Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

Goal-Conditioned Imitation Learning using
Score-based Diffusion Policies

Moritz Reuss, Maximilian Li, Xiaogang Jia and Rudolf Lioutikov
Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany

Abstract—We propose a new policy representation based on
score-based diffusion models (SDMs). We apply our new policy
representation in the domain of Goal-Conditioned Imitation
Learning (GCIL) to learn general-purpose goal-specified poli-
cies from large uncurated datasets without rewards. Our new
goal-conditioned policy architecture ”BEhavior generation with
ScOre-based Diffusion Policies” (BESO) leverages a generative,
score-based diffusion model as its policy. BESO decouples the
learning of the score model from the inference sampling process,
and, hence allows for fast sampling strategies to generate goal-
specified behavior in just 3 denoising steps, compared to 30+ steps
of other diffusion-based policies. Furthermore, BESO is highly
expressive and can effectively capture multi-modality present in
the solution space of the play data. Unlike previous methods
such as Latent Plans or C-Bet, BESO does not rely on complex
hierarchical policies or additional clustering for effective goal-
conditioned behavior learning. Finally, we show how BESO can
even be used to learn a goal-independent policy from play-data
using classifier-free guidance. To the best of our knowledge this
is the first work that a) represents a behavior policy based on
such a decoupled SDM b) learns an SDM-based policy in the
domain of GCIL and c) provides a way to simultaneously learn
a goal-dependent and a goal-independent policy from play data.
We evaluate BESO through detailed simulation and show that it
consistently outperforms several state-of-the-art goal-conditioned
imitation learning methods on challenging benchmarks. We
additionally provide extensive ablation studies and experiments to
demonstrate the effectiveness of our method for goal-conditioned
behavior generation. Demonstrations and Code are available at
https://intuitive-robots.github.io/beso-website,

I. INTRODUCTION

Goal-conditioned Behavior Learning aims to train versatile
embodied agents, that can handle a wide range of daily
tasks. A common approach to tackle this challenge is Goal-
conditioned Imitation Learning (GCIL). GCIL only requires
an offline dataset without additional rewards or expensive
environment interactions for training. However, GCIL typi-
cally requires a set of predefined tasks and a large number
of labeled and segmented expert trajectories for each task,
which can be costly and time-consuming. Additionally, it does
not generalize well to new scenes and different tasks. Instead
of teaching an agent a limited number of predefined goals,
Learning from Play (LfP) [21] provides an effective way
of collecting task-agnostic, teleoperated, uncurated, freeform
datasets. Such datasets consist of rich, meaningful, multimodal
interactions with the environment that cover different areas of
the state space. Instead of manually labeling the trajectories,
LfP pairs random sequences of each trajectory with one or
more future states, i.e., the goal state, of the respective tra-
jectory. Goal-conditioned policies distill useful, goal-oriented

behavior from this collected play interaction data. However,
learning from play data remains an open challenge, partially
due to the multimodal nature of the demonstrations, e.g., the
same task can be solved in very different ways and different
tasks can be solved in very similar ways.

Effective behavior learning from these datasets demands
policies that maintain such multimodal solutions and that are
expressive enough to remain close to the seen state-action
distribution of the offline data for executing long-term horizon
skills. Most prior work tries to deal with this challenge, by
combining generative models, such as Variational Autoen-
coders (VAEs) [12, 25, 132]] and Generative Pretrained Trans-
former (GPTs) [16, 135]], with additional models and networks to
explicitly encode multimodality or hierarchy. However, these
methods require supplementary networks or separation of skill
execution and planning within their architecture, as the policy
expression is not sufficient or cannot handle the multimodality
of the observed behaviors. Additionally, multiple learning
objectives are typically required, e.g. for low- and high-level
policies, which provides additional tuning challenges.

We propose a novel approach, BEhavior Generation using
ScOre-based Diffusion models (BESO), which excels in learn-
ing goal-conditioned policies solely from reward-free, offline
datasets. BESO uses Score-based Diffusion Models (SDMs)
[37, 15} 141} [17], a new class of generative models, that pro-
gressively diffuse data to noise through a forward Stochastic
Differential Equation (SDE). By training a neural network,
known as the score or denoising model, to approximate the
score function, one can reverse the SDE to generate new
samples from noise in an iterative sampling process.

We demonstrate several benefits of modeling the goal-
conditioned action distribution using a score-based diffusion
model. First, we show, that the expressiveness of SDMs and
their ability to capture multimodal distributions is key for ef-
fective conditioned behavior generation. On several challeng-
ing goal-conditioned benchmarks, including the conditioned
Relay Kitchen and Block-Push environment [6]], BESO consis-
tently outperforms state-of-the-art methods such as C-BeT and
Latent Motor Plans [6, 21]]. Second, by leveraging Classifier-
Free Guidance Training of SDMs, BESO effectively learns
two policies simultaneously: a goal-dependent policy and a
goal-independent policy, which both can be used together or
independently at test time. Third, our model is easy and stable
to train with a single training objective without additional
rewards. This contrasts with other state-of-the-art generative
models, such as Implicit Behavior Cloning (IBC) [10], or

https://intuitive-robots.github.io/beso-website

hierarchical policies [[12]. Fourth, SDMs do not restrict the
choice of the model architecture as in other generative models
such as VAEs or energy-based models (EBMs) [[10]. Thus,
we apply a novel Transformer architecture augmented with
preconditioning to synthesize step-based actions given a se-
quence of observations and desired goal states. Finally, BESO
can diffuse new actions fast. While current diffusion-based
policies [30] require 30+ denoising steps for a single action
prediction to achieve good results, our proposed approach,
BESO, performs exceptionally well on challenging GCIL
benchmarks, outperforming state-of-the-art goal-conditioned
policies, while using only 3 denoising steps. We achieve this,
by using recent advances in Score-based Diffusion Models,
which separate the training and inference process [17] and
applying novel numerical solvers designed for fast diffusion
inference [38| [19]. Therefore, we systematically evaluate the
essential components of SDMs for fast and effective step-
based action generation.
To summarize our contributions:

« BESO, a new policy representation based on score-based
diffusion models for effective goal-conditioned behavior
generation from uncurated play data

e Use of Classifier-Free Guidance based Diffusion Pol-
icy to simultaneously learn a goal-dependent and goal-
independent policy from play

o Systematic evaluation of key components for fast and
efficient action generation using Score-based Diffusion
policies combined with extensive experiments and abla-
tion studies

II. RELATED WORK

Diffusion Generative Models. Score-based generative
models (SGMs) [39,140] and Denoising Diffusion Probabilistic
Models (DDPMs) [37. [15] are two different variants of score-
based diffusion models (SDMs). These models corrupt a data
distribution with increasing Gaussian noise and use neural
networks to learn to reverse this corruption to generate new
data samples from noise. The two different models have
been unified using the stochastic differential equation (SDE)
framework [41]]. SDEs describe the diffusion process as a
time-continuous process instead of using discrete noise levels.
BESO follows the SDE formulation proposed by Karras et al.
[17]. To draw new samples from the diffusion models, they
need to reverse the SDE discretized over T time steps. The
SDE contains a probability flow ODE with the same marginal
distributions, which allows for fast sampling [41]. ODE solvers
do not add noise during the inference process, which can
reduce the number of function evaluations and accelerate
sampling [19]. Sampling can be further accelerated using
specialized numerical ODE solvers designed for diffusion
inference [[15) (17, [20]]. SDMs achieved state-of-the-art results
in various tasks including image generation [17], text-based
image synthesis [7, [33] and human motion generation [42].

Goal-Conditioned Imitation Learning (GCIL). It is a sub-
domain of Imitation Learning [29, 2], where each demon-
stration is augmented with one or more goal-states that are

indicative of the task that the demonstration was provided for.
The goal-state contains information that a learning method
can leverage to disambiguate demonstrations. Consequently,
a goal-conditioned policy, i.e., a policy that includes the
goal-state in its condition set, can use a given goal-state to
adapt its behavior accordingly. Similarly, goal-states have also
extended the domain of reinforcement learning through Goal-
Conditioned Reinforcement Learning (GCRL) [8, 9} 22| 32]],
where the agent is not provided expert demonstrations but
reward signals instead. Typically these reward signals are diffi-
cult to define, especially for complex tasks and environments,
providing demonstrations is often a more natural option in
such situations. Additionally, the policy rollouts required by
GCRL are often expensive in real-world settings. Recent work
investigated Goal Conditioned Offline Reinforcement Learning
[22] 134} 132} 146, 26], which does not require these expensive
rollouts during training.

