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ABSTRACT

In this paper, we study nonparametric estimation of instrumental variable (IV) re-
gressions. While recent advancements in machine learning have introduced flexi-
ble methods for IV estimation, they often encounter one or more of the following
limitations: (1) restricting the IV regression to be uniquely identified; (2) requir-
ing minimax computation oracle, which is highly unstable in practice; (3) absence
of model selection procedure. In this paper, we analyze a Tikhonov-regularized
variant of the seminal DeepIV method, called Regularized DeepIV (RDIV) re-
gression, that can converge to the least-norm IV solution, and overcome all three
limitations. RDIV consists of two stages: first, we learn the conditional distribu-
tion of covariates, and by utilizing the learned distribution, we learn the estimator
by minimizing a Tikhonov-regularized loss function. We further show that RDIV
allows model selection procedures that can achieve the oracle rates in the mis-
specified regime. When extended to an iterative estimator, we prove that RDIV
matches the current state-of-the-art convergence rate. Furthermore, we conducted
numerical experiments to justify the efficiency of RDIV empirically. Our results
provide the first rigorous guarantees for the empirically well-established DeepIV
method, showcasing the importance of regularization which was absent from the
original work.

1 INTRODUCTION

Instrumental variable (IV) estimation is an important problem in various fields, such as causal infer-
ence (Angrist and Imbens, 1995; Newey and Powell, 2003; Deaner, 2018; Cui et al., 2020; Kallus
et al., 2021; 2022), missing data problems (Miao et al., 2018; Wang et al., 2014), dynamic discrete
choice models Kalouptsidi et al. (2021) and reinforcement learning (Liao et al., 2021; Uehara et al.,
2022a;b; Shi et al., 2022; Wang et al., 2021; Yu et al., 2022).

In this paper, we focus on nonparametric IV (NPIV) regression (Newey and Powell, 2003). NPIV
concerns three random variables X ∈ Rd (covariate), Y ∈ R (outcome variable), and Z ∈ Rd

(instrumental variables). We are interested in finding a solution h0 of the following conditional
moment equation (Dikkala et al., 2020b; Chernozhukov et al., 2019):

E[Y − h(X)|Z] = 0.

This is equivalently written as T f = r0 where T : L2(X) ∋ f(X) 7→ E[f(X)|Z] ∈ L2(Z) and
r0(Z) = E[Y |Z] by denoting L2(X), L2(Z) to be the L2 space defined on X and Z with respect
to the underlying distribution. Both the operator T and E[Y |Z] remain unknown. Hence, we aim to
solve T f = r0 by harnessing an identically independent distributed (i.i.d.) dataset {Xi, Yi, Zi}i∈[n].

There has been a surge in interest in NPIV regressions that try to integrate general function approxi-
mation such as deep neural networks beyond classical nonparametric models (Hartford et al., 2017;
Singh et al., 2019; Xu et al., 2021; Zhang et al., 2023; Dikkala et al., 2020b; Bennett and Kallus,
2020; Bennett et al., 2023a;b; Kallus et al., 2022; Singh, 2020). Despite these extensive efforts,
existing approaches encounter several challenges. The first challenge is the ill-posedness of the in-
verse problem. Many existing works (Liao et al., 2020a; Newey and Powell, 2003; Florens et al.,
2011; Kato et al., 2021) require that the NPIV solution h0 is unique, and further impose quantitative
bounds on measures of ill-posedness. However, it is known that the uniqueness assumption is easily
violated in practical scenarios, such as weak IV (Andrews and Stock, 2005; Andrews et al., 2019) or
proximal causal inference (Kallus et al., 2021). The second challenge involves the reliance on mini-
max optimization oracles in many methods (Bennett et al., 2023a; Dikkala et al., 2020b; Liao et al.,
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Table 1: Summary of IV regression literature with general function approximation such as neural
networks. “Model Selection” means allowing model selection methods over any hypothesis space.
“No Minimax” means no need of minimax oracle. “No Uniquness” means unique solution is not
assumed.

Model Selection No Minimax No Uniqueness RMSE rates

Chen and Pouzo (2012) ✓ ✓
Hartford et al. (2017) ✓
Dikkala et al. (2020a)

Liao et al. (2020a) ✓
Xu et al. (2021) ✓

Bennett et al. (2023a) ✓ ✓
Bennett et al. (2023b) ✓ ✓

Ours (RDIV) ✓ ✓ ✓ ✓

2020a; Bennett et al., 2023b; Zhang et al., 2023), which results in minimax non-convex non-concave
optimization when invoking deep neural networks. However, currently, such an optimization can be
notoriously unstable and may fail to converge (Lin et al., 2020b; Jin et al., 2020; Lin et al., 2020a;
Diakonikolas et al., 2021; Razaviyayn et al., 2020). Instead, our approach seeks to address this chal-
lenge by proposing a computationally efficient estimator that relies on standard supervised learning
oracles rather than minimax oracles. The third challenge is the absence of clear procedures for model
selection in existing works (Chen and Pouzo, 2012; Xu et al., 2021; Zhang et al., 2023; Cui et al.,
2020; Hartford et al., 2017). Such a procedure, including techniques such as cross-validation, has
played a pivotal role in modern machine-learning algorithms (Bartlett et al., 2002a; Gold and Sollich,
2003; Guyon et al., 2010; Cawley and Talbot, 2010; Raschka, 2018; Emmert-Streib and Dehmer,
2019; McAllester, 2003). In NPIV problems, model selection becomes essential, particularly in
scenarios where the ground-truth solution h0 lies outside the chosen function classes optimized by
the algorithm. However, model selection remains an open question for minimax approaches due
to having a test function for the inner maximization problem that might change when generaliz-
ing from the empirical distribution to population distribution. On the other hand, while some prior
works employ a loss minimization approach (e.g. Chen and Pouzo (2012); Zhang et al. (2023)),
model selection would be restricted to a specific hypothesis space, such as kernels or sieves, and no
theoretical discussion for model selection under general function approximation has been discussed.

In this paper, we propose and analyze a variant of the well-established DeepIV method (Hartford
et al., 2017), that addresses the aforementioned challenges, which we refer to as the Regularized
DeepIV (RDIV). This approach consists of two steps. First, we learn the operator T by maximum
likelihood estimation (MLE). Secondly, we obtain an estimator for h0 by solving a loss incorporating
the learned T and Tikhonov regularization (Ito and Jin, 2014) to handle scenarios where solutions
of the conditional moment constraint are nonunique. While RDIV can be viewed as a regularized
variant of the DeepIV method of Hartford et al. (2017) with a non-parametric MLE first-stage, no
prior theoretical convergence guarantees exist for the DeepIV method. We show that our estimators
can converge to the least norm IV solution (even if solutions are nonunique) and derive its L2 error
rate guarantee based on critical radius. Subsequently, we introduce model selection procedures for
our estimators. Particularly, we provide theoretical guarantees for model selection via out-of-sample
validation approaches, and show an oracle result in our context. Finally, we further illustrate that
RDIV can be easily generalized to an iterative estimator that more effectively leverages the well-
posedness of h0.

Our contribution is to propose the first formal theoretical results for the well-established NPIV
method DeepIV, with an additional Tikhonov regularization. Although simple, such regularization
imparts strong convexity to the loss function, thereby enhancing its generalization ability. Specifi-
cally, we show that RDIV (a) operates in the absence of the uniqueness assumption, (b) does not rely
on the minimax computational oracle, and (c) allows for model selection. Subsequently, we demon-
strate that RDIV can be extended to an iterative estimator. We show that our estimators achieve
a state-of-the-art convergence rate in terms of L2 error analogous to Bennett et al. (2023b) for the
iterative version, as well as the non-iterative version when h0 is well-posed. In contrast, Bennett
et al. (2023b) relies on a minimax computational oracle and does not permit us to perform model
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selection. Therefore, our estimator can be seen as an estimator with a strong theoretical guarantee
due to the property (a) while it is practical due to properties (b) and (c). Notably, none of the exist-
ing works can enjoy such a guarantee, as shown in Table 1. From a technical perspective, the key
challenge in our proof lies in effectively controlling the density estimation error resulting from the
first-stage MLE. This step introduces a density estimation error in Hellinger distance, whereas the
final results require bounding the L2 distance between ĥ and h0. This task is nontrivial since the
estimator is not Neyman orthogonal (Foster and Syrgkanis, 2019), and directly converting the error
from the Hellinger distance to L2 norm would lead to a slower convergence rate.

2 NOTATIONS

For a function f : X × Y × Z → R, we denote its population expectation by E[f(X,Y, Z)]. We
denote the empirical mean of f by En[f(X,Y, Z)] := 1

n

∑n
i=1 f(Xi, Yi, Zi). We denote the set of

all probability distributions defined on set Ω by ∆(Ω). We denote the Lp norm of f by ∥f∥p :=

E[|f |p]1/p. Throughout the paper, whenever we use a generic norm of a function ∥f∥, we will be
referring to the L2-norm. For two density function p(x) and q(x), we denote their Hellinger distance
by H(p(·) | q(·)) =

∫
X (
√

p(x)−
√
q(x))2dµ(x). For a functional operator T : L2(X) → L2(Z),

we denote the range space of T by R(T ), i.e., R(T ) = {T h : h ∈ L2(X)}. Moreover, we use
T ∗ : L2(Z) → L2(X) to denote the adjoint operator of T , i.e.,⟨g, T h⟩L2(Z) = ⟨T ∗g, h⟩L2(X)

for any h ∈ L2(X), g ∈ L2(Z), where ⟨·, ·⟩L2(X) and ⟨·, ·⟩L2(Z) are inner products over L2(X)
and L2(Z), respectively. For θ ∈ Θ = {θ|

∑
j θj = 1, θj ≥ 0,∀j}, we denote hθ =

∑
j θjhj .

We use ej to denote the one-hot vector where that is zero except for the jth component, which
equals to 1. For a function class F , we define the localized Rademacher complexity by R̄n(δ;F) :=
E
[
Eϵ

[
supf∈F,∥f∥2≤δ

∣∣ 1
n

∑n
i=1 ϵif(xi, zi)

∣∣]], where ϵi are i.i.d. Rademacher random variables. For
a function class F over X and Z , we define its star hull by star(F) = {γf, γ ∈ [0, 1], f ∈ F}. For
a function class F , we denote F̄ := star(F − F) to define its symmetrized star hull. We define the
critical radius δn,F of a function class F as any solution to the inequality δ2 ≥ R̄n(star(F −F), δ).
We use µ to denote the Lebesgue measure.

3 PROBLEM STATEMENT AND PRELIMINARIES

As mentioned in Section 1, we aim to solve the following inverse problem with respect to h, known
as the nonparametric IV regression:

T h = r0, r0 := E[Y |Z]. (1)

While T and r0 are unknown a priori, using i.i.d. observations {Xi, Yi, Zi}i∈[n], we aim to solve
this equation. We denote its associated distributions by g0, e.g., denote the conditional density of
X ∈ X given Z ∈ Z by g0(x|z) ∈ {X × Z → R}. Throughout this work, we assume a solution to
Equation equation 1 exists.

Assumption 1 (Existence of Solutions). We have r0 ∈ R(T ), i.e. Nr0(T ) := {h ∈ H : T h =
r0} ≠ ∅.

Crucially, even though a solution to equation 1 exists, it might not be unique. Hence, we propose to
target a specific solution that achieves the least norm, defined as:

h0 := argminh∈Nr0 (T ) ∥h∥2. (2)

Note this least norm solution is well-defined, as it is defined by the projection of the origin onto a
closed affine space Nr0(T ) ⊂ L2(X). Indeed, with Assumption 1, it is easy to prove that h0 in
equation 2 always exists (Bennett et al., 2023a, Lemma 1).

As we emphasize the challenges in Section 1, although there have been a lot of method that use
minimax optimization for estimating h0, when using general function approximation such as neural
networks, the minimax optimization tends to be computationally hard (Lin et al., 2020b; Jin et al.,
2020; Lin et al., 2020a; Diakonikolas et al., 2021; Razaviyayn et al., 2020). Moreover, it remains
unclear how to perform model selection for those methods. Hence, in this paper, we aim to propose
a new method that can incorporate any function approximation for estimating the least square norm
solution h0 in equation 2 with a strong convergence guarantee in L2(X) under mild assumptions
(i.e., such as without the uniqueness of h0) while allowing for model selection.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Regularized Deep IV (RDIV)
Require: Validation dataset {Xi, Yi, Zi}i∈[n′] that is independent from the training dataset, func-

tion class G ⊂ {Z → ∆(X )}, function class H ⊂ {X → R}, a regularization hyperparameter
α ∈ R>0

1: Learn ĝ(x|z) with MLE:

ĝ = argmax
g∈G

En[log g(X|Z)], (4)

2: Learn ĥ by the following estimator:

ĥ = argmin
h∈H

En[
(
Y − (T̂ h)(Z)

)2
] + α · En[h(X)2] (5)

where T̂ : L2(X) → L2(Z) is defined by T̂ f(Z) = Ex∼ĝ(X|Z)[f(X)] using ĝ in the first step.
output ĥ.

