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Abstract

We present a novel hypothesis on norms of representations produced by convolutional neural
networks (CNNs). In particular, we propose the norm-count hypothesis (NCH), which states
that there is a monotonically increasing relationship between the number of certain objects
in the image, and the norm of the corresponding representation. We formalize and prove
our hypothesis in a controlled setting, showing that the NCH is true for linear and batch
normalized CNNs followed by global average pooling, when they are applied to a certain
class of images. Further, we present experimental evidence that corroborates our hypothesis
for CNN-based representations. Our experiments are conducted with several real-world
image datasets, in both supervised, self-supervised, and few-shot learning – providing new
insight on the relationship between object counts and representation norms.

1 Introduction

The ability to learn high-quality representations from a wide range of complex data types lies at the heart of
the success of deep learning. Recently, several works have studied how deep learning-based representations
can be embedded in non-Euclidean spaces, to further improve representation quality (Bronstein et al., 2017).
In particular, embedding representations on the hypersphere using L2 normalization has proven to be par-
ticularly promising direction for several downstream applications, such classification and regression (Mettes
et al., 2019; Scott et al., 2021; Tan et al., 2022), self-supervised learning (SSL) (Chen et al., 2020; Caron
et al., 2021), and few-shot learning (FSL) (Wang et al., 2019; Fei et al., 2021; Trosten et al., 2023).

However, despite the widespread use of L2 normalization in several aspects of deep learning, little work exists
on understanding exactly what type of information the norm contains, and why discarding this information
improves representation quality. Hence, we still lack critical understanding of the role of norms and normal-
ization in deep learning. In this work, we aim to improve the understanding of norms of convolutional neural
network (CNN)-based representations, and thus to better understand the benefits of L2 normalization. Our
work is built on a novel hypothesis for image representations computed by CNNs:

Informal Definition 1 (Norm-count hypothesis). There is a monotonically increasing relationship between
the norm of a representation produced by a CNN, and the number of objects in the image for which the
CNN is trained to recognize.

The norm-count hypothesis (NCH) proposes a theory on the relationship between norm, and the number
of detections produced by the CNN. Moreover, an implicit consequence of the NCH is that angles encode
information about the types of objects detected by the CNN in the given image. In this work, we assess the
validity of the NCH for CNNs used in supervised, self-supervised and few-shot learning.

The main contributions of our work are:

1. We propose the NCH – stating that there is a monotonically increasing relationship between the
norm of a representation, and the number of objects in the given image.
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2. We prove that the NCH is true in a controlled setting, assuming that input images are composed
of several object images, for which the feature extractor provides a delta-like response in a single
channel.

3. We conduct an extensive experimental evaluation with images from MNIST, STL-10, and Pascal
VOC, in supervised, self-supervised and few-shot learning. Our results show monotonically increas-
ing relationships between norm and count, for several models and datasets – corroborating the NCH.
We also find that discarding norm with L2 normalization improves classification performance in the
majority of experimental configurations.

The rest of the paper is structured as follows: Section 2 gives an overview of work related to ours. In
Section 3, we theoretically analyze the NCH, and prove that it holds under certain assumptions. Section 4
includes the results of our experiments. We finish the paper with Section 5, presenting some concluding
remarks and directions for future work.

2 Related work

In this section, we summarize other work related to this paper. We emphasize that our work is complementary
to these, as none of the works below provide an accurate and rigorous understanding of the information
contained in norms of CNN-based representations.

2.1 Embedding representations on the hypersphere

Embedding representations on the hypersphere instead of in Euclidean space has shown to be beneficial for
both supervised classification and regression (Mettes et al., 2019; Scott et al., 2021; Tan et al., 2022). Mettes
et al. (2019) develop classification and regression losses on the hypersphere, illustrating that L2 normalized
representations and prototypes are beneficial for both classification and regression. The more recent work
by Tan et al. (2022) shows that a supervised classification model can be regularized with a self-supervised
contrastive loss on the unit hypersphere.

L2 normalization is also common in models for self-supervised learning of image representations (Chen et al.,
2020; He et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021; Goyal et al., 2022; Li et al., 2023). The
benefit of L2 normalization appears to stem from similarity measures and contrastive losses being more
well-behaved after discarding the norm – resulting in compact and well-separated classes (Wang & Isola,
2020). However, little work exists on this topic.