Learning from Play. The goal of Learning from Play (L{P)
[21] is to learn goal-specified behavior from a diverse set of
unlabeled state-action trajectories. Classical imitation learning
datasets typically consist of uni-modal, segmented expert tra-
jectories in a narrow state-space. Play data, on the other hand,
is characterized by unsegmented, multimodal trajectories. This
makes learning meaningful behaviors more challenging, as the
policies need the ability to deal with multiple ways of solving a
task, distinguish between similar ways to solve different tasks,
as well as the ability of long-horizon planning to reach goals
far into the future. Prior work aimed to extract representations
from play data for effective downstream policy learning [47]]
or learned self-supervised representations of skills, referred
to as latent plans, using Conditional Variational Autoencoders
(CVAE) 12,121} 25} 24]). Transformer-based architectures were
also researched as a policy class for task-agnostic behavior
learning [6} 35]. Another body of work tries to improve LfP,
by focusing on the data aspect and learning from object-centric
interactions, instead of randomly sampled sequences [3].

Generative Models in Policy Learning. Imitation Learning
can be formulated as a state-occupancy matching problem,
where the goal is to learn a policy that matches the state-
occupancy distribution of expert demonstrations. The unknown
expert demonstration can now be approximated through mod-
ern generative model architectures. One popular approach is
the use of Generative Adversarial Networks (GANs) [I13} [11].
These methods consist of a generator policy that learns to
imitate the observed behavior of the expert and a discriminator,
which distinguishes between real and fake trajectories. They
require extensive rollouts during training, which is not feasible
in our setting. Other approaches use CVAEs [23} [32} [12} 24}
34] to learn a latent embedding to represent the underlying
skills. Recent work also applied Energy-based models as
conditional policies for behavior cloning [10]. Normalizing
flows have also been proposed as a policy representation [36].

Diffusion Generative Models in Robotics. Most ap-
proaches that apply diffusion models in robotics applications
focus on the discrete DDPM variant [15]. The DDPM Dif-
fusion model has been used in Offline-RL to generate state-

3. Return ay

Policy:

Method 2. Diffuse ar using

XN Score-Model
DH(a' 59 Ui)

Do(a, s, g,0;):

0 ——

1. sample a,~N(0,031)

!

States (s,@)nq+x and goal states g

O

Fig. 1.

Qiv1

Fy(a,s,g,0;):

Linear Output Layer

0 g (@n2 (On-1 sn @

[:] : Linear Action Encoder = NE : Linear Noise Encoder

: Linear State Encoder : Position Embedding

S Dnnik 9

Overview of the action generation process of BESO with the used model architecture. Left: General Action Generation Process using the Diffusion

Process to denoise the next action given the current observation s and desired goal state g in N-steps. Middle: the high-level score-model with its pre-
conditioning layers and skip connections. Right: the internal denoising score model, which uses a transformer architecture with causal masking to iteratively
predict the denoised action given the sequence of prior observations, actions, and the goal sequence.

action or state-only trajectories using large U-net architectures
[16}1]]. DDPM has also been applied as a policy regularization
method in a step-based Offline-RL setting in combination with
a learned Q-function [45)]. Recently, score-based generative
models have been leveraged to synthesize cost functions for
grasp pose configurations [43]]. In addition, Conditional score-
based generative models have been proposed to learn the
reward function for inverse reinforcement learning [[L8]]. The
closest related work to BESO is Diffusion Policy [5] and
Diffusion-BC [30], which both propose the use of conditional,
discrete DDPM as a new policy class for Behavior Cloning.
Diffusion-BC synthesizes new actions in 50 stochastic sam-
pling steps. To improve the performance, Diffusion-BC uses
X-extra inference steps at the lowest noise level without
additional noise. However, this method results in even slower
action generation. BESO leverages the probability flow ODE
combined with fast, deterministic samplers and optimized
noise levels. Hence, BESO requires significantly fewer func-
tion evaluations in every action prediction.

III. PROBLEM FORMULATION AND METHOD

In this section, we describe our approach to goal-
conditioned behavior generation using Score-based diffusion
models.

A. Problem Formulation

The Goal of GCIL 1is to learn a general-
purpose goal-conditioned policy from uncurated play
data. Given a set of unstructured, task-agnostic

trajectories, T = = {Tkh-k = ((sk,ak))Me 1,

trajectory can be split into a set of tuples containing
sub-trajectory sequences and goal-states Dy =
i J
(0,9)|0 = (80, @n);i_i:9 = (0)1;: (8n,an) € T |,
with ¢ < iy < j < j; denoting start and end steps of the
sequence and goal-state respectively. As this formulation

each

makes clear, the goal-state has to be one or more states of
the same trajectory as the sequence and has to begin at some
step after the respective sequence has ended. The set Dy
can contain overlappir}(g sequences and the final play dataset
is given as D = |J,_; Dy. For simplicity, the indices of
o, and g, simply indicate that the sequence and goal state
belong together and the indices in (s,,a,) € o refer to the
relative time step in the sequence. The state-action pairs in
the sequence oy, leading to the goal state g, are now treated
as the optimal behavior to reach g, [12} 25]. Goal-conditioned
policies try to maximize the log-likelihood objective over the
play dataset

> logm(als,g)| . (D

(s,a)€o0

Lptay = E(o,g)ep

Because of the multi-modal nature of the demonstrations, i.e.
several trajectories leading to the same goal state, solving
this objective successfully requires a policy that is capable
of encoding such a multi-modal behavior.

B. Score-based Diffusion Policies

We now aim to learn the policy distribution 7p (als, g)
underlying the play dataset D and, hence, the given demon-
strations. We do so by defining a continuous diffusion process,
which maps samples from our play dataset by gradually adding
Gaussian noise to the intermediate distributions p,t € [0, 7]
with initial distribution pg = mp and final distribution pr.

The continuous diffusion process can be described using
a stochastic-differential equation (SDE) [41]. In this work,
we define the SDE analogously to a recently introduced
formulation [17]]:

da = (BtUt - dt)o'tva logpi(als, g)dt + \/2piordwy, (2)

where V, logp:(als,g) refers to the score-function, w; is
the Standard Wiener process, which can be understood as

infinitesimal Gaussian noise. The noise scheduler is denoted
by oy, and B(t) describes the relative rate at which the current
noise is replaced by new noise. In our approach, we adopt
ot(t) = t, a method proven effective in image generation
[L7]. At every timestep ¢ and related noise level there exists
a corresponding marginal distribution p;(als, g), which is the
result of injecting Gaussian noise to samples from pplay. This
can be expressed as p;(a;|a) = N(a,0?1). The final action
distribution of the diffusion process is a known tractable prior
distribution a7 = pr. An unstructured Gaussian distribution
pr = N(0,021) is chosen without any information about the
play data distribution.

In the case of BESO we are particularly interested in the
Probability Flow Ordinary Differential Equation (ODE) within
the SDE [4]. This ODE shares the same marginal distributions
pi(als,g) as the SDE at every timestep, but without the
additional random noise injections. By setting 8(t) = 0, we
recover the Probability Flow ODE from Eq. (2):

da = —610,Valogpi(als, g)dt 3)

The negative score-function —V4 logp:(als,g) specifies the
vector field of the current marginal distribution p;(al|s,g).
This vector field points towards regions of low data density
and is scaled with the product of the current noise level oy
and the change of it o;.

