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Abstract

RLHF has emerged as a pivotal step in align-
ing language models with human objectives
and values. It typically involves learning a
reward model from human preference data
and then using reinforcement learning to up-
date the generative model accordingly. Con-
versely, Direct Preference Optimization (DPO)
directly optimizes the generative model with
preference data, skipping reinforcement learn-
ing. However, both RLHF and DPO assume
uniform preferences, overlooking the reality of
diverse human annotators. This paper presents
a new method to align generative models with
varied human preferences. We propose an
Expectation-Maximization adaptation to DPO,
generating a mixture of models based on latent
preference types of the annotators. We then
introduce a min-max regret ensemble learning
model to produce a single generative method
to minimize worst-case regret among annotator
subgroups with similar latent factors. Our algo-
rithms leverage the simplicity of DPO while ac-
commodating diverse preferences. Experimen-
tal results validate the effectiveness of our ap-
proach in producing equitable generative poli-
cies.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) has emerged as one of the leading methods
to align Language Models (LMs) to human pref-
erences [34, 45, 51]. RLHF focuses on learning a
single reward model from human preference data
and uses that to fine-tune and align the LM. To
sidestep potentially expensive reinforcement learn-
ing, Direct Preference Optimization (DPO) [37] is
an alignment method that optimizes the LM policy
directly using the preference data. However, DPO
implicitly uses the same reward model as RLHF
to train the LM. This reward model reflects the
majority opinion of the preference data annotators

and caters to that majority. If the annotator popula-
tion is not representative of the general population,
then this comes at the cost of neglecting groups
underrepresented in the annotators, leading to mis-
representation of preferences. On the other hand,
if the annotator population is representative, then
opinions of minority groups in the general popula-
tion are shunned, causing bias and discrimination.

Most papers that try to deal with this issue learn a
reward model and then use a standard RL frame-
work such as PPO to align the LM. However, DPO
has several advantages over RLHF, eliminating the
need for a reward model and leading to a more
stable pipeline. [62] utilizes these benefits by de-
veloping an algorithm that directly optimizes pol-
icy by implicitly learning a multi-objective reward
model. However, methods that rely on a multi-
dimensional reward model [50, 62] implicitly or
explicitly have two main drawbacks. First, these
methods typically require annotators to rate data
on a multi-dimensional scale, with each dimension
corresponding to a different objective like safety or
accuracy. This data is both more costly and harder
to obtain compared to binary preference data [10].
Second, the different rating objectives must be de-
termined ahead of the data collection stage. This
can be a difficult task as there are many latent fac-
tors that might affect the preferences of annotators
[43], which can be difficult to discern. For exam-
ple, if we collect ratings based on helpfulness and
harmfulness similar to [5], these rankings might
not fully explain some preference decisions made
because of cultural, political, or geographical incli-
nations.

We propose a pipeline of two algorithms to sidestep
the need for RLHF for a heterogeneous population,
allowing us to cater to diverse preferences without
the need for reinforcement learning, letting us reap
the added benefits of DPO. In particular, we pro-
pose Expectation Maximization Direct Preference



Optimization (EM-DPO) and MinMax Direct Pref-
erence Optimization (MinMax-DPO). EM-DPO
uses an EM algorithm [15] to simultaneously learn
the distribution of user preference types as well
as policies for each type. Note that, if we already
knew the group each user belonged to, we could
simply train an optimal DPO policy on each group
separately. Since we do not, we think of our data
as being generated by latent mixture model, where
for each user we first draw a latent preference type
and then draw a set of annotation data based on the
preference type. We show that one can combine
ideas from DPO with the EM algorithm for learn-
ing mixture models and directly learn a distribution
of latent types, as well as a regularized optimal pol-
icy for each type. MinMax-DPO then takes these
optimal policies and learns one model to best serve
the needs of the population. Figure 1 shows the
proposed pipeline.

2 Related Literature

RLHF With Diverse Preferences: One of the
chief issues in RLHF is that of diverse populations;
different annotators could have very different pref-
erences [17]. Several studies have tried to solve
the diverse population problem by learning more
expressive reward functions and then using them to
perform RLHF. For example, [39, 23, 11] main-
tains and learns several reward models at once.
Similarly, [50] learns a multi-dimensional reward
model where each dimension provides rewards
based on a different objective such as safety or use-
fulness. [55] proposes a policy-agnostic method
to perform multi-objective LLM alighment. Alter-
natively, [43, 27] learns a distribution over fixed
reward models. Finally, these reward models are
combined using various strategies [6, 23, 39] to get
a final reward model which is then used to perform
RLHF. [11] also learns multiple reward models, but
performs RL by maximizing the minimum reward
thereby ensuring that the final model is fair. The
paper draws on elements of social choice theory,
which [13] argues is an effective path forward for
RLHF research in general, specifically regarding
issues with aggregating preferences. [14] outlines
a correspondence between the key principles and
desiderata of social choice into the RLHF context.

