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Abstract

The site conditions that make astronomical observatories in space and on the ground
so desirable—cold and dark—demand a physical remoteness that leads to limited
data transmission capabilities. Such transmission limitations directly bottleneck the
amount of data that can be acquired. Thus, improving data compression capabilities,
which then allows for more data to be obtained, can directly benefit the scientific
impact of observatories. Traditional methods for compressing astrophysical data
are manually designed. Neural data compression, on the other hand, holds the
promise of learning compression algorithms end-to-end from data while leveraging
the spatial, temporal, and wavelength structures of astronomical images. This pa-
per introduces AstroCompress (https://huggingface.co/AnonAstroData):
a neural compression challenge for astrophysics data, featuring four new datasets
(and one legacy dataset) with 16-bit unsigned integer imaging data in various
modes: space-based, ground-based, multi-wavelength, and time-series imaging.
We provide code for easily accessing the data and benchmark seven compression
methods (three neural and four non-neural, including all practical state-of-the-art
algorithms)). Our results indicate that neural compression techniques can enhance
data collection at observatories, and provide guidance on the adoption of neural
compression in scientific applications.

1 Introduction

Machine learning is having a growing impact on the natural sciences [Carleo et al., 2019, Wang et al.,
2023]. One of the primary hurdles of data-driven scientific discovery is bandwidth bottlenecks in data
collection and transmission, particularly if the data is collected autonomously in high-throughput
scientific instruments like telescopes or biological sequencing devices. This induces the need to
develop novel compression methods for scientific domains.

Data compression algorithms – or codecs – based on machine learning have recently surpassed
traditional codecs on visual media, such as images and videos [Yang et al., 2023]. These applications
often prioritize fast decoding speed at the expense of slower encoding [Yang and Mandt, 2023a].
By contrast, scientific applications generally involve high-frequency data collection, which need to
be encoded and transmitted rapidly; the decoding cost is less of a concern, as the downstream data
analysis can be done on powerful supercomputers over days or weeks. Moreover, scientific data
exibit unique statistical patterns and signal-to-noise distributions. These differences present novel
challenges and opportunities for neural compression.

This work explores the potential of neural compression in the astronomy domain. Astronomical
imaging captures the locations, spatial extent, temporal changes, and colors of celestial objects
and events in 2D arrays. Repeated integrations enhance depth (higher signal-to-noise) through
post-processing co-addition and can be used to measure time variations in celestial events. Color
information is obtained from co-spatial observations using different wavelength filters.
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As detector sizes grow and costs per pixel decline, larger optical and infrared arrays are being
deployed. The need to transmit large amounts of data efficiently is a worsening and already critical
challenge for premier astronomical facilities, which often operate in remote locations to optimize
observations. This remoteness complicates data transmission to distant computational and archival
centers. For ground-based facilities, the inability to transmit raw data as quickly as it is obtained (e.g.,
via wired internet) means hard copies of the data must be (periodically) moved physically, degrading
time-sensitive science [Bezerra et al., 2017]. Space-based facilities risk losing data if it cannot be
transmitted with high-enough bandwidth. These constraints are practical and evident in current
space missions. The Kepler mission [Borucki et al., 2010] produced ∼190 MB of raw data every
6 seconds across the sky, but had to transmit only the averages of many image exposures around
certain preselected stars due to bandwidth and storage limits [Jenkins and Dunnuck, 2011]. The
TESS satellite [Ricker et al., 2015] undergoes a very similar process. JWST enforces strict data rate
limits during observations to stay within deep space downlink constraints, affecting data collection
and storage [STSCI, 2024]. In simple terms, transmission bandwidth limitations fundamentally
thus constrain data acquisition and influence the design and cost of new facilities for astronomy
research. Today, we essentially are forced to delete huge fractions of space-collected data forever.
Compressing raw imaging data before transmission is highly desirable, balancing better compression
ratios against compute and hardware costs, especially for space-based facilities.

In sum, our main contributions are as follows:

• A large (∼320 GB), novel dataset captures a broad range of real astrophysical imaging data,
carefully separated into train and test sets, with easy access via HuggingFace datasets.

• An extensive comparison of classical and practical neural compression methods on this data,
the first publication to our knowledge where neural compression has been systematically
studied on astronomical imaging.

• Various qualitative analyses that further our understanding of the bit allocation in astronomi-
cal images and that inform future lossy compression codec designs.

2 Background and Related Work

Compression of astronomy images today is largely done by 20+ year old algorithms such as bzip2,
Hcompress, or Rice (cf. Pence et al. 2009 and §4.1), though the consultative Committee for Space
Data Systems (CCSDS1) now recommends JPEG-LS and JPEG-2000 (not yet JPEG-XL). Notably,
all of these works rely on manually designing codecs using classical probability distributions and
transforms.

In contrast to traditional hand-designed compression algorithms developed for general purposes,
the promise of neural compression lies in learning compression codecs end-to-end from specialized
datasets [Yang et al., 2023]. By understanding the data distribution, these algorithms can optimally
assign code vectors to binary bitstrings, offering significant improvements in both lossy and lossless
compression performance (within model limitations).

Neural compression can be categorized into lossy and lossless methods. Lossy compression typically
focuses on optimizing a trade-off between bit-rate and reconstruction error (distortion), based on a
(variational) autoencoder model and extensions [Theis et al., 2017, Ballé et al., 2017, 2018, Mentzer
et al., 2020, Yang and Mandt, 2023b]. For lossless compression, the primary goal is to approximate the
density of discrete data. Models used in this approach include normalizing flows [Hoogeboom et al.,
2019], diffusion models [Kingma et al., 2021], VAEs [Townsend et al., 2019, Mentzer et al., 2019],
and probabilistic circuits [Liu et al., 2022]. Although lossless compression is more straightforward as
it does not involve trade-offs like distortion vs. realism [Blau and Michaeli, 2018] or constructing
task-specific losses [Dubois et al., 2021, Matsubara et al., 2022], developing a practical codec with
very high compression ratio remains a challenge.

