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ABSTRACT

Dataset distillation (DD) has emerged as a promising approach to compress datasets
and speed up model training. However, the underlying connections among various
DD methods remain largely unexplored. In this paper, we introduce UniDD, a
spectral filtering framework that unifies diverse DD objectives. UniDD interprets
each DD objective as a specific filter function applied to the eigenvalues of the
feature-feature correlation (FFC) matrix to extract certain frequency information
of the feature-label correlation (FLC) matrix. In this way, UniDD reveals that
the essence of DD fundamentally lies in matching frequency-specific features.
Moreover, we characterize the roles of different filters. For example, low-pass
filters, e.g., DM and DC, capture blurred patches, while high-pass filters, e.g.,
MTT and FrePo, prefer to synthesize fine-grained textures and have better diversity.
However, existing methods can only learn the sole frequency information as they
rely on fixed filter functions throughout distillation. To address this limitation, we
further propose Curriculum Frequency Matching (CFM), which gradually adjusts
the filter parameter to cover both low- and high-frequency information of the FFC
and FLC matrices. Extensive experiments on small-scale datasets, such as CIFAR-
10/100, and large-scale ImageNet-1K, demonstrate the superior performance of
CFM over existing baselines and validate the practicality of UniDD.

1 INTRODUCTION

The exponential growth of data presents significant challenges to the efficiency and scalability of
training deep neural networks. Dataset distillation (DD) has emerged as a solution to these challenges,
aiming to condense large-scale real datasets into compact, synthetic ones without compromising
model performance (Wang et al., 2018; Yu et al., 2024; Lei & Tao, 2024; Geng et al., 2023; Sachdeva &
McAuley, 2023). This approach has shown promise across a range of domains, including image (Zhao
et al., 2021; Zhao & Bilen, 2023; Cazenavette et al., 2022), time series (Liu et al., 2024b; Ding et al.,
2024), and graph (Jin et al., 2022; Yang et al., 2023; Liu et al., 2024a).

Existing DD methods vary in their optimization objectives, which can be grouped into four main
categories. Statistical matching (Zhao & Bilen, 2023; Zhao et al., 2023; Sajedi et al., 2023; Wang
et al., 2025) aligns key statistics, such as mean and variance, between real and synthetic datasets.
Gradient matching (Zhao et al., 2021; Kim et al., 2022; Zhao & Bilen, 2021) minimizes the direction
of model gradients across real and synthetic data during training. Trajectory matching (Cazenavette
et al., 2022; Guo et al., 2024) enforces the synthetic data to emulate the update trajectories of real
model parameters. Kernel-based approaches (Nguyen et al., 2021; Zhou et al., 2022; Loo et al.,
2022) employ a closed-form solution to bypass the inner optimization and improve distillation
efficiency. Despite differences in their objectives, all methods strive to minimize the discrepancy
between real and synthetic datasets from certain perspectives. This raises some key questions: Are
these DD methods related? If so, is there a unified framework that can encompass and explain the
objectives of various DD methods? These questions are crucial as a unified framework can deepen
our understanding of DD, uncover the essence of existing methods, and offer potential insights for
advanced distillation technologies.

As the first contribution of our work, we theoretically analyze some representative DD methods,
including DM (Zhao & Bilen, 2023), DC (Zhao et al., 2021), MTT (Cazenavette et al., 2022), and
FrePo (Zhou et al., 2022), and summarize them into a spectral filtering framework, termed UniDD,
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uncovering their commonalities and differences. Specifically, these DD methods are all proven to
match the feature-feature correlation (FFC) and feature-label correlation (FLC) matrices between
real and synthetic datasets. Their difference lies in the filter function applied to the FFC matrix,
which changes the eigenvalues of the FFC matrix to extract certain frequency components of the
FLC matrix. Based on their filtering behaviors, we classify existing DD methods into low-frequency
matching (LFM) and high-frequency matching (HFM). Our experimental investigations, detailed
in Section 3, demonstrate that LFM-based methods, e.g., DM and DC, tend to learn coarse-grained
colors and blur the synthetic images. In contrast, HFM-based methods, e.g., MTT and FrePo, focus
on fine-grained textures, which have better diversity.

The connections between DD objectives and filter functions further enable us to identify the weak-
nesses of existing methods. Traditional DD methods typically select the matching objectives based
on intuition, while UniDD shifts this paradigm to filter design, making the new DD methods more
interpretable and reliable. Based on the guidance of UniDD, we find that existing DD methods
only use fixed filter functions during distillation and can only learn a single frequency component,
which limits their adaptability. Therefore, we propose Curriculum Frequency Matching (CFM),
which gradually adjusts the filter parameter to increase the ratio of high-frequency information in the
synthetic data, thereby covering a wider range of frequency components. To verify its effectiveness,
we conduct extensive experiments on CIFAR-10/100, Tiny-ImageNet, and ImageNet-1k. The results
demonstrate that CFM consistently outperforms baselines by substantial margins and yields better
cross-architecture generalization ability. The contributions of this paper are summarized below:

• We introduce UniDD, a spectral filtering framework that interprets each DD objective as a specific
filter function applied to the FFC and FLC matrices, thus unifying diverse DD methods as a
frequency-matching problem.