In an orthogonal approach, [59] utilizes meta-
learning to learn diverse preferences. In general,
trying to do RLHF with many reward models be-

comes expensive, making extending DPO [37]
an attractive alternative. [47] proposes SPO to
sidestep reinforcement learning using the concept
of a minimax winner from social choice theory,
but only in the case of homogeneous preferences.
In concurrent work, [35] proposes a personalized
RLHF algorithm which learns clustered policies
via a hard Expectation Maximization algorithm
using DPO. We instead propose a soft-clustering
algorithm, which enjoys stronger theoretical guar-
antees [15]. [35] also proposes an algorithm to
aggregate estimated reward functions for a hetero-
geneous population. [40] also deals with the idea of
aggregating reward models to increase robustness.
We instead propose a complete pipeline to learn
one equitable policy for a heterogeneous popula-
tion without appealing to reward model estimation
at all.

DPO Generalizations: Since DPO’s inception
[37], there has been a growing line of literature
on its generalizations, some of which we highlight
here. [25] generalizes DPO to the case of multiple
SFT models, while [61] generalizes to multiple ob-
jectives. [57, 36] work on extending DPO to work
at the token level. [49] extends DPO to work with
other types of divergence terms, while [54] relates
DPO to DRO in order to robustify it. [4] augments
DPO with a computable advantage function to cre-
ate a hybrid between DPO and RLHF.

Additional work that more generally relates to the
fields of reward modeling and preference-based re-
inforcement learning can be found in Appendix A.

3 Background

In this section, we discuss traditional alignment
methods that assume uniform preference among
the whole population, namely RLHF [63, 45, 34]
and DPO [37].

Reinforcement Learning from Human Feed-
back (RLHF) The RLHF pipeline has two in-
puts. The first is a language model, denoted as
πSFT, which is pre-trained on internet-scale data
and then fine-tuned using supervised learning. The
second input is a static annotator preference dataset,
D = {x, yw, yl, h}. To collect this dataset, for a
given prompt x, pairs of responses (y1, y2) are gen-
erated from πSFT(·|x). Then, a human annotator
h ∈ H (where H represents the population of all
annotators) selects the preferred response between



Figure 1: Proposed pipeline to find the optimal policy. Step 1: We gather binary preference data from heterogeneous
annotators. Step 2: We run an expectation-maximization algorithm EM-DPO to soft assign annotators to clusters
and to find an ensemble of optimal policies. Step 3: We run a regret-based algorithm Max-Min DPO to learn a
linear combination of the optimal policies that is equitable.

y1 and y2. We use the notation yw and yl to repre-
sent the winning and losing responses, respectively.

To model the ground truth for how annotators
from the previous step choose between pairs of
responses, a common assumption is that the pref-
erence data is linked to a “ground truth" re-
ward model via the Bradley-Terry-Luce model
[9, 37, 34]. Let r∗(x, y) represent this true reward
function for all annotators. Then, according to the
Bradley-Terry-Luce model, the probability that an
annotator prefers one response over the other is
given by:

pr∗(y1 ≻ y2|x) (1)

=
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))

= σ(r∗(x, y1)− r∗(x, y2))

In the first step of RLHF, a reward model rϕ(x, y)
(parametrized by ϕ) is fit using the preference data
D to approximate the true reward function r∗. This
is done by minimizing the following log-likelihood
loss:

L(rϕ;D) = −E(x,y1,y2)∼D[prϕ(y1 ≻ y2|x)]
= −ED[σ(rϕ(x, y1)− rϕ(x, y2))]

The second and final step is fine-tuning with rein-
forcement learning (RL) using the learned reward
model rϕ(x, y). More specifically, the Proximal
Policy Optimization (PPO) [41] is used in training

the LM. The PPO algorithm optimizes the follow-
ing objective:

π∗
θ =argmax

πθ

Ex∼D,y∼πθ(y|x)[rϕ(y, x)] (2)

− βDKL[πθ(y|x)||πSFT(y|x)]

Direct Preference Optimization (DPO) DPO op-
timizes the same objective as PPO as given above
in 2 but bypasses learning the reward model by di-
rectly optimizing with the preference data by com-
bining 1 and 2, resulting in a pipeline that is signif-
icantly simpler and also exhibits greater stability
[37]:

L(πθ;πSFT,D, β)

= −ED

[
log σ

(
β log

πθ(yw|x)
πSFT(yw|x)

− β log
πθ(yl|x)
πSFT(yl|x)

)]
π∗
θ = argmin

πθ

L(πθ;πSFT,D, β)

4 DPO Extension for Diverse Annotators

Both Reinforcement Learning from Human Feed-
back (RLHF) and Direct Preference Optimization
(DPO) assume uniform preferences across the pop-
ulation and learn a single reward model, either im-
plicitly or explicitly. However, human preferences
and values are inherently diverse. Consequently,
RLHF and DPO tend to align with the majority
opinion among annotators, introducing bias and po-
tentially marginalizing minority perspectives. To



mitigate this issue, we propose a pipeline consist-
ing of two algorithms: Expectation-Maximization
DPO (EM-DPO) for clustering diverse preference
distributions and learning the optimally aligned
policy for each cluster and Min-Max Regret DPO,
which fairly aggregates the learned policies to min-
imize worst-case regret for any sub-group of anno-
tators.