A small but growing community has been testing neural compression methods for data from special-
ized scientific domains. Hayne et al. [2021] published a study on neural compression for image-like
turbulence and climate data sets using a lossy neural compression model. Choi et al. [2021] studied
similar neural compression models on plasma data. Huang and Hoefler [2023] compress climate data

1https://public.ccsds.org/default.aspx.
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Figure 1: Depiction of salient features in the AstroCompress corpus using representative images from
each dataset. Inset to the JWST t0 (first) image are the value changes in time for a small sample
of pixels. In SDSS there are 5 filtered images per observation epoch, up to a variable number n
observations in the same portion of the sky. The inset of Hubble zooms in on a spiral galaxy, showing
cosmic ray hits (black) and charge transfer inefficiency, causing vertical flux smearing. The actual
pixel values in Keck are shown for a zoomed-in 5×5 pix2 region.

by overfitting a neural network and using the network weights as compressed data representation.
Wang et al. [2023] adopted a classical-neural hybrid approach in medical image compression. Overall,
we are unaware of any efforts applying neural compression to astronomical images.

While the astronomical data in public archives (e.g., MAST2) exist in nearly limitless quantities, the
assembly process for a machine learning suitable corpus requires significant domain knowledge. For
example, previous attempts at ML-friendly corpus creation, such as Galaxy10 [Leung and Bovy,
2019] (see also Xue et al. 2023 and Khujaev et al. 2023), have generally rescaled data to 8-bit RGB
images, destroying nearly all of the dynamic range and thus much of the information useful for novel
science.

3 AstroCompress Corpus

Our central contribution is the AstroCompress corpus, curated to capture a broad range of real
astrophysical imaging data and presented to enable the exploration of neural compression. The corpus
is released on HuggingFace and can be easily accessed using Python, with code examples in the
Supplementary Material. The corpus consists of 5 distinct datasets, spanning a variety of observing
conditions from space and from Earth, types of detector technology, and large dynamic ranges. The
quantity of data is much larger and more varied than previous compression-focused corpora [Pata
and Schindler, 2015, Maireles-González et al., 2023] to ensure ample training data for ML-based
approaches. Besides the typical 2D imaging data, we also include higher-dimensional (3D and 4D)
data cubes containing multiple images of the same spatial origin but along different wavelength
and/or temporal dimensions. We briefly describe the five datasets comprising AstroCompress,
presenting the some key features in Fig. 1, and defer details of their composition and acquisition to
the Supplementary Material:

GBI-16-2D (Keck) is a diverse, 2D optical imaging dataset from the ground-based W. M. Keck
Observatory meant to evaluate model generalizability. SBI-16-2D (Hubble) is a 2D dataset derived
from the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS; Sirianni et al. 2005).
SBI-16-3D (JWST) comes from the NIRCAM instrument onboard the James Webb Space Telescope
(JWST), and contains time-series image cubes. GBI-16-4D (SDSS) is a ground-based dataset assem-
bled from the Sloan Digital Sky Survey (SDSS; York et al. 2000). These are 4D data cubes across
both wavelength and time, allowing evaluation of compression on tensors with large correlations.

2https://mast.stsci.edu/
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GBI-16-2D-Legacy is a small ground-based dataset obtained across many different telescopes, and
is reproduced from the public corpus released by Maireles-González et al. [2023]. Our experiments
only made use of the subset of data from the Las Cumbres Observatory (LCO).

4 Experiments

We establish the compression performance of our selected neural and non-neural compression
methods on our proposed datasets. We describe our experiment protocol in Sec. 4.2, and present our
main results in Sec. 4.3. Our results show that, even with only minimal architectural adjustments,
neural compression can match or even surpass the best classical codecs. Moreover, neural codecs
designed for natural image data, such as L3C and PixelCNN, have difficulty exploiting cross-frame
correlations in astronomy images, likely due to the image noise characteristics.

To better understand how the behavior of the algorithms depends on data characteristics, we examine
bit-rate allocation both qualitatively and quantitatively in Sec. 4.4. Echoing earlier findings from
Pence et al. [2009], we see a strong correlation between bit-rate and measures of noise such as SNR
and exposure time, confirming that most of the bits are allocated to noisy pixels that can be well
modeled by i.i.d. white noise distributions. Lastly, we explore the out-of-domain generalization
performance of a neural compression method, IDF, in Sec. E.3.

4.1 Compression Methods

We consider four non-neural methods as baselines, including three standard codecs from the Joint
Photographic Experts Group (JPEG) and one codec developed by the Jet Propulsion Laboratory
(JPL). The imagecodecs library provides the necessary APIs for all methods. Specifically, we
run JPEG-XL, JPEG-LS, JPEG-2000, and RICE codecs in lossless mode with default settings.
Additionally, we run JPEG-XL under the maximum compression ratio mode as an extra reference.

We adopt three well-known neural lossless compression methods in the literature, representing key
approaches in deep generative modeling for compression:

Integer Discrete Flows (IDF): a flow-based model extending the concept of normalizing flows
[Rezende and Mohamed, 2015] for lossless compression [Hoogeboom et al., 2019]. Unlike con-
ventional normalizing flow models that operate on continuous data, IDF employs discrete bijective
mappings using invertible neural networks to connect discrete pixels with a discrete latent.

L3C: a VAE-based lossless image compression method utilizing a two-part coding scheme [Mentzer
et al., 2019]. It involves training a hierarchical VAE with discrete latent representations to capture
high-level information about the input image.

PixelCNN++: an autoregressive model using masked convolutions to model the distribution of each
pixel given previous pixels in a raster scan order [Salimans et al., 2017]. PixelCNN++ naturally
allows for lossless compression using autoregressive entropy coding [Mentzer et al., 2019].

4.2 Experiment setup

We experiment on two categories of data: single-frame images and correlated-frame images with
additional temporal or wavelength information. We consider the LCO, Keck, and Hubble datasets as
single-frame image datasets. For the JWST datasets, we select the first time step of each 3D image
cube and form a single-frame dataset, called JWST-2D, and the residual images between time steps
as a separate, correlated-frame dataset, called JWST-2D-Res. In principle, entire JWST 3D arrays
could be compressed by encoding the initial frame and subsequent residual frames separately. We
sub-select three benchmark datasets from SDSS as follows: (1) the first time step of the r filter band
forms a single-frame dataset, called SDSS-2D; (2) the first time step of the g, r, and i filter bands
constitute a correlated-frame dataset, called SDSS-3Dλ; and (3) the first three time steps of the r
filter band create a correlated-frame dataset, called SDSS-3DT.