Recent methods for transductive FSL have also found L2 normalized representations to be beneficial for
classification performance (Wang et al., 2019; Veilleux et al., 2021; Zhu & Koniusz, 2022; Xu et al., 2022;
Trosten et al., 2023). Trosten et al. (2023) argue that L2 normalization helps reduce the hubness prob-
lem (Radovanovic et al., 2010; Fei et al., 2021) in FSL, and show that embedding points uniformly on the
hypersphere completely eliminates hubness. To the best of our knowledge, the work by Trosten et al. (2023)
is one of the first works that attempt to understand why L2 normalization is beneficial in FSL. Nevertheless,
it is limited to the hubness problem, and does not make any advances in understanding the information
contained in the representation norm.

2.2 Hyperspherical regularization

Hyperspherical embeddings have also shown to be beneficial to regularize training of deep neural networks
(DNNs) (Salimans & Kingma, 2016; Liu et al., 2017; 2018; 2021). These methods constrain the weight
vectors in DNNs to lie on the unit hypersphere. Liu et al. (2017) show that hyperspherical weights improve
the conditioning of the optimization problem, helping the optimizer converge faster to potentially better
solutions. However, our work is orthogonal to this, since we aim to understand norms of representations,
and not norms of weights.
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3 Norm-count hypothesis

The purpose of this section is to formalize the NCH, and to analyze it in a rigorous theoretical setting. To
do so, we assume certain properties of the feature extractor (e.g. CNN). These feature extractors admit a
certain class of images, referred to as object images, which can be seen as “prototypes” of the objects the
feature extractor is trained to detect.

Having established properties of the feature extractor and corresponding object images, we prove that the
norm of the representation produced by the feature extractor is proportional to the number of object images
present in the given image. Thereby corroborating the NCH. Proofs for the results presented in this section
are given in Appendix A.

We start by providing exact definitions of images, image translation, detectors, and global pooling operators.

Definition 1 (Images). The set of images with C channels and size W × H is defined as

IC,W,H = {I : N0
<C × Z × Z → R | I(c, x, y) = 0 if (x, y) /∈ N0

<W × N0
<H} (1)

where N0
<a = {0, 1, . . . , a − 1}.

Definition 2 (Translation operator). A translation operator Trx′,y′ : IC,W,H → IC,W,H shifts the given
image by x′, y′ pixels

Trx′,y′(I)(c, x, y) = I(c, x − x′, y − y′) (2)

Definition 3 (Translation equivariance). A mapping f : IC,W,H → IC′,W ′,H′ is translation equivariant iff
for a translation operator Trx′,y′ , we have

f ◦ Trx′,y′ = Trx′,y′ ◦f (3)

where ◦ denotes the composition of functions.

Definition 4 (Strict and relaxed detectors). A detector is a translation equivariant mapping f : IC,W,H →
IC′,W ′,H′ , which also satisfies at least one of the conditions

f(I1 + I2) = f(I1) + f(I2) + A (4)
|f(I1 + I2)| ≼ |f(I1) + f(I2)| (5)

where A ∈ IC′,W ′,H′ is a constant image independent of I1 and I2, satisfying A(c, x, y) = ak for all (x, y) ∈
N0

<W ′ × N0
<H′ . Addition and absolute value are defined element-wise, and I1 ≼ I2 implies that I1(k, x, y) ≤

I2(k, x, y) for all k, x, y. If f satisfies condition (4), then f is said to be a strict detector. If f satisfies
condition (5), it is called a relaxed detector.

The following propositions show properties of detectors that are relevant for CNNs.

Proposition 1 (Composition of detectors). For detectors f and g, the following holds:

1. If f and g are strict detectors, then g ◦ f is a strict detector.

2. If f is a strict detector and g is a relaxed detector, then g ◦ f is a relaxed detector.
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Proposition 2 (Convolutions are strict detectors.). Let ConvK : IC,W,H → I1,W +w−1,H+h−1 be the convo-
lution operator convolving the given image, I ∈ IC,W,H , with a filter, K ∈ IC,h,w

ConvK(I)(0, x, y) =
C−1∑
c=0

∞∑
x′=−∞

∞∑
y′=−∞

K(c, x′, y′)I(c, x − x′, y − y′). (6)

Then ConvK is a strict detector with (C ′, H ′, W ′) = (1, W + w − 1, H + h − 1).

Proposition 3 (Batch-normalization in inference mode is a strict detector). Let BNb,g,µ,σ : IC,W,H →
IC,W,H represent batch normalization in inference mode, with parameters b = [b0, . . . , bC−1]⊤, g =
[g0, . . . , gC′−1]⊤ and running moment estimates µ = [µ0, . . . , µC−1]⊤, σ = [σ0, . . . , σC′−1]⊤, defined as

BNb,g,µ,σ(I)(k, x, y) = I(k, x, y) − µk

σk
gk + bk. (7)

Then BNb,g,µ,σ is a strict detector with (C ′, W ′, H ′) = (C, W, H) and ak = µk

σk
gk − bk.