• We classify existing methods into low-frequency and high-frequency matching based on their filter
functions, highlighting their respective roles in encoding global colors and local textures.

• We propose CFM, a novel DD method with dynamic filters that encode both low- and high-
frequency information. Extensive experiments across diverse benchmarks demonstrate its superior
performance over existing baselines.

2 UNIFYING THE OBJECTIVE FUNCTIONS OF DATASET DISTILLATION

Notations Let T = (H,Y ) denote a real dataset, where H represents the original data with |H| = n
samples, and Y ∈ Rn×c is the one-hot label matrix for c classes. The goal of DD is to learn a
synthetic network S = (Hs, Ys), where |Hs| = m ≪ n and Ys ∈ Rm×c, such that models trained
on T and S have comparable performance. In addition, there is a pre-trained distillation network
ϕ(·), such as ConvNet (Zhao et al., 2021) or ResNet-18 (He et al., 2016) for the image datasets. We
use X = ϕ(H) ∈ Rn×d and Xs = ϕ(Hs) ∈ Rm×d to indicate the data representations learned by
the distillation network on real and synthetic datasets, where d is the dimension.

Based on the above preliminaries, we propose UniDD, a spectral filtering framework that unifies a
wide range of DD methods, formulated as follows:

min
Xs

∥∥f(X⊤X)g(X⊤Y )− f(X⊤
s Xs)g(X

⊤
s Ys)

∥∥2
F
, (1)

where X⊤X,X⊤
s Xs ∈ Rd×d indicates the FFC matrices of the real and synthetic datasets and

X⊤Y,X⊤
s Ys ∈ Rd×c denote the FLC matrices. f(·) is the filter function and g(·) is a binary function

with g(X⊤Y ) = I or X⊤Y .

Spectral Filtering (Arveson, 2002). As X⊤X is always positive semi-definite, it can be decomposed
into X⊤X = UΛU⊤, where U is the eigenvectors and Λ is the diagonal eigenvalue matrix with
λi = Λii. We assume that the eigenvalues are sorted in a descending order, i.e., λ1 ≥ · · · ≥ λd ≥ 0.
The filter function f(·) acting on X⊤X is equivalent to acting on its eigenvalues:

f(X⊤X)g(X⊤Y ) = Uf(Λ)U⊤g(X⊤Y ), (2)

where the FFC and FLC matrices serve as a filter and signal, respectively. The matrix U⊤ is called
Fourier transform and is used to convert signals into the spectral domain, and f(Λ) is a filter that
changes the magnitude of frequency components. Depending on the property of f(·), filters can be
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Table 1: An overview of the objective and filter functions of four representative DD methods.

Matching Method Objective Function Filtering Function

Low-frequency
DM

∥∥X⊤Y −X⊤
s Ys

∥∥2
F

f(λ) = 1

DC
∥∥X⊤X −X⊤

s Xs

∥∥2
F
+

∥∥X⊤Y −X⊤
s Ys

∥∥2
F

f(λ) = {1, λ}

High-frequency
MTT

∥∥(I − αX⊤X)P − (I − αX⊤
s Xs)

Q
∥∥2
F
+

α
∥∥∥∑P−1

p=0 (I − αX⊤X)pX⊤Y −
∑Q−1

q=0 (I − αX⊤
s Xs)

qX⊤
s Ys

∥∥∥2
F

f(λ) = (1− αλ){p,q}

FRePo
∥∥(X⊤X + βI)−1X⊤Y − (X⊤

s Xs + βI)−1X⊤
s Ys

∥∥2
F

f(λ) = (λ+ β)−1

divided into different categories, such as low-pass and high-pass. For example, a low-pass filter can
be defined as f(λi) ≥ f(λi+1), ∀i ∈ [1, d− 1], as a larger eigenvalue indicates a lower frequency.

We analyze four representative DD methods in the following and explain their relationship with
different filter functions. Based on the filter behaviors, they can be divided into LFM-based and
HFM-based methods. See Table 1 for a quick overview and Appendix B for a detailed derivation.

2.1 LOW-FREQUENCY MATCHING

Methods belonging to LFM tend to capture the principal components of the FFC matrix. Generally,
these methods have a quick convergent rate and perform well with lower synthetic budgets. However,
they fail to learn fine-grained information and have poor diversity. Here, we analyze two sub-
categories: statistical matching and gradient matching.