4.1 Learning an emsemble of LLMs using
EM-DPO

The Expectation-Maximization Algorithm [15, 32]
deals with settings with mixture data. Data are
produced by first drawing a set of latent factors Z
and then drawing a set of observed variables V | Z.
The parameters of the likelihood determine both
the distribution of the latent factors p(Z; θ) as well
as the conditional likelihood p(V | Z; θ). At step
t of the algorithm, we have a current candidate
parameter vector θt and calculate θt+1 as follows:

θt+1 = argmax
θ

Q(θ | θt)

: = EZ∼p(·|V,θt) [log(p(V,Z | θ))]

In our setting, the latent factors Z = (Z1, . . . , Zn)
correspond to the unobserved heterogeneity types
Zi of an annotator i ∈ [n] and V = (V1, . . . , Vm)
correspond to the chosen preferences yij1 ⪰ yij2 for
each of the prompts Xij assigned to the annotator.
We assume for simplicity that each annotator is
assigned m prompts and we let Vij = (Xij , y

ij
1 ⪰

yij2 ), where Xij is the prompt and yij1 ⪰ yij2 is the
preference for that prompt. Our parameters θ are
(ϕ, ρ, η), where ϕ are the parameters for the group-
wise policies, η the latent distribution of user types
and ρ are parameters that determine the distribution
of prompts Xij .

With some calculation, we find that a parameteriza-
tion of the policy πϕ,z implies a parameterization
of the likelihood (see Appendix B):

p(Vi | Zi; θ) =
m∏
j=1

σϕ(Zi, Vij) p(Xij | Zi; ρ)

where the function σϕ is similar to the parameteri-
zation introduced in DPO:

σϕ(z, x, y1, y2)

:= σ

(
β log

πϕ,z(y1|x)
πSFT(y1|x)

− β log
πϕ,z(y2|x)
πSFT(y2|x)

)

Note that the latent factors take values in a set of K
discrete values {z1, . . . , zK}. In this case, we can
assume a fully non-parametric likelihood p(Z; θ),
where η = p(zk; θ) ∈ ∆(K), the K-dimensional
simplex. Subsequently, we can decompose the cri-
terion as:

Q(θ | θt)

= EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi, Zi | θ))

]

= EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi; θ)) + log(p(Zi; θ))

]

For further simplification, we note that p(Zi; θ) =∑K
k=1 ηk1{Zi = zk}. Further, assuming that

p(Vi | Zi; θ) does not depend on the vector η, so
that p(Vi | Zi; θ) = p(Vi | Zi;ϕ, ρ), the original
criterion decomposes into two separate optimiza-
tion problems:

ηt+1 = argmax
η

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑
k=1

ηk1{Zi = zk}

)]

ϕt+1 = argmax
ϕ,ρ

EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi;ϕ, ρ))

]

For the E-step, we must characterize the posterior
distribution of the latent factors. Under the assump-
tion that the contexts are un-correlated with the
unobserved preference types, which is natural in
the context of LLM fine-tuning, since contexts are
randomly assigned to annotators, we can derive
that (see Appendix C):

p(zk | Vi; θ) =
ηk
∏m

j=1 σϕ(zk, Vij)∑K
ℓ=1 ηℓ

∏m
j=1 σϕ(zℓ, Vij)

For the M -step, we must solve the two optimiza-
tion problems given above. The solution for η can
be derived in closed form, while the solution for ϕ
is independent of the term p(Xij | Zi; ρ):

ηk,t+1 =
1

n

n∑
i=1

p(zk | Vi; θt)

ϕt+1 = argmax
ϕ

n∑
i=1

EZi∼p(·|Vi;θt)

 m∑
j=1

log(σϕ(Zi, Vij))


A full derivation is in Appendix D. This gives rise
to the following EM algorithm:



Algorithm 1 EM-DPO: Expectation-Maximization
Direct Preference Optimization

1: Input: Preference data D indexed for all hu-
man annotators I and containing mi demon-
strations for each human annotator i.

2: Input: pre-trained group-wise models πϕ0,z;
∀z ∈ {z1, . . . , zk}.

3: Initialize η0 = (1/K, . . . , 1/K)
4: for t in {0, . . . , T} do
5: E. Calculate posterior p(zk | Vi; θt) for

each annotator i ∈ I:

γi,k =
ηk,t

∏mi
j=1 σϕt(zk, Vij)∑K

ℓ=1 ηℓ,t
∏mi

j=1 σϕt(zℓ, Vij)

6: M. Update parameters ϕ, η:

ηk,t+1 =

∑
i∈I γi,k

|H|

ϕt+1 = argmax
ϕ

∑
i∈I

K∑
k=1

γi,k

mi∑
j=1

log(σϕ(zk, Vij))

7: end for
8: Return: Policies {πϕt,z : z ∈ {z1, . . . , zk}}

and posterior preference weights {γi,k : i ∈
I}.

Note that if we do not share parameters across the
policies for each preference type z, i.e. we have
separate parameters ϕz for each z ∈ {z1, . . . , zK},
then the optimization in the final step of EM-DPO
also decomposes into separate policy optimization
problems for each preference type:

ϕzk,t+1 = argmin
ϕzk

∑
i∈I

mi∑
j=1

γi,k log(σϕ(zk, Vij))

Note that the latter is simply a weighted DPO prob-
lem, where each demonstration (h, j), which corre-
sponds to the j-th demonstrations from annotator i,
is assigned weight γi,k when optimizing the policy
parameters for preference type zk. Alternatively,
for multi-tasking purposes, some parameters can be
shared parameters across policies for each prefer-
ence type, in which case the final optimization prob-
lem should be solved simultaneously via stochastic
gradient descent over the joint parameters ϕ.