Proposition 4 (LeakyReLU is a relaxed detector.). Let LeakyReLUα : IC,W,H → IC,W,H be defined
element-wise as

LeakyReLUα(I(k, x, y)) =
{

I(k, x, y), if I(k, x, y) > 0
α · I(k, x, y), otherwise

(8)

for all k, x, y, and α ∈ [0, 1). Then LeakyReLUα is a relaxed detector with (C ′, W ′, H ′) = (C, W, H).
This also holds for the standard ReLU(x) = max{0, x} activation, since ReLU = LeakyReLU0.

From Propositions 1 and 2, we see that linear and batch normalized CNNs – i.e. networks consisting only
of compositions of convolutions and batch normalization – are strict detectors. Furthermore, combining
Propositions 1, 2 and 4 shows that a CNN consisting of convolutions and LeakyReLU (or ReLU) activations
are compositions of relaxed detectors. These propositions thus cover the most important building blocks of
CNNs, along with the most common activation functions.

CNNs for classification and representation learning are often followed by a global pooling operator that
aggregates information over the spatial dimensions. The following definition considers a general pooling
operation, which we use in our theoretical analysis. We then prove that global average pooling (GAP) – one
of the most frequently used pooling operations – is a special case of the general pooling operation.

Definition 5 (Global pooling operator). Let I ∈ IC,W,H be an image. The mapping Pool : IC,W,H → RC

is called a global pooling operator if there exists non-negative real numbers γ0, . . . , γC−1 independent of I,
such that

| Pool(I)k| ≤ γk

∣∣∣∣ W −1∑
x=0

H−1∑
y=0

I(k, x, y)
∣∣∣∣, k ∈ N0

<C . (9)

Proposition 5 (GAP is a global pooling operator). For an image I ∈ IC,W,H , let GAP be defined as

GAP(I)k = 1
WH

W −1∑
x=0

H−1∑
y=0

I(k, x, y), k ∈ N0
<C . (10)

Then GAP is a global pooling operator with γk = 1
W H , ∀k ∈ N0

<C .

Our objective is now to understand norms of representations computed by a detector followed by a global
pooling operator. Hence, we define object images as “prototypical” images that give a delta-like response
when processed by the given detector.
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Definition 6 (Object images). An image Oj ∈ IC,h,w is said to be an object image of type j w.r.t. the
detector f , iff

f(Oj) = δj,0,0 (11)

where δj,x′,y′ is the Kronecker delta function

δj,x′,y′(k, x, y) =
{

1, (k, x, y) = (j, x′, y′)
0, otherwise

. (12)

The set of all object images of type j is denoted Ωj = {O | f(O) = δj,0,0}.

In a supervised classification setting, the object image types will tend to coincide with the classes the model
is trained to detect. This is because supervised models are trained to output a one-hot prediction vector,
resembling the delta-response assumed in Definition 6, after global pooling.

Object images can also be interpreted as “parts of a whole”, where it is assumed that image motifs consist of
a collection of object images. An image of a car, for instance, will be composed of object images with type
“wheel”, “car body”, etc.

We note that, by definition, object images and types are entirely determined by the detector, as images that
give a delta response in a single output feature map. All images that result in a delta response in an output
feature map, j , are said to be object images of type j. Hence, it is only for trained models that the object
image types coincide with semantically meaningful ground-truth classes.

We will now define multiple objects images (MO-images) as images composed of one or more object images.
This definition gives rise to a natural notion of object “count” in the image, which is necessary to formalize
the NCH.

Definition 7 (Multiple objects image). An MO-image, I ∈ IC,W,H , constructed from object images in
Ω0, . . . , ΩC′−1 is defined as

I =
C′−1∑
j=0

∑
(O,x′,y′)∈Pj

T(x′,y′)(O). (13)

where C ′ is the number of object types. Pj is a set of 3-tuples, where the first element is an object image
from Ωj , and the second third elements are the positions of that object image in I.

We now have the following theorem stating that the NCH is true for detectors and global pooling operators
applied to MO-images.

