
Under review as a conference paper at ICLR 2023

MEMORY-AUGMENTED VARIATIONAL ADAPTATION
FOR ONLINE FEW-SHOT SEGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate online few-show segmentation, which learns to make dense predic-
tions for novel classes while observing samples sequentially. The main challenge
in such an online scenario is the sample diversity in the sequence, resulting in
models that do not generalize well to future samples. To this end, we propose
a memory-augmented variational adaptation mechanism, which learns to adapt
the model to every new sample that arrives sequentially. Specifically, we first
introduce a prototype memory, which retains category knowledge from previous
samples to facilitate the model adaptation to future samples. The adaptation to
each new sample is then formulated as a variational Bayesian inference problem,
which strives to generate sample-specific model parameters by conditioning the
sample and the prototype memory. Furthermore, we propose memory-augmented
segmentation to learn sample-specific feature representation for better adaptation
to the segmentation of each sample. With extensive experiments, we show that a
simple extension of existing few-shot segmentation methods tends to converge to
over-smoothed, averaged masks of lesser performance. By contrast, the proposed
method achieves considerably better online few-shot segmentation performance.

1 INTRODUCTION

Few-shot semantic segmentation (FSS) (Shaban et al., 2017; Dong & Xing, 2018; Zhang et al.,
2019b; Wang et al., 2019; Yang et al., 2020; Liu et al., 2020; Tian et al., 2020; Min et al., 2021;
Zhang et al., 2021a; Liu et al., 2022) learns to segment objects from previously unseen classes, by
providing models with a small set of annotated examples, i.e., the support set. This setup rests on
the assumption that these annotated support samples are revealed to the model simultaneously, e.g.,
three labelled samples are available under the 3-shot setting in Figure 1 (a). Yet, expecting multiple
annotated samples simultaneously in the dynamic world is an unrealistic requirement. For instance,
self-learning robotic agents interact with the world in an online manner. And, in a medical setting
(Luo et al., 2021) often the expert annotators must correct the models sequentially.

In this work, we investigate the online few-shot segmentation task, which aims to make a pixel-wise
prediction for novel classes with samples arriving sequentially. More specifically, the model can
only access one sample at a time step in this setting, while the corresponding ground truth comes at
the next time step. We clarify the task with an example in Figure 1 (b), where the model is asked to
segment the horse in the sequence. At the second time step, the sample x2 and the ground-truth y1
are revealed to the model. The model then is updated given (x1, y1) and required to segment the new
sample x2. More generally, at time step t the model is updated after seeing {(xi, yi)}i=1,...,t and then
makes a prediction for xt+1. In such a way, the model evaluation and updating proceed alternately,
and the model learns to segment samples from novel classes in an online manner. Ideally, with
increasing samples, an optimal online few-shot segmentation model should become better and better
and exhibit more minor performance fluctuations. However, sample diversity in the sequence is the
main challenge in such an online scenario (Finn et al., 2019; Babu et al., 2021), resulting in models
that do not generalize well to future samples. Therefore, achieving effective model adaptation to
each sample in the sequence is essential for online few-shot segmentation.

In this paper, we focus on the online few-shot segmentation (Babu et al., 2021) and make three
important contributions. First, we construct a prototype memory based on the idea of “online”
class prototype generation (Ren et al., 2020; Finn et al., 2019) that retains category knowledge from
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Figure 1: Comparison between (a) traditional few-shot segmentation and (b) online few-shot
segmentation. under 1-way 3-shot setting. Traditional few-shot segmentation aims to make pre-
diction for one image based on three annotated samples, while online few-shot segmentation copes
with the segmentation of all samples sequentially.

previous samples and serves as dynamic support set for the segmentation of future samples. New
class prototypes are approximated using groups of same-class exemplar embeddings in the current
sequence and stored in external memory. Second, we propose variational test-time adaptation for
the online few-shot segmentation, where we formulate the adaptation as the variational inference
of a latent classifier variable. For the test-time adaptation, we incorporate the category knowl-
edge from the prototype memory and sample-specific context from the current sample to generate
a sample-specific classifier. Furthermore, the probabilistic classifier obtained are more informative
and therefore better represent categories of objects compared to deterministic vector. As the third
contribution, we propose memory-augmented segmentation to learn sample-specific feature repre-
sentations better adapted to each sample segmentation. By doing so, the model is endowed with
the ability to provide sample-specific segmentation for each sample in the sequence and copes with
sample diversity well. Once trained on seen classes, our model could adapt to each sample from
novel classes in the sequence with just a feed-forward computation at test time.

We demonstrate the effectiveness of the memory-augmented variational adaptation by conducting
experiments on both natural image and medical image datasets. We show that a simple extension
of existing few-shot segmentation methods tends to converge to over-smoothed, averaged masks of
lesser performance. Our model exhibits promising performance under the online few-shot segmen-
tation setting. Extensive ablation studies demonstrate the contributions of different components in
our model.

2 METHODOLOGY

2.1 PROBLEM STATEMENT

Few-shot semantic segmentation: Traditional few-shot semantic segmentation (FSS) follows the
meta-learning paradigm, where a task (or episode) is composed of a support set S and a query set
Q. Here, we consider the 1-way k-shot setting. Conditioned on the support set with k annotated
support samples, the few-shot learner f(·) is expected to make pixel-wise prediction for the query
sample xq: ŷq = f(xq; (xs

1, y
s
1), . . . , (x

s
k, y

s
k)), where x is input image, y is corresponding binary

mask. However, this setup is built on the assumption that annotated support examples are revealed
to the model simultaneously, which is usually not practical in our dynamic world.