Algorithm 1 BESO Training
1: Require: Play Dataset Lpay, Sequence Size c,, Goal
Sequence Size cg
Require: Score Model Dy(a, s, g,0;)
Require: Noise Distribution o ~ LogLogistic(a,)
for i € {0, ..., Niain sieps} dO
Sample (0,g) ~ Lpay
Sample € ~ N (0mean, 7241)
£D9 — Ea,a,e [a(at)||D9(a +E€,8,9, Ut) - a’”%]
end for

S i

C. Diffusion Training

In order to generate new samples by numerically approxi-
mating the reverse ODE, we require an accurate estimate of the
score function V, logp:(als, g) for all marginal distributions
p¢ in our diffusion process. To achieve this, we use a neural
network Dy(a, s, g, o) that matches the score for all marginal
distributions p;(als, g).

Valogpi(als,g) = (Do(a,s,g,0¢) —a) /of. (4

The neural network is trained using the denoising score
matching objective [44} 39], where we add Gaussian noise to
the actions and minimize the difference between the network’s
output and the original actions:

Lp, =Eoae [a(o))|Do(a+e€ s,g,00) —al3], (5

where a is an action sample, and € ~ N(0,c21) represents
the Gaussian noise. The losses at individual noise levels are

weighted according to «(o;), and the current o, is sampled
from the noise training distribution py,i,. We use a truncated
log-logistic distribution with location parameter o and scale
parameter 3: pyan ~ LogLogistic(o,3) in the range of
{Omin; Omax }- The training process is summarized in Alg.
This allows us to effectively learn the noise-conditioned score
function for our diffusion process and generate samples from
the conditional density, p;(a|s, g), using the Probability Flow
ODE.

D. Efficient Action Generation using Deterministic Samplers

New actions are generated by our policy by sampling
from the prior distribution ar ~ N(0,02I) and numerically
simulating the reverse ODE or SDE by substituting the score-
function with our learned model in Eq. (3). The process begins
by selecting a random sample from our prior distribution,
ar ~ N(0,021), and then iteratively denoise this sample.
Utilizing a random sample as a starting point enables the
creation of diverse and multimodal actions, even when the
underlying ODE is deterministic. The ODE can be solved
numerically, by discretizing the differential equation starting
from T to 0. During the action prediction, we iteratively
denoise the sample at N-discrete noise levels. BESO employs
the DDIM solver, as described in detail in Alg. |2| [20, 38],
for fast, deterministic sampling. The solver is a first-order
deterministic sampler that is based on an exponential integrator
method. A detailed comparison of state-of-the-art diffusion
samplers is provided in Sec. [B] of the Appendix, which
concludes, that DDIM has the best overall performance. An
additional evaluation on the influence of noise concludes that
ODE solvers are competitive with SDE variants for action
prediction tasks. Our ablation studies in Sec. [B] suggest that
only three denoising steps are necessary for BESO to generate
actions with high accuracy. Increasing the number of inference
steps further only marginally enhances the performance, while
significantly slowing down the sampling process. Thus, we
found that 3 steps strike the best balance between computa-
tional efficiency and performance. For inference, we can adapt
the range of noise and the distribution of discrete timesteps.
Based on empirical evaluations, we decide to use exponential
time steps with a noise range of o € {0.005,1} for most
applications.

IV. GOAL-GUIDED SCORE-BASED DIFFUSION POLICIES

In this section, we introduce two variants of BESO opti-
mized for synthesizing actions for goal-conditioned behavior.

Conditioned Policy (C-BESQO). We define a goal-
conditioned diffusion policy, 7 (al|s, g), by directly learning
the goal-and-state-conditioned distribution with our score-
based generative model. In contrast to standard goal-
conditioned behavior cloning, our diffusion policy allows us
to capture multiple solutions present in the play data while
still being expressive enough to solve long-term goals.

Goal-Classifier-Free Guided Policy (CFG-BESQO). We ad-
ditionally combine BESO with a popular conditioning method
for diffusion models, Classifier-Free Guidance (CFG) [14].

Algorithm 2 Action Generation Process using DDIM based
Sampler (DPM-1) adapted for BESO [19] [38]
1: Require: Current state s, goal g
Require: Score-Denoising Model Dy(a, s, g,0)
Require: Discrete time steps t;c(o,.. N}
Require: Noise scheduler o; = t;
Require: f(t) = —log(t), fi(B) = log(—p)
Draw sample ag ~ N(0, 021)
for i € {0,...,N —1} do
d; + (ai — Dg(ai, s,9, 0'7;))/02'
5ti76ti+1 — fb’(ti)’ fﬁ(ti+1)
hi < Bt, — Bty
a1+ (FH)a; — (M) —1)d;
end for
: return ay

R A A

..
= @

—_—
[SSI]

We train a goal-conditioned diffusion policy = (als,g) by
applying a dropout rate of 0.1 to the goal g, which also trains
an implicit goal-independent policy = (a|s) within our goal-
conditioned model. The generation process uses a combined
gradient for the denoising process

Valogpia(als,g) =
AV, logpi(als,g) + (1 — \)V, logpi(als),

where the guidance factor A balances the influence of the
goal-conditioned and goal-independent gradient. In diffusion
literature, A commonly ranges from 2 to 7.5, to guide the dif-
fusion model towards goal-conditional distribution 7 (als, g).
CFG has demonstrated significant performance improvements
compared to other conditioning methods [14} [19] 28]. Even
though CFG has also been successfully applied for generat-
ing state-only trajectories in Offline-RL [1]], recent work on
behavioral cloning suggests that CFG performs significantly
worse than simpler conditioning methods [30] for step-based
action generation. We provide a detailed analysis of CFG for
goal-guided action generation in our experiment section.

(6)

A. Model Architecture

One of the main challenges of training the score-based dif-
fusion model is the big range of noise levels o; € {0.001, 40}
To address this challenge, we use an improved architec-
ture [17] including additional skip-connections and two pre-
conditioning layers, which are conditioned on the current noise
level oy

Do(a|5a970t) =

Cskip(at)a + Coul(gt)FQ (Cin(at)aa s, 9, Cnoise(gt))a

(7

The conditioning functions are described in detail in Section
[A] of the Appendix and visualized in Figure I}

These additional skip connections help the score model to
scale the output to a wide range of noise levels oy, either
by estimating the denoised sample a;_;, directly predicting
the noise € or something in between these two. Our proposed
approach, BESO, integrates a Transformer-based architecture
with causal masking as the inner model Fy(a,s,g, o). This

Fig. 2. Simulation environments for testing the performance of BESO: Multi-
Modal Block-push (left); Relay Kitchen (middle); CALVIN (right)

enables our model to learn temporal relations between obser-
vations and actions, thereby improving its overall performance
A detailed overview of our proposed architecture is shown in
Figure [T} Three linear embedding layers encode the states s,,
noise o; and the noisy actions a,, into a linear representation
of the same dimension, ls(s),ls(a),ls(c). In addition, the
position embedding information is added on the linear rep-
resentations. The noise embedding is concatenated with the
desired future states and all state-noise-action pairs in a large
sequence for the model. During training, the denoised actions
are inferred for all timesteps in the input series, yet only the
last predicted action is utilized for inference. To take advantage
of the causal masking in the transformer, we concatenate the
goal-sequence before the current observation sequence [6],
allowing for a sequence of goal-states.

V. EVALUATION

The objective of our experiments was to answer the follow-
ing key questions: I) Is BESO competitive on goal-conditioned
environments against state-of-the-art baselines? II) What are
the key components to enable fast sampling of Diffusion
policies with good performance? III) Does Classifier-Free
Guidance work for goal-conditional behavior synthesis? To
answer these questions, we evaluated BESO on several chal-
lenging simulation benchmarks. First, we compared the per-
formance of BESO against other state-of-the-art methods.
Afterward, we examined BESO’s components with respect to
their contribution to the performance.