Statistical Matching. Matching important statistics between the real and synthetic datasets is a
straightforward way to distill knowledge. DM (Zhao & Bilen, 2023) proposes to match the average
representations of each class, whose objective function can be defined as:∥∥X⊤Y −X⊤

s Ys

∥∥2
F
, (3)

where the corresponding filtering functions are f(X⊤X) = I and g(X⊤Y ) = X⊤Y , respectively.
For clarity, we omit the mean normalization here, but this does not affect the definitions of f and g.

However, DM does not perform well on complex distillation backbones, e.g., ResNet-18, as it only
matches the statistic of the last layer of backbones. To overcome this limitation, SRe2L (Yin et al.,
2023) proposes to match the mean and variance information in each Batch Normalization (BN) layer.
The objective function is defined as:∥∥diag(X⊤X)− diag(X⊤

s Xs)
∥∥2
F
+ ∥avg(X)− avg(Xs)∥2F , (4)

where diag(·) and avg(·) indicate diagonal and average operations. Notably, SRe2L replaces the
class representation X⊤Y with average sample representation avg(X), thus losing the category
information. It then adds a cross-entropy classification loss, i.e., Lce(Hs, Ys) as compensation.

Gradient Matching. Another LFM example is gradient matching (Zhao et al., 2021), which
minimizes the differences of model gradients in the real and synthetic datasets. The gradients of the
linear classifier are calculated as:

∇W = X⊤(XW − Y ), ∇s
W = X⊤

s (XsW − Ys). (5)

By deriving the upper bound of minimizing the gradient differences, we unify gradient matching into
our framework:

∥∇W −∇s
W ∥2F ≤ ∥W∥2F ∥X⊤X −X⊤

s Xs∥2F + ∥X⊤Y −X⊤
s Ys∥2F , (6)

where the corresponding filtering functions are f(X⊤X) = X⊤X when g(X⊤Y ) = I , and
f(X⊤X) = I when g(X⊤Y ) = X⊤Y . In addition, Deng et al. (2024) adds a covariance matching
loss to DM to explore the inter-feature correlations, which can also be viewed as a special case of
gradient matching.
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2.2 HIGH-FREQUENCY MATCHING

Instead of directly matching the principle components, HFM-based methods typically apply high-pass
filters on the FFC matrix to enhance the high-frequency information and improve diversity. They
usually perform better than LFM-based methods but also bring more computations. We analyze two
sub-categories: trajectory matching and kernel ridge regression (KRR).

Trajectory Matching. Matching the long-range training trajectories has been proven to be an
effective approach for DD. We take MTT (Cazenavette et al., 2022) as an example, which minimizes
the differences between network parameters trained on the real and synthetic datasets. The objective
function can be formulated as: ∥∥WP −WQ

s

∥∥2
F
, (7)

where WP and WQ
s indicate the parameters trained on the real and synthetic datasets for P and Q

iterations, respectively. For a full-batch gradient descent, we have:

W 1 = W 0 − α∇W = (I − αX⊤X)W 0 + αX⊤Y, (8)

where α is the learning rate and W 0 indicates the initial parameters. For K iterations, we have:

WK = (I − αX⊤X)KW 0 +

K−1∑
k=0

α(I − αX⊤X)kX⊤Y. (9)

As WP and WQ
s have the same initialization W 0, the objective function can be reformulated as:∥∥WP −WQ

s

∥∥2
F
≤

∥∥(I − αX⊤X)P − (I − αX⊤
s Xs)

Q
∥∥2
F
+

α

∥∥∥∥∥
P−1∑
p=0

(I − αX⊤X)pX⊤Y −
Q−1∑
q=0

(I − αX⊤
s Xs)

qX⊤
s Ys

∥∥∥∥∥
2

F

,
(10)

where the corresponding filtering functions are f(X⊤X) = (I − αX⊤X)P/Q when g(X⊤Y ) = I ,
and f(X⊤X) =

∑
(I − αX⊤X)p/q when g(X⊤Y ) = X⊤Y .

Subsequent works improve MTT from different perspectives, such as memory overhead (Cui et al.,
2023), trajectory training (Du et al., 2023), and trajectory selection (Guo et al., 2024). However, they
all follow the same objective function so that they can be naturally included in our unified framework.

KRR. The early-stage DD algorithms usually update the synthetic data by solving a two-level
optimization problem. To reduce computation and memory costs, KRR-based methods are proposed
to replace the inner-optimization with a closed-form solution:∥∥Y −Kts(Kss + βI)−1Ys

∥∥2
F
, (11)

where Kts = K(X,Xs) ∈ Rn×m and Kss = K(Xs, Xs) ∈ Rm×m are two Gram matrices. There
are many choices of kernel functions. When using the linear kernel, we have:∥∥Y −XX⊤

s (XsX
⊤
s + βI)−1Ys

∥∥2
F
, (12)

where X⊤
s (XsX

⊤
s + βI)−1Ys can be seen as a trainable weight matrix Ws ∈ Rd×c. By adding a

regularization term β ∥Ws∥2F , the optimal solution of Ws becomes:

W ∗
s = (X⊤X + βI)−1X⊤Y. (13)

Then the objective function of KRR can be reformulated as:∥∥(X⊤X + βI)−1X⊤Y −X⊤
s (XsX

⊤
s + βI)−1Ys

∥∥2
F
. (14)

By applying a matrix identity transform (Welling, 2013) on the second term, the objective function
can be unified into UniDD:∥∥(X⊤X + βI)−1X⊤Y − (X⊤

s Xs + βI)−1X⊤
s Ys

∥∥2
F
, (15)

where the corresponding filtering functions are f(X⊤X) = (X⊤X + βI)−1 and g(X⊤Y ) = X⊤Y .