Online few-shot semantic segmentation: Online few-shot semantic segmentation (OFSS) aims
to make pixel-wise prediction on a stream of samples from novel classes. One task consists of T
samples from the same novel class. In this setup, samples are revealed to the model sequentially,
while corresponding masks are given afterwards. The few-shot learner in OFSS aims to tackle the
sequential decision problem: ŷt = f(xt; (x1, null), (x2, y1), . . . , (xt−1, yt−2)), where null indicates
no mask for the first sample, and the model makes a random prediction for x1. If not specified, we
set t > 1 for illustration in the following text. By feeding sequential samples and subsequent labels
to the model, we evaluate the model online while updating model parameters dynamically.
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Figure 2: a) Architecture of memory-augmented variational adaptation for online few-shot
segmentation. At i-th time step, the sample xt and the previous sample’s label yt−1 are revealed
to the model, which first stores sample prototype pt−1 into the prototype memory Mt. Then, the
model generates distributions of classifiers via transformer. Lastly, sample feature zt is enriched
with prototype memory as ẑt, which further multiplies sample classifiers {w1

t , w
2
t , ..., w

L
t } from

prior distribution p(wt|xt,Mt) to get predicted masks {y1t , y2t , ..., yLt }. Red arrows are only valid
in training. b) Details of distribution generation with transformer Learnable tokens interact with
sample and memory embedding in transformer to generate distribution parameterized by µ and σ.

2.2 MODEL

We propose a memory-augmented variational adaptation mechanism for online few-shot segmen-
tation. The proposed method achieves online few-shot segmentation via three key components: 1)
A prototype memory that retains category knowledge from previous samples to facilitate model
adaptation to future samples. 2) Variational test-time adaptation which formulates new samples
adaptation as a variational Bayesian inference problem. 3) Memory-augmented segmentation that
learns sample-specific feature representation for each sample. We show our model in Figure 2.

Prototype memory Online few-shot segmentation involves segmenting samples from the same
classes sequentially. Therefore, effectively leveraging acquired category knowledge from previous
samples to boost the segmentation of future samples is crucial. Here, we construct a prototype
memory to achieve this goal. Considering memory efficiency, we choose to store sample prototypes
rather than original samples in the memory. Specifically, a sample x with ground-truth y can be rep-
resented by a sample prototype p ∈ RN×C , which is composed of N prototypes with C dimension,
respectively. Given a deep neural network Φ : X → Z , which maps from input space to feature
space, the sample prototype p can be modeled as clustering centers of foreground features:

p = A(Φ(x) · y) = A(z · y), (1)

where A is a clustering function (e.g., K-means), z ∈ RC×H×W is the sample feature, H and W are
the height and the weight, respectively. We adopt element-wise multiplication between z and y to
generate foreground features. At the time step t, the ground-truth yt−1 of sample xt−1 is revealed to
the model so that we can store the sample prototype pt−1 of sample xt−1 into the memory. Similarly,
we can store prototypes of all previous samples in the memory Mt = {pi}t−1

i=1 sequentially. The
prototype memory, which stores prototypes of previous samples sequentially, works as dynamic
support set for the segmentation of future samples. Aggregating category knowledge (e.g., different
appearance of objects) from previous samples, the prototype memory benefits the model adaption to
future samples.

Variational test-time adaptation Sample diversity in the sequence, e.g., large object appearances,
is the main challenge for online few-shot segmentation. An optimal online few-shot segmentation
model should have the capacity to adapt flexibly to the segmentation task of each sample. To this end,
we propose to generate a sample-specific model for each new sample by formulating the adaptation
to a new sample as a variational Bayesian inference problem. Our online few-shot segmentation
model is composed of a frozen backbone, a decoder network, and a classifier w. At time step t, rather
than generating all model parameters, we generate sample-specific classifier weights wt for the
sample xt, maximizing the conditional predictive log-likelihood log p(yt|xt,Mt). By incorporating
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the sample-specific classifier wt into the prediction distribution, we have

log p(yt|xt,Mt) = log

∫
p(yt|xt, wt)p(wt|Mt)dwt, (2)

where p(wt|Mt) denotes the conditional prior distribution over wt. By depending on the prototype
memory Mt, we infer the classifier wt aggregating category knowledge from previous samples.

Although the prototype memory provides some category information, the model still knows little
about the current sample, especially when previous and current samples exhibit large appearance
variations. We cannot guarantee that the prior distribution p(wt|Mt) could quickly adapt to the
segmentation of the current sample xt. To cope with this problem, we expect our model to learn to
acquire sample-specific information from the current sample xt. Therefore, we further propose to
adapt the model by taking the information from the current sample into account. Instead of using
p(wt|Mt) as prior distribution, we incorporate the current sample xt into the prior distribution, so
Eq. (2) can be further formulated as

log p(yt|xt,Mt) = log

∫
p(yt|xt, wt)p(wt|xt,Mt)dwt. (3)

Conditioned on the current sample xt and the external memory Mt, the prior distribution
p(wt|xt,Mt) aggregates category knowledge from external memory and sample-specific knowl-
edge from the current sample. To guarantee that the prior distribution p(wt|xt,Mt) could
generate sample-specific classifier parameters, we design a variational posterior distribution
q(wt|xt, yt,Mt). By incorporating q(wt|xt, yt,Mt) into Eq. (3), we derive a lower bound of the
conditional predictive log-likelihood:

log p(yt|xt,Mt) = log

∫
p(yt|xt, wt)p(wt|xt,Mt)dwt

≥ Eq(wt|xt,yt,Mt)[log p(yt|xt, wt)]− DKL[q(wt|xt, yt,Mt)||p(wt|xt,Mt)].
(4)

This formulation establishes a variational inference of the prior distribution. In such a way, we
guarantee the inferred classifiers to be discriminative and adaptive to the segmentation of the current
sample. Besides, the KL divergence term in Eq. (4) further works as a regularizer, pushing the prior
distribution to adapt better to the current sample. In practice, we generate the prior and the posterior
distribution via a vanilla transformer (Vaswani et al., 2017) to allow the flexibility of variable input
sizes of conditions. The derivation of Eq. (4) is provided in Appendix A.