A. Baselines

We compare BESO against several state-of-the-art methods:

o Goal-conditioned Behavior Cloning (GCBC) learns a
unimodal policy encoded as a simple multi-layer percep-
tron (MLP) with an trained with an MSE loss [21]].

o Relay Imitation Learning (RIL) is a hierarchical policy,
that learns a high-level sub-goal generator, which is used
to condition a low-level MLP policy [12].

o Latent Motor Plans (LMP) is a hierarchical goal-
conditioned policy, which consists of a seq2seq CVAE
and an action decoder policy [21]. We use an adapted
KL-weighting term and a transformer encoder, which has
been shown to improve the performance of LMP [24].

o Conditional Implicit Behavior Cloning (C-IBC) uses
an energy-based model as an implicit policy [10]. We

| GCBC C-IBC LMP RIL C-BeT CX-Diff C-BESO CFG-BESO

Block-Push Reward | 0.13 (& 0.04) 046 (£ 0.06) 0.04 (£ 0.03) 0.06 (= 0.01) 091 (£ 0.03) 093 (£ 0.03) 0.96 (£ 0.02) 0.97 (£ 0.02)

Result | 0.13 (£ 0.04) 029 (£ 0.10) 0.04 (£ 0.03) 0.02 (= 0.01) 0.87 (£ 0.07) 0.90 (£ 0.04) 0.93 (= 0.02) 0.88 (+ 0.04)

Relav-Kitchen Reward | 2.65 (£ 025) 050 (£ 0.09) 145 (£022) 031 (£ 0.15) 273 (£ 028) 364 (+ 0.14) 398 (+0.07) 3.98 (£ 0.07)

Y Result | 2.57 (£ 026) 045 (£ 0.08) 141 (£022) 023 (£0.11) 2.69 (£ 0.28) 335 (£ 0.15) 3.75 (£ 0.08) 3.47 (£ 0.08)
TABLE I

MEAN AND STD ON THE CONDITIONED BLOCK-PUSH AND KITCHEN ENVIRONMENT, OVER 10 SEEDS WITH 100 RUNS EACH. C-BESO AND CFG-BESO
CONSISTENTLY OUTPERFORMED ALL BASELINES, DESPITE ONLY USING 3 INFERENCE STEPS. CX-DIFF WITH 3 INFERENCE STEPS ACHIEVES A RESULT
OF 2.74(+0.26) ON THE RELAY-KITCHEN. BOTH VARIANTS OF BESO SHOW A LOW DEVIATION ACROSS SEEDS, INDICATING THEIR ROBUSTNESS.

use a goal-conditioned extension of IBC to study the
importance of the selected generative model architecture.

o Conditional-Behavior Transformer (C-BeT) is a GPT-
like transformer-based policy, that predicts discrete action
labels together with a continuous offset vector to learn
multimodal behavior 35, [6]]. The action labels are deter-
mined a priori via K-means clustering.

« Diffusion-X (CX-Diff) [30] is a DDPM [15]] based policy
with improved inference. It uses stochastic sampling and
additional X-extra inference steps at the lowest noise
level to synthesize actions in 50+X steps. While perform-
ing only slightly worse than the closely related KDE-Diff
[30] it has a significantly lower computational cost.

To ensure a fair evaluation of all methods we kept the
general hyperparameters, e.g., layer size and number, as con-
sistent as possible while tuning the method-specific hyperpa-
rameters. A detailed summary of the baseline architectures
and hyperparameters is provided in Sec. [C| of the Appendix.
Additionally, we evaluated all models on the kitchen and
block-push task with 10 seeds and 100 rollouts each. Given
the high computational costs and time of training models for
CALVIN, we restricted the tested methods to 3 seeds and
limited the number of baselines.

B. Simulation Experiments

We evaluated BESO against the baselines on three simula-
tion benchmarks, shown in Figure

o CALVIN Benchmark [25]: We used the LfP benchmark,
with a dataset consisting of 6 hours of unstructured
play data. We restricted all methods to using a single
static RBG image as observation input and predicting
relative Cartesian actions as output [34]. We evaluated
the methods on single tasks and 2 tasks in a row from
a single goal image, both variants were conditioned on
goal-images outside the training distribution, that did not
contain the end-effector in the correct position.

o Block-Push Environment [10]: We used the adapted
goal-conditioned variant [6]. The Block-Push Environ-
ment consists of an XARm robot that must push two
blocks, a red and a green one, into a red and green
squared target area. The dataset consists of 1000 demon-
strations collected by a deterministic controller with 4
possible goal configurations. The methods got 0.5 credit
for every block pushed into one of the targets with a
maximum score of 1.0.

o Relay Kitchen Environment [12]]: A multi-task kitchen
environment with objects such as a kettle, door, and lights
that the agent can interact with. The data consists of 566
human-collected trajectories with sequences of 4 executed
skills. We used the same experiment settings as described
in [6] to allow for fair comparisons. The models were
evaluated using a pre-defined goal state, that consisted of
4 tasks for each rollout. Each correctly completed task
gives 1 credit with a maximum of 4.

The methods were evaluated on two metrics: result evaluates
how many of the desired goals of each rollout are achieved,
while reward measures the overall performance by giving
credit for reaching any goal defined in the environment.

C. Simulation Results

We compared BESO to the baselines on the Relay-Kitchen
and Block-Push environments. The results are summarized in
Table [l As shown in the table, BESO consistently outper-
formed the competitors on both tasks across 10 seeds. The
low variance of BESO, additionally, indicates the robustness
of our approach. Among the baselines, Diffusion-X and C-BeT
perform well on the kitchen task and block-push environment,
respectively. The diffusion policies excelled, outperforming
all other baselines on the kitchen and the block-push task,
whereas C-BeT demonstrated comparable performance on the
block-push environment. Considering that BESO only used
3 denoising steps on both environments, compared to the
50(20) + 8 steps of CX-Diff, makes BESO’s performance
even more impressive. By contrast, CX-Diff, when limited
to 3 denoising steps, only managed an average result of
2.74(£0.26) in the kitchen environment. This highlights the
advantage of BESO’s architecture combined with improved
noise scheduling and sampler to achieve good results with only
3 denoising steps. On a modern desktop PC, BESO requires
around 0.012 seconds to predict an action, while the CX-
Diffusion model needs an average of 0.15 seconds. This makes
BESO over 10 times faster.

In a more challenging simulation environment, the CALVIN
environment, BESO demonstrated its ability to generalize to
unseen goal states by achieving the best overall performance
on 13 difficult single tasks. Each task was conditioned on
a single goal image unseen during training, where the end-
effector is not located near the corresponding task. This
posed a significant challenge, as the models have to infer
changes in the environmental state and perform the necessary

= LMP =— RIL
1 ! | !

BESO =— CFG-BESO

<] | -
§ 0.8

P 0.6 -
& 0.4 L
02 (| |- | *
7 0.

0 I\ l\ l\ l\ T '\I] i I\ T iy I\ al T
Turn on Open Push in Move Slider Place in Turn off Turn Move Slider Place in Close Turn Stack Unstack
LED Drawer Drawer left Drawer LED on LB Right Slider Drawer off LB Block Block

Fig. 3. The average Success rate of all tested models on executing single hard tasks in the CALVIN environment conditioned on a single goal image, that

does not contain the end-effector of the robot near the required task.

tasks without relying on the position of the end-effector in
the image for guidance. The results of this experiment are
summarized in Figure [4] and the individual success rates of
the tasks are summarized in Figure [3] As shown, BESO
achieves the best overall performance on individual hard tasks,
demonstrating its ability to also generalize to unseen goal-
states. RIL is the second-best model and has a slightly better
average performance on 2 tasks.

Additionally, the models were evaluated on solving two
tasks with a single goal image. Similar to the first task, the
end-effector was located at a different position away from both
tasks. In this instance, BESO and its Classifier-Free Guidance
(CFG) variant once again outperformed other models, though
the CFG variant registered a slightly lower performance. The
results illustrate that BESO can effectively learn meaningful
behavior to solve downstream short-term and long-term goals
by learning from random windows of play trajectories. This
further supports the conclusion that BESO’s ability to learn
multimodal and expressive action distributions is key for effec-
tive learning from play. In addition, this experiment showcases
BESO’s proficiency in effectively from visual data. Overall,
our results indicate that BESO is competitive against state-
of-the-art baselines and capable of effectively learning from
play data, making it a promising approach for goal-conditioned
behavior learning. Hence, we can answer Question I) in the
affirmative.

D. BESO design choices

We answer Question II by evaluating different components
of BESO to study their contribution to the overall performance.