It is worth noting that only the linear kernel case can be unified into our framework, e.g., KIP (Nguyen
et al., 2021) and FrePo (Zhou et al., 2022). We leave the analysis of the non-linear kernel, e.g.,
Gaussian and polynomial, as further work.
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(a) Raw image (b) Low-pass (c) High-pass

Figure 1: Comparison between real and synthetic images.
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Figure 2: Intra-class similarity.

3 ROLES OF FILTERS

The above analysis reveals that DD methods adopt different filters, i.e., low-pass and high-pass. This
section further analyzes their roles and verifies them through experiments on Tiny-ImageNet.

Particularly, low-pass filters assign higher amplitudes to larger eigenvalues. As a result, synthetic data
will preferentially learn features encoded in eigenvectors with larger eigenvalues, i.e., low-frequency
information. To verify this conclusion, we visualize the raw image and synthetic image distilled by
a low-pass filter in Figures 1a and 1b, respectively. It can be observed that the synthetic image is
blurrier than the raw image, indicating that applying low-pass filters on the FFC matrix makes the
synthetic data learn the coarse-grained shapes of real data. In contrast, high-pass filters emphasize
fine-grained textures. As Figure 1c illustrates, the synthetic image distilled by the high-pass filter
f(λ) = (λ+ β)−1 exhibits more complex textures than the raw image.

After identifying the roles of low-pass and high-pass filters, we further explore their influence on
the synthetic data. Following G-VBSM (Shao et al., 2024), we calculate the intra-class cosine
similarity of the synthetic datasets distilled by different filters. The results are shown in Figure 2,
from which we can see that the low-pass filter increases intra-class similarity of synthetic data and
ensures the consistency of DD, while the high-pass filter improves the diversity of DD. See Figure 6
for a quantitative comparison.

4 THE PROPOSED METHOD

It is crucial to preserve both the consistency and diversity of the synthetic datasets. However, existing
DD methods only have fixed filter functions and cannot capture the diverse frequency information of
the real datasets, which motivates the design of our model. The framework is shown in Figure 3.

Implementation of FFC and FLC. We calculate the FFC and FLC matrices based on the feature
map of each convolutional layer. Specifically, the feature map of the l-th layer is denoted as X l

s ∈
Rm×d×h×w, indicating the number of synthetic images, channels, height, and width, respectively.
For the FFC matrix, we reshape the feature map into channel-level representations, and for the FLC
matrix, we average it along the height and width dimensions:

X̂ l
s = reshape(X l

s) ∈ Rmhw×d, X̄ l
s = avg(X l

s) ∈ Rm×d. (16)

In practice, directly computing the FFC matrices suffers from numerical overflow problems because
the reshape operator significantly increases the number of samples from m to mhw. Therefore, we
use the covariance matrix and mean representation as substitutes to stabilize the training process

Ψl
s =

1

mhw
(X̂ l

s − X̄ l
s)

⊤(X̂ l
s − X̄ l

s), Φ
l
s =

1

m
X̄ l⊤

s Ys, (17)

where Ψl
s and Φl

s denote the normalized FFC and FLC matrices of the synthetic dataset. Similarly,
we can calculate Ψl and Φl for the real dataset.

Exponential Moving Updating (EMU). The computation of Ψl and Φl is affordable for real datasets
but is much more complex for synthetic datasets. In practice, we can only calculate Ψl

s and Φl
s in

a mini-batch manner, which differs from the full-batch assumption in the theoretical analysis. To

5
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Figure 3: Framework of CFM. The real and synthetic data is first fed into a backbone to calculate their
corresponding FFC and FLC matrices. The filter f(λ) = (λ+βb)

−1 is then applied on FFC to extract
certain frequencies. CFM uses different values of βb in each batch to cover both the low-frequency
and high-frequency information.

mitigate this gap, we adopt a moving update technology (Shao et al., 2024; Loo et al., 2024) to cache
the result of each batch and ultimately approximate the statistics of the real datasets:

Ψl,b
s =

1

b
Ψl,b

s + (1− 1

b
)Ψl,b−1

s , Φl,b
s =

1

b
Φl,b

s + (1− 1

b
)Φl,b−1

s , (18)

where Ψl,b
s and Ψl,b−1

s indicate the FFC matrices of the current b-th batch and the previous batch,
respectively. The symbols of the FLC matrices are the same as above.