4 REGULARIZED DEEP IV

In this section, we introduce a two-stage algorithm, Regularized DeepIV (RDIV), aimed at obtaining
the least square solution h0 as defined in Equation equation 2. Even though we borrow the DeepIV
terminology from the prior work (Hartford et al., 2017), our method can be used with arbitrary
function approximators and not necessarily neural network function spaces. Being inspired by the
original constrained optimization equation 2, we aim to solve a regularized version of the problem,
shown by the following:

h∗ := argmin
h∈H

∥Y − T h∥22 + α∥h∥22 (3)

where H ⊂ L2(X) represents a hypothesis class that consists of possible candidates for h0, and
α ∈ R+ denotes a parameter controlling the strength of regularization. While this formulation
itself has been known in the literature on general inverse problems (Cavalier, 2011; Mendelson
and Neeman, 2010), we consider common scenarios in IV where both the conditional expectation
operator T and the population expectation in Equation equation 3 are unknown, and need to leverage
dataset {Xi, Yi, Zi}.

To address this challenge, by integrating general function approximation such as neural networks,
we introduce a two-stage method, the Regularized Deep Instrumental Variable (RDIV), which is
summarized in Algorithm 1. In the first stage, given a function class G comprising functions of the
form

{
g : X ×Z → R,

∫
X g(x|z)µ(dx) = 1 for all z

}
, we aim to learn the conditional expectation

operator T by estimating the ground-truth conditional density g0(x|z) from the dataset {Xi, Zi}i∈[n]

with MLE in Equation equation 4. In the second stage, with the learned conditional density ĝ in
the first step, we learn h0 by replacing expectation and T in Equation equation 3 with empirical
approximation and T̂ , respectively, as shown in Equation equation 5.

Importantly, similar to DeepIV, RDIV does not necessitate a demanding computational oracle such
as non-convex non-concave minimax or bilevel optimization, unlike many existing works for non-
parametric IV with general function approximation (Lewis and Syrgkanis, 2018; Xu et al., 2021;
Bennett et al., 2023a). Even when using neural networks for G and H, we just need standard ERM
oracles for density estimation or regression whose optimization is empirically known to be suc-
cessful and theoretically more supported (Du, 2019; Chen et al., 2018; Zaheer et al., 2018; Barakat
and Bianchi, 2021; Wu et al., 2019; Zhou et al., 2018; Ward et al., 2020). We leave the numerical
comparison between our method and existing NPIV methods (Hartford et al., 2017; Dikkala et al.,
2020b; Xu et al., 2021; Singh et al., 2019) in Appendix 9.

Remark 1 (Comparison with DeepIV (Hartford et al., 2017)). A key distinction between RDIV and
the original DeepIV (Hartford et al., 2017) lies in our introduction of an explicit regularization term
in Equation equation 5. Such a term endows the loss function with strong convexity, which plays a
pivotal role in obtaining guarantees without the requirement for solution uniqueness. Furthermore,
Hartford et al. (2017) lacks a rigorous discussion on convergence guarantees or model selection.
Our contributions primarily focus on the theoretical aspect, showcasing rapid convergence guaran-
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tees under mild assumptions, linking them to a formal model selection procedure, and exploring the
iterative version to achieve a refined rate in Section 8.

Remark 2 (Computaion for T̂ ). Some astute readers might notice it could be hard to evaluate T̂ h
exactly in Equation equation 5. However, in practical application when h is parametrized as a
neural network, we can sample a batch of {X ′

j}j∈[B] by ĝ(X|Zi) for every Zi in the dataset, and
calculate a stochastic gradient that is an unbiased estimator of the real gradient of the loss function
in Equation equation 5. Existing theory and empirical results for stochastic first-order methods can
then guarantee the performance in many scenarios (Jin et al., 2019; Barakat and Bianchi, 2021;
Chen et al., 2018; Hartford et al., 2017).

5 FINITE SAMPLE GUARANTEES

In this section, we demonstrate a convergence result of our estimator ĥ in RDIV to h0 and derive its
L2 error rate after introducing several assumptions.

We commence by introducing the β-source condition, a concept commonly used in the literature on
inverse problems (Carrasco et al., 2007; Ito and Jin, 2014; Engl et al., 1996; Bennett et al., 2023b;
Liao et al., 2021), which mathematically captures the well-posedness of the function h0.
Assumption 2 (β-Source Conditon). The least norm solution h0 satisfies h0 = (T ∗T )β/2w0 for
some w0 ∈ H and β ∈ R≥0, i.e.,h0 ∈ R(T ∗T )β/2. Recall T ∗ is an adjoint operator of T defined
in Section 2.

In the following, we present its interpretation. First, as special cases, when X ,Z are finite (e.g.,
discrete random variables), it holds when β = ∞. However, in our cases of interests where X ,Z
are not finite, this assumption restricts the smoothness of h0. Intuitively, when the parameter β is
large, the function h0 exhibits greater smoothness, and the assumption gets stronger, in the sense
that eigenfunctions of h0 relative to an operator T have smaller eigenvalues as explained in Bennett
et al. (2023a, Section 6.4).

Next, we introduce another standard assumption as follows. This requires that the function classes
H and G are well-specified. We will later consider misspecified cases as in Section 6.
Assumption 3 (Realizability of function classes). We assume h0 ∈ H, g0 ∈ G.

The final assumption is as follows. This is standard in analyzing the convergence of nonparametric
MLE (Wainwright, 2019, Chap 14, p.g. 476). We will later discuss how to relax such an assumption
Appendix C.
Assumption 4 (Lower-bounded density). We assume a constant C0 > 0 such that g0(x|z) > C0

holds for all x ∈ X and z ∈ Z .

Finally, we present our guarantee for Algorithm 1.
Theorem 5 (L2 convergence rate for RDIV with MLE). Suppose Assumption 2,3,4 hold. Let
∥Y ∥∞ ≤ CY , ∥h∥∞ ≤ CH holds for all h ∈ H, ∥g∥∞ ≤ CG holds for all g ∈ G. There
exists absolute constant c1, c2, such that with probability at least 1− c1 exp(c2nδ

2
n):

∥ĥ− h0∥22 = O(δ2n/α
2︸ ︷︷ ︸

(i)

+αmin(β,2)︸ ︷︷ ︸
(ii)

)

In particular, by setting α = δ
2

2+min{β,2}
n we have

∥ĥ− h0∥22 = O
(
δ

2min{β,2}
2+min{β,2}
n

)
. (6)

Here δn = max{δn,G , δn,H}, where δn,F is the critical radius of star(F−F) = {λ(f−f ′), f, f ′ ∈
F , λ ∈ [0, 1]}. O(·) hides constants of polynomial order of CY , CG , CH, and 1/C0.

The critical radius δn measures the statistical complexity of function class H and G. For example,
for parametric class or Gaussian Kernel, δn = Õ(n−1/2), while for first order Sobolev class, δn =

Õ(n−1/3) (Wainwright, 2019; Bartlett et al., 2002b). In those cases, when β ≥ 2, the final rate in L2

metric will be Õ(n−1/2) in the former case and Õ(n−1/3) in the latter case, respectively. Note that
when the complexity of the function class is known, the regularization constant α can be directly
calculated by Theorem 5. We now give the interpretation of our result. The bound of ∥ĥ − h0∥22
consists of two terms. Term (i) comes from a statistical error to estimate h∗ from H and G (i.e.,

5
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∥ĥ− h∗∥2). Here, we use the strong convexity owing to Tikhonov regularization as it enables us to
convert the population risk error to an error in L2 metric. Then, we properly bounded the population
risk from above by the empirical process term properly. While this δ2n rate is known as the standard
fast rate in nonparametric regression (Wainwright, 2019), our result is still non-trivial because we
need to handle a statistical error term properly when approximating T with T̂ , which comes from
the MLE error in the form of Hellinger distance.

The term (ii) comes from the bias ∥h0 − h∗∥2 incurred by adding a Tikhonov regularization. This
analysis has been used in existing works (e.g., (Cavalier, 2011)). Due to min(β, 2), while we cannot
leverage a high smoothness β especially when β ≥ 2, we will see how to leverage β in such a case
by introducing an iterative estimator in Section 8.

We also compare our work to existing state-of-the-art convergence rate O
(
δ
2

min{β,1}
1+min{β,1}

n

)
in Bennett

et al. (2023b), in which they employ a minimax-type algorithm. When β ≥ 2, i.e., h0 is well-posed,
we achieve the same rate. We also remark that although our rate is slightly slower than theirs when
β ≤ 2, our method does not require a minimax-optimization oracle and can be incorporated with
method selection methods. Besides, we will show that our method can achieve a state-of-the-art rate
in our extension to iterative estimator in Section 8.

6 MISSPECIFIED SETTING

Next, we establish the finite sample result when Assumption 3 does not hold, i.e., function classes
H and G are misspecified. This result serves as an important role in formalizing the model selection
procedure in Section 7.

Theorem 6 (L2 convergence rate for RDIV with MLE under misspecification). Suppose Assump-
tion 2 and 4 hold, and there exists h† ∈ H and g† ∈ G such that ∥h0 − h†∥2 ≤ ϵH and
Ez∼g0 [DKL(g0(·|z) | g†(·|z))] ≤ ϵG . For any 0 < α ≤ 1, we have

∥ĥ− h0∥22 = O

(
δ2n
α2︸︷︷︸
(b1)

+αmin{β+1,2}−1︸ ︷︷ ︸
(b2)

+
ϵ2H
α

+
ϵG
α2︸ ︷︷ ︸

(b3)

)

holds with probability at least 1− c1 exp(c2nδ
2
n). Here δn has the same definition in Theorem 5.

The bound for ∥ĥ − h0∥22 consists of three terms: term (b1) measures the statistical deviation of
a normalized empirical process, term (b2) measures the regularization error caused by Tikhonov
regularization and term (b3) measures the effect of model misspecification. Here term (b3) has a
poly( 1

α ) dependency. This is because model misspecification causes a higher population risk in
both stage 1 and 2 of Algorithm 1. Hence, the more convex the loss function, the lesser the shift in
the optimizer. The readers may notice that term (b2) is slightly slower than the original bias term in
Theorem 8. This is because the difference of the optimal value in equation 3 due to misspecification
of H is of order O(αmin{β+1,2} + ϵ2H), as we will show in Lemma 2 in the Appendix. By the
α-strong convexity endowed by Tikhonov regularization, this results in a shift of h∗ of magnitude
O
(
αmin{β+1,2}−1 + ϵ2H/α

)
.

Theorem 6 is particularly useful when we apply estimators based on sample-dependent function
classes H and G (e.g. sieve estimators) that approximate certain function spaces. For example,
H can be linear models with polynomial basis functions that take the form ⟨ϕ(X), θ⟩, which can
gradually approach Hölder or Sobolev balls, and G can be a set of neural networks with a growing
dimension (Chen, 2007; Chen et al., 2022; Schmidt-Hieber, 2020). More specifically, when X and
Z are bounded, and h0 and g0 are s-Hölder smooth, it is well known that a deep ReLU neural
network with depth O(log(1/ϵ)), width O(dϵ−d/s) and weights bounded by Õ(1) could satisfy
the approximation error in Theorem 6 (Schmidt-Hieber, 2019), recall that d is the dimension of X
and Z . In that case, δ2n = Õ(ϵ−d/s/n) (Bartlett et al., 2002b; Chen et al., 2022). Choosing the
architecture of the neural network according to ϵ = Õ(n−1/(1+d/s)), then Theorem 6 shows that by

setting α = O(n
1

(1+d/α)(min{β+1,2}+1) ), we have ∥ĥ− h0∥22 = Õ(n
min{β+1,2}−1

(1+d/s)(min{β+1,2}+1) ).
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Algorithm 2 Model Selection for Regularized Deep IV
Require: Validation dataset {X ′

i, Y
′
i , Z

′
i}i∈[n], M candidate models {hi}Mi=1, a regularization hy-

perparameter α ∈ R>0, an estimator ĝ, which can obtained by MLE with standard model
selection procedure in Birgé (2006); Cohen and Pennec (2011).

1: Learn θ̂ with each of the followings:

Best-ERM: θ̂ = argmin
θ=e1,...,eM

En[
(
Y − (T̂ hθ)(Z)

)2
] + α · En[hθ(X)2], (7)

Convex-ERM: θ̂ = argmin
θ∈Θ

En[
(
Y − (T̂ hθ)(Z)

)2
] + α · En[hθ(X)2], (8)

where hθ =
∑M

j=1 θihi,
∑M

j=1 θj = 1, θj ≥ 0, T̂ f(Z) = Ex∼ĝ(X|Z)[f(X)] and En[·] is
defined for {X ′

i, Y
′
i , Z

′
i}i∈[n].

output hθ̂.

