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Abstract

The continued scaling of genetic perturbation technologies combined with high-
dimensional assays (microscopy and RNA-sequencing) has enabled genome-scale
reverse-genetics experiments that go beyond single-endpoint measurements of
growth or lethality. Datasets emerging from these experiments can be combined
to construct “maps of biology”, in which perturbation readouts are placed in
unified, relatable embedding spaces to capture known biological relationships and
discover new ones. Construction of maps involves many technical choices in both
experimental and computational protocols, motivating the design of benchmark
procedures by which to evaluate map quality in a systematic, unbiased manner.
In this work, we propose a framework for the steps involved in map building and
demonstrate key classes of benchmarks to assess the quality of a map. We describe
univariate benchmarks assessing perturbation quality and multivariate benchmarks
assessing recovery of known biological relationships from large-scale public data
sources. We demonstrate the application and interpretation of these benchmarks
through example maps of scRNA-seq and phenomic imaging data.

1 Introduction

Advances in genomic technologies and high-throughput screening capabilities have enabled building
maps of biology through unbiased, large-scale profiling of genetic perturbations. These maps have
massive potential to uncover novel biology and accelerate drug discovery processes. Recent work
[1, 2] has used CRISPR interference (CRISPRi) or CRISPR-mediated gene knockouts to build
genome-wide perturbation maps using single cell RNA-seq [1] or cellular imaging [2] as readouts.
Here, we propose a systematic framework for constructing and evaluating such maps by suggesting a
shared vocabulary and benchmarking criteria, which we expect will lead to more comparable analyses
of future maps of biology. We study the two cases above as examples, and report metrics for several
design choices. Note that in this work we do not identify the parameters of the best map, nor do we
survey all choices one may make in the course of building a map of biology.

2 Map building pipeline

Throughout this paper, we call the smallest experimental entity that is measured in a map context a
“perturbation unit”. This can be a single cell (e.g., Perturb-seq [1, 3]) or a well with hundreds of cells
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Figure 1: Graphical abstract of biological cartography: map building and benchmarking

in a certain experimental condition (e.g., phenomics/cell painting [4, 5]). Each unit is associated with
assay output data, which may be structured or unstructured (e.g. transcript counts or a multi-channel
cell image). Building a map (which relates perturbations to one another in a meaningful way) from
these raw assay data, requires a number of post-experimental processing steps. We divide these
transformations into five categories as below and name it the EFAAR pipeline. EFAAR steps may
take place in a different order, multiple times (e.g., perturbation units may be filtered pre- and
post-embedding), or potentially in a single end-to-end process.

• Embedding assay data from each perturbation unit to generate a vector representation

• Filtering perturbation units that do not pass quality criteria

• Aligning different batches of perturbation units

• Aggregating units representing each perturbation (e.g., a gene)

• Relating different perturbations to each other (e.g., identifying gene relationships)

Embedding perturbation units This step is aimed at creating a vector representation of the
experimental screening results. Intermediate layers of neural networks are commonly used to
generate embeddings for unstructured data (e.g., cell images). Linear dimensionality reduction
methods like k-means or principal component analysis (PCA) are common for structured data such
as transcriptomic profiles, however non-linear dimensionality reduction techniques based on neural
networks have been found to be effective as well [6, 7].

Filtering perturbation units or perturbations In any experimental screening process, some per-
turbation units will not satisfy pre-defined quality criteria and need to be filtered out. This filtering can
occur before or after embeddings are generated, or before the relationships are generated. Examples
include wells with too high or too low pixel intensity in a cellular imaging screen or perturbation
units that are not distinguishable from the controls in terms of their readout or embeddings.

