(θo, go, Z)||22

)1/2 ≤ δn.

• The second order directional derivative in direction of the nuisance error converges to zero
faster than n−1/2 i.e.

√
nDggM(θo, ḡ)[ĝ − go] = op(1), ∀ḡ = τ ĝ + (1− τ)go, τ ∈ [0, 1].

• The variance E
[
m(θo, go, Z)m(θo, go, Z)⊤

]
is lower bounded.

Under these Assumption B.3 and Assumption B.4 the following lemma holds on the estimate θ̂ under
data-splitting and cross-fitting.

Lemma B.5. Under these Assumption B.3 and Assumption B.4, the estimate θ̂ is asymptotically
linear under data-splitting and cross-fitting. :

√
n
(
θ̂ − θ0

)
= − 1√

n

n∑
i=1

J(g0)
−1m(θ0, g0, Z) + op(1),

This implies that the following convergence holds in distribution
√
n(θ̂ − θ0)

d→
N (0, J(g0)

−2E[m(θ0, g0;Z)m(θ0, g0;Z)⊤])

With this setup, we now compute the guarantees for orthogonal loss Lortho and Lortho−2.

B.3 Asymptotic Rates for orthogonal loss Lortho

In this notation ℓ(.) refers to the pointwise version of orthogonalized loss Lortho. Recall that the
nuisance function g(·) denotes the tuple of nuisance functions (r, t) with ĝo(·) = (ro, to) denoting
their true values. Further the nuisance function ĝ = (r̂, t̂) denotes an estimate of true nuisance
function ĝo(·) = (ro, to) after the first stage.

We now adopt the following notation. Recall that θo ∈ Rd denoted the true parameter vector. We
define the moment function by

m(θ, y, t;X,Y, T ) :=
1

2
∇θℓ(θ, r;X,Y, T ),

which, after algebraic manipulation, can be written as

m(θ, r, t;X,Y, T ) =
1

a

( ⟨X, θ⟩
a

t(X)2 +
r(X)t(X)

a

(
T − t(X)

)
− Y t(X)

)
X.

In addition, the two auxiliary functions can be defined as:

j(t;X) :=
t(X)2

a2
XXT and v(r, t;X,Y, T ) := (1/a)

(
−Y t(X)+

r(X)t(X)

a

(
T−t(X)

))
X (19)
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We also compute the expectation-based mappings:

M(θ, r, t) := E
[
m(θ, r, t;X,Y, T )

]
, J(t) := a−2E

[
t(X)2 XXT

]
, (20)

V (r, t) := a−1E
[(

(to(X)− t(X))
r(X)t(X)

a
− yo(X) t(X)

)
X
]
. (21)

A straightforward calculation shows that

M(θ, r, t) = J(t) θ + V (r, t).

Claim B.6 (Orthogonality of the loss and continuity (assumption B.3)). DgM(θo, g0)[ĝ − g0] = 0
and DggM(θ, g)[g − go] is continuous in G

Proof.

Dgm(θ0, g0, X, Y, T )[ĝ − g0] =2a−2X⟨X, θ0⟩t0(X)(t̂(X)− t0(X))− 2a−2Xr0(X)to(X)(t̂(X)− t0(X))

− a−1X(Y − a−1Tro(X))(t̂(X)− t0(X)) + a−2to(X)(T − to(X))(r(X)− ro(X))

Since, ro(X) = ⟨X, θo⟩ and the fact that ayo(X) = ro(X)to(X), we obtain that
E [Dgm(θ0, g0, X, Y, T )[ĝ − g0] | X] = 0

The continuity of the second order functional derivative naturally follows.

Recall that we have the following assumption of invertibility of J(to) = E
[
to(X)2XX⊤] from

Theorem 4.1.

Assumption B.7 (Invertibility of the Jacobian). We assume that the Jacobian matrix satisfies

∥J(to)−1∥op =
∥∥∥E[−a−2to(X)2 XXT

]−1∥∥∥
op

≤ C,

for some constant C > 0. This claim is justified under mild conditions on the boundedness of the
reward and eigen values of the data matrix E[XXT ].

We now prove the following claim on nuisance estimation.

Claim B.8 (Nuisance Estimation Rates). There exists a black-box learner such that its root mean
squared error (RMSE) satisfies

∥t̂− to∥L2(D) = o
( 1

nβ1

)
with β1 ≥ 1

4
,

and

∥r̂− ro∥L2(D) = o
( 1

nβ2

)
with β2 ≥ 1

2
− β1.

These conditions ensure that the nuisance estimates converge sufficiently fast as the sample size n
increases.

Proof. We show that these slow rates can be achieved under both conditions of plug-in where
t̂(·) = tanh r̂(·)

r(·) with r̂(·) estimated via log-loss. Alternately, one could separately estimate t(·) as
well to obtain these slow rates. A discussion is presented in Appendix B.5.

Furthermore, we assert the following claim regarding the boundedness of the nuisance function
to(X).

Claim B.9.

to(X) = a
tanh

(
a⟨θo, X⟩

)
⟨θo, X⟩

≤ a2.
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A brief inspection using the properties of the hyperbolic tangent function (notably, that tanh(x) ≤ x
for x ≥ 0) confirms this bound.

We now show that assumptions in Assumption B.4 hold for our loss function using the following
three claims and lemmas namely Claim B.10, Claim B.11, Lemma B.12 and Claim B.13

Claim B.10. The jacobian J(·) satisfies J(t̂)− J(to) = o(1) and the qth order moment conditions

hold i.e. i.e. supg∈G

(
E [||m(θo, g, Z)||q]1/q

)
and supg∈G

(
E [||j(g, Z)||q]1/q

)
is bounded.

Proof. Write

J(t)− J(to) = a−2E
[(
t(X)2 − to(X)2

)
XXT

]
.

Since the operator norm is bounded by the Frobenius norm, we have

∥J(t)− J(to)∥op ≤ ∥J(t)− J(to)∥F .
Using the Frobenius norm, we estimate

∥J(t)− J(to)∥F = a−2
∥∥∥E[(t(X)2 − to(X)2

)
XXT

]∥∥∥
F
.

Using the boundedness of X (i.e. ∥X∥ ≤ 1), we have

∥XXT ∥F = ∥X∥2 ≤ 1.

Notice that

|t(X)2 − to(X)2| = |t(X)− to(X)| |t(X) + to(X)|.

Both t and to are uniformly bounded (|t(X)|, |to(X)| ≤ a2), then |t(X) + to(X)| ≤ 2. Hence,
|t(X)2 − to(X)2| ≤ 2a2 |t(X)− to(X)|. Thus, we obtain

∥J(t)− J(to)∥F ≤ 2a−2E
[
2 |t(X)− to(X)|·

]
= 2a−2E

[
|t(X)− to(X)|

]
.

Finally, applying Jensen’s inequality (or noting that E[|t(X)− to(X)|] ≤ ∥t− to∥L2(D)) yields

∥J(t)− J(to)∥op ≤ 2a−2∥t− to∥L2(D).

This concludes the proof as the nuisance estimators are consistent i.e ||ĝ − go||L2(D) = op(1)

We now check the moment condition. This naturally follows from the fact that E[Tα | X] is bounded
for every α ≥ 1 and the fact that rest all random variables are functions are bounded.

Claim B.11. Let g be a vector-valued function defined as

ĝ(x) =

[
r̂(x)
t̂(x)

]
.

Then, for any ḡ = τ ĝ + (1− τ)go with τ ∈ [0, 1], we have
√
nDggM

(
θo, ḡ

)
[ĝ − go] = op(1).