7 MODEL SELECTION

One advantage of employing the proposed two-staged algorithm is that it enables model selection,
which is not attainable when a minimax approach is used. In this section, we explain how we
perform model selection. We focus on the model selection for the second stage, as the conditional
density ĝ from the first stage can be selected via existing methods for model selection for maximum
likelihood estimators (e.g. Birgé (2006); Cohen and Pennec (2011); Vijaykumar (2021)).

With an MLE-based estimator ĝ obtained from the first stage in Algorithm 2, we consider model
selection using the regularized loss in the second stage, with theoretical guarantees in the ∥ · ∥2
metric. More concretely, given a choice of M candidate models {h1, . . . , hM} and a validation
dataset {X ′

i, Y
′
i , Z

′
i}ni=1 (distinct from the one used for training models {hi} and ĝ), the goal is for

the final output of the model selection algorithm to achieve oracle rates with respect to the minimal
misspecification error.
We present our algorithm in Algorithm 2. We provide two options for model selection: Best-ERM
and Convex-ERM. Best-ERM selects the model that minimizes the regularized loss on a validation
set, while Convex-ERM constructs a convex aggregate of the candidate models that minimizes the
regularized loss on a validation set.

Theorem 7 (Model Selection Rates). Consider the model selection problem given M candidate
models with any choice of α, over M function classes {H1, . . . ,HM}. Suppose Assumption 2
and 4 hold, and there exists g† ∈ G and h†

j ∈ Hj for all j such that ∥h0 − h†
j∥2 ≤ ϵHj

and E
[ ∫

X (g†(x|Z) − g0(x|Z))2dµ(x)
]

≤ ϵG . Assume that Y is almost surely bounded by
CY , each candidate model hj is uniformly bounded in [−CH, CH] almost surely. Let δn,j =
max{δn,G , δn,Hj , δn,M}, where δn,M denotes the critical radius of the convex hull over M variables
for Best-ERM (i.e. δn,M = log(M)

n ), and the critical radius of the set of M candidate functions for
Convex-ERM (i.e. δn,M = M

n ).

With probability 1− c1 exp(c2n
∑M

j δ2n,j), the output of Convex-ERM or Best-ERM θ̂, satisfies:

∥hθ̂ − h0∥22 ≤ min
j∈[M ]

O

(
δ2n,j
α2

+ αmin{β+1,2}−1 +
ϵ2Hj

α
+

ϵG
α2

.

)

We explain its implications. Most importantly, our obtained rate is the best (i.e., oracle rate) among
rates when invoking a result of (convergence result for RDIV in Theorem 6 with misspecified model)
for each function class Hi. Some astute readers might wonder whether we can just invoke Theorem 6
by making new function classes Hbest := {hθ : θ = e1, . . . , eM} or Hconv := {hθ :

∑
j θj = 1, θj ≥

0}, and bound the misspecification error ϵHconv or ϵHbest by ∥hj − h0∥ will lead to a slower rate with
an extra factor of 1

α . The key is only to handle the misspecification error once to avoid the 1
α factor

by deferring the invocation of strong convexity and working with the excess risk (difference in the
expected loss) instead of the L2 difference.
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Algorithm 3 Iterative Regularized Deep IV

Require: Dataset {Xi, Yi, Zi}i∈[n], function class G, function class H, ĥ−1 = 0
1: Learn ĝ(x|z) by MLE equation 4
2: for m = 1, 2, · · · ,M do
3: Learn ĥm by iterative Tikhonov estimator as the following:

ĥm = argmin
h∈H

En[
(
Y − T̂ h(Z)

)2
] + α · En[

(
h(X)− ĥm−1(X)

)2
], (10)

4: end for
output ĥM

8 EXTENSION TO ITERATIVE VERSION

One drawback of the result so far is its lack of adaptability to the degree of ill-posedness in the
inverse problem, especially for larger values of β corresponding to milder problems, when β ≥ 2.
To address this issue, in this section, we further generalize our results in Section 4 and 5, and propose
an iterated Regularized Deep method, which is summarized in Algorithm 3. In this algorithm,
instead of targeting equation 3, we target hm,∗, which is given by the following recursive least
square regression with Tikhonov regularization:

hm,∗ =argmin
h∈H

E[(Y − T h(Z))2] + α · E[(h− hm−1,∗)
2(X)]. (9)

and we set h−1,∗ = 0. This is the recursive version of the previous regularized objective in Equation
equation 3, by using Tikhonov regularization around a prior target hm−1,∗ instead of 0. Then,
with the learned conditional density ĝ by MLE in Equation equation 4, we construct an estimator
in equation 10 by replacing expectation and an operator T with empirical approximation and the
learned operator T̂ , respectively, in Equation equation 9.

Now, we delve into estimating the finite sample convergence rate of Algorithm 3. Our findings are
summarized in the following theorem.
Theorem 8 (L2 convergence rate for iterative MLE estimator). Suppose Assumption 2, 3, 4 hold.
Let ∥Y ∥∞ ≤ CY , ∥h∥∞ ≤ CH holds for all h ∈ H, ∥g∥∞ ≤ CG holds for all g ∈ G. By setting

α = δ
2

2+min{β,2m}
n , with probability at least 1− c1m exp(c2nδ

2
n), we have

∥ĥm − h0∥22 = O
(
162m · δ

2min{β,2m}
2+min{β,2m}
n

)
,

here δn has the same definition in Theorem 5.

Importantly, we can have a rate O
(
δ

2β
2+β
n

)
in relatively mild conditions while the previous Theo-

rem 5 (non-iteratie version) can only allow for O
(
δ

2min(β,2)
2+2min(β,2)
n

)
, and cannot fully leverage the well-

posedness of h0, illustrated by the source condtion β. Indeed, if we choose the iteration number
m = ⌈min{β/2, log log(1/δn)}⌉, then we get a rate of

∥ĥm − h0∥22 = O

(
min{16β , log(1/δn)}δ

2min{β,2m}
2+min{β,2m}
n

)
.

Hence for any constant β, as n grows, eventually log log 1/δn ≥ β, and we get the rate of O
(
δ

2β
2+β
n

)
.

This rate can be achieved even if β grows with n, as long as it grows slower than O(log log 1/δn).
If δn = O(n−ι) for some ι > 0, e.g. RKHS or first order Sobolev space (Wainwright, 2019, Chapt
14.1.2), then we note that we can set m = ⌈min{β/2,

√
log(1/δn)}⌉, and 16

√
log(1/δn) = O(nϵ)

for any ϵ > 0, thus we still obtain a rate of O(δ
2β

2+β
n ) when

√
log(1/δn) ≥ β/2. In such a case, we

can obtain a O(δ
2β

2+β
n ) rate even β grows with n, as long as it grows slower than

√
log(1/δn).

Our results for the iterative estimator match the state-of-the-art convergence rate with respect to L2

norm for an iterative estimator in Bennett et al. (2023b). However, their method requires a minimax
computation oracle, while our method does not.

8
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9 NUMERICAL EXPERIMENTS

In this section, we evaluate our proposal by numerical simulation. In particular, we present the
performance of RDIV when we use neural networks as the function approximator and the validity
of the proposed model selection procedure. We show that with model selection, our method can
achieve state-of-the-art performance in a wide range of data-generating processes.

9.1 EXPERIMENTAL SETTINGS

Experiment Design. In our experiment, we test our method on a synthetic dataset. We adjust
the data generating process (DGP) for proximal causal inference used in Cui et al. (2020); Miao
et al. (2018); Deaner (2021). Concretely, we generate multi-dimensional variables U ′, S′,W ′, Q′, A,
where U is an unobserved confounder, S′ ∈ dS is the observed covariate, W ′ ∈ dW is the negative
control outcomes, Q′ ∈ dQ is the negative control actions, and A is the selected treatment. We left
the detailed generation process in Appendix J. For a detailed understanding of this setup, we refer
the reader to Section 2 of Kallus et al. (2021). It is well known that there exists a bridge function h′

0
such that the following moment condition holds (Cui et al., 2020; Kallus et al., 2021):

E[Y − h′
0(W

′, A, S′)|Q′, A, S′] = 0,

which allows the concrete form of equation 1. To introduce nonlinearity, we transform (S′,W ′, Q′)
into (S,W,Q) via S = g(S′),W = g(W ′), Q = g(Q′), where g(·) is a nonlinear invertible
function applied elementwise to S′,W ′, Q′ respectively. We consider several forms of g(·), in-
cluding identity, polynomial, sigmoid design, and exponential function. In the final data, we only
observe (S,W,Q) but not (S′,W ′, Q′). Here we use 6 different g(·): Id(t) = t, Poly(t) = t3,
LogSigmoid(t) = log(1+ |16 ∗x− 8|) · sign(x), Piecewise(t) = 3(x− 2)1x≤1+log(8x− 8)1x≥1,
Sigmoid(t) = 5

1+exp(−0.1∗x) and CubicRoot = x1/3.

Methods to compare. In this experiment, our goal is to estimate the counterfactual mean parame-
ter E[Y (1)], which is unique as long as equation 1 holds. We learn h0 in equation 1 by RDIV, which
corresponds to the procedure in Algorithm 1 with MLE for conditional density estimation. We show
results for different values for α ∈ {0.01, 0.1}, and compare the performance of our approach to
that of several different methods, including KernelIV (Singh et al., 2019), DeepIV (Hartford et al.,
2017), DeepFeatureIV (Xu et al., 2021), and AGMM (Dikkala et al., 2020a). Note that DeepIV can
be viewed as a special case of our methods, with α fixed to be 0. In the first stage of our algorithm,
we use a three-layer mixture density network (Hartford et al., 2017; Rothfuss et al., 2019) as the
approximator of the conditional density. In the second stage, we use a three-layer fully-connected
neural network as the approximators for RDIV, DeepIV, AGMM, and DFIV. We present the results
of our method and its comparison with previous benchmarks in terms of MSE normalized by the
true estimand value in Table 2-5. Every estimate is calculated by 100 random replications. The
confidence interval is calculated by 2 times the standard deviation.

9.2 RESULTS

First, we can observe that although our estimator resembles DeepIV, the later fix α = 0 in equa-
tion 10, RDIV outperforms DeepIV for all g(·). This is due to the nonzero regularization term, which
improves the performance of our estimator by a better tradeoff between bias and variance. Second,
in most cases, AGMM and DFIV are outperformed by algorithms that only need single-level opti-
mization (RDIV, KernelIV, DeepIV). This would be because, in these methods, optimization of the
loss function is much harder, which results in the inaccuracy of estimators.

Table 2: E[Y (1)]: dS = dQ = 15, dW = 1, n1 = 500.
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV DeepIV DFIV AGMM

Id(t) 0.0077 ± 0.0012 0.0021 ± 0.0007 0.0193 ± 0.0018 0.0089 ± 0.0015 0.1069 ± 0.0218 0.0198 ± 0.0011
Poly(t) 0.0150 ± 0.0057 0.0904 ± 0.0202 0.0439 ± 0.0062 0.0887 ± 0.0276 0.0920 ± 0.0046 0.0453 ± 0.0023
LogSigmoid(t) 0.0094 ± 0.0013 0.0022 ± 0.0009 0.0031 ± 0.0008 0.0152 ± 0.0026 0.1444 ± 0.0080 0.0042 ± 0.0010
Piecewise(t) 0.0070 ± 0.0017 0.0024 ± 0.0009 0.0041 ± 0.0012 0.0076 ± 0.0012 0.0150 ± 0.0026 0.0128 ± 0.0024
Sigmoid(t) 0.0206 ± 0.0026 0.0021 ± 0.0006 0.0380 ± 0.0025 0.0278 ± 0.0025 0.1846 ± 0.0092 0.0070 ± 0.0014
CubicRoot(t) 0.0095 ± 0.0014 0.0024 ± 0.0007 0.0511 ± 0.0039 0.0161 ± 0.0018 0.1357 ± 0.0200 0.0536 ± 0.0021
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Table 3: dS = dQ = 15, dW = 1, n1 = 1000.
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV DeepIV DFIV AGMM

Id(t) 0.0106 ± 0.0013 0.0014 ± 0.0003 0.0145 ± 0.0013 0.0128 ± 0.0015 0.1162 ± 0.0052 0.0217 ± 0.0135
Poly(t) 0.0164 ± 0.0020 0.0037 ± 0.0027 0.0396 ± 0.0038 0.0182 ± 0.0023 0.1256 ± 0.0044 0.0054 ± 0.0031
LogSigmoid(t) 0.0078 ± 0.0009 0.0009 ± 0.0003 0.0259 ± 0.0023 0.0262 ± 0.0023 0.1618 ± 0.0482 0.0053 ± 0.0010
Piecewise (t) 0.0017 ± 0.0004 0.0059 ± 0.0008 0.0080 ± 0.0008 0.0019 ± 0.0005 0.1623 ± 0.0674 0.0014 ± 0.0011
Sigmoid(t) 0.0077 ± 0.0016 0.0082 ± 0.0023 0.0311 ± 0.0014 0.0110 ± 0.0019 0.2085 ± 0.0443 0.0296 ± 0.0023
CubicRoot(t) 0.0254 ± 0.0021 0.0048 ± 0.0008 0.0459 ± 0.0024 0.0248 ± 0.0022 0.1401 ± 0.0047 0.0650 ± 0.0035