Aligning batches A batch effect is a systematic effect shared by all observations obtained under
similar experimental conditions (e.g., microscopy acquisition artifacts, donor batch, incubation times)
that potentially confound the interpretation of desired biological signal from the readouts. A baseline
approach for aligning perturbation units is to use control units in each batch to center and scale
features in each set. Another linear method aligning not only the first order statistics but also the
covariance structures is TVN (typical variation normalization) [8]. Non-linear methods based on
nearest neighbor matching [9, 10] or on conditional variational autoencoders, have been particularly
successful for the alignment of single cell transcriptomic data [6, 7, 11].
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Aggregating perturbation units There are typically multiple technical or biological replicates
representing each perturbation in a given map, e.g. the same perturbation may be applied to dozens of
wells or hundreds of cells. Aggregation of these replicates is critical for a robust final representation
of a perturbation. Coordinate-wise mean and median aggregation are commonly used. More advanced
methods like the Tukey median [12] may reduce the impact of outliers on the final representation,
while increasing computational complexity.

Relating perturbations Identifying relationships between biological entities (e.g., gene-gene
interactions arising from protein complexes or signaling pathways) is an important use case for
maps built based on genetic perturbations. Computing distances (e.g., Euclidean or cosine) between
aggregated perturbation representations is commonly used as a proxy for relationships, where smaller
distance means a stronger relationship. These distances, in turn, can also be used to visualize the
global structure of perturbations through further dimensionality reduction techniques such as uniform
manifold approximation (UMAP) [13] or minimum-distortion embedding (MDE) [14].

3 Map benchmarking pipeline

Benchmarking can be done to evaluate the ability of an EFAAR pipeline to recover signal on
individual perturbations (utilizing the perturbation replicates after alignment) or on its ability to
recover relationships (utilizing the relationships between aggregate representations). We call these
univariate and multivariate benchmarks, respectively, and describe results on two orthogonal datasets.
Replogle et al. [1] perturb approximately 10,000 expressed genes in K562 cells using CRISPRi and
measure single-cell RNA-seq readout to generate a transcriptomic map while the Recursion data
contain a proprietary collection of imaging data in which CRISPR knockout technology was used to
target approximately 17,000 genes in primary HUVEC cells [2].

3.1 EFAAR pipeline choices

3.1.1 Transcriptomic maps

We downloaded pre-filtered single-cell gene expression for K562 cells from gwps.wi.mit.edu. We
used either the top 100 principal components from PCA or 128 latent dimensions from scVI (single-
cell variational inference) [7], a conditional variational auto-encoder providing both embedding and
alignment. Below are the EFAAR steps specifying choices of the different pipelines we used to build
the transcriptomic maps we benchmarked.

• Align & Embed: (Choice 1) Compute the mean and standard deviation of all non-targeting
controls per batch and use those to z-score all cells in the same batch and apply PCA and
retain top 100 principal components. (Choice 2) Obtain a vector representation through
scVI using a network that has two hidden layers with 256 nodes and 128 latent dimensions.

• Align: Compute the mean over all non-targeting controls in the PCA space and subtract this
mean vector from all cells.

• Aggregate: Compute the mean vector across cells for each perturbation.

• Filter: (Choice 1) Keep all genes. (Choice 2) Exclude genes without transcriptoprint.

• Relate: Compare perturbations using cosine similarity.

3.1.2 Phenomic maps

The pipeline starts with six-channel Recursion cell painting images of wells. We generated embed-
dings by extracting activation values from an intermediate layer of a weakly supervised convolutional
neural network (CNN) and apply two post-embedding alignment methods: Centerscale (per-batch
standardization) and TVN [8]. Below are the EFAAR steps specifying choices of the different
pipelines we used to build the phenomic maps we benchmarked.

• Embed & Align: Pass images through a pre-trained CNN and store the activations from an
intermediate layer to obtain a fixed-length vector representation of the image. This model
was trained to be partially resilient to batch effects.
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• Filter: Apply additional proprietary filters to remove outlier image embeddings.

• Align: (Choice 1) Batch-correct by center-scaling (z-scale) per batch using experimental
controls included in each batch. (Choice 2) Apply TVN [8] using experimental controls
from all batches.

• Aggregate: Compute the mean vector over each perturbation.

• Filter: (Choice 1) Keep all genes. (Choice 2) Exclude genes without phenoprint.