Proof. We wish to control the second-order term in the expansion of M(θo, g) around go. By
Taylor’s theorem in the direction ĝ − go, we have

DggM
(
θo, ḡ

)
[ĝ − go] =

∂2

∂s2
M
(
θo, ḡ + s (ĝ − go)

)∣∣∣
s=0

.

This term decomposes into two parts:

DggM
(
θo, ḡ

)
[ĝ − go] =

∂2

∂s2

(
J
(
t̄+ s (t̂− to)

)
θo
)∣∣∣

s=0︸ ︷︷ ︸
(I)

+
∂2

∂s2
V
(
t̄+ s (t̂− to), r̄+ s (̂r− ro)

)∣∣∣
s=0︸ ︷︷ ︸

II

.

(22)
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First Term (I): For J(t) = a−2E[t(X)2XXT ], we have

∂2

∂s2

((
t̄(X) + s (t(X)− to(X))

)2)∣∣∣
s=0

= 2 (t(X)− to(X))2.

Thus,
∂2

∂s2

(
J
(
t̄+ s (t̂− to)

)
θo
)∣∣∣

s=0
= 2a−2 E

[
(t̂(X)− to(X))2 XXT

]
θo.

Since ∥XXT ∥op is bounded (using ∥X∥ ≤ 1) and θo is fixed, it follows that∥∥∥2E[(t̂(X)− to(X))2 XXT
]
θo

∥∥∥ = O
(
∥t̂− to∥22

)
.

Under Claim B.8, we have ∥t− to∥22 = o
(

1√
n

)
, so that

√
nO
(
∥t̂− to∥22

)
= o(1).

Second Term (II): For the function V (t, y), we have

∂2

∂s2
V
(
t̄+ s (t̂− to), ȳ + s (ŷ − yo)

)∣∣∣
s=0

= a−2E
[
(2T − 4t(X))(r̂(X)− ro(X))(t̂(X)− to(X))X

]
− 4

a2
E
[
r(X)(t̂− to(X))2X

]
= a−2E

[
(to(X)− 2t(X))(r̂(X)− ro(X))(t̂(X)− to(X))X

]
− 4

a2
E
[
r(X)(t̂(X)− to(X))2X

]
.

(23)

The last equality follows via conditioning on the first term. Using the boundedness of X, t(X) and
r(X) and applying the Cauchy–Schwarz inequality, we obtain∥∥∥E[(to(X)− 2t(X))(t̂(X)− to(X)) (r̂(X)− ro(X))X

]∥∥∥ ≤C ∥t̂− to∥L2(D) ∥r̂− ro∥L2(D),

(24)∣∣∣∣∣∣E [r(X)(t̂(X)− to(X))2
]∣∣∣∣∣∣ ≤C∥t̂− to∥2L2(D) (25)

for some constant C > 0. By Claim B.8, the product ∥t̂ − to∥L2(D) ∥r̂ − ro∥L2(D) is o
(

1√
n

)
and

∥t̂− to∥2L2(D) is o(1/n). Therefore,
√
n
∥∥∥E[(t̂(X)− to(X)) (r̂(X)− ro(X))X

]∥∥∥ = o(1).

Combining the two terms, we conclude that
√
nDggM

(
θo, ḡ

)
[ĝ − go] = op(1).

This completes the proof.

Lemma B.12. The following holds

E[∥m(θo, r, t;X,Y, T )−m(θo, ro, to;X,Y, T )∥2] = O
(
||t− to||2L2(D) + ||r− ro||2L2(D)

)
Given that ||t̂ − to||L2(D) = o(1) and ||̂r − ro||L2(D) = o(1), we have
E[∥m(θo, ĝ, Z)−m(θo, g0;Z)∥2] = o(1)

Proof. We have
m(θo, r, t;X,Y, T )−m(θo, ro, to;X,Y, T ) (26)

=a−2
(
⟨θo, X⟩(t(X)2 − to(X)2) + (r(X)t(X)− ro(X)to(X))T + (r0(X)to(X)2 − r(X)t(X)2) + aY (to(X)− t(X))

)
X

(27)
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(r(X)t(X)− ro(X)to(X))T + (r0(X)to(X)2 − r(X)t(X)2)

=(r(X)t(X)− ro(X)to(X))(T − to(X)) + r(X)t(X)(to(X)− t(X))

=(r(X)(t(X)− to(X))− to(X)(r(X)− ro(X)))(T − to(X)) + r(X)t(X)(to(X)− t(X))

=r(X)(t(X)− to(X))(T − to(X))− to(X)(r(X)− ro(X))(T − to(X)) + r(X)t(X)(to(X)− t(X))

Using the fact that ||X||2 ≤ 1, we have

E
(
m(θo, r, t;X,Y, T )−m(θo, ro, to;X,Y, T )

)2
i
=

√
da−2E

[(
⟨θo, X⟩(t(X)− to(X))(t(X) + to(X))

+ r(X)(t(X)− to(X))(T − to(X))− to(X)(r(X)− ro(X))(T − to(X)) + r(X)t(X)(to(X)− t(X)) + aY (to(X)− t(X))
)2]

(28)

The desired result is immediate via the the identity that (a+b+c+d+e)2 ≤ 5(a2+b2+c2+d2+e2)
except for the following terms

E
[
r(X)2(t(X)− to(X))2(T − to(X))2

]
=E

[
E
[
r(X)2(t(X)− to(X))2(T − to(X))2 | X

]]
=E

[
r(X)2(t(X)− to(X))2Var(T | X)

]
≤ C||t− to||2L2(D)

for some constant C.

One can similarly argue that

E
[
to(X)2(r(X)− ro(X))2(T − to(X))2

]
≤ C|r− ro|2L2(D)

Finally this gives us

E
(
m(θo, r, t;X,Y, T )−m(θo, ro, to;X,Y, T )

)2
i
≤ C

(
||t− to||2L2(D) + (4S + 1)||r− ro||2L2(D)

)

Claim B.13. Each component of the matrix j(to, X) satisfies

E
[
jpq(to, X)2

]
= O(1).

Furthermore, the components of the moment function satisfy

E
[
mq(θo, ro, to)

2
]
= O(1).

Proof. The first statement follows directly from the boundedness of to(X) and the boundedness of
X . For the second statement, note that

E
[
mq(θo, yo, to)

2
]
≤ 2a−2

(
E
[
to(X)2

]
+ E

[
a−2⟨X, θo⟩2 to(X)2

]
· E
[
yo(X)

(
T − to(X)

)2])
.

Since the functions ro and to are bounded and the variance of T is also bounded, it follows that

E
[
mq(θo, ro, to)

2
]
= O(1).

Invoking Lemma B.5, we conclude that the estimator θ̂ obtained via minimising orthogonal loss
Lortho is asymptotically linear. In particular,

√
n
(
θ̂ − θo

)
= − 1√

n

n∑
i=1

IF (θo, ro, to;Xi, Yi, Ti) + op(1), (29)
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where the influence function is given by

IF (θo, ro, to;X,Y, T ) = E[a−2to(X)2XXT ]−1m(θo, ro, to;X,Y, T )

Note that by the definition of θo we have E [m(θo, yo, to;X,Y, T )] = 0. Now

m(θo, ro, to;X,Y, T ) =
1

a

( ⟨X, θ⟩
a

to(X)2 + yo(X)
(
T − to(X)

)
− Y to(X)

)
X (30)

=
1

a

(
yo(X)

(
T − to(X)

)
− to(X)

(
Y − yo(X)

))
(31)

Thus using the fact that E[T | X] = to(X),E[Y | X] = yo(X) and Var(Y | X) = 1− yo(X)2, we
get

Covar(m(θo, ro, to;X,Y, T )) =
1

a2
E
[(

to(X)2(1− yo(X)2) + Var(T |X) · yo(X)2
)
XXT

]
=

1

a4
E
[
to(X)3XXT

]
The last step follows from the fact that (Claim B.24). Thus, the covariance of the influence function
is given by

Covar(IF ) = E[to(X)2XXT ]−2E[to(X)3XX⊤]

In particular, this concludes the proof of Theorem 4.1. We restate it below for clarity.