Table 4: dS = dQ = 20, dW = 10, n1 = 500.
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV DeepIV DFIV AGMM

Id(t) 0.0272 ± 0.0022 0.0055 ± 0.0009 0.0088 ± 0.0016 0.0364 ± 0.0025 0.0291 ± 0.0060 0.3291 ± 0.0115
Poly(t) 0.0067 ± 0.0016 0.0230 ± 0.0051 0.0697 ± 0.0041 0.0263 ± 0.0050 0.0997 ± 0.0046 0.0409 ± 0.0225
LogSigmoid(t) 0.0905 ± 0.0058 0.0525 ± 0.0054 0.0335 ± 0.0014 0.0960 ± 0.0066 0.2059 ± 0.0826 0.0218 ± 0.0027
Piecewise(t) 0.0305 ± 0.0043 0.0104 ± 0.0021 0.0359 ± 0.0010 0.0225 ± 0.0031 0.7626 ± 0.9996 0.0136 ± 0.0010
Sigmoid(t) 0.1481 ± 0.0083 0.0106 ± 0.0028 0.0018 ± 0.0004 0.1983 ± 0.0117 0.3545 ± 0.0494 0.0307 ± 0.0195
CubicRoot(t) 0.0810 ± 0.0039 0.0288 ± 0.0025 0.0021 ± 0.0004 0.0949 ± 0.0050 0.0956 ± 0.0453 0.3461 ± 0.0121

Table 5: dS = dQ = 20, dW = 10, n1 = 1000.
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV DeepIV DFIV AGMM

Id(t) 0.0652 ± 0.0035 0.0269 ± 0.0020 0.0009 ± 0.0002 0.0639 ± 0.0033 0.1442 ± 0.2461 0.1321 ± 0.0029
Poly(t) 0.0861 ± 0.0076 0.0224 ± 0.0034 0.0465 ± 0.0021 0.1148 ± 0.0082 0.0951 ± 0.0031 0.1796 ± 0.0023
LogSigmoid(t) 0.0649 ± 0.0046 0.0280 ± 0.0025 0.0197 ± 0.0014 0.0759 ± 0.0045 0.2949 ± 0.2917 0.0247 ± 0.0013
Piecewise(t) 0.0039 ± 0.0008 0.0037 ± 0.0006 0.0215 ± 0.0006 0.0065 ± 0.0012 0.5442 ± 0.4784 0.0133 ± 0.0009
Sigmoid(t) 0.1112 ± 0.0053 0.0091 ± 0.0028 0.0037 ± 0.0005 0.1493 ± 0.0058 0.3332 ± 0.0652 0.0650 ± 0.0029
CubicRoot(t) 0.0990 ± 0.0042 0.0802 ± 0.0046 0.0021 ± 0.0004 0.1070 ± 0.0043 0.0956 ± 0.0453 0.3461 ± 0.0121

Table 6: Model selection results based on Best ERM. The left tabular is generated from a data size
of n1 = 500, while the right tabular is generated from a dataset with n1 = 1000. Both datasets
satisfies dS = dQ = 20, dW = 10.
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV RDIV (α = 0.01) RDIV (α = 0.1) KernelIV

Id(t) 0.0017 ± 0.0017 0.0047 ± 0.0021 0.0088 ± 0.0016 0.0102 ± 0.0028 0.0014 ± 0.0009 0.0009 ± 0.0002
Poly(t) 0.0032 ± 0.0024 0.0272 ± 0.0097 0.0697 ± 0.0041 0.0313 ± 0.0137 0.0049 ± 0.0026 0.0465 ± 0.0021
LogSigmoid(t) 0.0121 ± 0.0055 0.0019 ± 0.0007 0.0335 ± 0.0014 0.0078 ± 0.0020 0.0008 ± 0.0004 0.0197 ± 0.0014
Piecewise(t) 0.0159 ± 0.0121 0.0020 ± 0.0019 0.0359 ± 0.0010 0.0024 ± 0.0013 0.0034 ± 0.0027 0.0215 ± 0.0006
Sigmoid(t) 0.1655 ± 0.0144 0.0937 ± 0.0174 0.0018 ± 0.0004 0.1538 ± 0.0078 0.0863 ± 0.0187 0.0037 ± 0.0005
CubicRoot(t) 0.0034 ± 0.0017 0.0019 ± 0.0021 0.0021 ± 0.0004 0.0148 ± 0.0048 0.0036 ± 0.0035 0.0021 ± 0.0004

Table 7: Model selection results based on Best ERM. Here dS = dQ = 20, dW = 10, n1 = 500
g(t) RDIV (α = 0.01) RDIV (α = 0.1) KernelIV DeepIV DFIV AGMM

Id(t) 0.0017 ± 0.0017 0.0047 ± 0.0021 0.0088 ± 0.0016 0.0364 ± 0.0025 0.0291 ± 0.0060 0.3291±0.0115
Poly(t) 0.0032 ± 0.0024 0.0272 ± 0.0097 0.0697 ± 0.0041 0.0313 ± 0.0137 0.0997 ± 0.0046 0.0409±0.0225
LogSigmoid(t) 0.0121 ± 0.0055 0.0019 ± 0.0007 0.0335 ± 0.0014 0.0960 ± 0.0066 0.2059 ± 0.0826 0.0218 ± 0.0027
Piecewise(t) 0.0159 ± 0.0121 0.0020 ± 0.0019 0.0359 ± 0.0010 0.0225 ± 0.0031 0.7626 ± 0.9996 0.0136 ± 0.0010
Sigmoid(t) 0.1655 ± 0.0144 0.0937 ± 0.0174 0.0018 ± 0.0004 0.1983 ± 0.0117 0.3545 ± 0.0494 0.0307 ± 0.0195
CubicRoot(t) 0.0034 ± 0.0017 0.0019 ± 0.0021 0.0021 ± 0.0004 0.0949 ± 0.0050 0.0956 ± 0.0453 0.3461 ± 0.0121

10 CONCLUSION

In this paper, we study NPIV regression with general function approximation. We analyze a
Tikhonov-regularized variant of the well-established DeepIV estimator, namely the Regularized
DeepIV (RDIV). We show that our estimator converges to the least norm solution, and derive its
convergence rate. Notably, we prove that such an estimator does not rely on uniqueness or minimax
computation oracle. We further illustrate that RDIV can be incorporated into model selection and
show that our procedure can achieve the oracle rate with respect to the minimal model misspecifi-
cation error. When extended to an iterative estimator, RDIV achieves a state-of-the-art convergence
rate. Moreover, we justify our method through numerical simulations. Our experiments show that
RDIV outperforms existing benchmarks in a wide range of circumstances.
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A RELATED WORKS

Nonparametric IV problem. Nonparametric IV estimation has been extensively explored in past
decades. Such estimation is tough to solve even when both the linear operator T and the response
r0 are known, known as ill-posedness. The ill-posedness often refers to the presence of one or more
of the following characteristics: (1) the absence of solutions, (2) the existence of multiple solutions,
and (3) the discontinuity of the inverse of operator T . Many traditional nonparametric estimators
have been proposed to address these challenges, such as series-based estimators (Florens et al.,
2011; Ai and Chen, 2003; Chen, 2021; Chen and Pouzo, 2012; Darolles et al., 2011) and kernel-
based estimators (Hall and Horowitz, 2005; Horowitz, 2007; Singh et al., 2019). However, these
methods cannot directly accommodate modern machine-learning techniques like neural networks
with theoretical soundness.

Recently, there has been growing interest in the application of general function approximation tech-
niques, such as deep neural networks and random forests, to IV problems in a unified manner.
Among those methods, Bennett and Kallus (2020); Dikkala et al. (2020b); Lewis and Syrgkanis
(2018); Liao et al. (2020a); Zhang et al. (2023) reformulate the conditional moment constraint into
a minimax optimization and use its solution as the estimator. Notably, Liao et al. (2020a); Bennett
et al. (2023b;a) establish L2 convergence by linking minimax optimization with Tikhonov regu-
larization under the assumption of the source condition. Moreover, Liao et al. (2020b) assumes
uniqueness of solution h0. Dikkala et al. (2020b); Lewis and Syrgkanis (2018) provide a guarantee
for the projected MSE without further assumptions. However, they could not guarantee the con-
vergence rate in strong L2 metric when multiple solutions to conditional moment constraint exist.
Furthermore, these methods require a computation oracle for minimax optimization, which further
makes model selection challenging. In contrast, our method does not require computational oracles
and enables model selection with statistical guarantees.

Several existing works eschew the need for minimax optimization oracles (Chen and Pouzo, 2012;
Hartford et al., 2017; Xu et al., 2021). As the most related work, DeepIV (Hartford et al., 2017)
introduces a similar loss function to us. However, it lacks an explicit regularization term, which
results in the lack of theoretical guarantee and the lack of guarantee for model selection. As another
work, Xu et al. (2021) extends the two-stage kernel algorithm in Singh et al. (2019) to deep neural
networks, but their algorithm is essentially a bilevel optimization problem, which is hard to solve
in general (Hong et al., 2023; Khanduri et al., 2021; Guo et al., 2021). Notably, Chen and Pouzo
(2012) considers a more general conditional moment restriction of E[ρ(X,h0) | Z] = 0 and obtains
an estimator of h0 by minimizing a penalized sieve minimum distance (PSMD). Their method is
similar to ours: first, they assume the existence of an estimate m̂(h, Z) for m(h, Z) = E[h(X) | Z]

for all h ∈ L2(X). Then they minimize En[∥m̂(h, Z)∥2] + λnP̂n(h) over all possible h ∈ H,
where H is a sieve space with a growing dimension, and P̂n is a nonrandom penalty function.
However, their theory is limited to the case when h0 is identifiable and is well approximated by the
sieve estimator, therefore can not be straightforwardly generalized to general function approximation
with model misspecification. Recently, Chen et al. (2024) proposed a TOSG method under the
lens of optimization, and established its convergence rate for including linear function class and
general linear function class with a known link function g. However, their techniques are not directly
transferable to general function approximation, and no guarantee or procedure for model selection
for g is discussed. Moreover, Chen et al. (2024) assumes a two-sample oracle that outputs two
independently sampled X and X ′ conditioned on the same instrument Z, which is often hard to
satisfy in practice.

Model selection. Model selection has been well studied in the regression and supervised machine
learning literature (Bartlett et al., 2002a; Gold and Sollich, 2003; McAllester, 2003). The objective
can be described more concretely as follows: given M candidate models, {f1, . . . , fM}, each having
some statistical complexity δj and some approximation error ϵj (with respect to some un-known true
model f0) we wish to find an aggregated model f̂ whose mean squared error is closed to the optimal
trade-off between statistical complexity and approximation error among all models, i.e.: ∥f̂−f0∥ ≲
minMj=1 δj+ϵj . The statistical complexity of a function space can be accurately characterized, albeit
the approximation error is un-attainable as it relates to the unknown true model. A guarantee of the
form above implies that using the observed data we can compete (up to constants) with an oracle that
knows the approximation errors and chooses the best model space. We leave the detailed summary of
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existing works in Appendix B. Despite the abundance of methodologies for IV regression problems,
few studies have investigated model misspecification and provided model selection procedures to
select the best model class. As a few exceptional works, while Xu et al. (2021) and Ai and Chen
(2007) considered the misspecified regime, but they did not discuss model selection approaches. A
typical approach to model selection is out-of-sample validation: estimate different models on half
the data and select the estimated model that achieves the smallest empirical risk on the second half
(or the best convex ensemble of models that achieves the smallest out-of-sample risk). One problem
that arises for model selection in this IV regression setup is to transform the excess risk guarantees,
which will be in terms of the weak metric, i.e. ∥T (·)∥2, into the desired bound in the L2 error. In
this work, we show that by leveraging the Tikhonov regularization, we can achieve an MSE bound
that achieves the same order as the oracle function class.

B ADDITIONAL RELATED WORKS FOR MODEL SELECTION

Model Selection. Under the classical supervised learning setting, a common approach is to per-
form empirical risk minimization (ERM) on a separate validation set, and choose the candidate
model that achieves the smallest risk (Mitchell and van de Geer, 2009), or similarly, through M-fold
cross-validation which splits the data into M folds, and evaluates the risk on the different held out set
for each model (Vaart et al., 2006). As an alternative to selecting a single model, convex aggrega-
tion or linear aggregation is employed to find the best convex/linear combination of models (Lecué,
2013; Lecué and Mendelson, 2014). However, it can be shown that the aforementioned approaches
are sub-optimal in the sense that they cannot achieve the optimal log(M)

n rate for the model selec-
tion residual. To tackle this challenge, Lecué and Mendelson (2009) proposed a different approach
for convex aggregation by first finding a subset of "almost minimizers" - a subset of the candidate
functions that is sufficiently close to the minimizer within the candidates on the validation set, and
then finding a best aggregate in the convex hull of this subset. This approach achieves the optimal
model selection rates as it performs ERM on a subset that is much smaller than the convex hull of all
candidate models, thereby reducing the statistical error. Furthermore, other optimal model selection
approaches include the Q-aggregation approach which performs ERM with a modified loss that adds
an additional penalty based on individual model performance (Lecué and Rigollet, 2014).