Memory-augmented segmentation Semantic segmentation requires much contextual informa-
tion in the feature representation to make a precise pixel-wise prediction. In our case, we strive to
learn better representations with the prototype memory and the current sample. At time step t, we
have a sample xt, initial feature representation zt, and the prototype memory Mt. Specifically, we
incorporate the object context from the prototype memory by introducing a category prototype pct :

pct =
1

t− 1

t−1∑
i=1

mipi, (5)

where mi is the weight for the prototype pi. Under the online setting, we can get the prediction
mask ŷt−1 at time step t− 1, and the ground-truth mask yt−1 of the sample xt−1 is revealed to the
model at time t. To this end, we can obtain the weight mi by calculating the cross entropy between
the ground-truth mask yi and prediction mask ŷi:

mi = 1− −yi log ŷi
t−1∑
j=1

−yk log ŷj

. (6)

With larger mi, the model is more confident about the current segmentation, then pi from memory
could provide more abundant category knowledge. The category prototype pct−1 is updated at each
time step and expected to obtain robust and generalizable class representation with the time step
increases. Then we can obtain the updated feature representation ẑt of sample xt:

ẑt = Ψ([zt, p̃
c
t , y

∗
t ]), (7)
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where Ψ is the decoder network implemented with multiple convolutional layers, p̃ct is the expanding
variant of pct with same spatial dimension as zt. y∗t is the prior mask of sample xt modelled by pixel-
wise cosine similarity between class prototype pct and initial feature representation zt. [·] indicates
the concatenation operation in the channel dimension. The initial feature representation zt and
prior mask y∗t provide sample-specific context from current sample xt, while the category prototype
p̃ct contains category knowledge from previous samples. In such a way, we learn sample-specific
feature representation for better adaptation to the segmentation of each sample. With sample-specific
representation ẑt, we can directly obtain the predicted mask of sample xt: ŷt = 1

L

∑L
l=1 ẑtw

l
t, where

wl
t ∼ p(wt|zt,Mt). L is number of Monte Carlo samples.

Objective The loss function is computed after all the segmentation tasks in the sequence are com-
pleted. We freeze parameters in the backbone network to avoid the model over-fitting over training
classes, while the remaining network parameters are optimized end-to-end. By incorporating fea-
ture representation zt and ẑt into the evidence lower bound in Eq. (4), the final objective function is
formulated as:

L =
1

T

T∑
t=1

[ 1
L

L∑
l=1

[− log p(yt|ẑt, wl
t)] + DKL(q(wt|zt, yt,Mt))||p(wt|zt,Mt))

]
, (8)

where T is the length of sequences. To enable back propagation, we adopt the reparameterization
trick (Kingma & Welling, 2013) for sampling the classifier wt. In practice, the first log-likelihood
term is implemented as a cross entropy loss between predictions and ground-truth. The conditional
probabilistic distributions are set to be diagonal Gaussian. We implement them using multi-layer
perceptrons (MLP) with the amortization technique and the reparameterization trick (Kingma &
Welling, 2013), which take the conditionals as input and output the parameters of the Gaussian.

3 RELATED WORK

Few-shot segmentation According to different interaction strategies between support and query
images, existing few-shot segmentation methods can be grouped into prototype-based methods (Sha-
ban et al., 2017; Dong & Xing, 2018; Zhang et al., 2020; 2019b; Wang et al., 2019; Yang et al., 2020;
Liu et al., 2020; Tian et al., 2020) and graph-based methods. Dong et al (Dong & Xing, 2018) in-
troduce the first prototype-based FSS method by extending the PrototypicalNet (Snell et al., 2017).
SG-One (Zhang et al., 2020) and PANet (Wang et al., 2019) adopt cosine similarity as the interaction
method between a single support prototype and the query feature. PFENet (Tian et al., 2020) further
propose an effective prior mask and pyramid feature enhancement module to achieve better segmen-
tation performance. Recently, some graph-based methods (Wang et al., 2020; Zhang et al., 2019a;
Min et al., 2021; Zhang et al., 2021a) have been proposed to further boost the FSS performance
over the prototype-based methods. HSNet (Min et al., 2021) leverage multi-level feature correlation
and efficient 4D convolutions to achieve dense comparison between the support and query features.
CyCTR (Zhang et al., 2021a) adopt vision transformer with a cycle-consistency attention to aggre-
gate pixel-wise support features into query ones. However, these methods neglect a more realistic
setting, where samples of novel classes arrives online.

Online learning Online learning aims to learn from a sequence of data instances one by one and
maximizes the correctness for the sequence of predictions (Hoi et al., 2021). Various approaches,
such as linear models (Cesa-Bianchi & Lugosi, 2006), non-linear models with kernels (Jin et al.,
2010; Kivinen et al., 2004), and deep neural networks (Zhou et al., 2012), have been proposed to
tackle the online learning task. Recently, online meta-learning methods (Finn et al., 2019; Babu
et al., 2021; Ren et al., 2020) make the model adaptation to the new data faster and more efficiently
by leveraging previously seen data. Finn et al. (Finn et al., 2019) propose to achieve fast model
adaption to new data with a data buffer storing all task data. Babu et al. (Babu et al., 2021) design a
layer-distributed memory network to learn fast adaption. Inspired by the above methods, we extend
the traditional few-shot segmentation task to the online setting.