Theorem. Let θ̂ortho minimize the orthogonal loss Lortho. If E[ t0(X)2XX⊤ ] is invertible, then

√
n(θ̂ortho − θo)

d→ N (0,Σ)

where

Σ = E

[(
a tanh(a⟨θo, X⟩)

⟨θo, X⟩

)2

XX⊤

]−2

E

[(
a tanh(a⟨θo, X⟩)

⟨θo, X⟩

)3

XX⊤

]
.

From claim Claim B.25 and the fact that tanh x
x ≤ 1, one can observe that this variance Σ is smaller

than the variance computed in Lemma B.2.

B.4 Guarantees for Orthogonal Loss Lortho−2

In this section, we prove the following theorem which is the analog of Theorem 4.1 while minimising
the orthogonal loss Lortho−2. We obtain identical asymptotic rates as obtained in Lortho.

Theorem B.14. Let θ̂ortho minimize the orthogonal loss Lortho−2. If E[ t0(X)2XX⊤ ] is invertible,
then

√
n(θ̂ortho − θo)

d→ N (0,Σ)

where

Σ = E

[(
a tanh(a⟨θo, X⟩)

⟨θo, X⟩

)2

XX⊤

]−2

E

[(
a tanh(a⟨θo, X⟩)

⟨θo, X⟩

)3

XX⊤

]
.

We now define the moment functions as defined in Appendix B.2.1. Further in this setup, we use ℓ(·)
to denote the pointwise version of orthogonal loss Lortho−2. Recall that the nuisance function g(·)
denotes the tuple of nuisance functions (y, t) with ĝo(·) = (yo, to) denoting their true values. Further
the nuisance function ĝ = (ŷ, t̂) denotes an estimate of true nuisance function ĝo(·) = (yo, to) after
the first stage. Let θo ∈ Rd denote the true parameter vector. We define the moment function by

m(θ, y, t;X,Y, T ) :=
1

2
∇θℓ(θ, r;X,Y, T ),
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which, after algebraic manipulation, can be written as

m(θ, y, t;X,Y, T ) =
1

a

( ⟨X, θ⟩
a

t(X)2 + y(X)
(
T − t(X)

)
− Y t(X)

)
X.

In addition, we introduce the auxiliary functions:

j(t;X) :=
t(X)2

a2
XXT and v(y, t;X,Y, T ) := (1/a)

(
−Y t(X) + y(X)

(
T − t(X)

))
X (32)

We also define the expectation-based mappings:

M(θ, y, t) := E
[
m(θ, y, t;X,Y, T )

]
, J(t) := a−2E

[
t(X)2 XXT

]
,

V (y, t) := a−1E
[(

(to(X)− t(X))y(X)− yo(X) t(X)
)
X
]
.

A straightforward calculation shows that
M(θ, y, t) = J(t) θ + V (y, t).

Claim B.15 (Orthogonality of the loss and continuity (assumption B.3)). DgM(θo, g0)[ĝ − g0] = 0
and DggM(θ, g)[g − go] is continuous in G

Proof.
Dgm(θ0, g0, X, Y, T )[ĝ − g0] =2a−2X⟨X, θ0⟩t0(X)(t̂(X)− t0(X))− a−1Xy0(X)(t̂(X)− t0(X))

− a−1Y X(t̂(X)− t0(X)) + a−1(T − t0(X))(ŷ(X)− y0(X))

DgM(θ0, g0)[ĝ − g0] = E[Dtm(θ0, t0, y0, X, Y, T )[t̂− t0, ŷ − y0]]

= (1/a)E
[
E
[
X(2a−1⟨X, θ0⟩t0(X)− y0(X)− Y )(t̂(X)− t0(X))|X

]]
+ E[E[(T − t0(X))(ŷ(X)− y0(X))|X]]

Note E[(T − t0(X))(ŷ(X)− y0(X))|X] = 0 since E[T |X] = t0(X).

Also, observe that E[2⟨X, θ0⟩t0(X)− y0(X)− Y |X] = 0 since ⟨X, θ0⟩ = ay0(X)
t0(X) and E[Y |X] =

y0(X).

Thus, we can show that Dgm(θ0, g0, X, Y, T )[ĝ − g0] = 0

The continuity of the second order functional derivative naturally follows.

The following assumption comes from the assumption in Theorem B.14.
Assumption B.16 (Invertibility of the Jacobian). We assume that the Jacobian matrix satisfies

∥J(to)−1∥op =
∥∥∥E[−a−2to(X)2 XXT

]∥∥∥
op

≤ C,

for some constant C > 0. This claim is justified under mild conditions on the boundedness of the
reward and eigen values of the data matrix E[XXT ].

Furthermore, we assert the following claim regarding the boundedness of the nuisance function
to(X).

We now state our assumptions on the convergence rates of the nuisance function estimators.
Claim B.17 (Nuisance Estimation Rates). There exists a black-box learner such that its root mean
squared error (RMSE) satisfies

∥t̂− to∥L2(D) = o
( 1

nβ1

)
with β1 ≥ 1

4
,

and

∥ŷ − yo∥L2(D) = o
( 1

nβ2

)
with β2 ≥ 1

2
− β1.

These conditions ensure that the nuisance estimates converge sufficiently fast as the sample size n
increases.
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A discussion on how these slow rates can be attained in provided in Appendix B.5.

Claim B.18.

to(X) =
tanh

(
⟨θo, X⟩

)
⟨θo, X⟩

≤ 1.

A brief inspection using the properties of the hyperbolic tangent function (notably, that tanh(x) ≤ x
for x ≥ 0) confirms this bound.

We now show that assumptions in Assumption B.4 hold for our loss function using the following four
claims and lemmas namely Claim B.19, Claim B.20, Lemma B.21 and Claim B.22.

Claim B.19. The jacobian J(·) satisfies J(t̂)− J(to) = o(1) and the qth order moment conditions

hold i.e. i.e. supg∈G

(
E [||m(θo, g, Z)||q]1/q

)
and supg∈G

(
E [||j(g, Z)||q]1/q

)
is bounded.

Proof. Write

J(t)− J(to) = a−2E
[(
t(X)2 − to(X)2

)
XXT

]
.

Since the operator norm is bounded by the Frobenius norm, we have

∥J(t)− J(to)∥op ≤ ∥J(t)− J(to)∥F .

Using the Frobenius norm, we estimate

∥J(t)− J(to)∥F = a−2
∥∥∥E[(t(X)2 − to(X)2

)
XXT

]∥∥∥
F
.

Using the boundedness of X (i.e. ∥X∥ ≤ 1), we have

∥XXT ∥F = ∥X∥2 ≤ 1.

Notice that

|t(X)2 − to(X)2| = |t(X)− to(X)| |t(X) + to(X)|.

