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Abstract

Temporal exponential random graph models (TERGM) are powerful statistical
models that can be used to infer the temporal pattern of edge formation and
elimination in complex networks (e.g., social networks). TERGMs can also be used
in a generative capacity to predict longitudinal time series data in these evolving
graphs. However, parameter estimation within this framework fails to capture
many real-world properties of social networks, including: triadic relationships,
small world characteristics, and social learning theories which could be used to
constrain the probabilistic estimation of dyadic covariates. Here, we propose triadic
temporal exponential random graph models (TTERGM) to fill this void, which
includes these hierarchical network relationships within the graph model. We
represent social network learning theory as an additional probability distribution
that optimizes Markov chains in the graph vector space. The new parameters are
then approximated via Monte Carlo maximum likelihood estimation. We show
that our TTERGM model achieves improved fidelity and more accurate predictions
compared to several benchmark methods on GitHub network data.

1 Introduction

Social networks have been studied for over a century, and graph theory techniques have been used
for decades to model relationship patterns amongst individuals and social entities [Wasserman
et al., 1994]. Graph network statistics have provided fundamental and theoretical insight into social
phenomenal across political, economic and behavioral data. However, historically, these techniques
have been applied to study static ‘snapshots’ of a network, limiting the ability to make large-scale
inferences about social network dynamics.

In recent years, online social networks have provided a wealth of open source empirical data, providing
new opportunities to test and adjudicate amongst competing theories and quantitative models [Borgatti
et al., 2009]. Online social networks are formed by nodes (e.g., individuals) and edges, embedding
social relationships (e.g., friends, relatives, colleagues) within a complex graph network. Both

36th Conference on Neural Information Processing Systems (NeurIPS 2022 Temporal Graph Learning Work-
shop).



network structure and nodal connectivity constraint the flow of information or resources through
the network [Kane et al., 2014]. However, online social networks are ever expanding, and their
connectivity evolves rapidly over time. Thus, statistically modeling these data for generative and
predictive purposes is challenging.

Temporal exponential random graph models (TERGM) have become a core tool for modeling
dynamic social networks. Although a variety of approaches including variations of TERGM have
been applied to education [Mamas et al., 2020], finance, [Park et al., 2018] and political data [Abrams,
2019], few TERGM variations have attempted to quantify the effect of "influencers" alongside
triadic relationships within a dynamic network. Here, we expand the classic TERGM model to
support triadic relationships to make predictions on dynamic graphs. We apply this new triadic
temporal exponential random graph model (TTERGM) to data derived from Github. Github has been
studied extensively within the context of graphical network modeling due to its popularity, open
access, and transparency. Thus, these data provide a benchmark for model comparison. GitHub also
provides network programming functionality [Borges et al., 2016], offering the opportunity to study
"influencers", their affect on network structure, and triadic relationships within a dynamic network.

2 Related Work

Social network models have been applied for many purposes to include: modeling an individual’s
behavioral patterns to predict future nodal attributes (e.g., connections) over time [McConnell
et al., 2018] [McAvoy et al., 2020], modeling interactions and cluster formation within online
communities [Fortunato and Hric, 2016] [Xu et al., 2020] [Liu et al., 2018], and modeling how
network characteristics (e.g., centrality) influences its users [Qiu et al., 2017]. Overall, these models
attempt to characterize the relationship amongst network structure and information diffusion, decision
making, and individual behavior. [Jackson et al., 2017].