• Relate: Compare perturbations using cosine similarity.

3.2 Univariate benchmarks

Univariate benchmarks assess the reproducibility and robustness of the representations of individual
perturbations in a map. We demonstrate two such metrics: (1) consistency of the perturbation profile
across replicates quantified with the average cosine similarity between replicates, and (2) magnitude
of the perturbation effect quantified with energy distance [15, 16] as in [1]. For both of these
metrics, we provide the result of statistical significance tests, more details on which can be found in
Appendices A.1 and A.2. We call the representations of perturbations that pass a certain significance
threshold from the associated statistical tests “phenoprints” in phenomic maps, “transcriptoprints”
in transcriptomic maps, or “perturbation prints” to cover both cases. Rates of perturbation print
identification can be compared between different map processing pipelines (EFAAR parameter
choices) and stratified by global annotations like gene expression or functional gene groups.

We measured the perturbation print rates with above univariate metrics in Replogle et al. [1] data
and Recursion data [2]. For Replogle et al. [1] data, scVI-based EFAAR pipeline outperformed
PCA-based one in terms of transcriptoprint rate with either metric (see Table 1), identifying slightly
more genes. 38% of all targeted genes were identified as significant across both methods and metrics
(see Figure B.1), while 29% of perturbed genes were not detected by any tested condition.

For Recursion data, we report results relative to the output of the first step in Section 3.1.2 above,
which we call CNN-BC (convolutional neural network with batch correction). While TVN leads to a
large improvement over CNN-BC in both consistency and distance, Centerscale result is only slightly
better than CNN-BC (see Table 1). We hypothesized that this might be because of the batch effect
correction component of CNN-BC. To test this hypothesis, we assessed, as our baseline, a different
embedding model lacking the batch effect resiliency component, which we call CNN-noBC. We saw
that applying Centerscale on top of CNN-noBC improved performance by 583% in consistency and
by 493% in distance (see Table B.1). An important conclusion of this comparison is that different
steps in an EFAAR pipeline may interact with each other in non-obvious ways; e.g., the optimal
alignment strategy may differ between different choices of embedding steps. For the rest of the paper,
we use CNN-BC as our baseline for the phenomic map results, as in Table 1.

Table 1: Perturbation print rates based on univariate metrics: consistency and distance.

Transcriptomic data [1] Phenomic data [2]

PCA scVI Centerscale TVN
Consistency 52% 61% -1.9% +100%

Distance 51% 53% +5.8% +109.1%

3.3 Multivariate benchmarks

A typical use case for a map of biology is to discover novel, biologically-relevant relationships
between genes or between a gene and a small molecule (e.g., a drug candidate). In this work, we
focus on the relationships among genes since Replogle et al. [1] data only contain gene perturbations.

There are two main types of gene-based benchmark sources: pairwise relationships and gene clusters.
Sources of the first type include pairs that directly interact in a signaling pathway or a small protein
interaction network. Sources of the second type represent all genes involved in a pathway, biological
process, or protein complex and provide higher-level information for biological processes or pathways.
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Here we look at both pairwise relationship recapitulation and cluster identification results. An
important EFAAR choice before the Relate step is whether or not to remove perturbations that do not
have a perturbation print. As mentioned in Section 3.1, we explore both options.

For pairwise relationships, we consider two publicly-available sources: Reactome [17] protein-
protein interactions from protein complexes with at most four proteins, and Signaling Network Open
Resource (SIGNOR) [18] pathway interactions. For cluster identification metrics we use three
publicly-available sources: Reactome (gene sets from MSigDB C2 collection) [17, 19], SIGNOR
[18] pathways, and COmprehensive ResoUrce of Mammalian (CORUM) [20] protein complexes.

For both pairwise and cluster metrics, we report the recall of annotated pairs within the most extreme
10% of pairwise relationships (we consider 5% from both tails of the pairwise distance distribution
since negative relationships can indicate a negative signaling between genes). For cluster metrics
we calculate a recall value per cluster and then average the per-cluster values to get the final metric,
as described in Appendix A.3. Recall results on Replogle et al. [1] data for different alignment and
filtering choices can be found in Table 2, showing a slight advantage of using scVI for alignment over
PCA. Known relationship counts for different comparisons in Table 2 can be found in Table B.2.