Theorem 1 (Norm-count hypothesis – simplified setting). Let f : IC,W,H → IC′,W ′,H′ be a relaxed detector
with object images Ω0, . . . , ΩC′−1, and let I ∈ IC,W,H be a MO-image constructed from the same object
images. Then, if z = [z0, . . . , zC′−1]⊤ ∈ RC′ is the output of a global pooling operator applied to the feature
maps f(I), we have

|zk| = | Pool(I)k| ≤ γk|Pk|, k ∈ N0
<C′ (14)

for non-negative numbers γ0, . . . , γC−1 independent of I.

Corollary 1.1 (Lp norm of z). For p > 0, the Lp norm of z from Theorem 1 is

||z||p ≤

C′−1∑
k=0

(γk|Pk|)p

 1
p

(15)
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Corollary 1.1 shows that the Lp norm of representations is upper bounded by a monotonically increasing
function of the count, corroborating the NCH.

Corollary 1.2 (Strict detector and GAP). If f is a strict detector, and GAP is used in place of Pool,
Theorem 1 simplifies to

zk = GAP(I)k = |Pk|
W ′H ′ + nPak (16)

where nP =
∑C′−1

j=0 |Pj | − 1.

Corollary 1.2 shows that for strict detectors followed by GAP, there is an affine relationship between each
component of z, and the number of objects of the corresponding type present in the image. Furthermore, if
we have ak = 0, we have exact proportionality between zk and |Pk|. Since linear CNNs are strict detectors
with ak = 0, this corollary proves that each dimension, in a representation produced by linear CNNs, is
proportional to the number of object images in the given MO-image.

Furthermore, Theorem 1 states that the norm of z is directly related to the absolute (total) count of objects
in the image, regardless of the type of the object images. This is expected, since the perfect detector produces
a set of delta-responses, and the global pooling operator aggregates these over the spatial dimensions.

In contrast to the norm, the angle of z depends on the count of one object type relative to the count of
another object type. This is demonstrated by the following result.

Result 1 (Semantic information in angles). Suppose I1, I2 ∈ IC,W,H are MO-images processed by a strict
detector f with ak = 0, followed by GAP. Furthermore, assume that I1 only consists of objects of type j, and
that I2 only consists of objects of type k. This gives

z1 = GAP(f(I1)) =
|P (1)

j |
W ′H ′ ej and z2 = GAP(f(I2)) = |P (2)

k |
W ′H ′ ek (17)

where ej (ek) denotes the vector where element j (k) is 1, and all other elements are 0.
Then, if (||z||, θ(z)) denotes the transformation of z to hyperspherical coordinates, we can consider the
following two cases:

1. Different class, same count: j ̸= k and |P (1)
j | = |P (2)

k |, which gives

||z1|| = ||z2|| and θ(z1) ̸= θ(z2) (18)

2. Same class, different count: j = k and |P (1)
j | ≠ |P (2)

k |, which gives

||z1|| ≠ ||z2|| and θ(z1) = θ(z2) (19)

In both cases in Result 1, the angles θ(z1) and θ(z2) are most informative of the image classes (object types).
When the images belong to different classes (case 1), the discriminative power lies in the angles and not
in the norms. Conversely, when I1 and I2 belong to the same class (case 2), the within class distance is 0
for the angles, but non-zero for the norms. The angle thus encodes information about which classes (object
types) that were detected in the image – i.e. the semantic information.

Feature norm and object size. CNNs are not size equivariant, meaning that the size of an object will
not necessarily be positively correlated with the representation norm. This is because convolutions – the
basic building blocks of CNNs – detect patterns with a certain size. Resizing the patterns by contracting
or dilating spatial dimensions can therefore completely change the response, both reducing og increasing
its strength. In the context of our work, this means that object images are not resizeable: If one resizes
an object image, it may no longer be an object image for the same detector, as it might no longer give a
delta response. This, however depends on the properties of the detector, and whether it has been trained to
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produce similar responses for objects with different sizes. Appendix B includes an experiment with objects
of increasing size, showing a negative correspondence between object size and feature norm for a supervised
model.

4 Experiments

The purpose of these experiments is to experimentally investigate the NCH in a controlled setting. We
design the experiments to have fine-grained control of the “count” in each image. This allows us to properly
examine the relationship between norm and count – both quantitatively and qualitatively. Our experiments
are conducted with both supervised, self-supervised and few-shot learning models.

Although our theoretical results hold for arbitrary Lp norms, we focus on L2 norms in the experimental
evaluation. This is because the L2 norm is the one most frequently encountered in other works (see Section 2),
and has known benefits related to optimization (Liu et al., 2021), as well as alignment, uniformity, and class
separability (Wang & Isola, 2020).