4.2 Fair aggregation of LLMs using Min-Max
DPO

So far, we have shown how to calculate a separate
policy that optimizes for each preference popula-
tion z. Our ultimate goal is to output a single policy.
Hence, we need to trade-off optimizing for the pref-
erences of different groups and find a policy that
strikes a good balance.

In that respect, to equitably cater to all K sub-
populations, we focus on identifying a policy that
minimizes the worst-case regret among the sub-
populations. To avoid having to retrain a new pol-
icy, we will restrict ourselves to selecting an ensem-
ble among the already trained policies. As such,
we define the ensemble space of policies as:

Π =

{
K∑
k=1

wkπϕ,zk : w ∈ ∆(K)

}

If we had access to the reward functions r∗z(y, x),
then for any policy π, the expected reward that
population z receives would be:

Rz(π) = Ex∼D,y∼π(·|x) [r
∗
z(y, x)]

Note that if we were to solely focus on population
z, we would be optimizing the expected reward
objective above, regularized so as not to deviate
from the reference policy. This would yield policy
π∗
z = πϕ∗,z , where ϕ∗ are the policy parameters we

calculated based on the EM-DPO algorithm.

Our goal is to find an ensemble policy π such that
no population z has very large regret towards choos-
ing their population-preferred policy π∗

z . Our min-
imax regret optimization problem can be simply
stated as:

π∗ = argmin
π∈Π

K
max
k=1

[
Rzk(π

∗
zk
)−Rzzkπ)

]+
where [x]+ = max{x, 0}. Note that we only con-
sider the positive part of the regret.

Why min-max regret? Max-min reward is an-
other fairness criterion that can be applied to the
RLHF problem to ensure equity, as discussed
in [11]. However, this criterion has two ma-
jor drawbacks. Firstly, the reward model is not
uniquely identifiable from preference data. Two re-
ward models r(x, y) and r′(x, y) are equivalent if
r(x, y)− r′(x, y) = f(x) [37]. Therefore, directly
maximizing the minimum reward is ineffective due



to this scaling. We could fix this by standardiz-
ing the reward model to set the minimum reward
to zero - if r(x, y) is the recovered reward func-
tion, we can use r′(x, y) = r(x, y)−miny r(x, y),
which is an equivalent reward model. Even then,
there is another issue with the max-min reward cri-
terion: The max-min reward focuses on improving
rewards for users with the lowest reward, while the
min-max regret function targets users with the high-
est regrets. These groups differ when users with
low rewards also have low regrets. As an example,
consider a setting with fixed context and three re-
sponses. If two users have reward vectors [0, 0.01,
0.02] and [0, 10, 1] respectively, then the max-min
reward objective will choose response 3 to maxi-
mize user 2’s reward. However, user 1 is nearly
indifferent between the three choices 1, whereas
user 2 strongly prefers option 2. Therefore, it is
more ideal to choose option 2, which the min-max
regret criteria chooses.

We now show that the min-max regret objective
can also be optimized over, without access to the
explicit reward functions, but solely based on the
policies we have already trained. We can rewrite
our objective as (see Appendix E):

min
w∈∆(K)

max
z∈{z0,z1,...,zK}

K∑
k=1

wk · (Lz,z − Lz,zk) ,

where

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
.

Letting R denote the (K + 1)×K matrix whose
(k, k′) entry (for 0 ≤ k ≤ K, 1 ≤ k′ ≤ K) cor-
responds to Rk,k′ := Lzk,zk − Lzk,zk′ , we can re-
write the above objective as:

min
w∈∆(K)

max
p∈∆(K+1)

p⊤Rw

This is simply a finite action zero-sum game, where
the minimizing player has K actions and the maxi-
mizing player has K + 1 actions. A large variety
of methods can be utilized to calculate an equi-
librium of this zero-sum game and hence identify
the minimax regret optimal mixture weights w∗.
For instance, we can employ optimistic Hedge vs.
optimistic Hedge dynamics, which are known to
achieve fast convergence rates in such finite action
zero-sum games [38] and then use the average of
the solutions over the iterates of training, as de-
scribed in Algorithm 2.

Algorithm 2 MinMax-DPO: Direct Optimization
for Min-Max Regret Ensemble

1: Input: Distribution D of contexts x.
2: Input: Population-specific optimal policies

π∗
z ≡ πϕ∗,z returned from EM-DPO

3: Input: Number of iterations T and a suffi-
ciently small, albeit constant, independent of
T , step-size η

4: Calculate discrepancies for z, z′ ∈
{z1, . . . , zk}:

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
with the convention that Lz0,z0 = Lz0,zk = 0

5: Calculate (K+1)×K regret matrix R, whose
k ∈ {0, . . . ,K} and k′ ∈ {1, . . . ,K} entry is:

Rk,k′ := w′
k

(
Lzk,zk − Lzk,z

′
k

)
6: Initialize w0 = (1/K, . . . , 1/K) and p0 =

(1/(K + 1), . . . , 1/(K + 1))
7: for t in {0, . . . , T} do

wt ∝ wt−1 exp
{
−η ·

(
2R⊤pt−1 −R⊤pt−2

)}
pt ∝ pt−1 exp {η · (2Rwt−1 −Rwt−2)}

8: end for
9: Return: Policy π∗ =

∑K
k=1w

∗
kπϕ∗,zk , where

w∗ = 1
T

∑T
t=1wk,t

The solution π∗ returned by Algorithm 2 constitutes
a O(log(K) log(T )T−1)-approximate solution to
the min-max regret problem (a direct consequence
of the results in [38]). This completes our over-
all direct preference optimization procedure with
unobserved heterogeneous preferences.