In Figure B.2, we look at how the two maps generated using scVI vs PCA compare in terms of the
recall value per cluster in the CORUM dataset. Consistent with the summary metrics in Table 2, scVI
performs better for most of the clusters. Figure B.3 shows the distribution of the recall values across
clusters for different cluster sources and EFAAR choices.

Table 2: Multivariate metrics in Replogle et al. [1] data.

All genes Genes w/ transcriptoprint

PCA scVI PCA scVI
Reactome pairs 18.6% 19.8% 24.4% 25.4%
SIGNOR pairs 12.4% 12.9% 13.2% 15.2%

CORUM clusters 30.2% 33% 38.9% 40.9%
Reactome clusters 16.1% 16.9% 18.6% 19.6%
SIGNOR clusters 11.4% 13.3% 11.9% 13%

For the Recursion phenomic data, we again report recall results relative to CNN-BC (a CNN model
with a batch correction component) as our baseline. We see that an alignment step by TVN or
Centerscale leads to a considerable increase in a majority of metrics compared to the baseline (see
Table 3), and TVN typically performs better than Centerscale as it did for the univariate benchmarks
in Table 1. Known relationship counts for different comparisons in Table 3 can be found in Table B.3.

Table 3: Multivariate metrics in Recursion phenomic data [2].

All genes Genes w/ phenoprint

Centerscale TVN Centerscale TVN
Reactome pairs +14.5% +82.1% +6.5% +15%
SIGNOR pairs -4.9% +55.1% +3.5% +26.3%

CORUM clusters +18.2% +107.1% +10.2% +18.8%
Reactome clusters +6.5% +62.9% +11% +8.7%
SIGNOR clusters -11.5% +52.9% +14.1% +142.7%

As an example of the known biology identified by the benchmarked EFAAR pipeline choices,
Figure B.4 examines the cosine similarity structure for the Integrator complex which was also
explored in Replogle et al. [1]. We see that both of the scVI-based and PCA-based EFAAR pipelines
we tested on Replogle et al. [1] data and both of the TVN-based and Centerscale-based EFAAR
pipelines on Recursion data accurately identify the modular structure of the Integrator complex.
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4 Conclusion

In this work we describe a framework for systematically constructing whole-genome maps of biology
and benchmarking their performance globally with publicly-available gene annotation datasets. As
a demonstration, we present several map options built using two orthogonal data types: single-
cell transcriptomic data with treatment with CRISPR interference (Perturb-Seq) and array-based
phenotypic screening with CRISPR knockout. Results demonstrate the impact of different processing
pipelines and metric choices. This framework can be used for any large-scale biological map building
and benchmarking effort regardless of data types and can be expanded to include settings where
additional perturbation types (small molecules, proteins, antibodies, viruses, etc.) or assay variables
(growth conditions, reagent timing, etc.) are assessed.

To our knowledge, the only previous related work is the pycytominer GitHub repository (github.
com/cytomining/pycytominer) that conceptualizes a pipeline for the analysis of image data
given CellProfiler or DeepProfiler features. However, this work only provides an API to perform
different analysis steps. It does not provide case studies of building maps from different data types
or comparisons of results for different pipeline choices. Moreover, the evaluation steps focus on
individual perturbations and do not tackle how well the known relationships between perturbations
are recapitulated, i.e., multivariate benchmarks here.
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A Details on benchmark computations

A.1 Univariate benchmark: perturbation consistency

We introduce the following notation. For a genetic perturbation g, we assume access to a total number
of ng query perturbation units. For each perturbation unit i = 1, . . . , ng, we have an embedding
vector xg,i. Moreover, each perturbation unit is associated with a batch bg,i ∈ {1, . . . , B}. Let gb
denote all perturbation units of g in batch b, and let |gb| = ng,b. Thus, g =

⋃B
b=1 gb and |g| = ng .