4.3 Compression Performance

The top subsection of Table 1 presents compression ratios on single-frame compression experi-
ments. PixelCNN++ frequently achieves the best performance, except on the LCO dataset [Maireles-
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Experiment Neural Codec Non-neural Codec

IDF L3C PixelCNN++ JPEG-XL (max) JPEG-XL JPEG-LS JPEG-2000 RICE

LCO 2.83 1.67 1.41 2.98 2.78 2.81 2.80 2.65

Keck 2.04 1.89 2.08 2.01 1.97 1.97 1.96 1.84

Hubble 2.94 2.90 3.13 3.26 2.92 2.86 2.67 2.64

JWST-2D 1.44 1.38 1.44 1.38 1.33 1.35 1.37 1.24

SDSS-2D 2.91 2.36 3.35 3.38 3.14 3.16 3.20 2.96

JWST-2D-Res 3.14 2.91 2.80 3.35 2.37 3.24 1.69 3.08

SDSS-3Dλ 3.05 2.29 2.88 3.49 3.23 3.24 3.28 3.05

SDSS-3DT 3.03 2.59 3.02 3.48 3.23 3.24 3.29 3.05

Table 1: Compression ratios for all methods across experiments, with bold text indicating the best
performance and underlined text indicating the second best. The top and bottom subsections of the
table contain single-frame and correlated-frame compression results, respectively.

Figure 2: Hubble exposure
times plotted against compres-
sion ratios using various algo-
rithms. Longer exposure times
tend to induce more incompress-
ible noise and, hence, reduce
compression ratios.

González et al., 2022] where it overfits on the small amount of data—whereas IDF thrives. Pix-
elCNN++ often closely matches JPEG-XL (max) with less than a 4% difference and occasionally
outperforms JPEG-XL with ∼ 4-10% improvements. IDF also demonstrates competitive perfor-
mance on many datasets, despite being non-autoregressive. However, JPEG-XL (max) consistently
exhibits high compression ratios across datasets, indicating that there is still potential for improvement
in future neural codecs. Notably, the highest compression ratio previously achieved for the LCO
dataset was 2.79 by Maireles-González et al. [2023], which is surpassed by JPEG-XL (max) in our
benchmark. Our results for non-neural codecs, including JPEG-LS, JPEG-2000, and RICE, are
consistent with the previously published benchmarks on this dataset.

Interestingly, non-neural codecs show superior performance boosts on our correlated-frame data, as
seen in the bottom subsection of Table 1. Neural codecs seem to struggle with capturing correlations
across different frames. This indicates a need for further improvement in neural compression
techniques to better extract cross-wavelength or cross-timestep information.

4.4 The Effect of Noise

Following Pence et al. [2009], our Figure 2 illustrates an inverse relationship between compression
ratios and exposure time, which is one of the key variables in determining the signal-to-noise ratio
(SNR) in an image. We demonstrate a negative correlation between these two variables, likely because
an increase in exposure time results in an increased number of noise bits. We hypothesize that the
plateau seen will reverse at higher exposure times as many CCD pixels reach their max physical
value, reducing image entropy.

Figure 3 demonstrates that source (star/galaxy) pixels have higher bitrates, as expected—in a sense,
these pixels are more "surprising," and thus a lower likelihood is assigned. Interestingly, the back-
ground pixel regions of the bitrate heatmap are significantly more noisy than the corresponding SNR
background. This suggests that there may be potential for reduction in the bitrate of the higher bitrate
background pixels, as we might expect most background pixels to exhaust a similar number of bits.
The details of source pixel detection, background estimation and more are given in the appendix.

Figure 4 furthermore demonstrates the extreme bit-rate consumption by background noise pixels. On
this image, 98.5% of pixels fell under 3 SNR. Some source pixels were placed in the lowest SNR
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Figure 3: From left to right, an example SDSS-2D image: raw image, SNR heatmap, and PixelCNN++
bitrate heatmap. Colors are z-score normalized for visualization; colorbars indicate true values.

Figure 4: Left: SNR heatmap of an example image (Figure 3), showing source (top) vs. background
(bottom) pixels. Middle: histogram of PixelCNN++ total bit allocation for various binned SNR
values. Right: scatterplot showing the positive correlation between SNR and PixelCNN++ bitrate.

bin, but this is likely due to some overestimation of source radii in the source masking process. The
scatterplot is interestingly almost a step function, with a jump from Bitrate ≈ 3 to Bitrate ≈ 10
at SNR ≈ 101—the transition point at which stars and galaxies emerge over background noise.

5 Conclusion

AstroCompress aims to incentivize the development of astronomy-tuned neural codecs for eventual
real-world deployment, by providing datasets that are representative of real use cases. While this
work focuses on neural compression, many other machine learning frameworks are intimately related.
Compression is “bijectively” linked with likelihood estimation by Shannon’s source coding theorem
[Shannon, 1948]. We suggest the use of our dataset in other machine learning for astronomy contexts,
such as self-supervised learning for foundation models, semantic search and anomaly detection.

The exploration in AstroCompress will likely transfer to other kinds of high-resolution, high-bit
depth imagery, such as radio astronomy, satellite and biological imaging. The Square Kilometer
Array is expected to collect 62 exabytes per year [Farnes et al., 2018] and improvement in lossless
compression could translate to a meaningful reduction in storage costs. Current efforts3 in mapping
the mouse hippocampus are estimated to contain 25 petabytes of imaging data. Extreme demand
for data compression will soon extend to other data types as well, such as human genomics data4,
which is expected to generate 2–10 exabytes of data over the next decade. We hope that this work
will kick off further exploration of neural compression models for science and the curation of new
compression datasets across scientific fields.

3https://sites.research.google/neural-mapping/
4https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
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Supplementary Material

A Dataset Supplementals

Telescope Dataset ID Location
Central

Wavelength (Å)
Bandpass

Filter
Resolution

(arcsec / pix)
Image Sizes

(pix×px)
Total #
Arrays

Total Dataset
Size (GB)

Approx.
Total Pixels

LCO GBI-16-2D-Legacy multiple sites
Earth varies B, V , rp, ip 0.58 3136× 2112 9 0.1 5.5× 107

Keck GBI-16-2D
HI,

USA,
Earth

varies,
4500–8400 B, V , R, I 0.135 2248×2048;

3768 × 2520 137 1.5 7.4× 108

Hubble SBI-16-2D LEO,
Space 5926 F606W 0.05 4144 × 2068 4282 69 3.7× 1010

JWST SBI-16-3D L2,
Space 19840 F200W 0.031 2048×2048

× #Groups 1273 90 7.0× 109

SDSS GBI-16-4D
NM,
USA,
Earth

3543,
4770,
6231,
7625,
9134

all of
[u, g, r, i, z] 0.396 800×800×5

× #Timesteps 500 158 1.6× 1010

Table 2: Datasets summary. Total pixels computed using each 16-bit data point as one “pixel.”