4.1 Setup

Models and architectures. Our evaluation is performed with models using the following two CNN
architectures:

• Simple-6: A simple 6-layer CNN followed by GAP. The model has ReLU activations, and max pool-
ing after every second convolutional layer. No batch-normalization or other forms of normalization
is applied anywhere in the architecture.

• ResNet-50: The standard 50-layer residual network architecture by He et al. (2016), with batch
normalization. We use the supervised model available in Torchvision1 For the self-supervised version
of this architecture, we use the model available in Lightning Bolts2.

In Appendix C we include additional experiments with Dense Contrastive Learning (Wang et al., 2021) – a
self-supervised model aimed to provide better representations for multi-label data.

Training details. All models are trained on single images, using a cross-entropy loss for the supervised
models, and the standard contrastive loss for the SimCLR models. The Simple-6 models were trained on
MNIST by us. For the ResNet-50 models we downloaded pre-trained versions from the respective sources.
None of the model configuration use L2 normalization on the representations during training (although
SimCLR applies L2 normalization to the projections produced by the projection head).

Datasets. In order to mimic the properties of MO-images in evaluation, we start with datasets consisting
of natural images (MNIST (Lecun et al., 1998) and STL-10 (Coates et al., 2011)). Then, to generate a single
evaluation image, we sample a random number of images, and place them at random positions in a 4 × 4
grid. This gives us an image that resembles an MO-image, where we know the true count – i.e. the number
of object images.

These grid-based datasets are generated either with all images in the grid from the same class (single label),
or with random class affiliations (mixed) for the small images.

For MNIST, we fill the empty grid positions with 0-values, as indicated by Definition 7. For STL-10, we
generate datasets with 3 different approaches to filling the empty grid slots:

• Zeros: empty grid positions are filled with 0-values.

• Random: empty grid positions are filled with random Gaussian noise with the same mean and
standard deviation as the object images.

1https://pytorch.org/vision/stable/models/resnet.html
2https://lightning-bolts.readthedocs.io/en/0.3.4/self_supervised_models.html.
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(a) Zeros (b) Random (c) Blur

Figure 1: Example images generated from STL-10, using the different filling approaches.

• Blur : the background for the whole grid is a random blurred image, and the object images are placed
on top of this image.

We experiment with different fill modes to ensure that the results are not skewed by changes in global image
statistics, such as mean and variance. Figure 1 shows examples of the generated images.

In addition to the grid datasets, we use the Pascal VOC 2007–2013 and COCO 2014 object counting/detection
datasets (Everingham et al., 2010; Lin et al., 2014) to evaluate the relationship between norm and count in
real images. The object count in an image is computed as the total number of ground-truth bounding boxes
in the image. We then select images with 2 ≤ count ≤ 10.

We note that the VOC and COCO datasets can contain objects that are not labeled, meaning that they
do not have a bounding box, and are thus not included in the count. This makes VOC and COCO more
challenging, but also more realistic, compared to the grid datasets.

Quantitative evaluation of monotonic increase. We use a weighted quadratic regression model to
quantitatively assess whether there is an increasing relationship between the feature norm, ||zi||, and the
count, c(xi)

||zi|| = β0 + β1c(xi) + β2c(xi)2 + ϵi (20)

where the residual, ϵi, is assumed to be Gaussian with zero mean and standard deviation σc(xi). We allow
the standard deviation to be count-dependent to account for heteroskedasticity in the data. Further, we use
a quadratic regressor to have a more robust evaluation of monotonicity between norm and count. As can be
seen in Figure 2, the relationship between norm and count is not always linear. A quadratic regressor fits
the data better, giving a more precise measure of monotonicity.

The parameter estimates (β̂0, β̂1, β̂2) are computed using weighted least squares. Based on these estimates,
we can test for monotonic increase by checking whether the derivative

d ||z||
d c(x) = β̂1 + 2 β̂2 c(x) (21)

is positive.

We report the value of the slope sq = β̂1 + 2 β̂2 cq, and the p-value resulting from testing

H0 : β̂1 + 2 β̂2 cq ≤ 0 vs. H1 : β̂1 + 2 β̂2 cq > 0. (22)

The p-value is denoted by pq.
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Table 1: Estimated slopes (sq) and p-values (pq) for the quadratic regression model for norm vs. count. A
positive slope with a low p-value indicates a statistically significant, monotonically increasing relationship
between norm and count.