As the test statistic, we use avgsim, defined as the mean of the cosine similarity between each
perturbation unit’s profile and the profiles of all other perturbation units for g (i.e., in all batches).
Formally,

avgsimg =
1

ngng

ng∑
i

ng∑
j

⟨xg,i, xg,j⟩
∥xg,i∥∥xg,j∥

. (1)

Parametric tests are not preferred for univariate metrics because the underlying population of distances
do not typically follow a well-defined probability distribution. Consequently, we assess statistical
significance of a gene g’s perturbation profile using a non-parametric test on K empirical null
perturbation samples that are generated considering the batch distribution of the ng cells to b ∈
{1, . . . , B}. This is needed because there could be batch effects remaining even after batch correction.
The kth null sample for g, denoted as g′k, is generated as follows. From each batch b with ng,b > 0,
draw ng,b cells uniformly at random, denoted by g′k,b. Thus, g′k =

⋃B
b=1 g

′
k,b. We then compute

avgsimg′
k

for k = 1, . . . ,K (K = 1000) as above and assign a p-value to perturbation g by

pg =
max{#{avgsimg′

k
≤ avgsimg}, 1}

K
. (2)

For the transcriptomic data, we used cells as our query perturbation units, and for the phenomic data,
we used CRISPR guides as our query perturbation units. Replacing avgsim with a leave-one-out
average cosine similarity (loosim) allows for better outlier handling, and this is what we did for the
phenomic data. Below is how we calculate loosim in this case.

loosimg =
1

ng

ng∑
i

⟨xg,i, x̄g,i′⟩
∥xg,i∥∥x̄g,i′∥

. (3)

where x̄g,i′ represents the average representation over all but the ith unit:

x̄g,i′ =
1

ng − 1

∑
j ̸=i

xg,j . (4)

A.2 Univariate benchmark: energy distance

The energy distance [15, 16] measures how distant the replicate units of a perturbation are from the
controls, essentially measuring the effect size of the perturbation in a high-dimensional space. For
each query perturbation, we compute the distance of the replicate perturbation units’ distribution
to the control units’ distribution using tests derived from energy statistics. Assuming access to two
sets of embeddings x1, . . . , xn1

(representing query perturbation units) and y1, . . . , yn2
(representing

control units), the energy distance is defined as

2

n1n2

n1∑
i=1

n2∑
j=1

∥xi − yj∥ −
1

n2
1

n1∑
i=1

∥xi − xj∥ −
1

n2
2

∥yi − yj∥. (5)

This distance will be zero when the distributions are identical, and positive between non-identical
distributions. The statistical significance is then assessed using a permutation test comparing the
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distance of the query perturbation against a large number of null samples generated through shuffling
the labels of the query perturbation and control units. We used 1000 null samples in this study and
computed the p-value in a similar fashion to Eq. (2).

Similar to the perturbation consistency computation, here we used, as our perturbation units, cells
for the transcriptomic data, and CRISPR guides for the phenomic data. For transcriptomic data, to
construct the null distribution to compare against each perturbation, we randomly sub-sampled 5%
of all perturbation units that received the non-targeting control in any of the batches containing the
query perturbation. Subsampling was necessary to reduce computation time.

A.3 Multivariate benchmark: recall

To assess how well a map embedding recapitulates known biology, we calculated recall measures on
known pairwise relationships and known clusters as follows.

For pairwise relationships, we calculated pairwise cosine similarities between the aggregated pertur-
bation embeddings of all perturbed genes and selected the top 5% and bottom 5% as predicted links.
We excluded self-links as the cosine similarity for these is one and biases the recall computation. We
then calculated the recall as the proportion of the intersection of those predicted links with a known
relationship based on sources Reactome or SIGNOR to the total number of interactions in the same
source between the perturbed genes.