Both t and to are uniformly bounded (|t(X)|, |to(X)| ≤ 1), then |t(X) + to(X)| ≤ 2. Hence,
|t(X)2 − to(X)2| ≤ 2 |t(X)− to(X)|. Thus, we obtain

∥J(t)− J(to)∥F ≤ a−2E
[
2 |t(X)− to(X)|·

]
= 2a−2E

[
|t(X)− to(X)|

]
.

Finally, applying Jensen’s inequality (or noting that E[|t(X)− to(X)|] ≤ ∥t− to∥L2(D)) yields

∥J(t)− J(to)∥op ≤ 2a−2∥t− to∥L2(D).

This concludes the proof of the first part as the nuisance estimators are consistent i.e ||ĝ−go||L2(D) =
op(1)

We now check the moment condition. This naturally follows from the fact that E[Tα | X] is bounded
for every α ≥ 1 and the fact that rest all random variables or functions are bounded.

Claim B.20. Let g be a vector-valued function defined as

g(x) =

[
t(x)
y(x)

]
.

Then, for any ḡ = τg + (1− τ)go with τ ∈ [0, 1], we have
√
nDggM

(
θo, ḡ

)
[g − go] = op(1).
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Proof. We wish to control the second-order term in the expansion of M(θo, g) around go. By
Taylor’s theorem in the direction g − go, we have

DggM
(
θo, ḡ

)
[g − go] =

∂2

∂s2
M
(
θo, ḡ + s (g − go)

)∣∣∣
s=0

.

This term decomposes into two parts:

DggM
(
θo, ḡ

)
[g − go] =

∂2

∂s2

(
J
(
t̄+ s (t− to)

)
θo
)∣∣∣

s=0︸ ︷︷ ︸
(I)

+
∂2

∂s2
V
(
t̄+ s (t− to), ȳ + s (y − yo)

)∣∣∣
s=0︸ ︷︷ ︸

II

.

(33)

First Term (I): For J(t) = a−2E[t(X)2XXT ], we have

∂2

∂s2

((
t̄(X) + s (t(X)− to(X))

)2)∣∣∣
s=0

= 2 (t(X)− to(X))2.

Thus,

∂2

∂s2

(
J
(
t̄+ s (t− to)

)
θo
)∣∣∣

s=0
= 2a−2 E

[
(t(X)− to(X))2 XXT

]
θo.

Since ∥XXT ∥op is bounded (using ∥X∥ ≤ 1) and θo is fixed, it follows that∥∥∥2E[(t(X)− to(X))2 XXT
]
θo

∥∥∥ = O
(
∥t− to∥22

)
.

Under Claim B.17 we have ∥t− to∥22 = o
(

1√
n

)
, so that

√
nO
(
∥t− to∥22

)
= o(1).

Second Term (II): For the function V (t, y), we have

∂2

∂s2
V
(
t̄+ s (t− to), ȳ + s (y − yo)

)∣∣∣
s=0

= a−1E
[
(t(X)− to(X)) (y(X)− yo(X))X

]
.

Using the boundedness of X and applying the Cauchy–Schwarz inequality, we obtain∥∥∥E[(t(X)− to(X)) (y(X)− yo(X))X
]∥∥∥ ≤ C ∥t− to∥L2(D) ∥y − yo∥L2(D),

for some constant C > 0. By Claim B.17, the product ∥t − to∥L2(D) ∥y − yo∥L2(D) is o
(

1√
n

)
.

Therefore,
√
n
∥∥∥E[(t(X)− to(X)) (y(X)− yo(X))X

]∥∥∥ = o(1).

Combining the two terms, we conclude that
√
nDggM

(
θo, ḡ

)
[g − go] = op(1).

This completes the proof.

Lemma B.21. The following holds

E[∥m(θo, y, t;X,Y, T )−m(θo, yo, to;X,Y, T )∥2] = O
(
||t− to||2L2(D) + ||y − yo||2L2(D)

)
. Given that ||t̂ − to||L2(D) = o(1) and ||̂r − ro||L2(D) = o(1), we have
E[∥m(θo, ĝ, Z)−m(θo, g0;Z)∥2] = o(1)

Proof. We have

m(θo, y, t;X,Y, T )−m(θo, yo, to;X,Y, T )

=a−1
(
a−1⟨θo, X⟩(t(X)2 − to(X)2) + (y(X)− yo(X))T + y0(X)to(X)− y(X)t(X) + Y (to(X)− t(X))

)
X
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We can further write the term
yo(X)to(X)− y(X)t(X) = (yo(X)− y(X))to(X) + y(X)(to(X)− t(X))

Using the fact that ||X||2 ≤ 1, we have

E
(
m(θo, y, t;X,Y, T )−m(θo, yo, to;X,Y, T )

)2
i
=

√
da−1E

[(
a−1⟨θo, X⟩(t(X)− to(X))(t(X) + to(X))

+ (y(X)− yo(X))(T − to(X)) + y(X)(to(X)− t(X)) + Y (to(X)− t(X))
)2]

The desired result is immediate via the the identity that (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2)
except for the following term

E
[(

(y(X)− yo(X))2(T − to(X))
)2]

= E
[
E
[(

(y(X)− yo(X))2(T − to(X))
)2

| X
]]

= E
[
(y(X)− yo(X))4E

[(
(T − to(X))

)2
| X
]]

= E
[
(y(X)− yo(X))2Var(T | X)

]
≤ E

[
(y(X)− yo(X))2

]
The last inequality follows since Var(T | X) ≤ 1. Finally this gives us

E
(
m(θo, y, t;X,Y, T )−m(θo, yo, to;X,Y, T )

)2
i
≤ (4S + 1)||t− to||2L2(D) + (4S + 1)||y − yo||2L2(D)

Claim B.22. Each component of the matrix j(to, X) satisfies

E
[
jpq(to, X)2

]
= O(1).

Furthermore, the components of the moment function satisfy

E
[
mq(θo, yo, to)

2
]
= O(1).

Proof. The first statement follows directly from the boundedness of to(X) and the boundedness of
X . For the second statement, note that

E
[
mq(θo, yo, to)

2
]
≤ 2a−2

(
E
[
to(X)2

]
+ E

[
a−2⟨X, θo⟩2 to(X)2

]
· E
[
yo(X)

(
T − to(X)

)2])
.

Since the functions yo and to are bounded and the variance of T is also bounded , it follows that

E
[
mq(θo, yo, to)

2
]
= O(1).

Invoking Lemma B.5 obtained via minimising orthogonal loss Lortho−2 is asymptotically linear. In
particular,

√
n
(
θ̂ortho − θo

)
= − 1√

n

n∑
i=1

IF (θo, yo, to;Xi, Yi, Ti) + op(1), (34)

where the influence function is given by

IF (θo, yo, to;Xi, Yi, Ti) = E[a−2to(X)2XXT ]−1m(θo, yo, to;Xi, Yi, Ti)

Note that by the definition of θo we have E [m(θo, yo, to;X,Y, T )] = 0. Now

m(θo, to, yo;X,Y, T ) =
1

a

( ⟨X, θ⟩
a

to(X)2 + yo(X)
(
T − to(X)

)
− Y to(X)

)
X (35)

=
1

a

(
yo(X)

(
T − to(X)

)
− to(X)

(
Y − yo(X)

))
(36)
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Thus using the fact that E[T | X] = to(X),E[Y | X] = yo(X) and Var(Y | X) = 1− yo(X)2, we
get

Covar(m(θo, yo, to;X,Y, T )) =
1

a2
E
[(

to(X)2(1− yo(X)2) + Var(T |X) · yo(X)2
)
XXT

]
(37)

=
1

a4
E
[
to(X)3XXT

]
(38)

The last step follows from the fact that (Claim B.24). Thus, the covariance of the influence function
is given by

Covar(IF ) = E[to(X)2XXT ]−2E[to(X)3XX⊤]

This completes the proof of theorem B.14.