C RESULTS WHEN USING χ2-MLE

In this section, we consider another density estimation for the density estimation, the χ2-MLE:

ĝ = argmin
g∈G

0.5 · En

[ ∫
X
g2(x|Z)dµ(x)

]
− En[g(X|Z)]. (11)

C.1 FINITE SAMPLE RESULTS

Although Assumption 4 is widely accepted in previous works, in practice, it often fails to hold when
g0 does not have full support on X . To address this drawback of MLE, in this subsection, we further
discuss the finite sample convergence rate of Algorithm 3 when the conditional density estimation
is performed by χ2-MLE. In this case, the first step estimation procedure is given by Equation
equation 11. Notably, our guarantee does not relate to the lower bound of g0(x|z). Our results rely
on the following assumption, which characterizes the smoothness of function class H.

Assumption 9 (γ-Smoothness). For all h− h′ ∈ H−H, we assume that ∥h− h′∥∞ ≤ ∥h− h′∥γ2 .

Such a relationship is known for instance to hold for Sobolev spaces and more generally for repro-
ducing kernel Hilbert spaces (RKHS) with a polynomial eigendecay. A notable instance is RKHS
with eigendevay at a rate of O(1/j1/p) for some p ∈ (0, 1). In that case, Lemma 5.1 of Mendelson
and Neeman (2010) shows that γ = 1 − p. For the Gaussian kernel, which has an exponential
eigendecay, we can take p arbitrarily close to 0. We now summarize our result for χ2-MLE in the
following theorem.
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Theorem 10 (L2 convergence rate for RMIV with χ2-MLE). Suppose Assumption 2,3,9 hold. By

setting α = δ
2

2+(2−γ)min{β,2}
n , with probability at least 1− c1 exp(c2nδ

2
n), we have

∥ĥ− h0∥22 ≤ O
(
δ

2min{β,2}
2+(2−γ)min{β,2}
n

)
.

Here δn has the same definition in Theorem 5.

The convergence rate of RMIV with χ2-MLE depends on the smoothness parameter γ. As γ → 1

, we have ∥ĥ − h0∥22 ≤ O
(
δ

2min{β,2}
2+min{β,2}
n

)
, which recovers the rate in Theorem 8. We further discuss

the results for χ2-MLE based IV regression under misspecification.
Theorem 11 (L2 convergence rate for RMIV with χ2-MLE under misspecification). Suppose
Assumption 2,9 hold, and there exists h† ∈ H and g† ∈ G such that ∥h0 − h†∥2 ≤ ϵH
and E

[ ∫
X (g†(x|Z) − g0(x|Z))2dµ(x)

]
≤ ϵG . For any 0 < α ≤ 1,with probability at least

1− c1 exp(c2nδ
2
n), we have

∥ĥ− h0∥22 ≤ O

((
δ2n + ϵG

α2

)1/(2−γ)

+ αmin{β+1,2}−1 +
ϵ2H
α

)
,

Here δn has the same definition in Theorem 5.

Remark 3. We define ϵ := {ϵG , ϵ2H}. If ϵ < 1, then by setting α = (δ2n + ϵ)
2

2+(2−γ)min{β,1} , we have

∥ĥ− h0∥22 ≤ O
(
(δ2n + ϵ)

2min{β,1}
2+(2−γ)min{β,1}

)
.

If ϵ ≥ 1, then by setting α = 1, we have ∥ĥ− h0∥22 ≤ O(ϵ1/(2−γ)).

C.2 RESULTS FOR MODEL SELECTION

Theorem 7 is extended when using χ2-MLE. Indeed, if Assumption 9 holds and the candidate func-
tion are trained with ĝ estimated using the χ2-MLE approach, the output of Convex-ERM or Best-
ERM θ̂, satisfies

∥hθ̂ − h0∥22 ≤ min
j

O

αmin{β+1,2}−1 +

(
δ2n,j + ϵG

α2

)1/(2−γ)

+
1

α
ϵ2Hj

 .

C.3 CONVERGENCE RESULTS FOR ITERATIVE VERSION

We further discuss the finite sample convergence rate of Algorithm 3 when the conditional density
estimation is performed by χ2-MLE. In this case, the first step estimation procedure is given by
Equation equation 11. Notably, in this case, we do not require the ground truth density g0 to be
uniformly lower bounded, which is assumed in Assumption 4 and serves as a prerequisite for MLE
convergence. Our results are summarized by the following theorem.
Theorem 12 (L2 convergence rate for iterative χ2-MLE estimator). Under Assumption 1,2,3,9, by

setting α = δ
2

2+(2−γ)min{β,2m}
n , with probability at least 1− c1m exp(c2nδ

2
n), we have

∥ĥm − h0∥2 ≤ O
(
162m · δ

2min{β,2m}
2+(2−γ)min{β,2m}
n

)
.

Here δn has the same definition in Theorem 5.
Remark 4. Similar to Section 6, by setting the iteration number m = ⌈min{β/2, log log(1/δn)}⌉,
we have

∥ĥm − h0∥2 ≤ O

(
162m · δ

2min{β,2m}
2+(2−γ)min{β,2m}
n

)
.

Therefore, for log log δn ≥ β, eventually we have the rate of O
(
δ

2β
2+(2−γ)β
n

)
. If δn = O(n−ι), then

we can set m = ⌈min{β/2,
√
log(1/δn)}⌉ to obtain the same rate. Moreover, if γ → 1, e.g. RKHS

with exponential eigenvalue decay (Mendelson and Neeman, 2010, Lemma 5.1), then we recover the

rate of O
(
δ

2β
2+β
n

)
even without Assumption 4.
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D PROOF OF THEOREM 5 AND 10

In this section, we prove the convergence rate of non-iterative RMIV. We prove the results of Theo-
rem 5 and 10 respectively. Recall that we define

h∗ := argmin
h∈H

∥Y − T h∥22 + α∥h∥22, (12)

by Lemma 6, we have
∥h∗ − h0∥22 ≤ ∥w0∥2αmin{β,2}.

Therefore, we only need to provide an upper bound for ∥ĥ−h∗∥22. We start by proving the following
lemma, and with the convergence rate of MLE and χ2-MLE, we conclude the proof of Theorem 5
and Theorem 10 respectively.
Lemma 1. With probability at least 1− c1 exp(c2nδ

2
n,H), we have the following inequality:

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 ≤ E[ℓĥ,g0 − ℓh∗,g0 ]

= O

(
δn,H{(α+ 1)∥ĥ− h∗∥2 + δn,H}+ ∥(T̂ − T )(ĥ− h∗)∥1

)
.

Proof. By the optimality of h∗ in Eq. equation 3, we have

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 ≤ E[L(T ĥ)]− E[L(T h∗)] + α{E[ĥ2(X)]− E[h∗(X)2]},
where define L(T h) := (Y − T h)2. Recall that

E[L(T ĥ)]− E[L(T h∗)] + α{E[ĥ2(X)]− E[h∗(X)2]} =

E[−2Y T (ĥ− h∗)(Z) + (T ĥ)2(Z)− (T h∗)
2(Z)] + α{E[ĥ2(X)]− E[h∗(X)2]},

we have
α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22

= E[−2Y T (ĥ− h∗)(Z) + (T ĥ)2(Z)− (T h∗)
2(Z)] + α{E[ĥ2(Z)]− E[h∗(Z)2]}

= E[−2Y T̂ (ĥ− h∗)(Z) + (T̂ ĥ)2(Z)− (T̂ h∗)
2(Z)] + C1 × E[|(T̂ − T )(ĥ− h∗)(X)|]

+ α{E[ĥ2(X)]− E[h∗(X)2]}
≤ Emp + Loss + C1 × E[|(T̂ − T )(ĥ− h∗)(Z)|]
= Emp + Loss + ∥(T̂ − T )(ĥ− h∗)∥1, (13)

here the inequality comes from the uniform boundedness of ĥ, h∗, T h, T ĥ, T̂ h, T̂ ĥ, and the O(1)-
Lipschitz of L(·).

Emp = |(En − E)[L(T̂ ĥ)− L(T̂ h∗) + α(ĥ2(X)− h∗(X)2)]|,
Loss = En[−2Y T̂ (ĥ− h∗)(Z) + (T̂ ĥ)2(Z)− (T̂ h∗)

2(Z) + α{ĥ2(X)− h∗(X)2}].
Here, using Lemma 4, the term Emp is upper-bounded as follows with probability at least 1 −
c1 exp(c2nδ

2
n,H):

Emp ≤ δn,H{α∥ĥ− h∗∥2 + ∥T̂ (ĥ− h∗)∥2 + δn,H}
≤ δn,H{α∥ĥ− h∗∥2 + ∥ĥ− h∗∥2 + δn,H}. (14)

Furthermore, recall that by our iteration in equation 5, we have

En[−2Y T (ĥ− h∗)(Z) + (T ĥ)2(Z)− (T h∗)
2(Z) + α{ĥ2(X)− h∗(X)2}] ≤ 0.

Hence, we have
Loss ≤ 0. (15)

Combining everything, we have

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 ≤ δn,H{(α+ 1)∥ĥ− h∗∥2 + δn,H}+ ∥(T̂ − T )(ĥ− h∗)∥1, (16)
Here the constant c1 and c2 hide constants related to C,C0. The first inequality comes from equa-
tion 14. We implicitly use α ≤ 1 in the last inequality.
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Proof of Theorem 5. By Assumption 3, we have ϵG = 0. By Corollary 1 and Lemma 1, since
α ≤ 1 we have

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 = O

(
δn,H{(α+ 1)∥ĥ− h∗∥2 + δn,H}+ δn,G∥ĥ− h∗∥2

)
≤ c1δ

2
n + c2δn∥ĥ− h∗∥2 (δn := max{δn,G , δn,H})

≤ c1δ
2
n + 2c′′2δ

2
n/α+ 2c′2α∥ĥ− h∗∥22 (2ab ≤ ca2 + b2

c )

holds with probability at least 1− c exp(nδ2n), where c′2 ≤ 1. By Lemma 7, we have

∥ĥ− h∗∥22 ≤ O((δ2n/α
2) + δ2n/α

)
= O(δ2n/α

2), (α ≤ 1)

therefore by Lemma 6, we have

∥ĥ− h0∥22 ≤ δ2n/α
2 + αmin(β,2),

set α = δ
2

2+min{β,2}
n , and we conclude the proof of Theorem 5.

Proof of Theorem 10. By Assumption 3, we have ϵG = 0. By Corollary 1 and Lemma 1, we have

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 ≤ δn,H{α∥ĥ− h∗∥2 + ∥T (h− h∗)∥2 + δn,G∥ĥ− h∗∥∞ + δn,H}+ δn,G∥ĥ− h∗∥∞,

By Assumption 9, we have

α∥ĥ− h∗∥22 + ∥T (ĥ− h∗)∥22 ≤ δn,H{(α+ 1)∥ĥ− h∗∥2 + δn,H}+ δn,G∥ĥ− h∗∥γ2
≤ c1δn∥ĥ− h∗∥2 + c2δn∥ĥ− h∗∥γ2 , (δn := {δn,G , δn,H})

By Lemma 7, we have

∥ĥ− h∗∥22 ≤ O((δn/α)
2

2−γ + (δn/α)
2) ≤ O(δn/α)

2
2−γ

since γ ∈ (0, 1). Therefore, by Lemma 6, we have

∥ĥ− h0∥22 ≤ (δn/α)
2

2−γ + αmin(β,2).

By selecting α = O(δ
2

2+(2−γ)min{β,2}
n ), we have

∥ĥ− h0∥22 ≤ δ
2min{β,2}

2+(2−γ)min{β,2}
n ,

and we conclude the proof of Theorem 10.

E PROOF OF THEOREM 6 AND 11

In this section, we consider the case when ϵG and ϵH doht equal zero, i.e. Assumption 3 does not
hold. We aim to establish a convergence rate for ∥ĥ−h0∥2 for both MLE-based RDIV and χ2-MLE
based RDIV in terms of δn, ϵH and ϵG .
Lemma 2. Under Assumption 2, for α ∈ (0, 1) we have

∥ĥ− h0∥2 ≤ 3∥ĥ− h∗∥2 +O

(
1

α

{
ϵ2H + αmin{β+1,2}

})
,

Proof. Note that in the misspecified case, we no longer have h0 ∈ H. We further a augmented
function class H′ = Span(H ∪ {h0}), and the corresponding optimizer of L0 on H and H′:

h′
∗ = argmin

h∈H′
∥T (h− h0)∥22 + α∥h∥2,

h∗ = argmin
h∈H

∥T (h− h0)∥22 + α∥h∥2.