Curriculum Frequency Matching. After calculating the FFC and FLC matrices, we need to design
a filtering function to match the crucial frequency information between the real and synthetic datasets.
Specifically, we consider a filter f(λ) = (λ + β)−1, whose shape is controlled by the value of β.
Generally, as β decreases, the proportion of high-frequency information gradually increases, thus
improving the diversity of synthetic datasets. However, high-frequency information also introduces
additional noise, resulting in performance degradation, as shown in Figure 6. Therefore, we define a
scheduler to dynamically adjust the value of β in different batches to balance the consistency and
diversity of the synthetic dataset

βb = β ∗ (1 + cos(πb/B))/2, (19)

where β is a hyper-parameter that controls the maximum frequency, and B denotes the total number
of batches. Notably, f(Ψl,b

s ) = (Ψl,b
s + βb)

−1 has different characteristics. For example, Ψl,1
s ,

corresponding to β1, preserves consistency and Ψl,B
s , corresponding to βB , emphasizes diversity.

Loss Function. After defining the filtering function f , another consideration is the choice of g, which
is restricted to g(X⊤Y ) = I or X⊤Y . The former corresponds to a filter-matching loss, while the
latter leads to a signal-matching loss. In the context of CFM, we define the loss functions as:

Lfilter =

B∑
b=1

L∑
l=1

∥∥(Ψl + βbI)
−1 − (Ψl,b

s + βbI)
−1

∥∥ ,
Lsignal =

B∑
b=1

L∑
l=1

∥∥(Ψl + βbI)
−1Φl − (Ψl,b

s + βbI)
−1Φl

s

∥∥ , (20)

By combining these two functions with the basic classification loss, we get the final loss function:

L = Lcls(Hs, Ys) + ηLfilter + ηLsignal (21)

where η = 0.1 is a hyperparameter for all datasets. See Appendix C for more details, such as the
pseudo algorithm.
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Table 2: Performance (%) of different DD methods in CIFAR-10/100. The best performance is
highlighted in bold. Results are taken from the original papers, and − indicates missing data.

Dataset IPC
ConvNet-128 ResNet-18

DM DC MTT FrePo G-VBSM DWA CFM SRe2L G-VBDM DWA CFM

CIFAR-10
10 48.9±0.6 44.9±0.5 65.3±0.7 65.5±0.4 46.5±0.7 45.0±0.4 52.1±0.5 27.2±0.5 53.5±0.6 32.6±0.4 57.0±0.3
50 63.0±0.4 53.9±0.5 71.6±0.2 71.7±0.2 54.3±0.3 63.3±0.7 64.0±0.4 47.5±0.6 59.2±0.4 53.1±0.3 82.3±0.4

CIFAR-100
10 29.7±0.3 25.2±0.3 33.1±0.4 42.5±0.2 38.7±0.2 47.6±0.4 58.3±0.4 31.6±0.5 59.5±0.4 39.6±0.6 64.6±0.4
50 43.6±0.4 30.6±0.6 42.9±0.3 44.3±0.2 45.7±0.4 59.0±0.1 67.1±0.3 49.5±0.3 65.0±0.5 60.3±0.5 71.4±0.2

Table 3: Performance (%) of different DD methods in Tiny-ImageNet and ImageNet-1k.

Dataset IPC
ResNet-18 ResNet-101

SRe2L CDA G-VBSM RDED DWA CFM SRe2L RDED DWA CFM

T-ImageNet
50 41.4±0.4 48.8 47.6±0.3 58.2±0.1 52.8±0.2 58.0±0.2 42.5±0.2 41.2±0.1 54.7±0.3 60.4±0.2
100 49.7±0.3 53.2 51.0±0.4 − 56.0±0.2 59.2±0.1 51.5±0.3 − 57.4±0.3 61.1±0.2

ImageNet-1k
10 21.3±0.6 − 31.4±0.5 42.0±0.1 37.9±0.2 40.6±0.3 30.9±0.1 48.3±1.0 46.9±1.4 47.2±0.5
50 46.8±0.2 53.5 51.8±0.4 56.5±0.1 55.2±0.2 57.3±0.2 60.8±0.5 61.2±0.4 63.3±0.7 63.5±0.2
100 52.8±0.3 58.0 55.7±0.4 − 59.2±0.3 59.5±0.2 62.8±0.2 − 66.7±0.2 66.9±0.3

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We consider four datasets, including CIFAR-10/100 (Krizhevsky et al., 2009) (32×32,
10/100 classes), Tiny-ImageNet (Le & Yang, 2015) (64×64, 200 classes), and ImageNet-1K (Deng
et al., 2009) (224×224, 1000 classes).