Conditioning Method. First, we evaluated different meth-
ods to condition the behavior generation on the desired goal
state. We tested the FiILM-conditioning [31] and the sequential
conditioning method used in C-BeT [6]. FiLM requires addi-
tional MLP models, which input the goal and scale the latent
representations inside the transformer layers. The sequential
conditioning method simply includes desired goal-states at the
beginning of our sequence as depicted in the model overview
of Figure [T} We tested both conditioning variants using the
same transformer score model and evaluated it on the block-
push and kitchen environment on 10 seeds. FiLM conditioning

= LMP — RIL BESO =—— CFG-BESO

1 | |
o |
ES 0.8
7 0.6 |
$ 04
= 09 |
2 0.
0 - T T 'l\ [
Single First Sec. 2 Task
Task Task Task Avrg.

Fig. 4. The average performance of goal-conditioned policy on the CALVIN
environment. The first column shows the average success rate of 13 individual
tasks. The other three columns show the average success rate of all models
conditioned on a single goal image with 2 tasks.

resulted in a performance drop compared to the sequential
conditioning method from an average result of 0.93 to 0.91
and 3.76 to 3.4 on the block-push and kitchen environment
respectively. Moreover, the FILM method increase the overall
model capacity. Hence, BESO uses the sequential conditioning
method.

Sampling Algorithm. BESO generates actions by numeri-
cally approximating the reverse ODE with its learned score-
model starting from a sample generated from our Gaussian
prior distribution pr. We investigated several numerical sam-
pling algorithms used in diffusion research, such as DDIM
[38], DPM [19], DPM++ [20], and Heun [17], to assess
their contribution to BESO’s performance. The samplers were
evaluated on the block-push and kitchen environments with
different number of denoising steps. The results show that the
performance gap between the individual samplers is small,
with DDIM achieving the best overall performance. Surpris-
ingly, the second-order Heun solver has the worst average per-
formance. Detailed results of this experiment are summarized
in Table and Table in the Appendix. Overall BESO
is robust to the number of sampling steps and chosen sampler
type, maintaining a similar performance from 3 to 50 inference
steps.

‘ Deterministic Stochastic
Block- Reward 0.97 (£ 0.02) 0.97 (£ 0.02)
Push Result 0.93 (£ 0.02) 0.92 (£ 0.03)
Relay- Reward 395 (£ 0.10) 4.03 (+ 0.07)
Kitchen Result 3.73 (£ 0.11) 3.80 (& 0.08)
Hard Tasks | 0.71 (£ 0.01) 0.68 (£ 0.03)
CALVIN 2 Tasks 0.79 (£ 0.03) 0.79 (£ 0.02)
TABLE 11

EVALUATION OF THE INFLUENCE OF NOISE INJECTION FOR
GOAL-CONDITIONAL BEHAVIOR GENERATION AVERAGED OVER 2
SAMPLERS WITH AND WITHOUT RANDOM NOISE INJECTION.

Stochastic vs. Deterministic Sampling. Current diffusion
literature supports the assumption that stochastic samplers
have a better overall performance compared to deterministic
samplers [[17, 41]]. We tested this assumption with respect to
step-based action generation. We evaluated the same models
with 2 sampling algorithms DPM++(2S) and the Euler sampler
[19, [17]], each with and without noise injection. The noise
scheduling was performed via the ancestral sampling strategy,
as used in the DPPM variant [15, 41] and described in Alg.
Experiments were again conducted in all environments.
As shown in Table the results suggest that the addition
of noise does not offer a significant benefit to the action
generation of step-based diffusion policies. Stochastic sam-
plers only increase the average performance in the kitchen
environment. The discrepancy compared to common diffusion
applications such as image synthesis [7]] could be rooted in
high-dimensional image spaces, making the generation process
more difficult and requiring more steps for good results. In
these high-dimensional spaces, errors are more likely to occur
and accumulate over time. Adding noise during the inference
process helps the model to correct errors of the gradient
approximation, resulting in a better overall performance [17].
In contrast, step-based action-distributions are significantly
lower dimensional than the high-dimensional latent spaces of
image generation, hence, the addition of noise does not appear
to benefit the average performance of step-based policies, as
supported by our experimental results.

Classifier-Free-Guidance (CFG). Finally, we investigate
Question III by evaluating the effect of Classifier Free
Guidance (CFG) for step-based action generation with goal-
conditioned policies. The results of this experiment, reported
in Figure 3] indicate that CFG is an effective method for goal-
conditioning in a step-based setting. The average result for
the block-push and kitchen tasks is slightly worse than the
standard goal-conditioned variant, while the average reward
is equal. CFG-BESO is also able to learn effectively in
the image-based CALVIN environment and achieves similar
performance to the standard goal-conditioned variant. The
performance of the CFG-model with A = 0 demonstrates,
that CFG-BESO is capable of learning a well-performing,
unconditional policy 7 (a|s). The low average result in Figure
[shows that the policy ignores the goal-state and aims to

Block-Push Env

Kitchen Env

Performance

CFG-BESO Reward =——— C-BESO Reward
CFG-BESO Result === C-BESO Result

Fig. 5. Comparison of CFG Method for Goal-conditioned Behavior Learning
from Play Data. For CFG-BESO we evaluate the 10 seeds on 100 rollouts
each with different A values. The CFG variant of BESO has a slightly worse
average result in both environments with similar rewards. When using A = 0,
we can recover an unconditional policy, that performs random rollouts with
high rewards and low results.

achieve a high reward solely based on the current state. This
gives CFG-BESO a unique advantage over common play-
based policies. However, CFG has a trade-off: it slightly
lowers the average result for more diverse rollouts. Empir-
ical evaluations suggest the best A value is 1.25 for most
tested environments. Experiments with higher values resulted
in a lower average performance in environments with high-
dimensional action spaces, indicating instability in the action
generation. We hypothesize that the guidance provided by the
goal-conditioning is only crucial in certain steps during the
rollouts, specifically when the policy is deciding which task
to solve.

VI. CONCLUSION

We introduced BESO, a new policy representation for goal-
conditioned behavior generation that uses score-based diffu-
sion models. We leveraged the expressiveness and multimodal
properties of score-based diffusion models to learn task-
agnostic behavior from offline, reward-free play datasets, with-
out requiring hierarchical structures or additional clustering. In
addition, we demonstrated the effectiveness of Classifier-Free
Guidance for simultaneously learning a goal-dependent and
goal-independent policy in a sequential setting. Experiments
on several GCIL benchmarks showed that BESO significantly
improves upon several state-of-the-art GCIL algorithms. Our
ablation studies have demonstrated the key components of
BESO that enable fast, deterministic behavior generation. It
further outperformed standard DDPM policies with only 3
denoising steps, alleviating prior drawbacks of slow diffusion
sampling.

While BESO demonstrates great performance as a stan-
dalone policy, it also offers the flexibility to be seamlessly
integrated into other hierarchical frameworks as an action pre-
diction policy. Serving as a practical alternative to traditional
behavior cloning policies, BESO sets itself apart with distinct
features that are inherent to diffusion models. In the future, we
aim to extend BESO for language-guided behavior generation,
offering more intuitive goal guidance for humans.

VII. ACKNOWLEDGMENTS

The work presented here was funded by the German Re-
search Foundation (DFG) — 448648559.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenen-
baum, Tommi S. Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision
making? In International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?
1d=sP1fo2K9DFG.

Brenna D Argall, Sonia Chernova, Manuela Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and autonomous systems, 57
(5):469-483, 2009.

Suneel Belkhale and Dorsa Sadigh. PLATO: Predicting
latent affordances through object-centric play. In 6th
Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=UAASbNospAO.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing
systems, 31, 2018.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dif-
fusion policy: Visuomotor policy learning via action
diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi
Shafiullah, and Lerrel Pinto. From play to policy:
Conditional behavior generation from uncurated robot
data. In International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=
c7tMTF7jQjN.

Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780-8794, 2021.
Benjamin Eysenbach, Soumith Udatha, Ruslan Salakhut-
dinov, and Sergey Levine. Imitating past successes can
be very suboptimal. In Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/
forum?id=iqCO3jbP; YF.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and
Ruslan Salakhutdinov. Contrastive learning as goal-
conditioned reinforcement learning. In Advances in
Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?1d=vGQiUS5sqUe3|

Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Conference on Robot
Learning, pages 158-168. PMLR, 2022.

Justin Fu, Katie Luo, and Sergey Levine. Learning
robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Rep-

[12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

resentations, 2018. URL https://openreview.net/forum?
1d=rkHywl-A-.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solv-
ing long horizon tasks via imitation and reinforcement
learning. Conference on Robot Learning (CoRL), 2019.
Jonathan Ho and Stefano Ermon. Generative adversar-
ial imitation learning. Advances in neural information
processing systems, 29, 2016.

Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Genera-
tive Models and Downstream Applications, 2021.
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840-6851, 2020.
Michael Janner, Yilun Du, Joshua Tenenbaum, and
Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In International Conference on
Machine Learning, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based genera-
tive models. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=k7FuTOWMOc7,

Kuno Kim, Akshat Jindal, Yang Song, Jiaming Song,
Yanan Sui, and Stefano Ermon. Imitation with neural
density models. Advances in Neural Information Pro-
cessing Systems, 34:5360-5372, 2021.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uvan Li, and Jun Zhu. Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv
preprint arXiv:2211.01095, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uvan Li, and Jun Zhu. DPM-solver: A fast ODE solver
for diffusion probabilistic model sampling in around 10
steps. In Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=
2uAaGwlP_V.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar,
Jonathan Tompson, Sergey Levine, and Pierre Sermanet.
Learning latent plans from play. In Conference on robot
learning, pages 1113-1132. PMLR, 2020.

Yecheng Jason Ma, Jason Yan, Dinesh Jayaraman, and
Osbert Bastani. Offline goal-conditioned reinforcement
learning via f-advantage regression. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=_h29VprPHD,
Ajay Mandlekar, Danfei Xu, Roberto Martin-Martin,
Silvio Savarese, and Li Fei-Fei. GTI: Learning to
Generalize across Long-Horizon Tasks from Human
Demonstrations. In Proceedings of Robotics: Science and
Systems, July 2020. doi: 10.15607/RSS.2020.XVI.061.
Oier Mees, Lukas Hermann, and Wolfram Burgard.
What matters in language conditioned robotic imitation
learning over unstructured data. [EEE Robotics and

https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=sP1fo2K9DFG
https://openreview.net/forum?id=UAA5bNospA0
https://openreview.net/forum?id=c7rM7F7jQjN
https://openreview.net/forum?id=c7rM7F7jQjN
https://openreview.net/forum?id=iqCO3jbPjYF
https://openreview.net/forum?id=iqCO3jbPjYF
https://openreview.net/forum?id=vGQiU5sqUe3
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=k7FuTOWMOc7
https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=2uAaGwlP_V
https://openreview.net/forum?id=_h29VprPHD

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Automation Letters (RA-L), 7(4):11205-11212, 2022.
Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. IEEE Robotics and Automation Letters,
2022.

Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski,
Alessandro Lazaric, and Karteek Alahari. Learning goal-
conditioned policies offline with self-supervised reward
shaping. In CoRL-Conference on Robot Learning, 2022.
Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pages
8162-8171. PMLR, 2021.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya
Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew,
Ilya Sutskever, and Mark Chen. GLIDE: Towards photo-
realistic image generation and editing with text-guided
diffusion models. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pages 16784—
16804. PMLR, 17-23 Jul 2022.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J An-
drew Bagnell, Pieter Abbeel, Jan Peters, et al. An al-
gorithmic perspective on imitation learning. Foundations
and Trends® in Robotics, 7(1-2):1-179, 2018.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave
Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcar-
cel Macua, Shan Zheng Tan, Ida Momennejad, Katja
Hofmann, and Sam Devlin. Imitating human be-
haviour with diffusion models. In International Con-
ference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Pv1GPQzRrCS,

Ethan Perez, Florian Strub, Harm De Vries, Vincent
Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accel-
erating reinforcement learning with learned skill priors.
In Conference on robot learning, pages 188-204. PMLR,
2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Fattern Recognition, pages 10684—10695, 2022.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka
Boedecker, and Wolfram Burgard. Latent plans for
task-agnostic offline reinforcement learning. In 6th
Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=ViYLaruFwN3,

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariun-
tuya Altanzaya, and Lerrel Pinto. Behavior transformers:

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

Cloning k£ modes with one stone. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=agTr-vRQsal

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu,
Nicholas Rhinehart, and Sergey Levine. Parrot: Data-
driven behavioral priors for reinforcement learning. In
International Conference on Learning Representations,
2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru
Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium
thermodynamics. In International Conference on
Machine Learning, pages 2256-2265. PMLR, 2015.
Jiaming Song, Chenlin Meng, and Stefano Ermon. De-
noising diffusion implicit models. In ICLR, 2021.

Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. Advances
in Neural Information Processing Systems, 32, 2019.
Yang Song and Stefano Ermon. Improved techniques
for training score-based generative models. Advances in
neural information processing systems, 33:12438-12448,
2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. In International Conference on Learning
Representations, 2020.

Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir,
Amit Haim Bermano, and Daniel Cohen-or. Hu-
man motion diffusion model. In International Confer-
ence on Learning Representations, 2023. URL https:
/lopenreview.net/forum?id=SJ1kSyO2jwul

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chal-
vatzaki. Se(3)-diffusionfields: Learning smooth cost
functions for joint grasp and motion optimization through
diffusion. IEEE International Conference on Robotics
and Automation (ICRA), 2023.

Pascal Vincent. A connection between score matching
and denoising autoencoders. Neural Computation, 23(7):
1661-1674, 2011. doi: 10.1162/NECO_a_00142.
Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou.
Diffusion policies as an expressive policy class for of-
fline reinforcement learning. In International Confer-
ence on Learning Representations, 2023. URL https:
/lopenreview.net/forum?id=AHvFDPi-FA.

Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng
Fang, Yali Du, Xiu Li, Lei Han, and Chongjie Zhang.
Rethinking goal-conditioned supervised learning and its
connection to offline rl. In International Conference on
Learning Representations, 2021.

Sarah Young, Jyothish Pari, Pieter Abbeel, and Lerrel
Pinto. Playful interactions for representation learning. In
2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 992-999, 2022. doi:
10.1109/IROS47612.2022.9981307.

https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=ViYLaruFwN3
https://openreview.net/forum?id=agTr-vRQsa
https://openreview.net/forum?id=SJ1kSyO2jwu
https://openreview.net/forum?id=SJ1kSyO2jwu
https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=AHvFDPi-FA

Block-Push Relay Kitchen

Hyperparameter \ Block-Push Relay-Kitchen CALVIN Reward Result | Reward Result
H H H Xponential .96 (£ 0. .93 (£ 0. .86 (£ 0. A =+ 0.
Hidden Dimension 240 360 768 | b o onom | e ie) o
Hidden Layers 4 6 [§ IDDPM 271 | 095 (£ 001) 092 (£ 001) | 3.88(k008) 3.67 (& 0.09)
: H arras .96 (£ 0. .93 (£ 0.03 .96 (£ 0. 3.75 (£ 0.
Window size 5 5 2 ieald | wecin sncom | e e
Goal window size 1 2 1 VP [064 (£ 0.17) 061 (£ 0.16) | 321 (£ 0.12) 295 (4 0.14)
Number Heads 12 6 4
Attention Dropout 0.05 0.3 0.2 TABLE 1V
Residual Dropout 0.05 0 0.1 EVALUATION OF THE INFLUENCE OF THE TIME STEPS FUNCTION FOR
Learning rate le-4 le-4 le-4 GOAL-CONDITIONAL BEHAVIOR GENERATION AVERAGED OVER 10 SEEDS
Optimizer Adam Adam AdamW AND 100 ROLLOUTS EACH. ALL MODELS USE THE DDIM SOLVER WITH 3
Denoising steps 3 3 5 DENOSING STEPS FOR THE COMPARISON.
Omax 1 1 1
Tmin 0.05 0.005 0.005
Odata 0.5 0.5 0.5
best A for CFG 2 1.25 1.25 .. L
Noise distribution Log-Logistic = Log-Logistic =~ Log-Logistic Optimization. For optimization, we employed the com-
EMA True True True monly used Adam or AdamW optimizer for our experiments
Vision Encoder None None ResNet-18 . . e
Sampler Type DDIM DDIM DDIM with a stapdard 1e.arn1ng rate of le—4. Add1t1.on.ally, we use th,e
Noise scheduler Exp Exp Exp Exponential Moving Average (EMA) to optimize our model’s
Batch Size 1024 1024 64 weights.
Train steps in thousand 60 40 120
famn sfeps 1 tousan Time steps. One important choice is the function of time
TABLE 11l steps, which determines how noise levels are distributed over

OVERVIEW OF THE MOST IMPORTANT HYPERPARAMETERS FOR THE
DIFFERENT MODEL ARCHITECTURES FOR ALL TESTED ENVIRONMENTS.