B.5 Estimation of nuisance functions in first stage

Plug-in loss:

In this setup, one can first estimate r(·) by minimizing the log-loss as described in Appendix B and
thus obtain ||̂r(·)− r(·)||L2(D) = O

(
eS√
n

)
. Now plug in this to estimate t̂(·) = tanh r(·)

r(·) , we can get

||t̂− to||L2(D) = O
(

eS√
n

)
using Lipschitzness.

For orthogonal loss Lortho−2, a similar plug-in would give ||ŷ − yo||L2(D) = O
(

eS√
n

)
This provides the slow rates that we desire in Claim B.8 and Claim B.17 for orthogonal losses Lortho

and Lortho−2 respectively.

Separate nuisance estimation:

In this setup, we separately estimate the nuisance function t(·) and r(·). The reward nuisance function
r(·) can be estimated by minimizing the log-loss as described above to obtain ||̂r(·)− r(·)||L2(D) =

O
(

eS√
n

)
.

To estimate time, we get first argue that the Ws,2 Sobolev norm [AF03] (with s ≥ 1) of to is bounded
using the composition theorem [Mos66]. More specifically, one can show that Ws,2 Sobolev norm
of to(·) is given by O (Ss!) as the sth order derivative of tanh x

x scales as s!. Now applying kernel
ridge regression with a Sobolev kernel associated with the RKHS W s,2 [AF03, Wai19] to get the
desired slow rate i.e. ||t̂− to||L2(D) = O

(
s!Sn− 2s

2s+d

)
. One can choose the value of s appropriately

to obtain the desired rates. Choosing s sufficiently high can give us faster decay with number of
samples n but the pre-muliptlier s! would be higher.

For Lortho−2, one can bound ||ŷ − yo|| = O
(

eS√
n

)
via plug-in.

We thus get the desired slow rates to satisfy Claim B.8 and Claim B.17

B.6 Inequalities used in asymptotic results

We now prove two inequalities that have been used in the main paper. However, we restrict ourselves
to the case where a = 1 and tnondec = 0.
Claim B.23. Var(T | X) ≤ (E[T | X])2

Proof. Now consider the expression of Var(T | X) from Appendix A.1. Now denoting r(X) by r,
we have

Var(T | X) = a
e4ar − 1− 4are2ar

r3(e2ar + 1)2
and (E[T | X])2 =

a2(e2ar − 1)2

r2(e2ar + 1)2
(39)
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Observe that it is sufficient to consider r ≥ 0 as both functions are symmetric. Thus, it is sufficient to
show that ar(e2ar − 1)2 ≥ e4ar − 1− 4are2ar ∀r ≥ 0. Now define v = ra and we now define the
function f(v) as follows and argue that it is non-negative.

f(v) := v
(
e2v − 1

)2 − e4v − 1− 4ve2v = (v − 1)e4v + 2ve2v + v + 1 (40)

=
(
v(e2v + 1)− (e2v − 1)

)
(e2v + 1) (41)

Since e2v + 1 > 0, it suffices to show

g(v) := v(e2v + 1)− (e2v − 1) ≥ 0.

Differentiating w.r.t. v gives

g′(v) = (2v − 1)e2v + 1, g′′(v) = 4ve2v ≥ 0.

Hence g′(v) is monotonically increasing, so

g′(v) ≥ g′(0) = 0,

which in turn implies

g(v) ≥ g(0) = 0.

Thus the desired result follows.

Claim B.24. Define yo(X) = E[T | X] and to(X) = E[T | X]. We then have

to(X)2(1− yo(X)2) + Var(T | X)yo(X)2 =
to(X)3

a2

Proof. This follows from the expressions in Appendix A.1. For brevity, we refer to r(X) by r in this
proof.

Now consider

to(X)2(1− yo(X)2) + Var(T | X)yo(X)2 (42)

=
a2

r2

(
exp(2ar)− 1

exp(2ar) + 1

)2(
4 exp(2ar)

(exp(2ar) + 1)2

)
+

a

r3

(
exp(4ar)− 1− 4ar exp(2ar)

(exp(2ar) + 1)2

)(
exp(2ar)− 1

exp(2ar) + 1

)2

(43)

=
a

r3
(exp(4ar)− 1)(exp(2ar)− 1)2

(exp(2ar) + 1)4
=

to(X)3

a2
(44)

The following claim would be useful to lower bound 4a2σ(2aro(X))σ(−2ro(X)) by to(X)2

a2 .

Claim B.25. 4a2σ(2ax)σ(−2ax) ≤
(

tanh(ax)
ax

)2
for every x, a ≥ 0 where σ(.) denotes the sigmoid

function.

Proof. Since both functions are symmetric, it is sufficient to consider the case where t ≥ 0. Observe
that

σ(2ax)σ(−2ax) =
e2ax

(e2ax + 1)2
and

(
tanh(ax)

ax

)2

=

(
e2ax − 1

a2x2(e2ax + 1)

)2

(45)

Now substitute y = ax and thus, to prove the desired result, it is sufficient to show that e2y − 1 ≥
2yey ⇔ ey − e−y − 2y ≥ 0. Now define g(y) = ey − e−y − 2y and thus, g′(y) = ey + e−y − 2 ≥ 0
from AM-GM inequality. This implies g(y) ≥ g(0) = 0 proving the desired result.
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C Finite sample rates for General reward functions

Given a set of n samples {xi}ni=1, each drawn i.i.d from D, consider the empirical distribution
Pn(x) :=

1
n

∑n
i=1 δxi

(x) which places point mass 1
n at each sample. Thus, the emperical mean is

denoted by Pn(f) =
1
n

∑n
i=1 f(xi) and the population mean Pf = EX∼D[f(X)].

Recall from Section 5 we use critical radius arguments to bound the excess risk ϵ(r̂, ĝ) which requires
the loss function to be bounded at every data-point. However, in our setup the response time T may
be unbounded though it has good concentration properties since its every higher order moment is
bounded [WY08]. This aligns with practical reality, because in real-world settings the decision time
is usually bounded.

One may write

P(T > B̆ | X) ≤ E[T ζ ]

B̆α
≤ M(ζ)

B̆α
for every ζ ≥ 1 (46)

The function M(α) may be computed from the αth moment of the decision time T [WY08]. De-
pending on the error tolerance, one can choose the bound B̆ appropriately. We now define the loss
function Lortho with bounded response time T̆ .

C.1 Bounding the loss function Lortho with bounded decision time

We now introduce some new notations with respect to the decision time. Let B̆ denote the bound at
which the decision time is capped. The capped response time T̆ := min(B̆, T ) and let t̆o(X) = E[T̆ |
X]. Further, let t̆ denote the nuisance function corresponding the the capped decision time and let ˆ̆t
denote an estimate of t̆o. We further overwrite Z to denote the tuple of random variables (X,Y, T̆ ).
The joint nuisance pair is denoted by g = (r, t̆) and let go = (r, t̆o). Now, assume that t̆o ∈ T and
G denotes the joint nuisance class R × T with g ∈ G. Before, we start the analysis we state the
following bound on to − t̆o. To bound, we use the following result i.e. E[X] =

∫
x
P(X ≥ x)dx for a

non-negative random variable X .