For cluster relationships, we stratified the above calculation by cluster for Reactome, SIGNOR, or
CORUM clusters. That is, for each cluster, we generated all gene pairs excluding self-links and used
this set as our ground truth known gene relationships for that cluster. Then, similar to the calculation
above for pairwise relationships, we calculated recall at the top 5% and bottom 5% of the cosine
similarity distribution of all possible pairs of perturbed genes. This type of cluster stratification allows
us to identify which areas of biology can and which cannot be captured using the built map.

B Supplementary Tables and Figures

Table B.1: Phenoprint rates for the phenomic map when using CNN-noBC as the baseline.

Centerscale TVN
Consistency +583% +1292.7%

Distance +493.3% +1072.3%

Figure B.1: UpSet plot of the intersection of transcriptoprints from two EFAAR embedding/alignment
choices and two univariate benchmark metrics. Bar height reflects the number of genes with
transcriptoprints (p-value < 0.01) in the group(s) represented by the solid circles below. Bar plot on
the left shows the totals for each EFAAR choice and univariate metric.
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Table B.2: Known relationship counts for multivariate benchmarks on Replogle et al. [1] data.

All genes Genes w/ transcriptoprint

PCA scVI PCA scVI
Reactome pairs 10,379 10,379 3812 5120
SIGNOR pairs 5909 5909 2014 2751

CORUM clusters 33,175 33,175 19,934 24,122
Reactome clusters 2,609,505 2,609,505 896,961 1,166,333
SIGNOR clusters 5981 5981 1766 2413

Table B.3: Known relationship counts for multivariate benchmarks on Recursion phenomic data [2].

All genes Genes w/ phenoprint

Centerscale TVN Centerscale TVN
Reactome pairs 18,486 18,486 3273 7209
SIGNOR pairs 10,484 10,484 1570 3858

CORUM clusters 27,890 27,890 15,227 23,050
Reactome clusters 5,022,964 5,022,964 592,737 1,528,163
SIGNOR clusters 11,312 11,312 1537 3610

Figure B.2: (a) Scatter plot representing the recall value for each of the CORUM protein complexes
from the scVI (y-axis) vs PCA (x-axis) transcriptomic maps. Each dot represents a complex, and the
size of a dot represents the number gene subunits in the associated complex. (b) Cosine similarity
heatmap for genes in seven of the CORUM complexes, where the scVI map is shown below the
diagonal and PCA map is shown above the diagonal. Each color on the axes represents a different
complex, as annotated in the legend. We look at all genes with no transcriptoprint filtering. Clusters
are more visible on the scVI side of the heatmap, as consistent with the larger scVI recall for those
clusters, as indicated by the dots with corresponding colors on the scatter plot in (a).
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Figure B.3: Histograms representing the distribution of recall values across clusters for each bench-
mark source (rows) and embedding model (columns) when multivariate metrics are computed on
Replogle et al. [1] data. Number of clusters and average cluster size are different for each cluster
source, as indicated in the title for each plot. They are also different for PCA vs scVI for the same
source since scVI leads to more genes with transcriptoprints and the recall values shown here are
computed after filtering for such genes.
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Figure B.4: Cosine similarity heatmaps of the Integrator complex subunits from (a) the two tran-
scriptomic maps based on Replogle et al. [1] data and (b) the two Recursion phenomic maps. In (a),
scVI map is shown below the diagonal and PCA map is shown above the diagonal, and in (b), TVN
map is shown below the diagonal and Centerscale map is shown above the diagonal. We look at all
genes with no perturbation print filtering. There are three main clusters visible in each of the four
maps, which correspond to the three main modules of the integrator complex: endonuclease module
including INTS4, INTS9, and INTS11 (top cluster); structural shoulder and backbone including
INTS1, INTS2, INTS6, INTS7, and INTS8 (middle cluster), and enhancer module including INTS10,
INTS13, and INTS14 (bottom cluster). C7orf26, which is clustered by each of the four maps as part
of the enhancer module, was officially renamed INTS15 in January 2022 after it was suggested to be
a subunit of the Integrator complex by Drew et al. [21] and Replogle et al. [1].
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