A.1 Naming conventions

Throughout this work, the data are referred to in three different ways depending on the context; we
elucidate the reference conventions here.

A.1.1 Dataset ID

The adopted Dataset ID naming convention provides a shorthand description of the origin and form
of the data:

(origin)(data taking mode)-(number of bits per pixel)-(dimensionality),

where origin is either space-based (SB) or ground-based (GB), and data taking mode refers to the
primary objective of the exposure, only I (imaging5). -2D implies each instance is a 2-dimensional
array. -3D may be thought of as a temporal sequence of images (ie., movie) taken in roughly the same
portion of the sky. -4D may be thought of as a temporal sequence of images taken in the same portion
of the sky at different wavelengths. Clearly, -3D and -4D may be decomposed into individual 2D
images. All data in the corpus are uint16 but future datasets may be added with different bit depths.

This is a standardized way of naming our datasets that include functional details, allowing one to
quickly search for or identify the kind of data from the name alone.

A.1.2 Telescope or Survey Name

For brevity and ease of reading, we use the “telescope” column as nicknames to refer to each of our
published datasets throughout our paper.

A.1.3 Experimental dataset names

For several reasons, some of our benchmark models were trained on a subset of a dataset. To this end,
we added additional descriptors to the dataset nicknames as a way to describe these subselections.
LCO, Keck, and Hubble were unchanged and used fully. JWST was used in two forms: a first
frame model from JWST-2D (jwst[t=0] for every image cube), and JWST-2D-Res (we used all
of the residual images to train a separate residual coding model, i.e., jwst[t=i+1]− jwst[t=i]
for all i, for every image cube). SDSS was split into three datasets: SDSS-2D (sdss[t=0][λ=2]),
SDSS-3Dλ (sdss[t=0][λ=1,2,3]), SDSS-3DT (sdss[t=0,1,2][λ=2]).

5Other data taking modes such as spectroscopy may be added in future work.
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A.2 Accessibility

All datasets herein are released under the AstroCompress project as HuggingFace datasets and may
be accessed as numpy nd-arrays in Python:

import numpy as np
from datasets import load_dataset

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \
streaming=True, trust_remote_code=True)

ds = dataset.with_format("np", columns=["image"], dtype=np.uint16)
ds[0]["image"].shape # −> ( tup le with shape of the numpy array )

Here name is one of the five datasets described below, config is either "tiny" (small number of files
for code testing purposes; default value) or "full" (full dataset), and split is one of "train" or "test".
To use the datasets with pytorch:

import torch
from torch.utils.data import DataLoader

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \
streaming=True, trust_remote_code=True)

dst = dataset.with_format("torch", columns=["image"], dtype=torch.uint16, \
device=device)

dataloader = DataLoader(dst, batch_size=batch_size , num_workers=num_workers)
next(iter(dataloader)) # −> y i e l d s the f i r s t batch of images

where device is the pytorch device to use (e.g., "gpu", "mps:0").

A.3 Dataset collection and scientific details

A.3.1 Related dataset works

With dozens of parameters defining each observation (sky region, exposure time, filter, grating, pupil,
etc.) and myriad data structures, existing astronomical archives such as MAST are too unwieldy for
ML practitioners. In addition to the previously mentioned Galaxy10, a past dataset curation Hayat
et al. [2021] assembled a 266 GB corpus of processed float32 64×64 pix2 5-filter image cutouts
around bright galaxies. AstroCompress, in contrast, is focused on uint16 images that represent a
much wider diversity of real-world raw data, including large regions of low SNR and major imaging
artifacts.

A.3.2 Dataset collection overview

All of the data that we have pulled is public data from various astronomical archives. The specific
licenses under which the data have been released are noted in the acknowledgment section. Here we
detail the selection and curation process for each dataset. Table 2 provides a broad overview of the
corpus.

At a high level: for each dataset, we generally come up with a set of logical filters and pull a list
of observations via API and/or direct download from the archives where the data are disseminated.
An observation refers to one telescope’s “visit” to a certain place in the sky, integrated over a short
period of time (typically less than 20 min). Each observation can result in multiple versions of that
observation in the archives, as many archives store various processed versions of observations along
with the associated calibration data used. For a given observation, we download the one file in raw
form (uint16; processed data is usually float32). Finally, we select a subset of the downloaded
data that contains no pairwise overlapping of the image footprint on the sky. This ensures that
compression models trained on the training set do not overfit on regions of the sky present in the test
data. It also allows users to safely create their own validation sets from subsets of our training sets.
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A.3.3 GBI-16-2D (Keck)

This is a 2-D optical imaging dataset from the ground-based W. M. Keck Observatory, obtained in
a variety of observing conditions, filters, and across exposure times from 30 seconds to >10 min.
The data are all selected from the Low Resolution Imaging Spectrometer (LRIS; Oke et al. [1995])
and are from scientific observations (as opposed to calibration exposures) obtained by one of the
co-authors of this paper (J.S.B.) from 2005 to 2010. Since LRIS has a dichroic optical element, which
splits the incoming beam at a designated wavelength, the data are obtained either with the blue or
red side camera. Each camera has its own filter wheel allowing for imaging in a variety of different
bandpasses. The raw data of a given observation are stored in FITS format [Pence et al., 2010]. The
LRIS CCDs are readout using 2 amplifiers which are stored in distinct logical and memory sections
(called Header Data Units; HDUs) within the FITS files. The blue side camera has two CCDs and
the redside camera had 1 CCD before June 2009 and 2 thereafter [Rockosi et al., 2010]. In addition
to storing the light-exposed regions, LRIS FITS files usually include small regions of virtually read
pixels, called overscan regions, which aid image processing.