Memory-augmented learning Neural networks with memory exhibit superior capacity in ma-
chine learning. Recent work equip the neural network with an external memory module to improve
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learning capacity Bornschein et al. (2017); Graves et al. (2016); Ramalho & Garnelo (2019); San-
toro et al. (2016). For the few-shot scenario, some work with memory network attempt to store the
information contained in the support set, focusing on learning the access mechanism shared across
tasks Zhen et al. (2020). Memory network exhibits more importance in the online learning setting
Santoro et al. (2016); Babu et al. (2021); Ren et al. (2020). Santoro et al. (2016) adopt Neural Turing
Machine (NTM) to quickly encode and retrieve new information for the online meta-learning task.
Ren et al. Ren et al. (2020) propose a contextual prototypical memory network that can make use
of spatiotemporal context from the recent past to tackle the online few-shot classification. In this
paper, we propose a prototype memory well-designed for online few-shot semantic segmentation.

Test-time adaptation Test-time adaptation (Sun et al., 2020; Wang et al., 2021; Chen et al., 2022)
is proposed to handle domain shifts between training and test data. These algorithms aim to adapt
the model to test data by fine-tuning the model parameters with self-supervised loss (Sun et al., 2020;
Hu et al., 2021; Zhang et al., 2022) or entropy minimization (Wang et al., 2021; Zhang et al., 2021b;
Niu et al., 2022). Recently, Dubey et al. (2021) and Iwasawa & Matsuo (2021) proposed to generate
test domain-specific classifiers with batches of test samples. Xiao et al. (2022) further propose to
learn to generalize across domains with domain information in single test sample. Different from
previous works, we propose variational test-time adaptation on each sample to deal with the sample
diversity in online few-shot segmentation, without any fine-tuning on the parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We adopt two natural image datasets, i.e., PASCAL and COCO, and one medical dataset
ABD-MRI-20, to comprehensively evaluate the proposed method’s performance. PASCAL is cre-
ated from PASCAL VOC 2012 (Everingham et al., 2010) and additional SBD annotations (Hariharan
et al., 2011). It contains 20 classes, split into 15 training and 5 testing classes. COCO is a more
challenging dataset in which samples from the same classes usually exhibit large appearance and
scale variations. It is composed of 60 training classes and 20 testing classes. ABD-MRI-20 (Kavur
et al., 2021) is an MRI dataset, which contains 20 3D T2-SPIR MRI scans and each with four organs,
i.e., Liver, Spleen, and left and right kidney. We adopt 5 scans with the spleen for evaluation and
the remaining 15 scans with other organs for training. T image-mask pairs are randomly sampled
from a specific class to construct a data sequence. More details about datasets setup are provided in
Appendix B. We will release our code.

Evaluation Metrics We adopt mIoU (mean Intersection over union) as a metric for evaluation on
two natural image datasets and dice score on the medical dataset. Given an input sequence with
length T , the model makes a random guess on the first image and outputs predicted masks for the
remaining images in sequence. We compute the t-shot mIoU (or dice score), i.e., the performance
after seeing t image-mask pairs in the sequence. We set the length of the input sequence T as 6 for
training and 11 for evaluation, and report the results of 1-shot, 3-shot, 5-shot, 7-shot, and 9-shot.
To characterize the learning ability of O-FSS models over sequences, we also present the averaged
mIoU from 1-shot to 10-shot results. All numbers are reported with 1000 sequences for natural
image datasets and 100 sequences for a medical dataset.

4.2 BASELINE MODELS

To demonstrate the merits of our proposed model, we compared it with several baseline models.
These baseline models are built on PFENet (Tian et al., 2020), we extend it to the online version
with different category prototype updating strategies. More details can be found in Appendix B.

Online MatchingNet (OMN) MatchingNet (Vinyals et al., 2016) performs nearest neighbour
matching among example prototypes for few-shot classification. To make full of category knowl-
edge from previous samples for the segmentation of the current sample, we store the foreground
prototypes of previous examples in the prototype memory. In particular, OMN adopts the near-
est neighbour matching to select one prototype from the prototype memory, then the most similar
prototype serves as category prototype for the segmentation of future samples.
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Table 1: Benefit of prototype memory in (%) on PASCAL with ResNet50 averaged three runs. With
the prototype memory, our method achieves significant mIoU performance.

Settings 1-shot 3-shot 5-shot 7-shot 9-shot mean

w/o Prototype memory 57.10 ±2.84 58.37 ±1.33 58.23 ±1.65 57.48 ±0.15 56.67 ±1.62 57.23 ±0.14

w/ Prototype memory 59.41 ±2.50 62.82 ±2.31 62.91 ±1.29 62.91 ±0.16 61.73 ±2.16 61.83 ±0.10

Table 2: Variational vs. deterministic classifier in (%) on PASCAL with ResNet50 averaged three
runs. Variational classifier is more critical than the deterministic classifier.

Settings 1-shot 3-shot 5-shot 7-shot 9-shot mean

Deterministic classifier 54.25 ±1.75 58.23 ±2.38 59.41 ±1.17 59.81 ±0.69 58.41 ±1.48 57.82 ±0.04

Variational classifier 54.84 ±1.37 58.96 ±2.87 60.03 ±0.78 60.30 ±0.39 59.11 ±0.96 58.53 ±0.18

Table 3: Importance of test-time adaptation in (%) on PASCAL with ResNet50 averaged three runs.
With test-time adaptation, our model achieves clear performance gain.