Recall that S denotes an absolute bound on the reward function r(·) which we assume to be larger
than 4.

||to − t̆o||L∞ =

∫ ∞

z=B̆

P(T > z)dz ≤ M(ζ)

ζB̆ζ−1
(47)

The first equality follows as T − T̆ > z implies T ≥ B̆ + z for every positive real z.

Thus the orthogonalized loss function from (6) is redefined as

L̆ortho(r, r, t̆) = E
[(

Y − (T̆ − t̆(X))r(X)− r(X)t̆(X)
)2]

(48)

Now, we show that verify each of the 4 assumption from [FS23, Section 3] is satisfied under the new
loss function L̆ortho. Observe that the first assumption of orthogonality is not satisfied here but with
a bias decaying with the threshold B̆ that is characterized by ||to(·)− t̆o(·)||L2(D). Recall that we
have a L∞ bound on the difference from Equation (47).

Lemma C.1 (Approximately Orthogonal loss). For all r ∈ R and g ∈ G, we have

|DgDrL̆ortho(ro, go)[r − ro, g − go]| ≤ S2||to − t̆o||L∞ ||t̆− t̆o||L2(D)||r − ro||L2(D) (49)
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Proof. Now consider∣∣∣DgDrL̆ortho(ro, go)[r − ro, g − go]
∣∣∣ (50)

(a)
=
∣∣∣2E [(T̆ − t̆o(X))t̆o(X)(r(X)− ro(X))(r(X)− ro(X))

]
− 2E

[
(Y − t̆o(X)ro(X))(t̆(X)− t̆o(X))(r(X)− ro(X))

]∣∣∣
(51)

≤S2E
[
|(to(X)− t̆o(X))(t̆(X)− t̆o(X))(r(X)− ro(X))|

]
(52)

≤S2||to − t̆o||L∞ ||t̆− t̆o||L2(D)||r − ro||L2(D) (53)

Observe that the first term in (a) goes to zero via conditioning on X as E[T̆ | X] = t̆o(X). The
second term in (a) is simplified using the AM-GM-RMS inequality.

Lemma C.2 (First order condition).
∣∣∣DrL̆ortho(ro, go)[r − ro]

∣∣∣ ≤ 2S||to − t̆o||L2(D)||r− ro||L2(D)

Proof. Now consider the following functional derivative

∣∣∣DrL̆ortho(ro, go)[r − ro]
∣∣∣ = ∣∣∣2E [(Y − (T̆ − t̆o(X))ro(X)− ro(X)t̆o(X))t̆o(X)(r(X)− ro(X))

]∣∣∣
(54)

(a)

≤ 2SE
[∣∣(to(X)− t̆o(X)))(r(X)− ro(X))

∣∣] (55)

≤2S||to − t̆o||L2(D)||r − ro||L2(D) (56)

(a) follows via conditioning on X and the fact that E[Y |X] = to(X)ro(X). .

We now prove the smoothness condition from [FS23, Assumption 3]. In this setup, ||.||G is defined
from (9) (denoted by (R, α)).

Lemma C.3 (Higher-Order Smoothness of L̆ortho). Let β1 = 2 and β2 = 4S. Then L̆ortho satisfies:

1. Second-order smoothness w.r.t. target. For all r ∈ R and all r̄ ∈ star(R, ro),

D2
r L̆ortho(r̄, g0)

[
r − ro, r − ro

]
≤ β1 ∥r − ro∥2L2(D).

2. Higher-order smoothness. There exists c ∈ [0, 1] such that for all r ∈ star(R, ro), g ∈ G,
and ḡ ∈ star(G, g0),∣∣D2

gDrL̆ortho(ro, ḡ)
[
r − ro, g − g0, g − g0

]∣∣ ≤ β2 ∥r − ro∥1−r
L2(D) ∥g − g0∥2G .

Proof. In this proof, ℓ(·) denotes the pointwise version of the orthogonal loss L̆ortho.

First, observe that D2
rℓ(r̄, go, X, Y, T )[r − ro, r − ro] = 2t2o(X)(r(X) − ro(X))2. Thus,

E
[
D2

rℓ(r̄, go, X, Y, T )[r − ro, r − ro]
]
≤ 2||θ − θo||22 where ro(x) = ⟨θo, x⟩ for every x ∈ R2d.

The last inequality follows from the fact that to(X1, X2) ≤ 1.

E
[
D2

gDrℓ(ro, ḡ, X, Y, T )[r − ro, g − go, g − go]
]

=E
[
2ro(X)(t(X)− to(X))2(r(X)− ro(X))− 4to(X)(t(X)− to(X))(r(X)− ro(X))(r(X)− ro(X))

]
(57)

≤4S||g − go||2(R,α)||r − ro||1−α
L2(D) (58)

(59)

The last statement follows from the definition.
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Lemma C.4 (Strong Convexity of L̆ortho). The population risk is strongly convex w.r.t. the target

parameter. There exist constants λ, κ > 0 with λ =
(

tanh(S)
S

)2
and κ = 0 such that for all r ∈ R,

g ∈ G and all r̄ ∈ star(R, ro),

D2
rLD(r̄, g)

[
r − ro, r − ro

]
≥ λ ∥r − ro∥2L2(D) − κ ∥g − g0∥

4
1+r
G ,

where r ∈ [0, 1] is as in Assumption C.3.

Proof. First observe that D2
rℓ(r̄, g,X, Y, T )[r − ro, r − ro] = 2t2(X)(r(X)− ro(X))2. Thus,

E
[
D2

rℓ(r̄, g,X, Y, T )[r − ro, r − ro]
]
= 2E[t2(X)(r(X)− ro(X))2] (60)

Now considering a lower bound of tanh(S)
S on every function in t ∈ T , we prove the lemma.

With this, we now prove the main theorem below using [FS23, Theorem 1].

Theorem C.5. Suppose r̂ minimizes the orthogonal loss L̆ortho and satisfies

L̆ortho(r̂, ĝ)− L̆ortho(ro, ĝ) ≤ ϵ(r̂, ĝ)

. With S denoting an absolute bound on ro. Then the two stage meta-algorithm 1 with orthogonal
loss L̆ortho guarantees

||r̂ − ro||2L2(D) ≤ CS2
(
ϵ(r̂, ĝ) + ||to − t̆o||L∞

)
+ 4S

4
1+α ||ĝ − go||

4
1+α

(R,α) (61)

Further, the error term ||to − t̆o||L∞ can be bounded in (47) in terms of bound B̆. One can choose
moment ζ ≥ 1 to get the largest bound.

Proof. Applying [FS23] 5, we observe that

||r̂ − ro||2L2(D)

≤4S2
(
ϵ(r̂, ĝ) + 2S||to − t̆o||L2(D)||r̂ − ro||L2(D) + S2||to − t̆o||L∞ ||t̆− t̆o||L2(D)||r̂ − ro||L2(D)

)
+ 4S

4
1+α ||ĝ − go||

4
1+α

(R,α) (62)

Applying the AM-GM inequality, we have

||r̂ − ro||2L2(D) ≤CS2ϵ(r̂, ĝ) + S2||to − t̆o||2L∞
(1 + |t̆− t̆o||2L2(D)) + 4S

4
1+α ||ĝ − go||

4
1+α

(R,α) (63)

≤CS2
(
ϵ(r̂, ĝ) + ||to − t̆o||L∞

)
+ 4S

4
1+α ||ĝ − go||

4
1+α

(R,α) (64)

We now prove the following corollaries from Section 5. As we discussed above, we cannot instantiate
Theorem 5.1 directly to obtain error rates using critical radius as the critical radius crucially invokes
Talagrand’s inequality which requires the loss functions to be point-wise bounded. We thus invoke
Theorem C.5 with bounded loss function L̆ortho by capping the decision time T by a threshold B̆.