One can also optimize a new policy π that does
not correspond to an ensemble of the base policies
πϕ∗,z by solving the saddle point problem:

min
π

max
z

Lz(π) ≜ Rz(π)−Rz(π
∗
z)

which has already been shown, can be expressed as
a function of π∗

z and πSFT. This saddle point can be
solved by policy-gradient vs multiplicative weight
dynamics, or for faster convergence via optimistic
policy gradient descent vs optimistic mulitplicative



weight dynamics:

ϕt+1 = ϕt − 2∇ϕ

∑
z

pt,zLz(πϕt)

+∇ϕ

∑
z

pt−1,zLz(πϕt−1)

pt+1,z ∝ pt,z exp{η · (2Lz(πϕt)− Lz(πϕt−1))}

5 Experiments

5.1 Multi-Armed Bandit Experiment

5.1.1 Settings

As a warm-up exercise, we consider the multi-
armed bandit setting [3]. In this setting, the context
represents the prompt and the bandit arms repre-
sent the possible responses for the given context.
For our experiment, we consider a simplified case
with three arms and we model the sub-population
reward model using a linear function, similarly to
linear contextual bandits [16]:

r∗z(y, x) = xT θz(y) +N (0, σ)

where θz(y) is the model parameters correspond-
ing to the latent variable z for arm y, x is the con-
text, and N (0, σ) represents noise with 0 mean
and standard deviation σ = 0.01. We generate
200 annotators drawn randomly from three sub-
populations with probabilities 0.6, 0.3 and 0.1 re-
spectively. The preferences of annotators within
each sub-population is homogeneous and therefore,
each sub-population is associated with a single
reward model. We fix θz(y) for any given sub-
population with values θi(i) = [10, 10, 10] and
θi(j) = [0, 0, 0], j ̸= i for sub-population i. We
generate 10 preference data pairs per annotator. For
each data point, first we draw a context vector x uni-
formly randomly from the hypercube [0, 1]3. Then,
a pair of responses is generated from a uniformly
random reference policy πSFT = (1/3, 1/3, 1/3).
The annotator then chooses a response yw ≻ yl
based on their reward model r∗z(y, x). We imple-
ment EM-DPO and MinMax-DPO for this data.
Appendix F shows hyperparameters for the experi-
ment.

5.1.2 Results

We run standard DPO and MinMax-DPO on this
experimental setup and calculate the average regret

Figure 2: DPO vs. MinMax-DPO Regret Plot

Figure 3: Convergence of learned weights in MinMax-
DPO.

per user group. The results of this are shown in
Figure 2.

We can see that training DPO over the whole pop-
ulation leads to the policy completely optimizing
for the first user group’s preference (i.e., majority
opinion), leading to maximal regret for the other
two groups. However, MinMax-DPO achieves the
social optimum and respects the preferences of all
three groups, as shown by the equal regret among
all three groups. Figure 3 shows the convergence
of the learned weights in the MinMax-DPO algo-
rithm; we see relatively quick convergence to the
optimal weights, which are close to uniform. This
is expected as all three sub-groups have perfectly
contradicting opinions because they each prefer a
different response.

5.2 IMDb Movie Reviews

5.2.1 Settings

We conduct our experiment on Mistral 7B v3.0
[24]. To construct our preference dataset, we use a



publicly available synthetic preference data gener-
ated from IMDb reviews [30] (see Appendix F.1 for
details). Our dataset consists of 60,000 preference
pairs over IMDb movie review completions, ran-
domly and evenly distributed among 1,200 users
(50 pairs per user). Of these users, 66.66% (group
0) prefer reviews with greater positive sentiment,
while the remaining 33.33% (group 1) favor gram-
matically correct reviews.

5.2.2 Algorithms

As before, we compare the performance of our
pipeline (EM-DPO plus MinMax-DPO) with per-
forming regular DPO on the full dataset. We im-
plement an additional benchmark: Cluster DPO. In
this algorithm we perform clustering based on the
chosen response (more details in Appendix [? ]).
Once the clusters are determined we perform DPO
on each of the individual clusters and combine them
using our aggregation algorithm MinMax DPO. We
investigate the quality of both algorithm both after
the clustering stage and after the aggregation stage.

5.2.3 Metrics

Accuracy: Here, we define accuracy as the per-
centage of data points (x, y1, y2), where x is the
prompt, y1 is the chosen response, and y2 is the
rejected response, such that

log
πϕ,z(y1|x)
πSFT(y1|x)

> log
πϕ,z(y2|x)
πSFT(y2|x)

,

or equivalently, the percentage of data points where
the chosen response is given a higher “reward" than
the rejected one.

Reward Margins: Reward margins as defined as:

rm(x, y1, y2) = β log
πϕ,z(y1|x)
πSFT(y1|x)

−β log
πϕ,z(y2|x)
πSFT(y2|x)

on the evaluation dataset for each of the five poli-
cies, i.e. the average difference between the re-
wards of the chosen and the rejected responses.