Dataset Model Fill Labels s0.25 s0.5 s0.75 p0.25 p0.5 p0.75

MNIST

SimCLR
(Simple-6)

Zeros Mixed 0.147 0.206 0.264 0.000 0.000 0.000
Single 0.131 0.190 0.249 0.000 0.000 0.000

Supervised
(Simple-6)

Zeros Mixed -0.075 0.142 0.359 1.000 0.000 0.000
Single 0.027 0.152 0.277 0.000 0.000 0.000

STL-10

SimCLR
(ResNet-50)

Blur Mixed 0.288 0.203 0.117 0.000 0.000 0.000
Single 0.295 0.202 0.109 0.000 0.000 0.000

Random Mixed 0.253 0.194 0.136 0.000 0.000 0.000
Single 0.260 0.196 0.132 0.000 0.000 0.000

Zeros Mixed 0.231 0.207 0.183 0.000 0.000 0.000
Single 0.237 0.210 0.183 0.000 0.000 0.000

Supervised
(ResNet-50)

Blur Mixed 0.196 0.132 0.069 0.000 0.000 0.000
Single 0.143 0.073 0.003 0.000 0.000 0.404

Random Mixed 0.292 0.152 0.012 0.000 0.000 0.052
Single 0.250 0.105 -0.039 0.000 0.000 1.000

Zeros Mixed 0.305 0.184 0.062 0.000 0.000 0.000
Single 0.283 0.144 0.004 0.000 0.000 0.317

VOC

SimCLR
(ResNet-50)

– Mixed -0.017 -0.017 -0.016 1.000 1.000 0.996
Single 0.001 0.016 0.030 0.391 0.051 0.019

Supervised
(ResNet-50)

– Mixed 0.081 0.059 0.037 0.000 0.000 0.000
Single 0.065 0.047 0.030 0.000 0.000 0.024

COCO

SimCLR
(ResNet-50)

– Mixed 0.029 0.006 -0.017 0.000 0.088 0.990
Single 0.012 -0.006 -0.024 0.000 0.794 0.982

Supervised
(ResNet-50)

– Mixed 0.065 0.037 0.008 0.000 0.000 0.133
Single 0.043 0.034 0.025 0.000 0.000 0.024

The slopes and p-values are computed at equally spaced points, c0.25, c0.5, and c0.75, where

cq = cmin + q · (cmax − cmin) (23)

and cmin and cmax are the minimum and maximum counts in the dataset, respectively.

Few-shot learning experiments. In our few-shot experiments, we use the ResNet-50 models described
above, and evaluate on STL-10 and VOC, where we know the ground-truth counts. We report both 1 and
5-shot classification accuracy, using the Simpleshot classifier (Wang et al., 2019). The evaluation includes
10000 episodes, sampling 5 random classes and 15 queries from each class, in each episode.

Implementation. The experiments are implemented in Python with the PyTorch framework (Paszke
et al., 2019). Our implementation will be made publicly available upon publication of the paper.

4.2 Results: supervised and self-supervised learning

Relationship between norm and count. Table 1 lists the results of the regression analyses for norm
vs. count for the different configurations. The slopes and p-values show that the majority of configurations
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Figure 2: Boxplots illustrating the relationship between norm and count for the experimental configurations.
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Table 2: Differences in classification accuracy [%] after L2 normalizing the representations, for the prototyp-
ical and SGD classifiers. Positive values indicate an that L2 normalization improves classification accuracy.

Dataset Model Fill ∆ (Proto) ∆ (SGD)

MNIST
SimCLR
(Simple-6)

Zeros 2.92 0.0

Supervised
(Simple-6)

Zeros 3.78 -1.01

STL-10

SimCLR
(ResNet-50)

Blur 13.4 0.2
Random 10.8 -0.7
Zeros 11.4 0.4

Supervised
(ResNet-50)

Blur 1.9 0.6
Random 1.2 0.2
Zeros 5.8 1.1

Dataset Model ∆ (Proto) ∆ (SGD)

VOC
SimCLR
(ResNet-50)

2.55 1.4

Supervised
(ResNet-50)

-0.49 1.44

COCO
SimCLR
(ResNet-50)

3.98 -3.06

Supervised
(ResNet-50)

-0.06 -4.99

result in a statistically significant, monotonically increasing relationship between norm and count. The same
trend can be observed in the box-plots in Figure 2. This applies to both the grid-based datasets (MNIST
and STL-10), and most configurations ran on natural images (VOC and COCO).