5Although [FS23] assumes exact orthogonality of the loss, any remaining bias contributes only an additive
term—which we account for here. This immediately follows from the proof of [FS23, Theorem 1].

34



C.2 Proof of Corollary 5.3 and Corollary 5.4

Corollary 5.3 (Data-splitting). Let δn be the critical radius of the star-shaped class

star
{
r − ro : r ∈ R, 0

}
,

and define δdsn = max
{
δn,

√
c/n
}

for some constant c > 0. Then under data-splitting, with
probability at least 1− c1 exp

(
−c2n(δ

ds
n )2

)
, Meta-Algorithm 1 satisfies

ϵ(r̂, ĝ) ≤ 9S B̆δdsn ∥r̂ − ro∥L2(D) + 10S2 (δdsn )2,

for universal constants c1, c2 > 0. Consequently for every ζ ≥ 1,

∥r̂ − ro∥2L2(D) ≤ poly(S)

(
B̆
(
δdsn
)2

+
M(ζ)

ζB̆ζ−1

)
+ 4S

4
1+α ∥ĝ − go∥

4
1+α
(R,α),

holds with the same probability.

Proof. We denote as the population loss and Lortho
S (.) as the sample loss evaluated on a set of n data

points with S = {Z1. . . . , Zn}.

We denote L̆ortho
S (·) as the sample loss evaluated on the set of n data-points S = {Z1, . . . , Zn}.

Further, denote ℓ̆ortho as the point-wise loss version of L̆ortho.

Observe that it is sufficient to show that the following bound is satisfied. This proves the following
corollary as minimizing the empirical loss ensures (L̆ortho

S (r̂, ĝ)− L̆ortho
S (ro, ĝ)) ≥ 0.

∣∣∣L̆ortho
S (r, ĝ)− L̆ortho

S (ro, ĝ))− (L̆ortho(r, ĝ)− L̆ortho(ro, ĝ))
∣∣∣

≤ 9SB̆δdsn ||r − ro||L2(D) + 10(δdsn )2 ∀r ∈ R (65)

The proof of this analysis follows standard techniques [Wai19, Theorem 14.20]. Let Ro := star({r−
ro : r ∈ R}, 0) be the convex hull defined.

Zn(ζ) := sup
||r−ro||L2(D)≤ζ

||Pn(ℓ̆
ortho(r, ĝ, ·)− ℓ̆ortho(ro, ĝ, ·))− P(ℓ̆ortho(r, ĝ, ·)− ℓ̆ortho(ro, ĝ, ·))||

(66)

We now define two events as function of nuisance g(.). Let

Eo = {Zn(δ
ds
n ) ≥ 9S

(
δdsn
)2}

and

E1 =
{
r ∈ R

∣∣Pn

(
ℓ̆ortho(r, ĝ, ·)− ℓ̆ortho(ro, ĝ, ·)

)
− P

(
ℓ̆ortho(r, ĝ, ·)− ℓ̆ortho(ro, ĝ, ·)

)
≥ 10Sδdsn |r − ro|L2(D) and ||r − ro||L2(D) ≥ δdsn

}
.

(67)

If the bound in (65) does not hold true either event E0 or event E1 must be true. The probability of
the event E1 can be bounded using same peeling arguments from [Wai19, Theorem 14.1].

To bound the probability of Eo, we first employ Talagrand’s concentration for empirical processes to
obtain for every nuisance function g.

P (Zn(ζ) ≥ 2E[Zn(ζ)] + u) ≤ c1 exp

(
− c2nu

2

ζ2 + u

)
(68)

We shall now crucially use the fact that nuisance function ĝ(.) is conditionally independent of the
data-set Z1, . . . Zn.
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E [Zn(ζ)]
(i)

≤2E

[
sup

r∈R:||r−ro||L2(D)≤ζ

1

n

∣∣∣∣∣∑
i

ϵi
(
ℓortho(r, ĝ, Zi)− ℓortho(ro, ĝ, Zi)

)∣∣∣∣∣
]

(69)

(ii)

≤ 2E

[
sup

r∈R:||r−ro||L2(D)≤ζ

1

n

∣∣∣∣∣∑
i

SB̆ϵi(r − ro)

∣∣∣∣∣
]

(70)

(iii)

≤ CSB̆Radn(Ro, ζ) ≤ 4SB̆rδdsn valid for all ζ ≥ δdsn (71)

The step (i) follows from symmetrization argument, step (ii) follows from the independence of ĝ with
respect to data-set Z1, . . . , Zn and bound B̆ on decision time T̆ and step (iii) follows from our choice
of δdrn .

Now apply the Talagrand’s concentration lemma to bound the probability of event Eo and conclude
the proof.

The last statement follows on applying the bound ϵ(r̂, ĝ) to Theorem C.5 and bounding the rate
||to − t̆o||L∞ using Equation (47).

Next, we prove the corollary for data-reuse for L̆ortho. Observe that the critical radius is computed
over a bigger class for the case of data-reuse as the independence of nuisance estimate ĝ and the
data-set Z1, . . . , Zn cannot be assumed.
Corollary 5.4 (Data-reuse). Let δn be the critical radius of

star
{
ℓortho(r, g; ·)− ℓortho(ro, g; ·) : r ∈ R, g ∈ G

}
,

and define δdrn = max{δn,
√

c/n} for some constant c > 0. Then under data-reuse, with probabil-
ity at least 1− c1 exp

(
−c2n(δ

dr
n )2

)
, Meta-Algorithm 1 satisfies

ϵ(r̂, ĝ) ≤ 9S δdrn ∥r̂ − ro∥L2(D) + 10 (δdrn )2,

for universal constants c1, c2 > 0. Consequently for every ζ ≥ 1,

∥r̂ − ro∥2L2(D) ≤ poly(S)

(
(δdrn )2 +

M(ζ)

ζB̆ζ−1

)
+ 4S

4
1+α ∥ĝ − go∥

4
1+α
(R,α),

holds with the same probability.

Proof. We denote L̆ortho
S (.) as the sample loss evaluated on a set of n data points with S =

{Z1. . . . , Zn}. Further, denote ℓ̆ortho as the point-wise loss version of L̆ortho.

Observe that it is sufficient to show that the following bound is satisfied. This proves the corollary as
minimizing the empirical loss ensures L̆ortho

S (r̂, g)− L̆ortho
S (ro, g)) ≥ 0 for some g ∈ G.

∣∣∣(L̆ortho
S (r, g)− Lortho

S (ro, g))− L̆ortho(r, g)− L̆ortho(ro, g))
∣∣∣

≤ 9δdrn |L̆ortho(r; g)− L̆ortho(ro; g)|+ 10(δdrn )2 ∀r ∈ R and g ∈ G. (72)

The proof of this analysis follows standard techniques [Wai19, Theorem 14.20]. Let F denote the
star convex hull defined in the corollary:

F := star
(
{Z → ℓ̆ortho(r; g, Z)− ℓ̆ortho(ro; g, Z) : ∀r ∈ R, g ∈ G}, 0

)
(73)

In the notation below, f denotes any element in F .