5.3 Results

We report the margins in the main text and report
the accuracy metrics in Appendix [? ]. Figure 4
shows the policies learned after the clustering step
(i.e. EM-DPO and k means clustering then DPO),
we also report the regular DPO metrics for com-
parison. EM-DPO clearly learns clusters of higher

Figure 4: Reward margins after the clustering step

Figure 5: Reward margins after the aggregation step

quality than k means clustering, both of which are
of higher quality than regular DPO. In figure Fig-
ure 5, we report the margins after aggregation. In
addition to just reporting the results of MinMax-
DPO we also report a weighted version of the re-
sults. The tuple in the x-axis, for e.g. (1,4), gives
the final clustering results of the policies by weigh-
ing the regret of each sub-group, i.e. in this case,
the grammar groups’s regret stays the same while
the sentiment group’s regrets are multiplied by 4.
This allows us to define a "weighted" version of
fairness, where we have the flexibility to control
the priorities of each group differently. Naturally,
for different possible weights, we get better results
if the clusters are of higher quality. We see that
EM-DPO out performs both the regular DPO as
well as k means clustering followed by DPO in all
cases.



5.4 Discussion & Limitations

We provide a robust framework to train equitable
policies for a heterogeneous population with di-
verse preferences. By extending the DPO algo-
rithm, we are able to sidestep reinforcement learn-
ing entirely, enjoying the added stability that DPO
provides while making it more applicable to real-
world situations and datasets. We demonstrate our
findings on a contextual bandit experiment as well
as a larger-scale LLM experiment, showing how
our algorithm, MinMax-DPO, generates a far more
socially equitable policy than standard DPO in di-
verse populations where some groups may be un-
derrepresented.

Based on our results, we raise some limitations and
directions for future work. Our derivations operate
off of the assumption that contexts are uncorrelated
given the preference type of the annotator; this may
not be the case in the real world as, to increase ac-
curacy of data collection, annotators may be given
prompts more tuned to their skill sets. We also as-
sume annotators report their preferences honestly,
which may not be the case - this raises important
questions regarding incentive compatibility.
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Appendix A Additional Related Work

Preference-Based Reinforcement Learning: Re-
inforcement learning from preferences has been
an active research area for some time, providing a
way to train on tasks for which explicitly defining
rewards is hard [52, 26, 1]. In particular, [12, 22]
show that using human preferences to guide rein-
forcement learning (RLHF) is particularly effective
on a variety of tasks, such as training robots. More
recently, RLHF has become a very popular tech-
nique to fine-tune language models to do a variety
of tasks such as summarization [34, 63, 45, 53].
RLHF has also been used to align language models
[5, 2]. [10] details several open problems in the
field of RLHF, including those related to the feed-
back itself, particularly the inverse relation between
richness and efficiency. Some work has been done
on this problem with regards to language-based
feedback in particular [19, 60] as well as in more
general settings [21], but specific applications to
LLMs have not been fully explored.

Challenges with Reward Modeling: In general,
human preferences can be difficult to represent us-
ing reward models [20], and the validity of reward
modeling itself is still somewhat debated [8, 7, 44].
Some work has also been done to take personal-
ity into account when reward modeling [28, 26],
but this area remains open. In general, taking hu-
man irrationality into account when reward model-
ing (to optimize a more accurate reward function)
leads to a trade-off between efficiency and accu-
racy [42, 33]. Work has been done on inverse RL
with particular models of suboptimality such as my-
opia [18], noise [58], and risk-sensitivity [31], but
dealing with general irrationalities remains open.

The proper use and collection of data remains an is-
sue with RLHF. [46] analyzes LLM fine-tuning as a
mechanism design problem where agents may have
the incentive to misreport their preferences. Data
can also often have issues or certain data points may
not be as effective as others; [48] proposes meth-
ods to deal with incorrect or ambiguous preference
pairs, while [56] proposes an extension to DPO
which uses contrastive learning to discern between
more and less preferred responses to prompts.

Appendix B Likelihood Parameterization

Note that, in our situation, the latent factors and
observed variables (Zi, Vi) are independent across

annotators and therefore, the likelihood and the
prior factorizes across the annotators. Moreover,
conditional on the latent factor, the Vij are inde-
pendently distributed across j and for each j the
conditional likelihood takes a logistic form, as fol-
lows:

p(Vi | Zi; θ)

=
m∏
j=1

p(Vij | Zi; θ)

=

m∏
j=1

p(yij1 ⪰ yij2 , Xij | Zi; θ)

=

m∏
j=1

p(yj1 ⪰ yij2 | Xij , Zi; θ) p(Xij | Zi; θ)

=
m∏
j=1

σ
(
r∗
(
Z,Xij , y

ij
1

)
− r∗

(
Z,Xij , y

ij
2

))
p(Xij | Zi; θ)

where r∗ denotes the true reward for the annotator,
as in Section 3.

The first part σ
(
r∗(Z,Xj , y

j
1)− r∗(Z,Xj , y

j
2)
)

can also be written in closed form in terms of the
policy parameters πϕ∗,z for each preference type as
designated by the same observation as in [37]:

σ(r∗(z, x, y1)− r∗(z, x, y2))

= σ

(
β log

πϕ∗,z(y1|x)
πSFT(y1|x)

− β log
πϕ∗,z(y2|x)
πSFT(y2|x)

)
where πϕ∗,z optimizes the type specific regularized
objective:

πϕ∗,z =argmax
π

Ex∼D,y∼π(y|x)[r
∗(z, x, y)]

− βEx∼D,y∼π(y|x) [DKL[π(y|x)||πSFT(y|x)]]

We will introduce the shorthand notation:

σϕ(z, x, y1, y2)

:= σ

(
β log

πϕ,z(y1|x)
πSFT(y1|x)

− β log
πϕ,z(y2|x)
πSFT(y2|x)

)
Thus a parameterization of the policy space πϕ,z ,
implies a parameterization of the likelihood:

p(Vi | Zi; θ) =
m∏
j=1

σϕ(Zi, Vij) p(Xij | Zi; θ),

as desired.