Network Architectures. We use ResNet-18 (He et al., 2016) as the distillation network for all
datasets. For a fair comparison with traditional DD methods, we also use ConvNet-128 (Zhao et al.,
2021) in CIFAR-10/100, as suggested by G-VBSM (Shao et al., 2024). We adopt various memory
budgets for different datasets, including images per class (IPC)-10, 50, and 100.

Baselines. Traditional DD methods work on small-scale datasets, e.g., CIFAR-10/100, but do not
perform well in the large-scale ImageNet-1K. In this case, we select DM (Zhao & Bilen, 2023),
DC (Zhao et al., 2021), MTT (Cazenavette et al., 2022), and FrePo (Zhou et al., 2022) as baselines in
CIFAR-10/100. Moreover, we report the performance of some more recent DD methods, including
SRe2L (Yin et al., 2023), CDA (Yin & Shen, 2023), G-VBSM (Shao et al., 2024), RDED (Sun et al.,
2024), and DWA (Du et al., 2024).

Evaluation. In the evaluation phase, we adopt the Fast Knowledge Distillation (FKD) strategy sug-
gested by SRe2L, which has been proven to be useful for large-scale datasets. For a fair comparison,
we strictly control the hyperparameters of FKD to be the same as those of previous methods. See
Appendix C.3 for more details.

5.2 QUANTITATIVE RESULTS

We conduct experiments on both small-scale and large-scale datasets. The results are shown in
Tables 2 and 3, respectively, from which we have the following observations:

CIFAR-10/100. Traditional DD methods perform well on datasets with fewer classes, i.e., CIFAR-
10, and shallow models, i.e., ConvNet-128. The advanced DD methods are more effective when
the dataset becomes larger and the network goes deeper. We can observe that CFM consistently
outperforms all advanced DD methods by a large margin. Notably, ResNet-18 trained on the original
datasets has an accuracy of 94.25% and 77.45% on CIFAR-10/100. The performance of existing
methods is far from achieving optimal results, while CFM is significantly approaching, demonstrating
its effectiveness in distilling low-resolution data.

Tiny-ImageNet & ImageNet-1k. In the large-scale datasets, we use ResNet-{18, 101} to evaluate
the performance of different methods. In Tiny-ImageNet, CFM outperforms DWA by 3% on
average and is slightly lower than RDED when IPC=50. When IPC increases to 100, CFM achieves
the best performance, demonstrating its effectiveness. In the ImageNet-1k part, we can see that
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Table 4: Cross-architecture performance (%) of different DD methods. ‡ indicates that the results are
our evaluation, otherwise, we adopt the results from the original paper. The results of DWA are not
reported due to the lack of source code and synthetic images.

ImageNet-1k
(IPC=50)

Validaton Model

ResNet-18 ResNet-50 ResNet-101 DenseNet-121 RegNet-Y-8GF ConvNeXt-Tiny

SRe2L 46.80 55.60 60.81 49.47 60.34 53.53
CDA 53.45 61.26 61.57 57.35 63.22 62.58
G-VBSM‡ 51.8 58.7 61.0 58.47 62.02 61.93
CFM 57.32 63.23 63.46 60.91 64.03 64.89

Table 5: Ablation studies on the loss functions
of CFM. Experiments are conducted on three
datasets with IPC=50.

Loss Functions Datasets

Lfilter Lsignal Lcls CIFAR Tiny ImageNet

✓ 64.95 51.20 53.43
✓ ✓ 67.32 51.92 55.76
✓ ✓ ✓ 72.48 54.84 57.32

Low-pass
= 1e

1
= 1e

2
= 1e

3
= 1e

4 CFM

50

52

54

56

58

Ac
cu

ra
cy

IPC=50
IPC=100

Low-pass
= 1e

1
= 1e

2
= 1e

3
= 1e

4 CFM
50

52

54

56

58

60
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cu

ra
cy

IPC=50
IPC=100

Table 6: Ablation studies on filters. Left: Tiny-
ImageNet; Right: ImageNet-1K.

CFM consistently surpasses all training-based DD methods in IPC=50, 100, and 200, validating its
superiority over the advanced DD methods. Moreover, we observe that RDED performs better than
CFM in IPC=10. We suspect that the synthetic data cannot effectively cover the useful frequency
features under the limited memory budget, leading to the performance degeneration of CFM.

5.3 CROSS-ARCHITECTURE GENERALIZATION

In addition to classification accuracy, cross-architecture generalization is also crucial for DD. Ideally,
synthetic datasets should encode the knowledge of real datasets rather than overfitting to a specific
model architecture. Therefore, we use diverse networks, including ResNet-50/101, DenseNet-
121 (Huang et al., 2017), RegNet-Y-8GF (Xu et al., 2023), and ConvNeXt-Tiny (Liu et al., 2022b), to
evaluate the generalization ability of different DD methods on the ImageNet-1k dataset with IPC=50.
The distillation network is uniformly set to ResNet-18. Results are shown in Table 4, from which we
can see that CFM achieves the best performance by a substantial margin across different architectures.