However, for the supervised model on STL-10 and VOC, we observe that the increasing trend is not as
clear as for the other models. This is likely because the supervised ResNet-50 is trained on the ImageNet
dataset. This dataset contains natural images with a varying number of objects. Since the model is trained
to output the same prediction regardless of the number of objects, the model learns to be approximately
count invariant, resulting in a weaker relationship between norm and count.

Finally, we observe no increasing trend between norm and count for some SimCLR runs on VOC and COCO.
These are the most challenging configurations, since the images depict complex scenes with multiple objects
of different type, and the model is trained without supervision. We hypothesize that the non-increasing
relationship between norm and count is a result of SimCLR detecting objects that do not necessarily coincide
with the labels. The object images for this model do therefore not correspond to the ground-truth objects,
resulting in a norm that is no longer representative of the count.

L2 normalization and classification performance. Table 2 shows the change in classification accuracy
after L2 normalizing the representations. The accuracies are computed both based on a prototypical classifier
(classifying samples according to the closest class mean), and a linear classifier trained with stochastic
gradient descent (SGD). These results show that L2 normalization – i.e. discarding the norm – is in most
cases beneficial for classification performance, resulting in increased accuracy. The increased accuracy after
normalization illustrates that the norm contains little relevant class information, and acts as additional noise
in the classifier. These findings are in line with the theory in Result 1, stating that angles carry most of the
semantic information. In some cases however, we observe a drop in accuracy after L2 normalization. This is
likely because the model has learned to encode other types of information in the norm, thereby violating the
delta assumption of the NCH – especially for the ResNet-50 modes trained on ImageNet, where the training
images might contain several objects.

4.3 Results: few-shot learning

Table 3 shows 1 and 5-shot classification results on the STL-10, VOC and COCO datasets. We observe that
L2 normalization results in a statistically significant improvement in performance for all models and datasets
– illustrating that discarding the norm information is beneficial for few-shot classification performance.

We also compute the average correlation between norm and count (ρnorm,count ) across episodes. The corre-
lation values show that also for few samples, there is a clear correlation between norm and count. This holds
for all configurations, except for VOC with the SimCLR model. Similar to in Section 4.2, we hypothesize
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Table 3: 1 and 5-shot few-shot learning results on STL-10 and VOC, with the Simpleshot classifier (Wang
et al., 2019). The results are averaged across 10000 episodes, with 95 % confidence intervals shown in
parentheses. The correlation between norm and count, ρnorm,count, could only be computed for evaluations
without L2 normalization, since the norm has zero variance after L2 normalization.

1-shot 5-shot
Dataset Model Fill Norm Accuracy ρnorm,count Accuracy ρnorm,count

STL-10

SimCLR
(ResNet-50)

Blur None 0.431 (0.006) 0.95 (0.001) 0.56 (0.006) 0.952 (0.001)
L2 0.522 (0.007) – (–) 0.655 (0.006) – (–)

Random None 0.432 (0.005) 0.95 (0.001) 0.558 (0.006) 0.952 (0.001)
L2 0.514 (0.007) – (–) 0.654 (0.006) – (–)

Zeros None 0.437 (0.006) 0.95 (0.001) 0.56 (0.006) 0.952 (0.001)
L2 0.518 (0.006) – (–) 0.654 (0.006) – (–)

Supervised
(ResNet-50)

Blur None 0.774 (0.006) 0.323 (0.008) 0.882 (0.005) 0.155 (0.012)
L2 0.801 (0.006) – (–) 0.925 (0.003) – (–)

Random None 0.754 (0.006) 0.491 (0.007) 0.894 (0.003) 0.504 (0.007)
L2 0.772 (0.007) – (–) 0.919 (0.003) – (–)

Zeros None 0.717 (0.006) 0.674 (0.005) 0.872 (0.003) 0.676 (0.005)
L2 0.786 (0.007) – (–) 0.914 (0.003) – (–)

VOC

SimCLR
(ResNet-50) – None 0.511 (0.007) -0.109 (0.008) 0.721 (0.006) -0.116 (0.006)

L2 0.651 (0.006) – (–) 0.765 (0.006) – (–)
Supervised
(ResNet-50) – None 0.688 (0.007) 0.044 (0.007) 0.826 (0.005) 0.086 (0.006)

L2 0.742 (0.006) – (–) 0.827 (0.006) – (–)

COCO

SimCLR
(ResNet-50) – None 0.457 (0.011) 0.045 (0.006) 0.767 (0.008) 0.087 (0.005)

L2 0.568 (0.009) – (–) 0.818 (0.006) – (–)
Supervised
(ResNet-50) – None 0.586 (0.01) 0.184 (0.007) 0.841 (0.006) 0.118 (0.006)

L2 0.625 (0.01) – (–) 0.842 (0.006) – (–)

that this is because SimCLR detects another set of object images, whose counts are not well-represented by
the ground-truth object count.