Appendix C E-Step Derivation

Here, we derive the posterior distribution p(Z |
V ; θ) =

∏n
i=1 p(Zi | Vi; θ) for any given parame-

ter θ. We apply Bayes rule:

p(zk | Vi; θ)

=
p(Vi, zk; θ)

p(Vi; θ)

=
p(Vi | zk; θ) p(zk; θ)∑K
ℓ=1 p(Vi | zℓ; θ) p(zℓ; θ)

=
p(Vi | zk;ϕ) ηk∑K
ℓ=1 p(Vi | zℓ;ϕ) ηℓ

=

∏m
j=1 σϕ(zk, Vij) p(Xij | zk; θ) ηk∑K

ℓ=1

∏m
j=1 σϕ(zℓ, Vij) p(Xij | zℓ; θ) ηℓ

.

In the context of LLMs, the quantity Xij is the
prompt and the prompts are randomly assigned to
annotators, so we would expect no correlation be-
tween the preference type of the annotator and the
prompt assigned to them. Thus, all prompts are
equally likely given the preference type of the an-
notator. Hence, we make the following assumption:
ASSUMPTION 1 (Un-correlated Contexts and La-
tent Preference Types). For all k, ℓ ∈ [K]:

p(Xij | Zi = zk; θ) = p(Xij | Zi = zℓ; θ)

:= ρ(Xij)

Based on this assumption, we can then write:

p(zk | Vi; θ) =

∏m
j=1 σϕ(zk, Vij)ρ(Xij) ηk∑K

ℓ=1

∏m
j=1 σϕ(zℓ, Vij)ρ(Xij) ηℓ

(3)

Note that we can write:
K∑
ℓ=1

m∏
j=1

σϕ(zℓ, Vij) ρ(Xij) ηℓ

=

K∑
ℓ=1

m∏
j=1

ρ(Xij) ·
m∏
j=1

σϕ(zℓ, Vij)ηℓ

=

m∏
j=1

ρ(Xij) ·
K∑
ℓ=1

m∏
j=1

σϕ(zℓ, Vij)ηℓ

Thus, the terms
∏m

j=1 ρ(Xj) cancel from the nu-
merator and denominator in Equation (3), leading
to the simplified formula that is independent of π:

p(zk | Vi; θ) =
ηk
∏m

j=1 σϕ(zk, Vj)∑K
ℓ=1 ηℓ

∏m
j=1 σϕ(zℓ, Vj)

Appendix D M -Step Derivation

We aim to solve the following two optimization
problems:

ηt+1 = argmax
η

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑
k=1

ηk1{Zi = zk}

)]

ϕt+1 = argmax
ϕ,ρ

EZ∼p(·|V,θt)

[
n∑

i=1

log(p(Vi | Zi;ϕ, ρ))

]
(4)

The first optimization problem in Equation (4)
admits a closed-form solution. Letting wk,t =∑n

i=1 p(zk | Vi; θt)

EZ∼p(·|V,θt)

[
n∑

i=1

log

(
K∑
k=1

ηk1{Zi = zk}

)]

=
n∑

i=1

K∑
k=1

p(zk | Vi; θt) log(ηk)

=

K∑
k=1

wk,t log(ηk)

Thus the optimization problem that de-
termines ηt+1 takes the simple form
maxη∈∆(K)

∑K
k=1wk,t log (ηk). The La-

grangian of this problem is L(η, wt, λ) =∑K
k=1wk,t log(ηk) + λT (η − 1). The KKT

condition is:
wk,t

ηk,t+1
= λ

=⇒ ηk,t+1 ∝ wk,t

=⇒ ηk,t+1 =
wk,t∑
k wk,t

Moreover, since
∑

k p(zk | Vi; θt) = 1, we have∑
k wk,t = n. Thus, the above simplifies to:

ηk,t+1 =
1

n
wk,t

=
1

n

n∑
i=1

p(zk | Vi; θt)

For the second optimization problem in Equa-
tion (4), we further decompose the objective:

log(p(Vi | Zi;ϕ, ρ))

=

m∑
j=1

log(p(Vij | Zi;ϕ, ρ))

=
m∑
j=1

log(σϕ(Zi, Vij)) + p(Xij | Zi; ρ)



Assuming that the parameter ρ that determines that
p(X | Z; ρ), according to Assumption 1 is not
subject to joint constraints with the parameter ϕ,
we can drop the second part in the objective, when
optimizing for ϕ:

ϕt+1

= argmax
ϕ

EZ∼p(·|V,θt)

 n∑
i=1

m∑
j=1

log(σϕ(Zi, Vij))


=

n∑
i=1

EZi∼p(·|Vi;θt)

 m∑
j=1

log(σϕ(Zi, Vij))


Moreover, since ρ does not enter in the update rules
for η, ϕ, nor in the calculation of the posterior, we
can ignore it in our EM-DPO algorithm.