Settings 1-shot 3-shot 5-shot 7-shot 9-shot mean

w/o test-time adaptation 54.84 ±1.37 58.96 ±2.87 60.03 ±0.78 60.30 ±0.39 59.11 ±0.96 58.53 ±0.18

w/ test-time adaptation 59.41 ±2.50 62.82 ±2.31 62.91 ±1.29 62.91 ±0.16 61.73 ±2.16 61.83 ±0.10

Online Prototypical Network (OPN) Ren et al. (Ren et al., 2020) extend the Prototypical Net-
work (Snell et al., 2017) to the online setting, where the prototypes are updated sequentially using
weighted averaging. For the segmentation task at t step, OPN aggregates the prototypes in the pro-
totype memory into the category prototype by sample averaging. In this way, all previous examples
contribute equally to the current segmentation task.

Online Attentive Prototypical Network (OAPN) OAPN assumes that each previous sample con-
tributes differently to the segmentation of the current sample. Specifically, the attention mechanism
Vaswani et al. (2017) is adopted to measure the similarity between the prototype of the current sam-
ple and prototypes in the prototype memory. Then the category prototype is updated as the weighted
sum of prototypes in the memory.

LSTM (Hochreiter & Schmidhuber, 1997) We include temporal modelling methods for comparison
as well. Santoro et al. (Santoro et al., 2016) use LSTM with read and write protocols for the online
few-shot learning task. Similarly, we adopt a single-layer LSTM to interact with the prototype
memory and update the category prototype iteratively.

4.3 RESULTS

Benefit of prototype memory To show the importance of the prototype memory, we implement
a model variant without prototype memory. We directly replace the prototype memory in Eq. 4
with the sample prototype from last time step; that is, we utilize pt−1 to generate prior distribution
p(wt|xt, pt−1) and perform the segmentation task of the sample xt. The experimental results are
reported in Table 1. Without the prototype memory, our model has difficulty in aggregating category
information from previous samples and adapting to new samples. Thus the performance in all shots
is worse than in the memory-based model.

Variational vs. deterministic classifier We compare against the deterministic classifier as our
baseline model in which few-shot segmentation training methods obtain the classifier. As shown
in Table 2, the proposed variational classifier consistently outperforms the deterministic classifier
demonstrating the benefit brought by probabilistic modeling. The variational classifier provides
more informative representations of classes, which are able to encompass large intra-class variations
and, therefore, improve performance.

Importance of test-time adaptation We investigate the benefit of the test-time adaptation on the
PASCAL dataset in Table 3. In this paper, the memory adaptation in Eq. 2 is without test-time
adaptation, which is only conditioning on the prototype memory, while the sample adaptation in
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Table 4: Benefit of memory-augmented segmentation in (%) on PASCAL with ResNet50 averaged
three runs. Memory-augmented segmentation achieves better performance than with prototype-
augmented segmentation.

Settings 1-shot 3-shot 5-shot 7-shot 9-shot mean

Prototype-augmented 56.17 ±1.32 57.06 ±2.86 59.05 ±0.87 60.78 ±0.68 58.64 ±0.96 59.10 ±0.18

Memory-augmented 59.41 ±2.50 62.82 ±2.31 62.91 ±1.29 62.91 ±0.16 61.73 ±2.16 61.83 ±0.10
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Figure 3: Segmentation performance on long sequences. For sequences with length 21 and 51, the
proposed method consistently outperforms traditional and online few-shot segmentation baselines
on both PASCAL and COCO datasets.

Eq. 3 is with test-time adaptation, which conditions on both the current sample and the prototype
memory. From Table 3, we see that incorporating the variational classifier with test-time adaptation
performs consistently better than that without test-time adaptation. This is because, with the test-
time adaptation mechanism, our model can learn the capability to adapt to the segmentation of the
current sample using sample-specific knowledge from current samples and category information
from previous samples.

Benefit of memory-augmented segmentation We demonstrate the benefits of memory-
augmented segmentation on the PASCAL dataset. We implement a prototype-augmented variant
of our model by replacing the category prototype in Eq. 5 with the sample prototype from the last
time step. As shown in Figure 4, our model with memory-augmented segmentation performs consis-
tently better than that with prototype-augmented segmentation. The comparison demonstrates that
introducing category knowledge from prototype memory to representation learning is beneficial for
better adaptation to the segmentation task of new samples.

Segmentation of long sequences We investigate model performance on long sequences by in-
creasing time steps to 21 and 51, respectively. In Figure 3 (a) and (b), we compare with traditional
few-shot segmentation models (more details can be found in Appendix B) trained under 1-shot and
5-shot settings. Interestingly, a simple extension of traditional few-shot segmentation does not cope
well with sequential data loading, and tends to converge to over-smoothed, averaged masks of lesser
accuracy. In Figure 3 (a) and (b), we increase the time step to 50 and compare it with four online
few-shot segmentation baseline models. Our model achieves superior performance than the four
baseline variants with time step increases. Our model consistently outperforms traditional few-shot
segmentation models. This is because of the variational test-time adaptation mechanism, which
dynamically adapts the model to new samples in the sequence.

Comparison with baseline models As shown in Table 5, the proposed method sets consistent
state-of-the-art performance on all online few-shot segmentation benchmarks. For instance, our
model surpasses the second-best method on PASCAL, i.e., LSTM, by a margin of 3.54% in terms of
mean mIoU. This is reasonable since we generate model parameters with sample-specific knowledge
from the current sample and category knowledge from previous samples, leading to more adapted
models. Furthermore, we provide visualization of online few-shot segmentation results in Figure 4.
We can conclude that our model is able to adapt to each new samples and make better mask predic-
tion as time steps increase. More experimental results can be found in Appedix C.
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Table 5: Comparison with baseline models on three datasets. PASCAL and COCO adopt mIoU as
metric, while ABD-MRI-20 uses dice score, mean value and variance are reported with three runs.
Our model is a consistent top-performer on both natural image and medical image datasets.