APPENDIX

A. BESO Hyperparameters

A summary of key hyperparameters of BESO is listed in Ta-
ble We observe, that transformer specific-hyperparameters
such as the dropout rates require tuning according to the task,
while general diffusion hyperparameters remain consistent
across different tasks.

Preconditioning. We utilize the preconditioning functions
proposed in Karras et al. [17]:

® Cskip = Ugata/(Uanta + 0152)

o Cout = 0t0data/\/Oya + O3

* Cin = 1/ \% O.gata + 0'1?

o Cnoise = 0.251n(oy)

Normalization. BESO performs optimally when actions
are diffused within a range of [—1,1] with a noise range of
0.005,1. We adopted this noise range for all three environ-
ments, scaling the action output accordingly. For action diffu-
sion with a larger range of, such as [—3, 3], it is advisable to
expand the noise range to higher values: {0.4,40} for optimal
performance. For the input, we recommend normalizing the
data with a mean of 0 and a standard deviation of 1.

Training Noise distribution. During training, noise values
are sampled from a predefined noise distribution P(o). The
standard distribution used in diffusion literature [[17] is the log-
normal, introducing two additional hyperparameters ogq, Omax,
that require additional tuning. Our experiments revealed that
the recommended values from prior work [[17] are not optimal
for action diffusion. Hence, we opted for the log-logistic
distribution LogLogistic(e = 0.5, = 0.5), which does
not require additional parameters and works well in all our
experiments.

the discrete steps. Our empirical evaluation summarized in
Table indicates that exponential time steps are the most
effective for BESO on average. However, other discretization
methods such as the linear scheduler [41] and Karras scheduler
[17] also deliver comparable results and can increase the
performance on individual tasks.

Recommendations. We recommend starting with the noise
range of {0.005,1} for a new task together with exponential
time steps and the DDIM solver. To get the best performance,
it is worth trying out other samplers such as Euler Ancestral
and the linear time steps.

B. Sampler Ablation

We evaluate various state-of-the-art ODE samplers and their
SDE counterparts in different environments. To determine the
best solver for conditional-behavior generation, we analyze the
average performance of 10 different seeds with 100 rollouts
each in different environments. In general, we differentiate
first-order and second-order solvers: the first order solver is
Euler [15] and the tested second order solver is Heun [17].
The tested samplers include:

¢ Euler ODE (Euler): A first-order ODE sampler from
[[L7] without the additional addition and deleting of noise.
The algorithm is summarized in [C|

o Euler-Ancestral (EA): A continuous-time version of the
standard DDPM sampler [15] introduced in [41].

e 2nd Order Heun Solver (Heun): A second-order ODE
solver using the Heun method [17].

« DPM: An exponential ODE integrator solver designed
for synthesis in a few inference steps [20]. We use the
second order method.

o DDIM: A first order variant of DPM, which has been
introduced individually [38, [20] and has been designed
for fast inference and CFG.

o DPM-Ancestral:A stochastic variant of DPM with an-
cestral noise injections.

e DPM++(2S): An improved version of the second order

DPM sampler for classifier-free guidance based condi-
tional diffusion models with a single inference step [19]]

e DPM++(2M): An improved version of the second-order
DPM sampler for classifier-free guidance based condi-
tional diffusion models [19], which is a second order
method using two model predictions per step.

Several previous studies have compared the performance of
ODE samplers in the context of image generation [17, [19].
However, these comparisons may not be entirely indicative
as image generation tasks have unique challenges and re-
quirements not relevant to action synthesis. To ensure a fair
comparison, we evaluated all samplers on the same models
across several simulation environments and report their aver-
age performance based on 100 runs for each environment.
This allows us to accurately compare the effectiveness of
each deterministic solver in the context of step-based action
generation. The results for the kitchen environment are shown
in Table and the performance for the block push is
reported in Table As shown in both tables, the first-
order exponential integrator solver DDIM achieves the best
overall performance. Increasing the number of inference steps
does not have a significant impact on the average performance,
even reducing the average result of some samplers. Overall the
performance differences of all evaluated samplers are small.

C. Baselines Implementation

The MLP-based models have 4 layers with 512 neurons and
use the ReLU activation function. All diffusion models have
the same transformer backbone, and C-BeT uses its recom-
mended parameters. During training, the Adam optimizer was
used with a learning rate of 0.001 for MLP models and le —4
for transformer models. The batch size for MLP models was
512, while it was 1024 for transformer models, except for BeT,
which used a batch size of 64 as recommended in [6].

GCBC For the GCBC model, the goal is concatenated with
the state and fed into the 4-layer MLP architecture with a
dropout rate of 0.1.

GC-IBC The GC-IBC model uses the same MLP archi-
tecture as GCBC and is optimized using the InfoNCE loss
with additional energy-regularization and Wasserstein Gradient
loss. During experiments, adding a penalty term with A =
0.005 to restrict the average energy improved training stability
[1O]. Given the large number of tunable hyperparameters for
IBC, we ran a hyperparameter search to determine the best
ones. We want to note, that the model results of EBM were
very sensitive to initial seeds and we had trouble getting
consistent results for the models. Similar observations of IBC
performance have been reported in related work [30, [5].

C-BeT For the performance of C-BeT, we use the rec-
ommended parameters from Cui et al. [6] for all tested
environments. Our reported results are marginally worse, than
the ones reported in the original work, since they do not
average it over 10 seeds.

Latent Motor Plans The LMP model was evaluated on the
Kitchen and Block Push environments with extensive hyper-
parameter sweeps to find the best-performing configuration.

Hyperparameter \ Block Push Relay Kitchen
Hidden dimension 128 128
Hidden layers 6 6
Train steps 5000 1000
Noise Scale 0.3 0.3
Loss InfoNCE InfoNCE
Train samples 64 64
Noise shrink 0.5 0.5
Learning rate 0.001 0.001
TABLE V
OVERVIEW OF THE USED HYPERPARAMETERS OF GC-IBC FOR BOTH
ENVIRONMENTS.
Hyperparameter ‘ Block-Push Relay-Kitchen CALVIN
Decoder Hidden Dimension {128, 256, 512, 1024} {128, 256, 512} 2048
n-Mixtures 10 10 10
n-Classes {10, 32, 64, 128, 256} 10 10
Policy-dropout {0.1,02,03} {0.1,0.2, 03} 0.1
Plan Features {16, 32, 64, 128} {16, 32, 64, 128} 32
Plan Recognition Features {64, 128, 256, 512} {64, 128, 256, 512} 2048
Replan Freq {5.10, 16, 32} {5.10, 16,32 } 2
Planner Hidden Layers 2 2 2
Window size {10. 16, 32, 48} {10, 16, 32, 48, 64} 16
Goal window size 1 1 1
kl-beta {0.001, 0.005, 0.01} {0.001, 0.005, 0.01} 0.01
Learning rate {0.001, 0.0005, 0.0001} {0.001, 0.0005, 0.0001} 0.0001
Optimizer Adam Adam Adam

TABLE VI
OVERVIEW OF THE HYPERPARAMETER-SWEEP FOR LATENT PLANS AND
THE FINAL PARAMETERS USED FOR THE EVALUATION FOR EACH TESTED
SIMULATION ENVIRONMENT

A detailed overview of the sweep parameters and the chosen
ones is shown in Table On the CALVIN environment,
the proposed parameters from prior work were used [34]. We
used the improved LMP variant, called HULC, from [24],
which uses a different Kl-divergence weighting term and a
transformer model the Seq2Seq CVAE.