Collection

We used the Keck Observatory Archive (KOA) to identify raw LRIS science images obtained under
the principal investigator program by J.S.B. These data were then downloaded and checked for
potential footprint overlaps using the positional information of the telescope pointing the FITS header.
The data assembly code for the HuggingFace GBI-16-2D dataset handles the variety of FITS formats
and emits 2D images of size 2248×2048 or 3768×2520 pix2. An example image from this dataset,
with two amplifier reads, is shown in Fig. 1.

A.3.4 SBI-16-2D (Hubble)

This dataset is based on data from the Wide Field Channel (WFC) instrument of the Advanced Camera
for Surveys (ACS) onboard the Hubble Space Telescope (HST). Unlike the GBI-16-2D dataset, all
observations in SBI-16-2D are obtained in space and with the same bandpass filter (F606W), providing
a more uniform point-spread function across the dataset. Our goal with assembling SBI-16-2D is
two-fold. First, we aim to provide a large (> 50 GB), raw 2-D optical imaging dataset from space.
Second, space-based CCD imaging, unlike ground based imaging, suffers significantly from charge
particle collisions with the detectors (called “cosmic-ray [CR] hits”). Such random hits add spurious
counts to the affected pixels, corrupting the scientific utility of the observations. WFC CCDs also
demonstrate large amounts of charge transfer inefficiency leading to correlated streaks in the vertical
direction (see Fig. 1).

Collection

We first compile a list of observations that fit our criteria, including instrument, filter choice,
and integration time ranges. This data was then downloaded from the Mikulski Archive
for Space Telescopes (MAST): https://mast.stsci.edu/search/ui/#/hst. For repro-
ducibility, we provide a script that performs this in our HuggingFace repository located at
SBI-16-2D/utils/pull_hubble_csv.py. Explanations for each filtering process can be found
in the code comments therein. Each FITS file contains two images each of size 4144× 2068; these
images are stored in the 1st and 4th headers in the FITS files. After removing overlapping regions in
the sky, the final dataset amounts to 4282 images of size 4144× 2068.

A.3.5 SBI-16-3D (JWST)

This dataset comes from the NIRCAM instrument on the James Webb Space Telescope (JWST).
NIRCAM conducts up-the-ramp imaging of various objects in several infrared wavelengths. During
up-the-ramp sampling, the aperture is exposed to a region in space, and light continuously accumulates
charge on the array. The array repeatedly measures this cumulative charge for multiple frames, thus
creating a 3-D time-series image tensor. Every N frames is averaged to create a "group", each of
which is stored in our arrays in the T dimension (where N is determined by the “read pattern”). We
strongly encourage interested readers to learn more about the JWST readout patterns on the official
documentation page 6. It is worth noting that the time gap between subsequent observations varies,

6https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-instrumentation/
nircam-detector-overview/nircam-detector-readout-patterns
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depending on readout pattern, but is roughly in the realm of twenty seconds to two minutes. For
this reason, we expect that most physical conditions present in the field of view should remain static
across time steps.

Because the instrument repeatedly measures the cumulative optimal charge across time, the pixel
value at a given spatial location cube increases with T until reaching a saturation value (216−1). This
directly allows for residual coding, i.e., compressing an initial 2D frame and the temporal differences
of 2D frames subsequently.

Collection

Similar to Hubble, we pulled the JWST observations list from the JWST section of MAST. A script
version of this can be found at SBI-16-3D/utils/pull_jwst_csv.py. Explanations for each
filtering process can be found in the code comments there. We provide 1273 images of size 2048
by 2048 by T , where T represents time, under the F200W wavelength filter. T typically ranges as
5 ⪅ T ⪅ 10.

A.3.6 GBI-16-4D (SDSS)

This dataset is assembled from “Stripe 82” of the Sloan Digital Sky Survey (SDSS; York et al. [2000]).
Stripe 82, a ∼250 sq. deg. equatorial region was repeatedly imaged in 5 optical bandpasses with
30 total CCDs over the course of many months for several years, with supernova discovery as the
main science objective [Sako et al., 2018]. Images are obtained in drift scan mode by fixing the
telescope in declination and letting the sky naturally move across the field of view as the CCDs are
readout at the sidereal rate. For a given nightly “run” across Stripe 82, the SDSS image reduction
pipeline [Stoughton et al., 2002] creates (for each of the 6 camera columns, “camcols”) “field”
images spanning a similar declination (ie., north-south) and right ascension (RA; ie., east-west). The
images served by the legacy SDSS archive7 are 2048×1489 uint16 pixels, calibrated with a world
coordinate system (WCS) that maps pixel location to sky position.

In total, we release 500 GBI-16-4D cubes as part of this dataset, with an uncompressed size of
158GB. At a fixed wavelength, the images in time mimic the raw uint16 time sequence produced by
imaging satellites, like Kepler, TESS, and CURIOS [Gulick et al., 2022]. Exploiting the correlations
in time (and wavelength) should improve the effective compression compared to the single-slice
capabilities.

We note that the gap in time between subsequent timestep images may be many nights, resulting
in very different background sky conditions. While the background sky levels across nights are
relatively uncorrelated, the pixels containing astrophysical sources exhibit significant correlation.

Collection

We queried the SDSS Stripe 82 database to assemble a table of 160k unique Stripe 82 field images
deemed to be of top quality (quality flag = 3) and then randomly sampled fields and determined
the center of the field sky positions. For each such field, we queried the SDSS Stripe 82 database
for other images (regardless of quality) that overlap the field center and downloaded those images.
Since field images from different runs are not aligned in RA, we also downloaded the two fields
immediately adjacent and created a stitched-together mosaic of those three images. We then used the
WCS in each mosaic image to cut out the same position across all available runs across all available
filters.

The assembled data are 4-D cube representations of the same 800×800 pix2 portion of the sky
observed from t=1 up to ∼90 times in f=5 filters (u, g, r, i, z). Given the excellent but inherently
noisy process of WCS fitting, the t × f image slices in a given cube are spatially aligned to <1
pix. As a result, for a fixed pixel location in a given cube there are high correlations in the pixel
value across time and wavelength. While the effective integration time is identical across all image
slices, there are slices are of higher signal-to-noise than others in the same cube and all have varying
background levels. In the few cases where an image slices does not fully overlap the central region of
the anchor field, we fill the missing region with values of zero.