5.4 ABLATION STUDIES

We conducted two experiments to demonstrate the importance of each module in the proposed model.
The first experiment, shown in Table 5, is used to identify the effectiveness of different loss functions.
Specifically, we sequentially remove the classification loss and signal-matching loss, and evaluate
CFM on three datasets, including CIFAR-100, Tiny-ImageNet, and ImageNet-1k. We can observe
that all three loss functions contribute to the performance of CFM, and the filter-matching loss plays
a fundamental role. This discovery suggests that important knowledge of the real datasets may be
encoded in the FFC matrix of the feature maps.

The second experiment is used to verify the effectiveness of the curriculum strategy. Specifically, we
evaluate the performance of different filters, including low-pass filter, high-pass filter with parameter
β = 1e−1, e−2, 1e−3, 1e−4, and high-pass filter with CFM. The results are shown in Figure 6, from
which we can find that the performance of the low-pass filter is far away from the high-pass filters,
indicating that the high-frequency information is more important for DD. However, the extremely
high frequency will also lead to performance degradation. For example, the performance of β = 1e−4

is not as good as other parameters. On the other hand, CFM balances the ratio between low-frequency
and high-frequency by setting a proper frequency band, consistently outperforming other filters.

5.5 VISUALIZATION

To provide a more intuitive comparison of various DD methods, we visualize the synthetic images
generated by SRe2L, G-VBSM, and CFM in Figure 4. It can be observed that SRe2L and G-VBSM
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Tiny-ImageNet ImageNet-1k

SRe2L

G-VBSM

CFM
GoldFish Jellyfish Snail GoldFish Cucumber Pizza

Figure 4: Visualization of the images synthesized by different DD methods.

struggle to produce meaningful images, particularly with the low-resolution Tiny-ImageNet dataset.
In contrast, the images synthesized by CFM exhibit clear semantic information, e.g., recognizable
shapes, demonstrating the effectiveness of matching frequency-specific features between the real and
synthetic datasets. See Appendix D for more visualizations.

6 RELATED WORK

Data Parameterization. Traditionally, the synthetic images are optimized in the pixel space, which is
inefficient due to the potential data redundancy. Therefore, some methods explore how to parameterize
the synthetic images. IDC (Kim et al., 2022) distillates low-resolution images to save budget and
up-samples them in the evaluation stage. Haba (Liu et al., 2022a) designs a decoder network to
combine different latent codes for diverse synthetic datasets. RDED (Sun et al., 2024) stitches the
core patches of real images together as the synthetic data. Some methods use generative models
to decode the synthetic datasets from latent codes, including GAN-based methods (Zhao & Bilen,
2022; Liu & Wang, 2023), diffusion-based methods (Gu et al., 2024; Su et al., 2024), and implicit
function-based methods (Shin et al., 2023). Generally, data parameterization can be incorporated
with different DD objectives to improve their efficiency.

Model Augmentation. The knowledge of the datasets is mostly encoded in the pre-trained distillation
networks. Therefore, some methods focus on training a suitable network for DD by designing some
augmentation strategies. FTD (Du et al., 2023) constrains model weights to achieve a flat trajectory
and reduces the accumulated errors. Zhang et al. (2023) use early-stage models and parameter
perturbation to increase the search space of the parameters. More recently, DWA (Du et al., 2024)
employs directed weight perturbations on the pre-training model that maintain the unique features of
each synthetic data.

Theory. Some works tend to explore DD from a theoretical perspective. For example, Maalouf et al.
(2023) analyzes the size and approximation error of the synthetic datasets. Cui et al. (2024) explores
the influence of spurious correlations in DD. Yang et al. (2024) explains the information captured
by the synthetic datasets. Kungurtsev et al. (2024) provides a formal definition of DD and gives a
foundation analysis on the optimization of DD. These methods have some important insights, but fail
to explain the roles of existing methods. In contrast, UniDD establishes the relationship between DD
objectives and spectral filtering.

7 CONCLUSION

In this paper, we introduce UniDD, a framework that unifies various DD objectives through spectral
filtering. UniDD demonstrates that each DD objective corresponds to a filter function applied on
the FFC and FLC matrices. This finding reveals the nature of various DD methods and inspires the
design of new methods. Based on UniDD, we propose CFM to encode both low- and high-frequency
information by gradually changing the filter parameter. Experiments conducted on various datasets
validate the effectiveness and generalization of the proposed method. A promising future direction is
to generalize UniDD to the distillation of unsupervised and multi-modal datasets.

9
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B DERIVATION OF UNIDD

The derivation of statistical matching, gradient matching, and trajectory matching is relatively intuitive
and has been fully introduced in the main text. Here, we mainly derive the conclusion of KRR, which
is closely related to the proposed model. Generally, the objective of KRR is defined as:

LKRR = ||KW − Y ||2F + βW⊤KW, (22)

where K ∈ Rn×n is the Gram matrix of input data.