We define a function

L0(t) := ∥T (h′
∗ + t(h∗ − h′

∗)− h0)∥22 + α∥h′
∗ + t(h∗ − h′

∗)∥2,
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then L0 is α-strongly convex, and attains its minimum at L0(0). Note that we have the following
inequality holds for all h ∈ H,

1

α
(L0(1)− L0(0)) =

1

α

{
∥T (h∗ − h0)∥2 + α∥h∗∥2 − (∥T (h′

∗ − h0)∥2 + α∥h′
∗∥2)

}
≤ 1

α

{
∥T (h− h0)∥2 + α∥h∥2 − (∥T (h′

∗ − h0)∥2 + α∥h′
∗∥2)

}
(Optimality of h′

∗)

=
1

α
{∥T (h− h′

∗)∥2 + α∥h′
∗∥2} (First order condition of h′

∗)

≤ 2

α

{
2∥T (h− h0)∥2 + 2∥T (h′

∗ − h0)∥2 + 2α∥h− h0∥2 + 2α∥h′
∗ − h0∥2

}
≤ 2

α

{
4∥h− h0∥2 +O

(
∥w0∥2αmin{β+1,2})},

set h = h†, by strong convexity and ∂L0(0) = 0, we have

∥h∗ − h′
∗∥2 ≤ 1

α
|L0(1)− L(0)| ≤ O(

1

α
{ϵ2H + αmin{β+1,2}}).

Therefore we have

∥ĥ− h0∥2 ≤ 3

{
∥ĥ− h∗∥2 + ∥h∗ − h′

∗∥2 + ∥h′
∗ − h0∥2

}
= 3∥ĥ− h∗∥2 +O

(
1

α

{
ϵ2H + αmin{β+1,2}

})
+ 3αmin{β,2},

and we conclude our proof for the lemma.

Proof for Theorem 6. By Lemma 1, we have

α∥ĥ− h∗∥2 = O

(
δn,H

{
(α+ 1)∥ĥ− h∗∥2 + δn,H

}
+ ∥(T̂ − T )(ĥ− h∗)∥1

)
,

By Corollary 1, we have ∥(T − T̂ )(ĥ− h∗)∥1 ≤ (δ2n,G + ϵG)
1/2∥ĥ− h∗∥, and we have

∥ĥ− h∗∥2 ≤ 1

α
·O
(
δn,H∥ĥ− h∗∥+ (δ2n,G + ϵG)

1/2∥ĥ− h∗∥+ δ2n,G

)
,

therefore by Lemma 7, we have

∥ĥ− h∗∥2 = O

(
δ2n,G + ϵG + δ2n,H

α2

)
. (17)

By Lemma 2, combine everything together:

∥ĥ− h0∥2 = O

(
δ2n,G + δ2n,H + ϵG

α2
+ αmin{β+1,2}−1 +

ϵ2H
α

)
.

note that δn := {δn,G , δn,H}, we conclude the proof of Theorem 6.

Proof of Theorem 11. By Lemma 1, we have

α∥ĥ− h∗∥2 ≤ O

(
δn

{
(α+ 1)∥ĥ− h∗∥2 + δn

}
+ ∥(T̂ − T )(ĥ− h∗)∥1

)
≤ O

(
δn

{
(α+ 1)∥ĥ− h∗∥2 + δn

}
+ ∥(T̂ − T )(ĥ− h∗)∥2

)
,
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by Lemma 2, we have ∥(T̂ − T )(ĥ− h∗)∥2 ≤ (δ2n + ϵG)
1/2∥ĥ− h∗∥∞, therefore we have

∥ĥ− h∗∥2 ≤ 1

α
·O
(
δn∥ĥ− h∗∥+ (δ2n + ϵG)

1/2∥ĥ− h∗∥∞
)

(α ≤ 1)

≤ 1

α
·O
(
δn∥ĥ− h∗∥+ (δ2n + ϵG)

1/2∥ĥ− h∗∥γ2
)
,

where the second inequality comes from Assumption 9. By Lemma 7, we have

∥ĥ− h∗∥2 ≤ O

((
δ2n + ϵG

α2

)1/(2−γ))
(18)

by Lemma 2, combine everything together, we have

∥ĥ− h0∥2 ≤ O

((
δ2n + ϵG

α2

)1/(2−γ)

+ αmin{β+1,2}−1 +
ϵ2H
α

)
,

and thus we conclude the proof of Theorem 11.

F PROOF OF THEOREM 7

In this section, we will provide the details for the model selection results in the paper. Let
ℓh,g(Y,Z,X) denote the loss evaluated for a function h using the likelihood function ĝ:

ℓh,ĝ(Y, Z,X) =

(
Y −

∫
h(x)ĝ(x|Z)µ(dx)

)2

+ αh(X)2

Also, to simplify the notation, we use {Xi, Yi, Zi} instead of {X ′
i, Y

′
i , Z

′
i}.

For θ ∈ Θ = {θ|
∑

j θj = 1, θj ≥ 0∀j}, denote hθ =
∑

j θjfj . For any convex combination θ over
a set of candidate functions {h1, . . . , hM}, we define the notation:

ℓθ,g(Y,Z,X) := ℓhθ,g(Y,Z,X) R(θ, g) := Pℓθ,g(Y, Z,X)

Here we define some optimal aggregates in the following sense:

j∗α := argmin
j=1,...,M

R(hj , g0) j∗ := argmin
j=1,...,M

∥h0 − hj∥2

θ∗α := argmin
θ∈Θ

R(hθ, g0) θ∗ := argmin
θ∈Θ

∥h0 − hθ∥2

h∗
α := argminR(h, g0) h∗

α,H := argmin
h∈H

R(h, g0)

Proof of Theorem 7.

∥hθ̂ − h0∥2 ≤ 2∥hθ̂ − h∗
α∥2 + 2∥h∗

α − h0∥2 (By Strong Convexity)

≤ 2

α

(
R(hθ̂, g0)−R(h∗

α, g0)
)
+O

(
αmin{2,β}

)
=

2

α

(
R(hθ̂, g0)−R(h∗

α,Hj
, g0) +R(h∗

α,Hj
, g0)−R(h∗

α, g0)
)
+O

(
αmin{2,β}

)
(for any j)

=
2

α

(
R(hθ̂, g0)−R(hj∗α , g0) +R(hj∗α

, g0)−R(h∗
α,Hj

, g0) +R(h∗
α,Hj

, g0)−R(h∗
α, g0)

)
+O

(
αmin{2,β}

)
≤ 2

α

(
R(hθ̂, g0)−R(hj∗α

, g0) +R(hj , g0)−R(h∗
α,Hj

, g0) +R(h∗
α,Hj

, g0)−R(h∗
α, g0)

)
+O

(
αmin{2,β}

)
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When ĝ is estimated using the standard MLE appraoch, we have that by Corollary 1 and Lemma 1,
we have that:

R(hj , g0)−R(h∗
α,Hj

, g0) ≤ c1δ
2
n,j + c2(δ

2
n,j + ϵG)

1
2 ∥hj − h∗

α,Hj
∥

≤ c1δ
2
n,j +

c22(δ
2
n,j + ϵG)

α
+

1

2
α∥hj − h∗

α,Hj
∥2

≤ O

(
δ2n,j +

(δ2n,j + ϵG)

α

)
(By Eqn 17)

Thus, we have R(hj , g0) − R(h∗
α,Hj

, g0) ≤ O
(

δ2n,j+ϵG
α

)
. Instantiating this result for the func-

tion class HM , which denotes the convex hull when convex-ERM is used, or the set of candidate
functions when best-ERM is used, we get that:

R(hθ̂, g0)−R(hj∗α
, g0) ≤ R(hθ̂, g0)−R(hθ∗

α
, g0)

≤
δ2n,M + ϵG

α

where δn,M = max{δn,G , δn,HM
}. Since the function classes used to train the candidate functions

are typically more complex than the convex hull over M variables, it is safe to assume that δn,HM
≤

δn,H. Combining, we get:

∥hθ̂ − h0∥2 ≤ O
(
αmin{2,β} +

δ2n,j + ϵG

α2

)
+

2

α

(
R(h∗

α,Hj
, g0)−R(h∗

α, g0)
)

≤ O
(
αmin{2,β} +

δ2n,j + ϵG

α2

)
+

2

α
(R(h, g0)−R(h∗

α, g0)) (for any h ∈ Hj)

For any function class H, we have:

R(h, g0)−R(h∗
α, g0) = ∥T (h− h∗

α)∥2 + α∥h− h∗
α∥2

≤ 2∥T (h− h0)∥2 + 2∥T (h∗
α − h0)∥2 + 2α∥h− h0∥2 + 2α∥h∗

α − h0∥2

≤ 4∥h− h0∥2 +O
(
∥w0∥2αmin{β+1,2})

(By Lemma 3 in Bennett et al. (2023b))

Hence, for any function class Hj , we can choose h that attains minHj ∥h−h0∥ = ϵHj . Combining,
we get that:

∥hθ̂ − h0∥2 ≤ min
j

O
(
αmin{β+1,2}−1 +

δ2n,j + ϵG

α2
+

1

α
ϵ2Hj

)
. (α ≤ 1)

Analogously, if ĝ is estimated using χ2-MLE, we have that by Corollary 2, Lemma 1 and Assump-
tion 9:

R(hj , g0)−R(h∗
α,Hj

, g0) ≤ O

(
δ2n + (δ2n + ϵG)

1/2∥ĥ− h∗∥γ2
)

≤ O

(
δ2n +

(
δ2n + ϵG

αγ

) 1
1−2γ

+ α∥ĥ− h∗∥22
)

(By Young’s Inequality)

≤ O

(
α

(
δ2n + ϵG
α1−γ

) 1
1−2γ

+ α

(
δ2n + ϵG

α2

)1/(2−γ))
(By Eqn 18)

≤ O

(
α

(
δ2n + ϵG

α2

)1/(2−γ))
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By the same argument for the standard MLE case, we get:

∥hθ̂ − h0∥2 ≤ min
j

O

αmin{β+1,2}−1 +

(
δ2n,M + ϵG

α2

)1/(2−γ)

+
1

α
ϵ2Hj



G PROOF OF THEOREM 8 AND 12

In this section, we prove the convergence rate of iterative RMIV in Section 8 under a unified frame-
work. We prove the results of Theorem 12 and 12 respectively. Recall that we define

hm,∗ =argmin
h∈H

E[Y − T h(Z)
2
] + α · E[(h− hm−1,∗)

2(X)],

by Lemma 6 and Assumption 2, we have

∥hm,∗ − h0∥22 ≤ ∥w0∥22αmin{β,2m}.

Therefore, we only need to provide a upper bound for ∥ĥm − hm,∗∥22, and then choose the proper
α deliberately. We start by proving the following lemma, and with the different convergence rate of
MLE and χ2-MLE, we conclude the proof of Theorem 8 and Theorem 12 respectively.
Lemma 3. We have the following inequality holds with probability at least 1−m exp(nδ2n,H):

∥ĥm − hm,∗∥2 ≤ O
(
δ2n,H/α2

)
+O

(
E[|(T − T̂ )(ĥm − hm,∗)|]

α

)
+ 16∥ĥm−1 − hm−1,∗∥2.

Proof. Recall that our solution ĥm satisfies

ĥm = argmin
h∈H

L(T̂ h) + αEn[{h− ĥm−1}2].

We define

Lm(τ) = E[E[h0 − hm,∗ − τ(ĥm − hm,∗) | Z]2] + α∥hm,∗ + τ(ĥm − hm,∗)− hm−1,∗∥2,
By definition, Lm(τ) is minimized by τ = 0. Note that by strong convexity and property of
quadratic function, we have

Lm(1)− Lm(0) = L′(0) + L′′(0) ≥ L′′(0),

Therefore

α∥ĥm − hm,∗∥2 + ∥T (ĥm − hm,∗)∥2

≤ ∥T (h0 − ĥm)∥2 − ∥T (h0 − hm,∗)∥2 + α
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
= E[L(T ĥm)]− E[L(T hm,∗)] + α

(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
,

and thus we have

α∥ĥm − hm,∗∥2 + ∥T (ĥm − hm,∗)∥2

≤ E[L(T̂ ĥm)]− E[L(T̂ hm,∗)] + c · E[|(T − T̂ )(ĥm − hm,∗)|]
+ α

(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
≤ |(E− En)(L(T̂ ĥm)− L(T̂ hm,∗))|+ En[L(T̂ ĥm)− L(T̂ hm,∗)]

+ c · E[|(T − T̂ )(ĥm − hm,∗)|] + α
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
≤ c1(δn∥T̂ (ĥm − hm,∗)∥+ δ2n) + En[L(T̂ ĥm)− L(T̂ hm,∗)] + c · E[|(T − T̂ )(ĥm − hm,∗)|]

+ α
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

holds for all m simultaneously with probability at least 1 − m exp(nδ2n,H), recall that δ2n,H is the
critical radius. Here the second inequality comes from triangular inequality and L(·) being O(1)-
Lipschitz, the third inequality comes from Lemma 4. By Eq. equation 10,

En[L(T̂ ĥm)− L(T̂ hm,∗)] ≤ α(∥hm,∗ − ĥm−1∥2n − ∥ĥm − ĥm−1∥2n),

therefore we have

α∥ĥm − hm,∗∥2 + ∥T (ĥm − hm,∗)∥2

≤ c1(δn∥(ĥm − hm,∗)∥+ δ2n) + α(∥hm,∗ − ĥm−1∥2n − ∥ĥm − ĥm−1∥2n) + c · E[|(T − T̂ )(ĥm − hm,∗)|]
+ α

(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
.