Dataset Method 1-shot 3-shot 5-shot 7-shot 9-shot mean

PASCAL

OMN 51.60 ± 2.11 53.82 ± 4.68 53.62 ± 3.16 53.10 ± 1.17 51.94 ± 3.36 52.62 ± 0.03

OPN 52.63 ± 3.74 57.96 ± 2.61 59.30 ± 1.89 59.53 ± 0.10 58.60 ± 1.51 57.55 ± 0.05

OAPN 54.14 ± 1.17 57.30 ± 2.55 58.12 ± 2.29 58.45 ± 0.75 57.13 ± 1.25 56.76 ± 0.02

LSTM 55.40 ± 2.79 58.96 ± 3.36 59.63 ± 0.74 60.03 ± 0.22 58.50 ± 0.17 58.29 ± 0.10

Ours 59.41 ±2.50 62.82 ±2.31 62.91 ±1.29 62.91 ±0.16 61.73 ±2.16 61.83 ±0.10

COCO

OMN 23.4 ±4.18 22.42 ±0.68 21.73 ±0.07 23.30 ±3.83 22.48 ±0.03 22.84 ±0.78

OPN 39.59 ±1.87 42.60 ±1.40 45.22 ±0.36 45.11 ±0.39 47.06 ±3.40 44.22 ±0.20

OAPN 35.36 ±5.46 36.83 ±3.19 37.99 ±1.87 38.49 ±4.18 40.42 ±3.20 38.19 ±0.66

LSTM 35.52 ±1.89 41.45 ±3.32 44.65 ±1.36 45.67 ±0.55 47.71 ±5.13 43.84 ±0.58

Ours 43.08 ±1.61 45.96 ±1.18 49.17 ±0.5 48.30 ±0.14 49.93 ±3.24 47.79 ±0.29

ABD-MRI-20

OMN 32.28 ±2.24 30.16 ±1.16 24.43 ±1.15 30.74 ±0.29 26.76 ±1.18 28.36 ±0.36

OPN 35.40 ±1.27 30.95 ±0.23 36.86 ±0.36 35.89 ±0.01 33.15 ±0.29 34.29 ±0.08

OAPN 37.33 ±1.81 32.17 ±0.20 38.39 ±0.28 38.20 ±1.03 34.82 ±0.74 35.84 ±0.23

LSTM 34.66 ±1.40 29.08 ±0.10 35.82 ±0.23 33.97 ±1.55 31.72 ±0.80 32.74 ±0.18

Ours 39.57 ±0.58 34.48 ±0.61 41.26 ±0.09 39.73 ±0.71 36.53 ±2.05 38.32 ±0.28
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Figure 4: Visualization of online few-shot segmentation performance on PASCAL (top), COCO
(middle), and ABD-MRI-20 (bottom). Ground-truths are masked in green, while predictions are
masked in red. As time steps increase, our model is able to make better mask prediction.

5 CONCLUSION

In this paper, we investigate online few-shot segmentation, which aims to make pixel-wise prediction
for samples from novel classes sequentially. To cope with large sample diversity in the sequence,
we propose a memory-augmented variational adaptation mechanism, which adapts model to each
new sample. We first propose a prototype memory to retain category knowledge from previous
samples, then formulate the adaptation to the sample as a variational Bayesian inference problem.
Conditioned on the current sample and an external memory, our method is able to generate sample-
specific classifiers for the sample at each time step. Furthermore, we propose memory-augmented
segmentation to learn sample-specific representation for each sample. By doing so, our method is
updated sequentially and achieves fast adaptation to each sample segmentation task with the number
of samples increases over time. Ablation studies and further experiments on both natural image and
medical datasets show that our method attains superior online few-shot segmentation performance.
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A DERIVATIONS OF ELBO

For the sample xt at time step t, we begin with maximizing log-likelihood of the conditional distri-
bution log p(yt|xt,Mt) to derive the ELBO. By applying Jensen’s inequality, we have the following
steps as

log p(yt|xt,Mt)

= log

∫
p(yt|xt, wt)p(wt|xt,Mt)dwt

= log

∫
p(yt|xt, wt)

p(wt|xt,Mt)

q(wt|xt, yt,Mt)
q(wt|xt, yt,Mt)dwt

≥
∫

log[
p(yt|xt, wt)p(wt|xt,Mt)

q(wt|xt, yt,Mt)
]q(wt|xt, yt,Mt)dwt

= Eq(wt)[p(yt|xt, wt)]− DKL[q(wt|xt, yt,Mt)||p(wt|xt,Mt)],

(9)

which is consistent with Eq. 4.

B IMPLEMENTATION

B.1 DATASETS DETAILS

Pascal-5i and COCO-20i are two widely-used benchmarks in traditional few-shot segmentation
(FSS). Cross validation is adopted in FSS to test model performance on different novel classes,
we provide the class split of different folds in Table 6 and Table 7, respectively. In online few-shot
segmentation (OFSS), we adopt two nature image dataest (PASCAL and COCO) and one medi-
cal image dataset ABD-MR-20 to verify the effectiveness of online few-shot segmentation models.
For PASCAL and COCO, we implement most experiments on the fold-0 of Pascal-5i and COCO-
20i, i.e., classes in fold-0 serve as testing classes, while remaining classes are training classes. We
also provide results on different folds in Table 11, and more detailed results can be found in Table.
ABD-MRI-20 is a MRI dataset from ISBI 2019 Combined Healthy Abdominal Organ Segmentation
Challenge (Kavur et al., 2021). We choose spleen as the testing class, Liver, left and right kidney as
training classes. Furthermore, we adopt 5 scans with spleen for evaluation and remaining 15 scans
with other organs for training.