By taking the derivative with respect to W , we have:

∇W = K⊤(KW − Y ) + β(KW +K⊤W ). (23)

When set the gradient to zero, we have:

W ∗ = (K + βI)−1Y. (24)

This equation gives an optimal solution of W , which can be used to replace the inner loop of DD. If
implemented with the linear kernel, we have:

Ws = (XsX
⊤
s + βI)−1Ys. (25)

The outer loop of DD treats Ws a classifier to minimize the classification error in the real datasets:

∥Y −KtsWs∥2 =
∥∥Y −XX⊤

s (XsX
⊤
s + βI)−1Ys

∥∥2
F
, (26)

which derivatives Equation 12 in the main text.

Another detail is the identity transformation, formulated as

P(QP+ I)−1 = (PQ+ I)−1P. (27)

By setting X⊤
s = P and Xs = Q, we have:

X⊤
s (XsX

⊤
s + βI)−1 = (X⊤

s Xs + βI)−1X⊤
s . (28)

Based on this equation, we successfully transform the Gram matrix into the FFC matrix and unify
KRR-based methods into UniDD.

C IMPLEMENTATION DETAILS.

C.1 ALGORITHM

Algorithm 1 illustrates the distillation process of CFM.

C.2 ENVIRONMENT

All experiments are conducted on a single GeForce RTX 4090.

C.3 EXPERIMENTAL SETUP

We use the squeeze, recover, and relabel pipeline, introduced by SRe2L, for the distillation of CFM.
The details of datasets, setup (e.g., optimizer), and hyper-parameters are listed in Tables 7, 8, 9, and
10.

D VISUALIZATION

Finally, we visualize more synthetic images of ImageNet-1k in Figure 5 to provide a comprehensive
exhibition. Specifically, each column represents the images sampled from the same batch. From left
to right, the value of βd decreases, and the high-frequency information gradually increases. It can be
observed that images on the left side are somewhat blurry, while images on the right side have more
complex textures, validating the conclusions in Section 3.
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Table 7: Statistics of datasets.

CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet-1k

Classes 10 100 200 1000
Training 50,000 50,000 100,000 1,281,167
Validation 10,000 10,000 10,000 50,000
Resolution 64×64 64×64 64×64 224×224

Table 8: Squeeze Configurations of CFM.

Config CIFAR-10/100 Tiny-ImageNet ImageNet-1k

Epoch 200 / 100 50 90
Optimizer SGD SGD SGD
Learning Rate 0.1 0.2 0.1
Momentum 0.9 0.9 0.9
WeightDecay 5e-4 1e-4 1e-4
BatchSize 128 256 256
Scheduler Cosine Cosine Step (0.1 / 30 epochs)

Augmentation RandomCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip

Table 9: Recover Configurations of CFM.

Config CIFAR-10/100 Tiny-ImageNet ImageNet-1k

β 0.1 1.0 0.1
Iteration 1000 1000 1000
Optimizer Adam Adam Adam
Learning Rate 0.25 0.1 0.1
Betas (0.5, 0.9) (0.5, 0.9) (0.5, 0.9)
BatchSize 10/100 200 500
Scheduler Cosine Cosine Cosine

Augmentation RandomResizedCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip

Table 10: Recover & Validation Configurations of CFM.

Config CIFAR-10/100 Tiny-ImageNet ImageNet-1k

Epoch 1000 300 300
Optimizer Adam / SGD SGD Adam
Learning Rate 1e-3 / 1e-1 2e-1 1e-3
Parameters - / Mom=0.9 Mom=0.9 -
WeightDecay 5e-4 1e-4 1e-4
BatchSize 64 64 100
Scheduler Cosine Cosine Cosine
Temperature 30 20 20

Augmentation RandomCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip

RandomResizedCrop
HorizontalFlip
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Algorithm 1 Curriculum Frequency Matching

Input: Distillation network ϕ, real dataset T = (H,Y ), minimum parameter βmin, maximum step
T , number of iteration I, batch size |B|.

Output: Synthetic dataset S = (Hs, Ys)
1: Feed H into ϕ for a forward pass
2: for layer index l = 1, · · · , L do
3: Calculate Ψl and Φl based on Eq. 17
4: end for
5: for batch index b = 1, · · · , B do
6: Initialize Hb

s with randomly sampled real data
7: Update βb based on Eq. 19
8: repeat
9: Feed Hb

s into ϕ for a forward pass
10: for layer index l = 1, · · · , L do
11: Calculate Ψl,b

s and Φl,b
s based on Eq. 18

12: Calculate Lfilter and Lsignal based on Eq. 20
13: end for
14: Calculate Lce and back-propagate L
15: Update Hb

s
16: until Reached the number of iteration I
17: end for

Figure 5: Synthetic images of ImageNet-1k. From left to right, the high-frequency gradually
increases.
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