We are now interested in bounding

(∥hm,∗ − ĥm−1∥2n − ∥ĥm − ĥm−1∥2n) +
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
.

We divide it into two terms:

I1 :=
(
∥hm,∗ − ĥm−1∥2 − ∥ĥm − ĥm−1∥2

)
+
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
,

I2 := (∥hm,∗ − ĥm−1∥2n − ∥ĥm − ĥm−1∥2n)− (∥hm,∗ − ĥm−1∥2 − ∥ĥm − ĥm−1∥2)

Note that |I1| =
∣∣2⟨ĥm−1 − hm−1,∗, ĥm − hm,∗⟩

∣∣, we have

I1 ≤ 2∥ĥm−1 − hm−1,∗∥2∥ĥm − hm,∗∥2,

For I2, we divide it into two terms I3 and I4, defined by

I3 := ∥hm,∗ − ĥm−1∥2n − ∥hm,∗ − hm−1,∗∥2n − (∥hm,∗ − ĥm−1∥2 − ∥hm,∗ − hm−1,∗∥2),
I4 := ∥hm,∗ − hm−1,∗∥2n − ∥ĥm − ĥm−1∥2n − (∥hm,∗ − hm−1,∗∥2 − ∥ĥm − ĥm−1∥2)

Since each of these is the difference of two centered empirical processes, that are also Lipschitz
losses (since hm,∗, ĥm, hm−1,∗, ĥm−1 are uniformly bounded) and since hm,∗ is a population quan-
tity and not dependent on the empirical sample that is used for the m-th iterate, we can also upper
bound these,

I3 = O(δ2n,H∥ĥm−1 − hm−1,∗∥+ δ2n,H),

I4 = O(δn,H∥ĥ− hm,∗ + hm−1,∗ − ĥm−1∥+ δ2n,H) = O

(
δn,H(∥ĥ− hm,∗∥+ ∥hm−1,∗ − ĥm−1∥+ δ2n,H)

)
,

combine everything together, we can prove that

(∥hm,∗ − ĥm−1∥2n − ∥ĥm − ĥm−1∥2n) +
(
∥ĥm − hm−1,∗∥2 − ∥hm,∗ − hm−1,∗∥2

)
≤ O(δ2n + δn(∥ĥm − hm,∗∥+ ∥ĥm−1 − hm−1,∗∥)) + 2∥ĥm−1 − hm−1,∗∥∥ĥm − hm,∗∥.

Therefore, we have

α∥ĥm − hm,∗∥2

≤ O

(
δ2n,H + δn,H∥ĥm − hm,∗∥+ c · E[|(T − T̂ )(ĥm − hm,∗)|] + αδn,H(∥ĥm − hm,∗∥+ ∥ĥm−1 − hm−1,∗∥))

)
+ 2α∥ĥm−1 − hm−1,∗∥∥ĥm − hm,∗∥.

By applying AM-GM inequality and utilizing α ≤ 1, we have

α

8
∥ĥm−hm,∗∥2 ≤ O

(
δ2n/α+ δ2n+αδ2n

)
+ c ·E[|(T − T̂ )(ĥm−hm,∗)|] + 2α∥ĥm−1−hm−1,∗∥2,

therefore we have

∥ĥm − hm,∗∥2 ≤ O
(
δ2n/α

2 + δ2n/α
)
+O

(
E[|(T − T̂ )(ĥm − hm,∗)|]

α

)
+ 16∥ĥm−1 − hm−1,∗∥2.
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Proof for Theorem 8. By Corollary 1, we have

E[|(T − T̂ )(ĥm − hm,∗)|] = ∥(T − T̂ )(ĥm − hm,∗)∥1 ≤ δn · ∥ĥm − hm,∗)∥2,

therefore by Lemma 3, we have

∥ĥm − hm,∗∥2 ≤ O(δ2n/α
2 + δn∥ĥm − hm,∗)∥2) + 16∥ĥm−1 − hm−1,∗∥2.

By Lemma 7, we have

∥ĥm − hm,∗∥2 ≤ 4O
(
δ2n/α

2
)
+ 16∥ĥm−1 − hm−1,∗∥2

≤ 128m · δ2n/α2,

where the second inequality comes from induction. Therefore, by Lemma 6, we have

∥ĥm − h0∥2 = O(128m · δ2n/α2 + αmin{β,2m}).

Set α = δ
2

2+min{β,2m}
n , and we conclude the proof.

Proof for Theorem 12 By Assumption 9, we have ∥ĥm − hm,∗∥∞ ≤ ∥ĥm − hm,∗∥γ2 , which
implies

∥ĥm − hm,∗∥2 ≤ O
(
δ2n/α

2 + δ2n/α
)
+O

(
δn/α · ∥ĥm − hm,∗∥γ

)
+ 16∥ĥm−1 − hm−1,∗∥2,

by Lemma 7, we have

∥ĥm − hm,∗∥2 ≤ 4max
{
O
(
δ2n/α

2 + 16∥ĥm−1 − hm−1,∗∥2
)
, O
(
(δn/α)

2/(2−γ)
)}

≤ O(128m max
{
δ2n/α

2, (δn/α)
2/(2−γ)

}
),

where the second inequality comes from induction. Therefore, by Lemma 6, we have

∥ĥm − h0∥2 = O(128m ·max
{
δ2n/α

2, (δn/α)
2/(2−γ)

}
+ αmin{β,2m}).

Set α = δ
2

2+(2−γ)min{β,2m}
n , Then δn/α = O(δ

(2−γ)min{β,2m}
2+(2−γ)min{β,2m}
n ) ≲ 1, and since γ ∈ (0, 1), we have

max
{
δ2n/α

2, (δn/α)
2/(2−γ)

}
= (δn/α)

2/(2−γ),

and

∥ĥm − h0∥2 = O(128m · δ
2min{β,2m}

2+(2−γ)min{β,2m}
n ),

and we conclude the proof of Theorem 12.

H CONVERGENCE RATE OF MLE AND χ2-MLE

H.1 CONVERGENCE RATE OF MLE

In this section, we aim to characterize the convergence rate of conditional MLE equation 4 in terms
of the critical radius δn,G of function class G and model misspecification. Specifically, we prove the
following Theorem:
Theorem 13 (Convergence rate for misspecified MLE). Suppose Assumption 4 and condition in
Theorem 5 holds, and there exists g† ∈ G such that Ez∼g0 [DKL(g0(·|z), g†(·|z))] ≤ ϵG . Then we
have

Ez∼g(z)

[
H2(ĝ(·|z)|g0(·|z))

]
≤ δ2n + ϵG

holds with probability at least 1− c1 exp(c2
c0

C+c0
nδ2n).

Proof. We work with the transformed function class F =

{√
g+g0
2g0

∣∣∣∣g ∈ G
}

, and define Lf =

− log f(x) for f ∈ F . Note that F is a function class whose element maps X × Z to R. We define
the population version of localized Rademacher complexity for function class F∗ := star((F −
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f∗) ∪ {0}). By Assumption 4 and 1-boundedness of G, F and F∗ are bounded by a constant
b := C0+C

2C0
in ∥ · ∥∞. The critical radius δn,F of function class F∗ is any solution such that

δ2 ≥ c/n and R̄n(δ;F∗) ≤ δ2/b.

Such critical radius can be easily calculated for a large number of function classes. For example, we
can use

64√
n

∫ δ

δ2/2b

√
logNn(t,B(δ,F∗))dt ≤ δ2

b

to calculate δn,F , where B(δ,F∗) := {f ∈ F∗ | ∥f∥2 ≤ δ}, Nn is the empirical covering number
conditioned on {(xi, zi)}i∈[n]. For a cost function L : R → R, we define Lf (x, z) := L(f(x, z)).
We make the following definition.

Definition 1. We say Lf is γ-strongly convexity at f∗ if

Ez∼g0(z),x∼g0(x|z)
[
Lf (x, z)− Lf∗(x, z)− ∂Lf∗(x, z)(f − f∗)(x, z)

]
≥ γ

2
∥f − f∗∥22

for all f ∈ F .

Note that for any f ∈ F we have and | log f(x) − log f ′(x)| ≤
√
2|f(x) − f ′(x)| since ∥f∥∞ ≥

1/
√
2. By the definition of Hellinger distance, we have

∥f − f∗∥22 = Ez∼g0(z)

[
H2

(
g + g0

2
|g0
)]

,

and since H2(g1 | g2) ≤ 2DKL(f1 | f2), we have ∥f − f∗∥22 ≤ P(Lf − Lf∗), thus L is 2-strongly
convex at f∗. Utilizing strong convexity and Lemma 4, we have the following inequality holds with
probability 1− exp(nδ2n,F ):

∥f̂ − f0∥22 ≤ 2Ez∼g0(z),x∼g0(x|z)[Lf̂ (x, z)− Lf0(x, z)]

= 2Ez∼g0(z),x∼g0(x|z)[Lf̂ (x, z)− Lf†(x, z)] + 2Ez∼g0(z),[DKL(g0(·|z) | (g† + g0)/2(·|z))]
≤ 2(En − E)[Lf̂ (x, z)− Lf†(x, z)] + 2En[Lf̂ (x, z)− Lf†(x, z)]

+ Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))]

≤ O(δn,F∥f̂ − f†∥2 + δ2n,F ) + Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))]

≤ O(δn,F∥f̂ − f0∥2 + δn,F∥f0 − f†∥2 + δ2n,F ) + Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))],

here the first inequality comes from strong convexity, the third inequality comes from log( 2x
x+y ) ≤

1
2 log(

x
y ) and the definition of MLE. The forth inequality comes from Lemma 4. Solve this inequal-

ity, and recall that ∥f − h0∥22 = Ez∼g0(z)[H
2((g + g0)(·|z)/2 | g0(·|z))], we have

Ez∼g0(z)[H
2(ĝ(·|z) | g0(·|z))] ≤ O(δ2n,F + δn,F∥f0 − f†∥2 + Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))])

≤ O(δ2n,F + δn,FEz∼g0(z)[DKL(g0(·|z), g†(·|z))]1/2

+ Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))])
≤ O(δ2n,F + Ez∼g0(z)[DKL(g0(·|z) | g†(·|z))]),

here the first inequality comes from Lemma 5, the second inequality comes from Lemma 9. Thus
we conclude the proof of Theorem 13.

We provide the following corollary, which would help characterize the L1 and L2 error of T h
introduced by MLE.

Corollary 1. Under Assumption 4, for all h′ ∈ H−H, we have ∥(T̂ −T )h′∥1 ≤ {1/c0+1}∥h′∥2 ·
(δ2n,H+ ϵG)

1/2 and ∥(T̂ −T )h′∥2 ≤ (C2,4C)1/2 · (C/c0+1)∥h′∥2 · (δ2n,G + ϵG)
1/4 with probability

at least 1− c2 exp(c3nδ
2
n,G).
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Proof. We first prove the bound for L1 error ∥(T̂ − T )h′∥1. We have the following inequality:

∥(T̂ − T )h′∥1 = Ez∼g0(z)

[
|Ex∼g0(x|z)

[
ĝ(x|z)
g0(x|z)

h′(x)− h′(x)

]
|
]

≤ Ez∼g0(z),x∼g0(x|z)

[
| ĝ(x|z)
g0(x|z)

h′(x)− h′(x)|
]

≤ Ez∼g0(z),x∼g0(x|z)

[√
ĝ(x|z)
g0(x|z)

|h′(x)||

√
ĝ(x|z)
g0(x|z)

− 1|

]

+ Ez∼g0(z),x∼g0(x|z)

[
|h′(x)||

√
ĝ(x|z)
g0(x|z)

− 1|

]

≤ E[
ĝ(x|z)
g0(x|z)

h′2(x)]1/2 × E[2H2(ĝ(·|z) | g0(·|z))]

+ E[
ĝ(x|z)
g(⋆(x|z)

h′2(x)]1/2 · E[2H2(ĝ(·|z) | g0(·|z))]1/2 (CS inequality)

≤ 2{1/c0 + 1}E[h2(x)]1/2 · E[2H2(ĝ(·|z) | g0(·|z))]1/2

= {1/c0 + 1}∥h′∥2 · (δ2n,G + ϵG)
1/2.

where the second inequality comes from Assumption 4. Next, we prove the upper bound for L2

error ∥(T̂ − T )h′∥2. We have

∥(T̂ − T )h′∥2 =
{
E[|(T − T̂ )h′|2]

}1/2
≤ 2CY ∥(T − T̂ )h′∥1/21

≤ 2CY δ
1/2
n,H∥h′∥1/2.

and we conclude the proof.