Table 6: Testing classes split for each fold in PASCAL-5i dataset.

Fold Testing (novel) classes

Fold-0 Aeroplane, Bicycle, Bird, Boat, Bottle
Fold-1 Bus, Car, Cat, Chair, Cow
Fold-2 Diningtable, Dog, Horse, Motorbike, Person
Fold-3 Potted plant, Sheep, Sofa, Train, Tvmonitor

Table 7: Testing classes split for each fold in COCO-20i dataset.
Fold Testing (novel) classes

Fold-0
Person, Airplane, Boat, Parking meter, Dog, Elephant, Backpack,Suitcase, Sports Ball,

Skateboard, Wine glass, Spoon, Sandwich, Hot dog, Chair, Dining table, Mouse, Microwave, Scissorse

Fold-1
Bicycle, Bus, Traffic light, Bench, Horse, Bear, Umbrella, Frisbee, Kite, Surfboard ,

Cup, Bowl, Orange, Pizza, Couch, Toilet, Remote, Oven, Book, Teddy bear

Fold-2
Car, Train, Fire hydrant, Bird, Sheep, Zebra, Handbag, Skis, Baseball bat, Tennis racket,

Fork, Banana, Broccoli, Donut, Potted plant, Tv, Keyboard, Sink, Toaster, Clock, Hair drier

Fold-3
Motorcycle, Truck, Stop sign, Cat, Cow, Giraffe, Tie, Snowboard, Baseball glove, Bottle,

Knife, Apple, Carrot, Cake, Bed, Laptop, Cell phone, Refrigerator, Vase, Toothbrush
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Figure 5: Architecture of baseline models. We compare our model with four baseline models,
which adopt different interaction methods between the prototype memory Mt and CNN features of
the current sample to generate the category prototype.

B.2 IMPLEMENTATION DETAILS

Task setup Online few-shot segmentation takes sequential samples as input and outputs mask
prediction for each sample in the sequence. All samples in a specific sequence contain the same
class object. Denoting the length of the input sequence as T , we set T = 6 and T = 11 at the
training and testing stage, respectively. For natural image datasets, we randomly sample thousands
of sequences from training classes to train our model at the training stage. At the testing stage,
we randomly sample 1000 sequences from novel classes to evaluate model performance. The input
resolutions of the model is set as 473×473. For the medical dataset, we focus on the segmentation
of 2D slices. At the training stage, we first select one 3D MRI scan, then randomly sample T 2D
slices that contain the target organ as one sequence. At the testing stage, we set the testing number
of sequences as 100, and the input resolution is 200×200.

Training details We train all baseline models and the proposed model with learning rate 0.0025
for 100 and 50 epochs on PASCAL and COCO, respectively. For experiments on ABD-MRI-20, we
set the learning rate and training epochs as 0.0025 and 100, respectively. We adopt ResNet50(He
et al., 2016) pretrained on ImageNet (Russakovsky et al., 2015) as backbone network to extract fea-
tures. The backbone is frozen for experiments on PASCAL and COCO to avoid the model outfitting
to training classes. For experiments on ABD-MRI-20, we fine-tune the backbone network to learn
robust feature representation for medical segmentation.

B.3 BASELINE MODELS

In our experiments, we compare our model with four baseline models, i.e., Online matching net
(OMN), Online Prototyical Network (OPN), Online Attentive Prototypical Network (OAPN), and
LSTM. These four baseline models share the same architecture as shown in Figure 5. The main
difference between these baseline models is the interaction methods between the prototype memory
Mt and CNN features of the current sample to generate the category prototype. OMN adopts the
nearest neighbour matching between the prototype memory and the feature of the current sample,
then the most similar prototypes serves as the category prototype for the segmentation of future
samples. OPN obtains the category prototype by averaging sample prototypes in the prototype
memory, while OAPN adopts the attention mechanism to generate weights for each prototype in the
prototype memory and the category prototype is updated as the weighted sum of prototypes in the
memory. For LSTM, we adopt a single-layer LSTM to interact with the prototype memory to update
the category prototype.

In Figure 3 (a) and (b), we compare our model with traditional few-shot segmentation models trained
under 1-shot and 5-shot settings. Replacing the prototype memory in Figure 5 with the support
set, we can obtain our traditional few-shot segmentation models. When the number of samples
increases over time, we directly average support foreground prototypes to get the category prototype.
For instance, at time step t = 5, we first obtain foreground prototypes of previous four samples,
then we average four prototypes to get the category prototype, which is finally used to preform the
segmentation of the fifth sample.

14



Under review as a conference paper at ICLR 2023

Table 8: Per step results on PASCAL. We report the results from 0-shot to 10-shot and the mean
of 1-shot to 10-shot. Our method achieves consistent best performance. mIoU is adopted as metric.