Appendix E Min-Max Regret Objective
Derivation

We can write, by linearity of expectation:

Rz(π)−Rz(π
∗
z)

= Ex∼D,y∼π∗
z (·|x),y′∼π(·|x)

[
r∗z(y, x)− r∗z(y

′, x)
]

= βEx∼D,y∼π∗
z (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
− βEx∼D,y′∼π(·|x)

[
log

(
π∗
z(y

′|x)
πSFT(y′|x)

)]

For any z, z′ ∈ {z1, . . . , zk}, we will let:

Lz,z′ := Ex∼D,y∼π∗
z′ (·|x)

[
log

(
π∗
z(y|x)

πSFT(y|x)

)]
Given the policy parameters we estimated in the
EM-DPO section, these quantities can be calcu-
lated as simple empirical averages over the anno-
tated data. Moreover, note that since our policy
π ∈ Π is a mixture policy over the policies π∗

z′ for
z′ ∈ {z1, . . . , zk} with weights w ∈ ∆(K), we
can write:

Rz(π)−Rz(π
∗
z) = β

(
Lz,z −

K∑
k=1

wk · Lz,zk

)

= β
K∑
k=1

wk · (Lz,z − Lz,zk) ,

Thus, our minimax regret objective can be simply
written as:

min
w∈∆(K)

max
z∈{z1,...,zk}

[
K∑
k=1

wk · (Lz,z − Lz,zk)

]+

= min
w∈∆(K)

max
z∈{z1,...,zk}

max

{
0,

K∑
k=1

wk · (Lz,z − Lz,zk)

}

Introducing a fake preference population z0 that
always has 0 regret, i.e. Lz0,z0 = Lz0,zk = 0, we
can re-write the above objective simply as:

min
w∈∆(K)

max
z∈{z0,z1,...,zk}

K∑
k=1

wk · (Lz,z − Lz,zk)

Appendix F Additional Experiment
Details

F.1 IMDb Data Generation

We use the IMDb dataset [30] to generate a syn-
thetic preference dataset. More specifically, we
use a publicly available adaptation of the IMDb
dataset1. This dataset uses the first 20 tokens from
the original IMDb dataset [30] as the prompt and
then two responses are generated for each prompt
using a GPT-2 Large model that is fine-tuned on
the IMDb dataset. We synthetically generate pref-
erence data for two user groups using this dataset.
We split the 50,000 available data points into 256
test examples and the remaining are training ex-
amples. To contruct a user, we first assign the
population-type (i.e. that they prefer grammati-
cally correct response or that the prefer the posi-
tive response) and then sample 50 data points ran-
domly from the train set for each user. We use
LanguageTool2 to automatically to find the number
of grammatical errors in a given text and divide
this number by the length of the text to get a cor-
rectness score. The grammar-type user prefer the
response with a higher correctness score. For the
positive-sentiment preferring user, we choose the
most positive response by prompting GPT-4.

F.2 More IMDb Results

Figure 6 and 7 show the accuracy metrics for both
the clustering and the aggregation steps.

1Modified IMDb dataset
2LanguageTool

https://huggingface.co/datasets/insub/imdb_prefix20_forDPO_gpt2-large-imdb-FT_siebert_sentiment-roberta-large-english?row=14
https://languagetool.org/


Figure 6: Accuracy after the clustering step

Figure 7: Accuracy after the aggregation step

F.3 Cluster-DPO

The Cluster-DPO policy is generated as follows.
We naively cluster the users into 2 user sub-groups
using k-means clustering on the average embed-
ding of all the preferred texts of that user. Em-
beddings are generated using the RoBERTa-Large
model [29]. Then, we train a DPO policy on each
cluster separately and combine them using Algo-
rithm 2; we are essentially replacing the EM-DPO
step with a k means clustering step in the proposed
algorithm pipeline.

F.4 Hyperparameters

Table 1 shows the hyperparameters for the bandit
experiment and Table 2 for the LLM experiment.
We ran the bandit experiment on one A100 GPU.
On average, the code took approximately 1 hour to
run. The LLM experiment was run on 5x NVIDIA

A6000 GPUs. Every step of the EM algorithm took
about 40 minutes to run for a grand total of 13
hours.



Hyperparameter Value
Neural Network Layers 3
Neural Network Hidden Dimension 10
Learning Rate 0.01
Optimizer Adam
DPO Regularization Constant Beta 1
Max Epochs for Optimization 1000
Max Steps for EM-DPO 100
Max Steps for MINMAX-DPO 1000
Seed (numpy and torch) 123

Table 1: Hyper-parameters for the contextual bandit experiment

Parameter Value
Learning Rate 5e-7
Beta 0.1
Max Text Length (Prompt + Response) 512
No. of Training Epochs 1
No. of Evaluation Examples 256
Optimizer RMSprop
No. of Warmup Steps for Learning Rate 150
No. of Iterations of the EM Algorithm 10
No. of Prompts to Estimate the Regret Matrix 512
Eta for Algorithm 2 0.05
Total Steps for Algorithm 2 10000
No. of Examples for Evaluation 256
Seed (DPO), Seed1 (Evaluation), Seed2 (Evaluation) 0, 42, 62

Table 2: Hyper-parameters for the IMDb LLM experiment
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