General classes of network formation methods include: 1) exponential random graph models
(ERGMs) [Lusher et al., 2013][Pattison and Wasserman, 1999], meta-networks, and meta-matrices
[Carley and Hill, 2001][Krackhardt and Carley, 1998] for multilayer social networks. 2) block model-
ing [Guimerà and Sales-Pardo, 2009] 3) geographic or characteristic based approaches, [Boucher
and Mourifié, 2012][Leung, 2014]; 4) link formation techniques [Christakis et al., 2010][Bramoullé
et al., 2012], and 5) subgraph model-based approaches (SUGMs) [Chandrasekhar and Jackson, 2016].
Numerous studies have examined the formation of cascades of network activity, characterizing
and predicting network growth [Bakshy et al., 2012][Gruhl et al., 2004][Yang and Counts, 2010].
Typically, spikes of activity occur within a few days of content’s introduction into the network. This
property forms the backdrop to a line of temporal analyses that focus on the basic rising-and-falling
pattern that characterizes the initial occurrence of information burst.

Influence on the Github platform can be quantified by the number of followers, stars, mentions,
quotes, and up-votes received from other users. Social network metrics such as centrality indicate
how broadly influence extends (e.g. geographic interest) [Weber and Luo, 2014]. Other features
include project size, file volume, critical folder, lines of code and calling of basic functions. The
popularity rate can be measured by (Total_Stars / project_life). Few studies have examined influence
of user-popularity, repo-popularity, and triadic relationships in dynamic graphs.

3 Methodology

3.1 Preliminaries

Exponential random graph models (ERGM) are static. Temporal exponential random graph models
(TERGM) are an extension of ERGMs to handle dynamic information in real-world online social
networks [Hanneke et al., 2010]. ERGM can be written as in (1). TERGM with Markov assumption
can be written as in (2).

P (N) =
1

Z
exp(

∑
γ(N)) (1)
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Figure 1: Examples of Triadic relationship in Influencer Networks

Figure 2: Design of the Triadic Temporal Exponential Random Graph Model

P (N t|N t−1) =
1

Zt−1
exp(

∑
ij

σ(N t
ij , N

t−1
ij )) (2)

P (N) represents the probability of the network N ; Z represents the normalization constant that
is usually difficult to compute; γ is the vector of network characteristics such as number of edges,
triangles, 2-stars, etc. t represents the sequence of network observations; σ is the vector of social-
theory driven temporal network characteristics such as homophily, transitivity, reciprocity, etc. t
represents the sequence of network observations; Compared to ERGMs, TERGMs are able to model
the distribution on time series data (either embedded in the network or in separate timesteps), hence
certain temporal patterns can be captured and reflected in the parameter values for phenomenon
interpretation. Examples of these dynamic patterns of triadic effects in influencer networks are shown
in Figure 1. TERGM provides significant advantages over ERGMs, since certain static patterns
can be enriched in higher dimensions when the sequence order is considered. TERGMs are also
capable of modeling observed friendship networks with bootstrap methods estimated by maximum
pseudolikelihood [Leifeld et al., 2018], or networks of infectious disease transmission using statistical
methods in network analysis [Jenness et al., 2018]. The flexibility of TERGMs make it possible
to adapt to a variety of input data types, such as cross-sectional or longitude data [Henry et al.,
2016][Block et al., 2018].

3.2 Triadic Temporal Exponential Random Graph Model

TERGM models estimated within the markov chain assumption are typically incapable of generating
and reproducing realistic dynamics observed in real-world online social networks. We hypothesized
that increasing the model’s capacity to describe triadic network properties would reduce the error
between the model and empirical observations. We propose TTERGM here to sequentially predict
network probabilities by integrating the dynamics between influencers and followers. TTERGM was
run on a computer with 12900K CPU, 1080TI and 128GB RAM. Figure 2 shows the framework
of TTERGM that has five major components - data collection module, network processing module,
feature extraction module, pattern analysis module, and a generative network module.