H.2 CONVERGENCE RATE OF χ2-MLE

For the convergence rate of χ2-MLE, we present the following theorem:
Theorem 14 (Convergence rate for χ2-MLE, Corollary 14.24 of Wainwright (2019) ). For ĝ gener-
ated by 11, we have

Ez∼g0(z)

[
{
∫

|ĝ(x|z)− g0(x|z)|dµ(x)}2
]
= O

(
δ2n,G+inf

g∈G
Ez∼g0(z)

[
{
∫

|g(x|z)− g0(x|z)|dµ(x)}2
])

with probability at least 1− c1 exp(c2nδ
2
n,G).

Proof. By Theorem 13.13 of Wainwright (2019), we have

En

[
{
∫

|ĝ(x|z)− g0(x|z)|dµ(x)}2
]
= O

(
δ2n,G + inf En

[
{
∫

|g(x|z)− g0(x|z)|dµ(x)}2
])

holds with probability at least 1− exp(c1nδ
2
n,G). By Theorem 15, we have

(En − E)
[
{
∫

|g(x|z)− g0(x|z)|dµ(x)}2
]
≤ O(δ2n,F )

holds for all g ∈ G with probability at least 1 − c2 exp(c3nδ
2
n,G), and the proof is done. and the

proof is done.

We provide the following corollary, which would help characterize the error introduced by χ2-MLE.
Corollary 2. With χ2-MLE, we have the following inequality holds for all h ∈ H with probability
at least 1− c2 exp(c3nδ

2
n,G):

∥(T − T̂ )h∥22 ≤ (δ2n,G + ϵG)∥h∥2∞.
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Proof. By

∥(T − T̂ )h∥22 = Ez∼g0(z)

[(∫
X
{ĝ(x|z)− g0(x|z)}h(x)dµ(x)

)2]
≤ (δ2n,G + ϵG)∥h∥2∞.

We conclude the proof.

I AUXILIARY LEMMA

We introduce the following lemma, which gives a uniform convergence rate of loss error.
Lemma 4 (Localized Concentration, Foster and Syrgkanis (2019)). For any f ∈ F := ×d

i=1Fi

be a multivalued outcome function, that is almost surely absolutely bounded by a constant. Let
ℓ(Z; f(X)) ∈ R be a loss function that is O(1)-Lipschitz in f(X), with respect to the ℓ2 norm. Let

δn = Ω

(√
d log log(n)+log(1/ζ)

n

)
be an upper bound on the critical radius of star (Fi) for i ∈ [d].

Then for any fixed h0 ∈ F , w.p. 1− ζ :

∀f ∈ F : |(En − E) [ℓ(Z; f(X))− ℓ (Z;h0(X))]| = O

(
dδn

d∑
i=1

∥fi − fi,0∥2 + dδ2n

)
If the loss is linear in f(X), i.e. ℓ (Z; f(X) + f ′(X)) = ℓ(Z; f(X)) + ℓ (Z; f ′(X)) and

ℓ(Z;αf(X)) = αℓ(Z; f(X)) for any scalar α, then it suffices that we take δn = Ω

(√
log(1/ζ)

n

)
that upper bounds the critical radius of star (Fi) for i ∈ [d].

Proof. For a detailed proof, please refer to Foster and Syrgkanis (2019).

The following lemma is useful when proving the convergence rate of Hellinger distance.
Lemma 5 (Lemma 4.1 in Van de Geer (1993)). For two density functions g1 and g2, define gu =
ug1 + (1− u)g2, then we have

1

4(1− u)
H2(g1 | gu) ≤ H2(g1 | g2) ≤

1

(1− u)2
H2(g1 | gu)

holds for all u ∈ (0, 1)

Proof. For a detailed proof, see Lemma 4.1 in Van de Geer (1993).

Lemma 6 (Lemma 5 in Bennett et al. (2023b)). If h0 is the minimum L2-norm solution to the linear
inverse problem and satisfies the β-source condition, then the solution to the t-th iterate of Tikhonov
regularization hm,∗, defined in Equation equation 9, with h0,∗ = 0 , satisfies that

∥hm,∗ − h0∥2 ≤ ∥w0∥2αmin{β,2t}, ∥T hm,∗ − T h0∥2 ≤ ∥w0∥2αmin{β+1,2t}.

Proof. For a detailed proof, see Lemma 5 in Bennett et al. (2023b).

The following lemma upper-bounds the bias introduced by Tikhonov regularization.
Lemma 7. For

x2 ≤ c1 + c2x
γ1 + c3x

γ2 ,

where c1, c2 > 0, 0 ≤ γ ≤ 1, we have x ≤ 3max
{√

c1, c
1/(2−γ1)
2 , c

1/(2−γ2)
3

}
.

Proof. Since x2 − c2x
γ1 − c3x

γ2 − c1 is a convex function with negative intercept, we only need to
prove that for x0 = 3max

{√
c1, c

1/(2−γ1)
2 , c

1/(2−γ2)
3

}
, we have x2

0 − c2x
γ1

0 − c3x
γ2

0 − c1 ≥ 0. For
simplicity, we consider

√
c1 ≥ max{c1/(2−γ1)

2 , c
1/(2−γ2)
3 }, and we have

x2
0 = 9c1 ≥ c1 + c2 · 3γ1c

γ1/2
1 + c3 · 3γ2c

γ2/2
1 = c1 + c2x

γ1

0 + c3x
γ2

0 ,

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

S′

U

Q′ W ′

A Y

Figure 1: A typical causal diagram for negative controls. The dashed edges may be absent, and the
dashed circle around S′ indicates that U is unobserved.

similarly we have the same result when c
1/(2−γ1)
2 ≥ max{√c1, c

1/(2−γ2)
3 } or c

1/(2−γ2)
3 ≥

max{√c1, c
1/(2−γ1)
2 }, and we conclude the proof.

Next, we introduce the following lemma that gives a uniform convergence rate for function class F ,
which is adapted from Wainwright (2019).
Lemma 8 (Theorem 14.20 in Wainwright (2019).). Suppose we have a 1-uniformly bounded func-
tion class F that is star-shaped around a population minimizer f∗. Let δn ≥ c

n be the solution to
the inequality

R̄n(δ;F∗) ≤ δ2.

Suppose the loss function Lf is L-Lipschitz, then with probability at least 1− c1 exp(−c2nδ
2
n,F/b),

either of the following events holds for all f ∈ F:

(1) ∥f − f∗∥2 ≤ δn;

(2) |Pn(Lf − Lf∗)− P(Lf − Lf∗)| ≤ 10Lδn∥f − f∗∥2.

The following lemma is a classical result for localization and uniform laws.
Theorem 15 (Theorem 14.1 of Wainwright (2019).). Given a star-shaped and b-uniformly bounded
function class F , let δn be any positive solution of the inequality

R̄n(δ;F) ≤ δ2

b
.

Then for any t ≥ δn, we have∣∣∥f∥2n − ∥f∥22
∣∣ ≤ 1

2
∥f∥22 +

t2

2
for all f ∈ F

with probability at least 1− c1e
−c2

nδ2n
b2 . If in addition nδ2n ≥ 2

c2
log (4 log (1/δn)), then

|∥f∥n − ∥f∥2| ≤ c0δn for all f ∈ F

with probability at least 1− c′1e
−c′2

n2
0

b2 .

The next lemma enables us to upper-bound KL divergence by Hellinger distance.
Lemma 9 (Example 14.10 in Wainwright (2019). ). For any two density function g1 and g2, we
have

H2(g1 | g2) ≤ 2DKL(g1 | g2).

J ADDITIONAL EXPERIMENT DETAILS

We follow the data-generating process in Kallus et al. (2021) and Cui et al. (2020) to generate multi-
dimensional variables U, S,W,Q,A with A ∈ {0, 1} as follows:
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1. S′ ∼ N (0, 0.5IdS
), where Id is a d-dimension identity matrix.

2. A|S′ ∼ Ber(p(S′)) where

p(S′) =
1

1 + exp(0.125− 0.1251⊤d S′)
,

where 1d is all-one vector.
3. Draw W ′, Q′, U from

W ′, Q′, U | A,S′ ∼ N

[ µ0 + µaA+ µsS
′

α0 + αaA+ αsS
′

κ0 + κaA+ κsS
′

]
,

 σ2
w, σ

2
wq, σ

2
wu

σ2
wq, σ

2
q , σ

2
qu

σ2
wu, σ

2
qu, σ

2
u

 .

Here we set the parameters above as µ0 = α0 = κ0 = 0.21d, αa = κa = µs = αs = κs =
Id, σ2

q = σ2
u = σ2

w = 0.1
(
Id + 1d1

⊤
d

)
, σ2

wu = σ2
zu = 0.11d1

⊤
d . Finally, we choose σ2

wq

and µa to ensure that W ′ ⊥ (A′, Q′) | U, S′, which is a prerequisite of proximal causal
inference (Kallus et al., 2021, Condition 4 in Assumption 1). To achieve this, note that

E [W ′ | U, S′, A,Q′] = µ0 + µaA+ µsS
′ +Σw(q,u)Σ

−1
q,u

[
Q′ − α0 − αaA− αsS

′

U − κ0 − κaA− κsS
′

]
(19)

where

Σw(q,u) =
(
σ2
wq, σ

2
wu

)
, Σq,u =

[
σ2
q , σ

2
qu

σ2
qu, σ

2
u

]
.

We simply select σ2
wq and µa so that Equation equation 19 does not depend on A and Q′.

4. Draw Y from

Y | X ′, U,W ′ ∼ N
(
A+ 1⊤

d S
′ + 1⊤

d U + 1⊤
d W

′, 1
)
.

5. Set W ′ = W ′
[0:dW ]. Observe S = g(S′), Q = g(Q′), W = g(W ′), where g(·) is a

reversible function that operates component-wise on each variable.

Our data-generating process is described in Figure 1.

Additional Numerical Results

J.1 HYPERPARAMETER SETTINGS.

For RDIV, we use Adam as the optimizer for both density estimation and Tikhonov regression, with
a default learning rate of 10−4, a batch size of 50, and a training epoch of 300. All results are run on a
32GB CPU. We will show how to choose these hyperparameters with our model selection procedure
(Algorithm 2) in Section J.2. For all baselines except for AGMM, we adapt the hyperparameters
in their original codebase. For AGMM, we tune the learning rate for the learner and adversary
for every g(·) independently. We follow Singh et al. (2019) to use Gaussian RKHS for function
approximation and their method for tuning the regularization parameter. When n = 500, the learning
rate of the learner and adversary in AGMM are manually set to 10−4 for LogSigmoid, Piecewise,
and Sigmoid, and 10−3 for Id, Poly, and CubicRoot. When n = 1000, the learning rate of the
learner and adversary in AGMM are manually set to 10−4 for Piecewise and Sigmoid, and 10−3

for LogSigmoid, Piecewise, and CubicRoot. The training parameter of DFIV is adopted from Xu
et al. (2021). Note that tuning DFIV is highly intractable in practice, as their method is essentially a
bilevel optimization, which is known to be hard to solve (Hong et al., 2023).

J.2 MODEL SELECTION

While it is seen that Kernel IV is comparable to RDIV in some scenarios such as in Table 4 and
5, in this section, we will show that our RDIV equipped with a model selection procedure can
generally outperform KernelIV. We report our results in model selection for the second stage by
implementing Best-ERM in Algorithm 2 and demonstrate how it improves our results. Specifically,
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our models h1, . . . , hM are trained by different hyperparameters. First, we employ model selection
for the density function by Best ERM. Then with the trained density function in the first stage, we
further apply Best ERM to the models in the second stage. In the model selection experiments,
we fix the dimension of our dataset to be dS = dQ = 20, dW = 10. We compute the mean
and confidence interval with 10 independent trials. We set the candidate training parameters as
follows: the number of epochs ∈ {300, 400}, the batch size for the 1st stage ∈ {30, 50} and the
batch size for the 2nd stage ∈ {50, 60, 100}, the learning rate ∈ {10−4, 10−3}, the number of
mixture components ∈ {40, 50, 60}. As shown in Table 7, when RDIV is equipped with model
selection techniques, our method outperforms KernelIV in all but one case when the dataset size is
500, and outperforms KernelIV in 3 out of 6 settings when the dataset size is 1000. Our approach
demonstrates its effectiveness by outperforming previous benchmarks across a diverse set of Data
Generating Processes (DGP). This achievement is attributed to both the ease of optimization of
RDIV and its theoretically sound integration with model selection procedures.
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