7These images are from the reduction pipeline 40/41 (“rerun”) and were part of data release 7 from SDSS.
Newer reductions of the same raw data were released with different calibrations in float32 format.
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A.3.7 GBI-16-2D-Legacy

This small ground-based dataset obtained on multiple CCDs across many different telescopes is
reproduced from the public corpus released by Maireles-González et al. [2023] and assembled by us
in HuggingFace dataset format. Our experiments only made use of the subset of data from the Las
Cumbres Observatory (LCO).

Collection

We retrieved all of these files from a download page of Maireles-González et al. [2023] in a .raw
format and used a script (GBI-16-2D-Legacy/raw_to_fits.py in HuggingFace) to convert the
images to FITS format. Unlike in the other datasets, we did not check for nor remove potential
overlapping images.

A.4 Dataset assembly

Rejection of overlapping images After the initial download of these raw images from various
astronomy databases, a significant portion of the necessary data curation is to ensure that the imagery
does not overlap on the sky. It is particularly essential to ensure that the spatial footprint of all data in
the train set does not overlap with that of the test set. Because we anticipate that future use of this
data will split it into validation sets as well, we conservatively ensure that all of our images have
pairwise zero overlap.

This was done in two stages, the implementations for which can be found in the utils/

Stage 1. Before downloading raw imagery, we first download a metadata file that contains a list
of observations and the right ascension (RA) and declination (DEC) of each observation. These
are akin to standard spherical coordinates θ and ϕ. The corresponding pixel for the given RA and
DEC varies depending on the data source; it can be the image center pixel, the RA and DEC of the
target celestial object of interest, or some other pixel within the image entirely. In order to filter
out images in this overlapping set, we ran a hierarchical agglomerative clustering (HAC) algorithm
via sklearn.cluster.AgglomerativeClustering on a matrix of precomputed pairwise angular
distance matrix via astropy.coordinates.angular_separation. We made a small modification
to the astropy source code in order to allow numpy vectorization. The threshold for clustering was
selected as 2*FOV, where FOV was the field of view of any given telescope. Within each cluster, a
subset of well-separated images was downloaded.

Stage 2. After downloading the data, we were able to use the World Coordinate System (WCS) of
each image to map any given pixel in an image to an RA and DEC, using astropy.wcs. The Python
library spherical-geometry is used to compute spherical polygons from the four corners of the
image in RA/DEC, and computes overlaps between these polygon objects. In some cases, such as for
Hubble, there are two images contained within a single FITS file, so we need to compute spherical
polygons for both and then use the union of those two polygons for overlap calculations. Using these
algorithms, we further filter out overlapping images within each cluster.

Code to download raw data from source and filter it can be found in the utils folder of each
HuggingFace dataset. We hope these files, in combination with the observation list assembly code
will facilitate efforts for future experts to expand on our dataset from the astronomy data sources
themselves.

Disclaimers: Because the Keck dataset did not have WCS information, we did not run stage 2, and
instead used a more stringent clustering threshold in stage 1 and took only one image from each
cluster. No filtering was done on the very small Legacy dataset; it also contained no WCS, RA or
DEC data.

B Further Motivation

We present below a brief amount of quantitative evidence on the explosion of astronomy data scale
and the need for advances in its processing.

Astronomy data volumes are growing at an apparently superexponential rate (see Figure 1 of [Maireles-
González et al., 2023]). A growth rate of about 10x every 10 years has become nearly 1000x every
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10 years. The ability to transmit and store this data will become a massive burden preventing this
growth rate from continuing. We hope for advanced compression to alleviate some of this problem.

The current state-of-the-art supercomputers administered by the United States Department of Energy
were only recently made ready to handle exascale computing in 20238—specifically Frontier and
Aurora, the current two most powerful systems in the world according to top500.org. While this
"exascale" refers to exaflops rather than exabytes, the need for compute scale is built specifically to
address data scale.

In addition, costs per pixel for observatories are declining, allowing the deployment of larger and
larger detectors and thus increased scale of data flow. For instance, the focal plane of the Rubin
Observatory, now in the commissioning phase, is the largest optical camera ever built, with 20–30 TB
of raw imaging data per night containing detectors totaling 3.2 billion pixels [Kahn et al., 2010]. The
main imaging camera of the James Webb Space Telescope (JWST) features ten 2048× 2048 pix2

detectors [Gardner et al., 2023], compared to the single 256× 256 pix2 array of the Hubble Space
Telescope [Thompson et al., 1998]. Each pixel value includes flux from astronomical sources (which
we refer to as “sources” in the rest of the paper), sky background, A/D-introduced noise, and “dark
current” arising from the non-zero detector temperature.

In sum, we repeat the breadth of data sources that will soon reach exabyte scale: radio astronomy,
satellite imagery9, genomes, brain mapping and beyond. We note the massive economic potential
seen in some of these fields. Lossless methods can be applied without fear, but very carefully crafted
lossy designs may soon bring forth orders of magnitude more performant pipelines.

C Baseline Algorithms and Implementation

C.1 The current state of astronomy image compression

Compression is widely used in astronomy to transmit raw data from satellites, to store smaller files
in archives, and to speed the movement of files across networks. The consultative Committee for
Space Data Systems (CCSDS10) periodically reports on recommendations for methods—all variants
of JPEG-LS and JPEG-2000 (see below), though not yet JPEG-XL—to compress images and data
cubes as they are transmitted in packets from satellites to ground stations. Specialized commercially
available space-hardened hardware modules that implement these standards are in use both by NASA
and the European Space Agency (ESA). Once on the ground, images are usually held and transmitted
by major archives with bzip2, Hcompress, or Rice compression (cf. Pence et al. 2009 and §4.1).
Compressed image storage (and manipulation codes; Seaman et al. 2010) are standardized in the file
formats, like FITS [Pence et al., 2010] and HDF5, commonly in use by astronomers. Many have
studied and proposed refinements of these methods both for lossless [Villafranca et al., 2013, Pata
and Schindler, 2015, Thomas et al., 2015, Maireles-González et al., 2023, Mandeel et al., 2021] and
lossy [Maireles-González et al., 2022] compression. All of these existing works rely on manually
designing codecs using classical probability distributions and transforms.