Influencer-follower networks Nt were identified and constructed by connecting users by events in
Table 1. In the subsequent module, temporal features and triadic features listed in Table 2 were
extracted from the influencer-follower networks. Network characteristics were then estimated using
the Markov chain Monte Carlo (MCMC) method. In the pattern analysis module, the TTERGM
model was applied to model the data. The general form of TTERGM can be written as in Equation (3).
P (N) represents the probability of a given network architechture, N; Z represents the normalization
constant as done in classic TERGM models; γ is a vector of network characteristics (e.g, number
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of edges, triangles, 2-stars), t represents the temporal sequence of network observations, and σ is
the vector of social-theory driven temporal network characteristics such as homophily, transitivity,
reciprocity, etc. To fit the TTERGM model to the data, algorithm 1 is used to initialize and traverse
each node in the network to construct the generative influencer-follower networks. Finally, we
used these observed features to simulate real-world influencer-follower networks and compared the
predictive of TTERGM performance with the classic TERGM model and the Block Model using
left-out validation data.

P (N t|N t−1) =
1

Zt−1
exp(

∑
ij

σ(N t
ij , N

t−1
ij )) + ...+

1

Z1
exp(

∑
ij

σ(N2
ij , N

1
ij)) (3)

Algorithm 1: Triadic Temporal Exponential Random Graph for Network Generation

Input: Online social network N
1 Initialization G = Gt0 repeat
2 while t ̸= tn do
3 read current node ni;
4 if ni is not traversed then
5 for each link lij in graph Gt0 do
6 calculate the network statistics of each link and
7 fill the values to the feature vector Nij

8 Prob(lij) =
∑pq

p=0,q=0 Prob(lij|lpq)
9 else

10 read the next node ni+1;
11 t = t+ 1;

12 Calculate P (N t) = 1
Z
exp(

∑
ij σ(N

t
ij, N

t−1
ij , ..., N t0

ij ) where
13 Z = MCMC(exp(

∑
ij u(N

t
ij, N

t−1
ij , ..., N t0

ij )) where
14 Z is the normalization constant, u is the network statistics, MCMC is the

Markov Chain Monte Carlo method
15 until k iterations;

4 Experiments and Results

The GitHub dataset is from 1/1/2015 to 8/30/2017 including 2 million users and 13 million projects.
We selected the 100 most popular repositories because we aimed to characterize top GitHub repos-
itories, and the impact of influencers on the popularity of repositories using the TTERGM model.
The number of repositories is a hyperparameter which can be adjusted, depending on the goal of the
model. We selected the top 10 users, in terms of number of followers, as the influencers in this study.
This threshold was chosen because the number of followers drops off sharply after that point, but
can be chosen arbitrarily for different datasets. The data was acquired using the API from GitHub
[Gousios and Spinellis, 2012]. The API can be used to stream GitHub repository interactions with
customized formats. Optionally, meta data from user relation events can be retrieved as well. The
dataset contains 14 types of events which are listed in Table 1.

We implemented the TTERGM technique to model the dynamics between repository popularity and
networks. The 3 most followed anonymized influencers had 52,722, 30,161, and 25,827 followers
respectively. Each of the top 10 most popular influencer has at least 14 thousand followers. We
divided the 15 types of events into 2 categories - participative events and contributive events to
highlight the social characteristics. Participative events demonstrate a user’s engagement to a project
repository. Contributive events indicate the cooperation among developers in a software repository.
Followers tend to have more participative events than influencers, while influencers generally have
more contributive events than followers.
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Table 1: Event Categories and Descriptions

Event Category Event Type Description
Receptive Events WatchEvent When someone stars a repository

PullRequestReviewCommentEvent When comment on a pull request’s
unified changes

IssueCommentEvent When an issue comment is created
or edited

MemberEvent When a user is invited or removed
as a collaborator to a repository

IssuesEvent When an issue is created or edited
GollumEvent When a wiki page is created or

edited
Contributive Events WatchEvent When someone stars a repository

ForkEvent When an user forks a repository
ReleaseEvent When a release is published or

edited
PublicEvent When a private repository is made

public
PullRequestEvent When a pull request is created or

edited
PushEvent When a push is happened to a repos-

itory branch
DeleteEvent When a branch or tag is deleted
CommitCommentEvent When is commit comment is created
CreateEvent When a branch or tag is created