RIL For the low-level policy of kitchen and block push
we use 4 layers with 512 neurons each. For the CALVIN
task, we use the baseline version from [34] and kept the
hyperparameters the same for training.

Diffusion-X The baseline from [30] uses the same hyper-
parameters of our transformer model reported in [lII| to guar-
antee a fair comparison. Diffusion-X uses 50 inference steps
on the kitchen task combined with additional 10 fine-tuning
steps at the lowest noise level, while we use 20 inference
steps for the block-push environment and additional 8 fine-
tuning steps. Diffusion-X uses a discrete variant of the Euler
sampling method with an ancestral noise scheduler, which is
reported in Alg. [C] 15} |41]]. Further, it applies X -additional
denoising steps at the lowest noise level.

Algorithm 3 Ancestral Noise Scheduler fanc [41) [15]]
1: Require: tgom, to

b (L —thom)

t27)

from

2 typ < min(te,

2 2
3: tto — (tto - tfrom)
4: return tgown, tup

Steps | Euler Heun DDIM DPM DPM++(2S) DPM++(2M)

3 | 387 (£0.09) 3.80 (£ 0.03) 3.92 (£ 0.07) 3.86 (£ 0.08) 3.88 (& 0.08) 3.89 (& 0.08)
S | 387(£0.07) 3.84 (£ 0.06) 3.88 (£ 0.06) 3.90 (£ 0.09) 3.87 (£ 0.06) 3.87 (& 0.06)
Reward 10 | 3.85 (& 0.08) 3.86 (£ 0.09) 3.88 (£ 0.06) 3.87 (£ 0.10) 3.88 (£ 0.07) 3.89 (£ 0.05)
20 | 3.86 (£ 0.10) 3.91 (£ 0.08) 3.87 (£ 0.07) 3.88 (£ 0.09) 3.89 (& 0.07) 3.88 (& 0.06)
50 | 3.82 (£ 0.08) 3.93 (£ 0.04) 3.88 (£ 0.06) 3.82 (£ 0.10) 3.67 (£ 0.04) 3.89 (& 0.06)

3| 3.66 (£ 0.09) 3.62 (£ 0.07) 3.69 (£ 0.07) 3.67 (£ 0.10) 3.67 (£ 0.09) 3.67 (& 0.08)
S | 3.66 (£ 0.07) 3.66 (£ 0.06) 3.67 (£ 0.08) 3.67 (£ 0.08) 3.66 (& 0.07) 3.66 (& 0.08)
Result 10 | 3.65 (£ 0.06) 3.63 (£ 0.06) 3.67 (£ 0.07) 3.66 (£ 0.07) 3.66 (£ 0.08) 3.67 (£ 0.07)
20 | 3.64 (£ 0.07) 3.65 (£ 0.09) 3.66 (£ 0.09) 3.66 (£ 0.07) 3.68 (£ 0.09) 3.67 (£ 0.08)
S0 | 3.62 (£ 0.04) 3.67 (£ 0.04) 3.67 (£ 0.09) 3.62 (£ 0.07) 3.67 (£ 0.07) 3.67 (£ 0.08)

TABLE VII
COMPARISON OF THE PERFORMANCE OF DETERMINISTIC SAMPLERS ON THE KITCHEN ENVIRONMENT AVERAGED OVER 10 SEEDS WITH 100 ROLLOUTS
EACH. WE TESTED BESO TRAINED ON LOG-NORMAL NOISE DISTRIBUTION WITH Opean = —2, Ostp = —2, Omax = 33, omin = 0.39 AND USE THE

EXPONENTIAL TIME STEPS.

Steps | Euler Heun DDIM DPM DPM++(2S) DPM++(2M)

3 095 (£ 0.02) 092 (£ 0.02) 0.96 (£ 0.02) 096 (£ 0.02) 0.95 (£ 0.03) 0.97 (£ 0.02)
5 094 (£ 0.04) 095 (£ 0.02) 096 (£ 0.02) 097 (£ 0.01) 0.94 (£ 0.02) 0.93 (£ 0.02)
Reward 10 097 (£ 0.03) 093 (£ 0.02) 096 (£ 0.01) 095 (£0.03) 0.96 (£ 0.02) 0.96 (£ 0.03)
20 098 (£ 0.02) 0.96 (£ 0.03) 098 (£ 0.02) 096 (£ 0.03) 0.96 (£ 0.02) 0.97 (£ 0.03)
50 098 (£ 0.01) 096 (£ 0.01) 097 (£0.02) 097 (£0.05) 097 (£ 0.01) 0.94 (£ 0.05)

3] 094 (£0.02) 090 (£ 005 094 (£ 0.04) 094 (£ 0.01) 092 (£ 0.03) 094 (& 0.03)
5 | 091 (£0.06) 093 (003 095002 095 (£ 002 091 (£0.03) 093 (& 0.03)
Result 10 | 094 (£0.02) 091 (£ 004) 095 (£ 0.02) 091 (£ 0.04) 094 (£ 002) 0.96 (£ 0.02)
20 | 096 (£ 0.02) 0094 (£ 0.03) 095 (£ 0.04) 095 (£ 0.04) 093 (£ 0.03) 0.96 (£ 0.03)
50 | 098 (£ 0.01) 095 (£ 0.02) 095 (£ 001) 093 (£ 0.03) 094 (£ 0.03) 092 (& 0.06)

TABLE VIII
COMPARISON OF THE PERFORMANCE OF DETERMINISTIC SAMPLERS ON THE BLOCK PUSH ENVIRONMENT AVERAGED OVER 10 SEEDS WITH 100
ROLLOUTS EACH. WE TESTED BESO TRAINED ON LOG-NORMAL NOISE DISTRIBUTION WITH oygan = —0.17, o0stp = —2, omax = 40.5, oyuny = 0.39

AND USE THE EXPONENTIAL TIME STEPS.

Algorithm 5 Stochastic 1st Order Euler sampler [17]]

Algorithm 4 Deterministic 1st Order Euler Sampler [17]] 1: Requ}re. Current state s, goal g

- 2: Require: Score-Denoising Model Dy(a, s,g,0)
1: Require: Current state s, goal g . .

. .. 3: Require: Noise scheduler o; = t;, fanc from Alg.
2: Require: Score-Denoising Model Dy(a, s, g,0) . . .

. . 4: Require: Discrete time steps ;e (o,.., N}
3: Require: Noise scheduler oy = o(t;) 5 "

. . . 5: Draw sample ag ~ N(0, o31)
4: Require: Discrete time steps tjc(o,.. N} :

5 s 6: fori € {0,....,.N —1} do
5. Draw sample ag ~ N(0, 05I)
. 7 d; « (ai—Dg(ai,s,g,ai))/ai
6: for i € {0,..., N — 1} do o) b fanc (b tiin)
7. dz — (ai o De(ai73,g, Ui))/ai down bup ANC\li, bi4+1
9: i1 < & + (tdown — ti)ds
8: a4 < a; + (ti+1 — tz)dl 2
10: e ~ N (0,07 1)
9: end for " A a _’11 .
: i+1 i+1 up

10: return
0: return ay 12: end for

13: return ay

	Introduction
	Related Work
	Problem Formulation and Method
	Problem Formulation
	Score-based Diffusion Policies
	Diffusion Training
	Efficient Action Generation using Deterministic Samplers

	Goal-Guided Score-based Diffusion Policies
	Model Architecture

	Evaluation
	Baselines
	Simulation Experiments
	Simulation Results
	BESO design choices

	Conclusion
	Acknowledgments
	Appendix
	BESO Hyperparameters
	Sampler Ablation
	Baselines Implementation