C.2 Code details

From any dataset parent folder on HuggingFace, run python utils/eval_baselines.py 2d to
get 2D evaluations of all algorithms. For JWST and SDSS, this 2d argument may be changed to
several other options that can be found in the command arguments help docstring. These options
allow for JWST residual ("diffs", as stated in the code) compression, compressing entire 3D tensors
for JWST and SDSS, as well as some unique SDSS experiments in which we compressed the top 8
bits and bottom 8 bits separately (2d_top and 2d_bottom). We also attempted with poor results to
compress 2D SDSS arrays composed of a single spatial pixel, but all wavelengths and timesteps (tw).
The exact functionalities are documented in the script.

The script also saves the compression ratio, read time, and write time for every single image into
a .csv file. We have already performed this and uploaded the CSV files for each dataset to the

8https://science.osti.gov/-/media/bes/besac/pdf/202212/7-Helland--BESAC-Panel.pdf
9https://www.earthdata.nasa.gov/s3fs-public/2022-02/ESDS_Highlights_2019.pdf

10https://public.ccsds.org/default.aspx.
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HuggingFace parent repository. Additionally, running statistics on mean values are printed to the
console.

Implementations for all the non-neural baseline algorithms were adapted from the Python library
imagecodecs=2024.1.1. All codecs in this library call the native C codec, specifically: JPEG-XL
via libjxl, JPEG-LS via charls, JPEG-2K via OpenJPEG, and RICE forked from cfitsio=3.49.

All the non-neural baseline algorithms natively support 16-bit inputs. JPEG-XL and JPEG-2K support
multi-channel compression directly. To evaluate multichannel arrays using JPEG-LS and RICE, we
applied .reshape((H, -1)) to convert them to single-channel. This was performed only on SDSS
data, which resulted in an image height of H = 800. For reporting compression ratio, we did not
consider the bit-rate cost of transmitting the data shape needed for decoding, as this overhead is
negligible for even the smallest image in our dataset.

D Details on neural compression methods

In this section, we provide an in-depth look at our experiments and modifications to existing neural
compression methods to work with our astronomical image data. Our implementation can be found
at https://anonymous.4open.science/r/AnonAstroCompress/.

D.1 Data format

As mentioned in the main text, most neural image compression methods are designed to handle
3-channel 8-bit RGB images, so we made minor modifications to the neural compression methods to
handle the 16-bit data of AstroCompress.

At a high level, we experimented with two approaches: (1) adding support for 16-bit input directly;
(2) treating the 16-bit input as the concatenation of two 8-bit inputs – the most significant byte (MSB)
and least significant byte (LSB). We used the better of the two when reporting results, and generally
found approach (2) to perform similarly or better than approach (1).

• To implement approach (1), we make the following modifications to support 16-bit input
directly: For IDF, we change the input scaling coefficient from 28 to 216, so that it models the
set Z/65536 (instead of Z/256). For L3C and PixelCNN++, which both use a discretized
logistic mixture likelihood model [Salimans et al., 2017], we increase the number of bins
from 28 − 1 to 216 − 1.

• To implement approach (2), we generally convert 16-bit input into 8-bit input while doubling
the number of channels. For a 2D (single-frame) image of shape 1×H×W , this corresponds
to treating it as an 8-bit tensor of shape 2×H ×W where the first channel contains the least
significant byte (LSB) and the second channel contains the most significant byte (MSB).
For a 3D (multi-frame) image of shape 3 ×H ×W , this corresponds to treating it as an
8-bit tensor of shape 6 ×H ×W , where the first three channels contain the LSBs of the
original input and the remaining channels contain the MSBs of the original input. The neural
compression models are modified accordingly to support the increased number of channels:

– For IDF, we simply doubled the number of input/output channels while keeping the
rest of the architecture the same;

– For L3C and PixelCNN++, we model 2-channel 8-bit images by using only the “R”
and “G” parts of the original RGB autoregressive logistic mixture likelihood model,
and we model 6-channel 8-bit images by performing the same autoregressive modeling
as the RGB case for the first 3 (LSB) channels, and similarly for the remaining 3 (MSB)
channels (so the LSB and MSB channels are modeled separately).

D.2 Architecture and training details

IDF We adopted the implementation from Hoogeboom et al. [2019] at https://github.com/
jornpeters/integer_discrete_flows. The network and training hyper-parameters are also set
to be consistent with the default configurations from [Hoogeboom et al., 2019], which we find to
yield the best results. We train on patches of 32× 32 with a batch size of 256. We use a learning rate
of 1× 10−3 and an exponential decay scheduler with rate 0.999.
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L3C We adopted the implementation from Mentzer et al. [2019] at https://github.com/
fab-jul/L3C-PyTorch. We largely followed the default model configuration provided by [Mentzer
et al., 2019] to train the model on 2D image data across all datasets. For 3D experiments, we increased
the base convolution filter size and adjusted the latent channel size to 96 and 8, respectively. We
trained on 32 × 32 patches, with a learning rate of 1× 10−4 and an exponential decay scheduler with
rate 0.9.

PixelCNN++ We adopted the implementation from https://github.com/pclucas14/
pixel-cnn-pp and adopted the same model architecture as in the default configuration (5 resnet
blocks, 160 filters, 12 logistic mixture components, and a learning rate of 2 × 10−4). We also
explored different ways of formatting/modeling 8-bit data (converted from 16-bit input), such as
training two separate models for the LSB and MSB, or concatenating the LSB and MSB across
the width dimension instead of channel dimension, but did not observe significant improvements
compared to the basic approach of stacking the LSB and MSB along the channel dimension (as
described in Section D.1).

E Additional Experiment Details

E.1 Handling 16-bit data

Handling 16-bit data Most neural lossless compression methods are designed for RGB image
compression, operating on 8-bit (unsigned) integers. To accommodate 16-bit data of AstroCompress,
we minimally modify the neural compression methods as follows: for L3C and PixelCNN++, which
both use a discretized logistic mixture likelihood model, we increase the number of bins from 28 − 1
to 216 − 1; for IDF, we simply change the input normalization constant from 28 to 216. Alternatively,
we consider treating each 16-bit pixel as two sub-pixels: the most significant byte (MSB) and the
least significant byte (LSB), converting a 1-channel 16-bit image into a 2-channel 8-bit image; we
then double the number of input channels of each model accordingly. We refer to Supplementary
Material for more details.