Method 0-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot mean

FSS-1shot 0 53.62 53.27 53.93 53.97 53.44 53.27 53.53 53.47 53.30 53.43 53.51
FSS-5shot 0 53.47 56.40 56.87 57.27 57.17 57.27 57.43 57.33 57.57 57.33 56.91
OMN 42.17 51.60 52.27 53.81 52.47 53.62 52.97 53.10 52.84 51.92 51.71 52.62
OPN 35.47 52.63 55.87 57.97 56.47 59.30 58.62 59.53 58.32 58.64 58.23 57.55
OAPN 43.29 54.15 55.48 57.30 55.90 58.12 57.37 58.45 57.10 57.13 56.63 56.76
LSTM 39.70 55.40 57.37 58.97 57.37 59.63 59.20 60.03 58.37 58/50 58.03 58.29
Ours 49.39 59.41 60.21 62.82 61.42 62.91 62.48 62.91 62.40 61.74 62.06 61.83

Table 9: Per step results on COCO.We report the results from 0-shot to 10-shot and the mean of
1-shot to 10-shot. Our method achieves consistent best performance. mIoU is adopted as metric.

Method 0-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot mean

FSS-1shot 0 33.38 37.64 38.42 37.72 38.06 38.86 39.78 39.14 38.63 39.64 38.13
FSS-5shot 0 38.76 41.98 43.09 44.08 43.90 44.67 45.26 45.21 44.08 45.34 43.64
OMN 14.09 23.40 24.34 22.40 23.04 21.73 22.27 23.30 23.01 22.48 22.46 22.84
OPN 11.02 39.59 44.37 42.60 42.53 45.22 44.56 45.11 46.01 47.06 45.13 44.22
OAPN 16.13 35.36 38.70 36.83 38.24 37.99 37.45 38.49 39.54 40.42 38.87 38.19
LSTM 0.09 35.52 41.20 41.45 44.10 44.64 45.00 45.67 47.14 47.71 46.04 43.84
Ours 25.17 43.08 47.57 45.96 46.71 49.17 48.46 48.30 49.90 49.93 48.82 47.79

Table 10: Per step results on ABD-MRI-20.We report the results from 0-shot to 10-shot and the
mean of 1-shot to 10-shot. Our method achieves consistent best performance. Dice score is adopted
as metric.

Method 0-shot 1-shot 2-shot 3-shot 4-shot 5-shot 6-shot 7-shot 8-shot 9-shot 10-shot mean

OMN 9.33 32.28 30.16 30.46 24.59 24.42 29.12 30.74 25.50 26.76 29.54 28.36
OPN 13.65 35.40 39.72 30.95 34.73 36.86 32.88 35.89 30.78 33.15 32.57 34.29
OAPN 15.20 37.33 42.06 32.17 36.07 38.39 33.83 38.20 31.91 34.82 33.58 35.84
LSTM 12.29 34.66 37.80 29.08 32.23 35.82 30.92 33.97 30.11 31.72 31.07 32.74
Ours 18.42 39.57 44.94 34.48 38.90 41.26 36.53 39.72 34.87 36.53 36.38 38.32

C MORE RESULTS

C.1 PER STEP RESULTS

We report per step results of our model and baseline models in Table 8, Table 9, and Table 10 for
PASCAL, COCO, and ABD-MRI-20, respectively. As shown in above Tables, our models achieves
considerably better performance than baseline models in all three dataset. Our model achieves
substantial performance improvement with time step increases, even though experiences some fluc-
tuation. This attributes to the capacity of our model in generating sample-specific weights for each
sample in the sequence. Interestingly, our model also learns to distinguish salient objects from com-
plex backgrounds. For zero-shot segmentation, in which online few-shot segmentation models give
random guess on the first image of a specific novel class, our model also achieves best performance.

C.2 CROSS VALIDATION ON DIFFERENT UNSEEN CLASSES

To investigate the effectiveness of our model on different novel classes, we implement cross valida-
tion on unseen classes and report results in Table 11. We compare our method with naive classifier
implemented with a 1×1 convolutional layer, i.e., test-time adaptation vs. naive classifier. As shown
in Table 11, our method achieves the best performance across different folds on both PASCAL and
COCO datasets. We can conclude that our model shows superior performance for online few-shot
segmentation and is robust to different novel classes.
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Table 11: Cross validation on different unseen classes. For each fold, testing samples come from
different unseen classes. Our method consistently outperforms baseline method on different folds of
PASCAL and COCO datasets.

Settings
PASCAL COCO

Fold-0 Fold-1 Fold-2 Fold-3 Fold-0 Fold-1 Fold-2 Fold-3

Naive classifier 57.82 ±0.04 66.15 ±0.26 52.35 ±0.12 49.66 ±0.26 41.74 ±0.36 37.23 ±0.24 16.43 ±0.45 25.20 ±0.37

Variational Test-time adaptation 61.83 ±0.10 68.87 ±0.31 53.17 ±0.05 51.46 ±0.32 47.79 ±0.29 41.14 ±0.38 18.63 ±0.11 27.60 ±0.42

C.3 VISUALIZATION

We provide more visualization of the segmentation process of our model in dealing with a sequence
of samples. Examples are shown in Figure 6 and Figure 7, respectively. We can see from the
visualization that our model can effectively tacking the sample diversity problem with providing
sample-specific weights for each sample. With time step increases, our model makes more and
more accurate predictions on coming samples.

Figure 6: Visualization of online few-shot segmentation performance on PASCAL. Ground-
truths are masked in green and predictions are masked in red. The length of sequence is set as
T = 11, and 0-shot to 10-shot results are reported. The input sequence exhibits large sample
diversity, our model shows superior capacity in tacking this problem.
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Figure 7: Visualization of online few-shot segmentation performance on COCO. Ground-truths
are masked in green and predictions are masked in red. The length of sequence is set as T = 11,
and 0-shot to 10-shot results are reported. The input sequence exhibits large sample diversity, our
model shows superior capacity in tacking this problem.
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