Table 2: Features Extracted from Influencer Network

Measurement Type Measurement Name Description
Network connection # direct links Number of direct links influencers

have with their followers
# indirect length-2 links Number of indirect links of length 2

from influencers to their followers
# indirect length-3 links Number of indirect links of length 3

from influencers to their followers
# triangles Influencer’s activity on a repository

triggered his/her follower’s activity
on the same repository, then a trian-
gle forms

Network topology Average shortest path Average shortest path length of pairs
of nodes in the network

Assortativity Pearson correlation coefficient of de-
gree between pairs of linked nodes

# of connected components Number of connected components
in the network

Average Clustering Coeffi-
cient

Ratio of number of triangles over
maximum possible number of trian-
gles

# nodes Number of nodes in the network
# edges Number of edges in the network

To evaluate the performance of the TTERGM, we compared the simulation with two benchmark
models - TERGM and Block model. Each model is evaluated using a set of metrics (average degree
of incoming edges and average degree of outgoing edges) to see how well the predicted network
distribution matched the real-world network characteristics. The evaluation result (average of 30
runs) was shown in Table 4. The Block model and TERGM perform similarly in month 2017-07 and
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Table 3: Number of Followers of the Top 10 Influencers

Rank Anonymized Influencer Id Number of
Followers

1 lBMOoXAjxIN_Dc3alQNLZQ 52722
2 BhQS5KA8AvmQJXbsVeusdw 30161
3 s0jAeLRt2onrivaUCqdJrg 25827
4 QFB1aZ8GXkNYHyfWe7aEeA 24604
5 jAGnWUFUmnBc9ydeQbIfDQ 24510
6 hXalEIoEWnEbCSfiQI1LNA 23076
7 eUnkVgArKJiNOBhb0w53_Q 18522
8 VRyyOPSJUCS5jRlDtwjefA 15755
9 wNDkYd6NACSuvLCnxog23w 15396
10 wHfAzUFXU8D186qTl9c54w 14928

Table 4: Block, TERGM, and TTERGM models were used to generate predicted distributions for
network characteristics on out-of-sample temporal observations

Network Model 2017-07 in-deg 2017-07 out-deg 2017-08 in-deg 2017-08 out-deg

Block Model 4.39 5.08 5.32 4.56

TERGM 4.65 4.78 5.13 4.35

TTERGM 3.42* 4.15* 4.25* 3.25*

Note: ∗ indicates p-value < 0.05 comparing to Block Model and TERGM respectively

2017-08. Comparing to TERGM, TTERGM has 26.45% less errors in 2017-07 for incoming degree
of errors, 13.17% less errors in 2017-07 for outgoing degree of errors, 17.15% less errors in 2017-08
incoming degree of errors, and 25.28% less errors in 2017-08 for outgoing degree of errors. We
believe the consistent improvement stems from the extra computation from TTERGM in the markov
chain.

5 Conclusion

We implemented a social-theory driven temporal exponential random graph model to infer the
temporal pattern of edge formation and elimination in complex networks (e.g., social networks), and
examine the effect of influencers and triadic relatinships on predicting future network dynamics. When
popular repositories are formed or influencers act, the structure of the social network alters, affecting
network metrics. The TTERGM technique build upon previous statistical models by incorporating
information flow across hierarchical configuration features. We represent social network learning
theory as an additional probability distribution that optimizes Markov chains in the graph vector
space. The new parameters are then approximated via Monte Carlo maximum likelihood estimation.
The TTERGM model is capable of reproducing the dynamics observed empirically in large-scale
social network data, and produced more accurate predictions on left-out data compared to the classic
TERGM and block models. However, the TTERGM model imposes additional computational burden
during parameter estimation, which may hinder its ability to scale to larger datasets. Future work
may include expanding this approach to model the influence of more "distant" users in the network,
or those that do not directly follow an influencer.
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