Zn(r) := sup
||f ||2≤r

||Pn(f)− P(f)||
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Now we define two events
E0 = {Zn(δ

dr
n ) ≥ 9

(
δdrn
)2}

and
E1 = {∃f ∈ F | Pn(f)− P(f) ≥ 10δdrn ||f ||L2(D) and ||f ||L2(D) ≥ δdrn }

If that the bound in (72) does not hold true, either event E0 or event E1 must hold true. The probability
of E1 can be bounded by same peeling arguments as done in [Wai19, Theorem 14.1].

To bound the probability of E0, we first employ Talagrand’s concentration for empirical processes to
obtain

P (Zn(ζ) ≥ 2E[Zn(ζ)] + u) ≤ c1 exp

(
− c2nu

2

ζ2 + u

)
(74)

In particular, the expectation can be bounded as follows.

E [Zn(ζ)]
(i)

≤2E

[
sup

f∈F :||f ||L2(D)≤ζ

1

n

∣∣∣∣∣∑
i

ϵif(Zi)

∣∣∣∣∣
]

(75)

(ii)

≤ 4Radn(F , ζ) ≤ 4ζδdrn valid for all ζ ≥ δdrn (76)

The step (i) follows from symmetrization argument, step (ii) follows from our choice of δdrn .

Thus, we get the desired bound on the event Eo which completes the proof.

C.3 Instantiating Critical Radius Guarantees for Data-Splitting case

We now provide standard critical radius rates δdsn for some standard function classes R.

For RKHS classes with eigen vales of kernel K decaying as j−
1
α (eg. Sobolev spaces), the critical

radius can be bounded as O(n− α
2(α+1) ) assuming a bound of unity on the RKHS norm [Wai19].

For VC sub-classes R (star-shaped at ro) with an absolute bound S on the reward model class,

we can bound the critical radius δn =
√

d logn
n where d denotes the VC-subgraph dimension

[Wai19, CNSS24].

C.4 Estimation of nuisance parameters

C.4.1 Plug-in estimates for preference and time

In this case, since the functions tanh(x)/x is 1-Lipschitz, one can argue that ||t̂− to|| ≤ ||̂r− ro||
where t̂ = tanh(r̂)

r̂ .

One can thus estimate r(·) by minimizing the log-loss (3) and since log-loss is strongly convex with
parameter e−S [Wai19, Example 14.18] we argue that rate ||̂r− ro||L2(D) = O

(
eSδ2n

)
where δn is

the critical radius of the function class R. Via plugging in i.e. estimating t̂ = tanh r(·)
r(·) , we can argue

from Lipschitzness that the same rate holds for ||t̂− to||L2(D). However, the estimate ||ˆ̆t− t̆o|| would
suffer from a small bias bounded by ||t̆o − to||L∞ which decays with the bound B̆ as discussed in
(47).

C.4.2 Separate estimation of preference and time

One can get bounds on the rate ||ˆ̆t− t̆o|| based on the critical radius δn of the class T post centering
at t̆o. We can get standard rates for RKHS and VC sub-classes. Estimation of nuisance r(·) can be
performed using log-loss.
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C.5 Proof of Theorem 5.1

We can prove Theorem 5.1 very similar to the proof of Theorem C.5 by instantiating [FS23, Theorem
1] to our case.

Assumption 1 (Neymann orthogonality) in [FS23, Section 3.2] for the loss function Lortho has been
already proven in Lemma 3.1. Assumptions 3 (Higher-order smoothness) and 4 (strong-convexity)
from [FS23] can be proven very similar to the proof in Lemma C.3 and Lemma C.4.

D Experimentation Details

Below we provide the experiment details6.

Linear Rewards We work with a linear reward model defined by rθ(X
1) = ⟨θ,X1⟩ and rθ(X

2) =
⟨θ,X2⟩ for each query pair (X1, X2), and denote the ground-truth parameter by θo. All queries are
restricted to lie on the unit-radius shell: we sample each coordinate independently and then rescale the
resulting vector so that ∥X∥2 = 1. Preferences Y and response times T are generated synthetically
according to the EZ diffusion model, producing the dataset

{
X1

i , X
2
i , Yi, Ti

}n
i=1

. Experiments are
performed for various values of the norm B = ∥θo∥2.

The ground-truth parameter θo ∈ Rd is itself drawn at random, sampling each coordinate indepen-
dently; every draw therefore yields a new dataset. Our aim is to recover θo using the three losses
introduced earlier: the logistic loss Llog, the non-orthogonal loss Lnon-ortho, and the orthogonal
loss Lortho defined in Equations (3), (4) and (6). For each loss we compute the ℓ2 estimation error
∥θ̂ − θo∥2 as a function of the true-parameter norm B = ∥θo∥2, averaged over 10 datasets generated
from different random draws of θo. In the orthogonal and non-orthogonal settings the nuisance
functions—the reward model r̂(·) and the time model t̂(·)—are learned on a held-out split and then
plugged into the second-stage optimization. Because E[T | X] is non-linear, we approximate it with
a three-layer neural network. For the logistic baseline, the entire dataset is instead used to fit the
reward model via standard logistic regression.

Non-linear rewards—neural networks. We generate synthetic data from random three-layer
neural networks with sigmoid activations in the two hidden layers (widths 64 and 32) and a final linear
output layer, fixed input dimension d = 10. For each training size N , we sample three independent
“true” reward networks by drawing each hidden-layer weight matrix and the final-layer vector i.i.d.
from N (0, 1), then for each network generate N training pairs and 3000 test pairs of queries (X1, X2)
as i.i.d. Gaussian vectors; each reward model is trained four times to assess variability. We evaluate
all three losses—logistic, non-orthogonal, and orthogonal—and for the orthogonal loss compare
both a simple data-split implementation and a data-reuse implementation. Using this synthetic data,
we first learn the nuisance r by minimizing the logistic loss with a three-layer network of widths
(10, 32, 16, 1), and learn the t-nuisance by minimizing squared error on T with a three-layer network
of widths (20, 32, 16, 1) taking (X1, X2) concatenated as input. Finally, for each repetition we fit
the reward model (same architecture as r) by minimizing each candidate loss. Figure 2 reports the
mean squared error of the estimated reward under each loss and the corresponding policy regret after
thresholding r̂ into a binary decision.

Text-to-image preference learning. We evaluate our approach on a real-world text-to-image
preference dataset - Pick-a-pick [KPS+23], which contains an approx 500k text-to-image dataset
generated from several diffusion models. Furthermore, we use the PickScore model [KPS+23] as
an oracle reward function, we simulate binary preferences Y ∈ {+1,−1} and response times T via
the EZ-diffusion process conditioned on the PickScore difference between each image-test pair. To
learn the reward model we extract 1024-dimensional embeddings from both the text prompt and
the generated image using the CLIP model [RKH+21]. On top of these embeddings, we train a 4-
layered feed-forward neural network with hidden layers of sizes 1024, 512, 256, under three training
objectives: our proposed orthogonal loss, a non-orthogonal response-time loss, and the standard
log-loss on binary preferences. The time nuisance model t uses the same four-layer architecture, and

6The anonymized code can be found at https://drive.google.com/drive/folders/
12GjK84TyM1b8iXA5b-A2FgnAbo0lToSQ?usp=drive_link
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the initial reward nuisance r matches the architecture of r. For each training size N , we draw N
random image–text pairs for training and an additional 10000 for testing (from the remaining dataset).
For each N we repeat the training process 3 times with different seeds.
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