E.2 Training Splits and Data Preprocessing

For all experiments, we use a fixed split of training and testing images (details in Supplement). The
training set is further divided into 85% for training and 15% for validation. For each method, we train
and evaluate two model variants as described above, either handling 16-bit input directly or treating
it as 8-bit input with double the number of channels; we report the best compression performance
between the two variants. We train on random 32× 32 spatial patches and apply random horizontal
flipping. For evaluation, we divide each image evenly into 32× 32 patches, apply reflective padding
beforehand if needed. We evaluate the model’s compression performance by compressing all patches
of an image and combining the results to determine overall performance on that image. This process is
then repeated for all test images, and the average compression performance is reported. Compression
ratio is calculated as the uncompressed bit depth / negative log-likelihood assigned by the model,
aligning closely with actual on-disk entropy coding performance using arithmetic coding.

E.3 Generalization performance
LCO Keck Hubble JWST-2D SDSS-2D

LCO 2.83 1.01 1.09 0.84 2.31

Keck 2.70 2.05 2.20 1.19 3.02

Hubble 0.67 0.94 2.94 1.22 0.69

JWST-2D 1.46 1.45 1.47 1.44 1.50

SDSS-2D 2.27 1.24 1.75 1.02 2.91

Table 3: IDF generalized performance across
single-frame datasets. Rows indicate train set;
columns indicate test set. Bold indicates best
in test set; underline indicates second-best.

We take IDF as our representative model for in-
vestigating generalization performance, where we
train and evaluate and all pairs of the single-frame
compression tasks. Table 3 shows that the trained
model from the Keck experiment generalizes de-
cently across other experiments, even surpassing
the model trained and evaluated on SDSS-2D. We
hypothesize that the aforementioned diversity of
wavelength filters in the Keck dataset may explain
its unexpected generalizability.

E.4 Computational metrics
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SDSS-2D (800x800) Hubble (4144x2068)

IDF 0.42 ± 0.01 6.03 ± 0.24

L3C 5.18 ± 1.04 73.04 ± 2.36

PixelCNN++ 1.48 ± 1.05 20.49 ± 0.18

JPEG-XL max 3.14 ± 0.14 87.76 ± 13.30

JPEG-XL default 0.06 ± 0.002 0.91 ± 0.07

JPEG-LS 0.02 ± 0.0002 0.316 ± 0.04

JPEG-2000 0.09 ± 0.003 1.76 ± 0.11

RICE 0.008 ± 0.0002 0.12 ± 0.02

Table 4: Compression runtime (in sec-
onds/image) on the SDSS-2D and Hubble
datasets. For neural methods, the runtime
refers to the model likelihood inference
time on the full image, without encoding.
For classical methods, the runtime refers to
the time taken to encode images.

To offer practical considerations, we present runtime
metrics that would be valuable in assessing the fea-
sibility of these methods for real-world applications.
Table 4 shows various runtime for inference from
neural methods and coding time for classical meth-
ods. We ran classical compression codecs on a sin-
gle thread with a Intel(R) Xeon(R) Silver 4112
CPU @ 2.60GHz processor and neural compression
network on a single NVIDIA RTX 6000 ADA. JPEG-
XL with max effort and JPEG-2000 seem to scale
quadratically with the number of input pixels, while
the other classical algorithms scale linearly with the
number of input pixels. Note that in order to work with
limited GPU memory, our neural methods operate on
32 × 32 patches, which allows for linear scaling of
encoding complexity but also likely limits the achiev-
able compression ratio. By comparison, our non-neural
baselines always receive full images as input.

E.5 Details on background noise estimation and
source detection for post-experiment analyses

Figures 3 and 4 use data from a single, representative SDSS-2D frame. We used photutils11

estimate the sky’s background noise to get the SNR at each pixel, and then to compute a mask of all
sources. The 2D background was estimated by dividing the 800x800 image into 50x50 patches and
excluding pixels above 3σ of the median value. The medians and standard deviations of the remaining
pixels were interpolated to get the final background and noise images. SNR was calculated as
SNR = (original_image - background) / noise. Source pixels were detected by applying a
kernel around any pixels above 3σ, creating a smoothed mask for signal-generating objects.

F Limitations of our work

Limitations of our dataset include a lack of spectroscopic, radio astronomy or floating-point data.
In addition, we believe that the significant time delay in between our SDSS-3DT image exposures
may not be representative of other optical telescopes that may do back-to-back exposures of the same
region. Such a dataset may bring forth significant compression gains, the way we have shown for
back-to-back infrared imaging via JWST frame differencing.

Additionally, the three neural compression methods we examined, although established in the
literature, likely do not represent the state-of-the-art performance in neural lossless compression.
We chose our three algorithms because they are relatively practical, whereas more recent neural
compression methods may suffer from long runtimes.

11https://photutils.readthedocs.io/en/stable/background.html

20

https://photutils.readthedocs.io/en/stable/background.html


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper claims regarding a new dataset and the corresponding evaluations
are accurately reflected in the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The main goal of the paper is to spur research on neural compression for
astronomy data. Limitations of the presented lossless compression methods are clearly
stated; readers are, in fact, encouraged to improve on the author’s compression results.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]

Justification: this paper is an empirical investigation and does not have mathematical proofs.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental results rely on already published, publicly available com-
pression models. In cases where the architecture was modified to be compatible with new
data formats, we were explicit about the alterations. In addition, we will release the models
along with the data sets.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Releasing our astrophysics dataset is among the main goals of this publication.
Details are provided in the paper. The code is mainly adopted from published compression
models and will be released along with the data.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experiments section contains all the details to make our results repro-
ducible. Train/test splits come along with the data publication.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Data compression is a deterministic approach. We report compression ratios
obtained on the full test data sets, which is a deterministic and reproducible operation.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We tried to be as detailed as possible about the computing resources used to
train the model.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As our paper describes an astronomy data compression study, we are in
agreement with the Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Broader Impacts paragraph.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not anticipate risks associated with the release of astrophysical data.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data sources have been credited by citing the appropriate publications.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets include the release of the four preprocessed astronomy datasets
released with this paper. The data will be hosted on HuggingFace, and the license type will
be provided.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The study contains neither crowdsourcing nor human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

22

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]
Justification: There are no human subjects involved; IRB approval does not apply.
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