5 Conclusion and future work

We have presented the NCH – providing novel insight in the norms of representations produced by CNNs.
Under certain assumptions on the model and input images, we proved the NCH, showing that each component
in a given representation is upper-bounded by the number of object images present in the input image.
Moreover, from our theoretical analysis, it follows that representation norms carry information related to
count, whereas angles represent semantic information. This is a key result that helps explain why L2
normalization is beneficial for downstream classification tasks.

In addition, we conduct a controlled experimental evaluation, showing that the NCH holds for supervised
and self-supervised models. Our experiments also show that discarding the representation norm – which is
strongly correlated with the count – using L2 normalization, improves classification performance, both for
standard and few-shot classifiers.

We believe that understanding representation norms through object counts is a promising direction of re-
search. The popularity of hyperspherical embeddings in FSL, along with our results on the benefits of L2
normalization, indicate that there is extra potential to improve FSL models if we better understand the
effects of representation norms. Furthermore, although we focus on CNNs in this work, it is entirely possible
that our results will generalize to other architectures. This can be verified by either showing that certain
architectures meet the detector conditions, or by relaxing these conditions and extending the theoretical
analysis.
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A Proofs

A.1 Proposition 1

Proof.

1. Invoking condition (4) of strict detectors gives

(g ◦ f)(I1 + I2) = g(f(I1 + I2) = g(f(I1) + f(I2)) (24)
= g(f(I1)) + g(f(I2))) = (g ◦ f)(I1) + (g ◦ f)(I2) (25)

2. By conditions (4) and (5), we have

|(g ◦ f)(I1 + I2)| = |g(f(I1 + I2) = g(f(I1) + f(I2))| (26)
≤ |g(f(I1)) + g(f(I2)))| = |(g ◦ f)(I1) + (g ◦ f)(I2)| (27)

A.2 Proposition 2

Proof. The proposition follows directly from convolutions being linear and translation equivariant. See
e.g. (Jähne, 2002, Ch. 4).

A.3 Proposition 3

Proof. For images I1 and I2 we have

BNb,g,µ,σ(I1 + I2)(k, x, y) = I1(k, x, y) + I2(k, x, y) − µk

σk
gk + bk (28)

= gk

σk
(I1(k, x, y) + I2(k, x, y)) + bk − µggk

σk
(29)

=
(

gk

σk
I1(k, x, y) + bk − µggk

σk

)
+

(
gk

σk
I2(k, x, y) + bk − µggk

σk

)
−

(
bk − µkgk

σk

)
(30)

= BNb,g,µ,σ(I1)(k, x, y) + BNb,g,µ,σ(I2)(k, x, y) +
(

µkgk

σk
− bk

)
(31)

A.4 Proposition 4

Proof. Let a1 = I1(k, x, y) and a2 = I2(k, x, y). Since addition is commutative, we can assume a1 ≥ a2
without loss of generality.

Observe that, if a1 and a2 is positive (negative), then a1 + a2 will be positive (negative). This means that
LeakyReLUα(a1 + a2) = LeakyReLUα(a1) + LeakyReLUα(a2) in this case.

On the other hand, if a2 < 0 < a1, we have | LeakyReLUα(a1) + LeakyReLUα(a2)| = |a1 + αa2|, and

| LeakyReLUα(a1 + a2)| =
{

|a1 + a2|, |a1| > |a2|
α|a1 + a2|, otherwise

. (32)

Since α ∈ [0, 1), we have

| LeakyReLUα(a1 + a2)| ≤ |a1 + a2| ≤ |a1 + αa2| = | LeakyReLUα(a1) + LeakyReLUα(a2)| (33)
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A.5 Proposition 5

Proof. Setting 1
W H = γk gives

GAP (I)k = γk

W −1∑
x=0

H−1∑
y=0

I(k, x, y), k ∈ N0
<C (34)

from which it follows that

|GAP (I)k| ≤ γk

∣∣∣∣ W −1∑
x=0

H−1∑
y=0

I(k, x, y)
∣∣∣∣, k ∈ N0

<C (35)

A.6 Theorem 1

Proof. Since f is a relaxed detector, we have

|f(I)| =
∣∣∣∣f

C′−1∑
j=0

∑
(O,x′,y′)∈Pj

T(x′,y′)(O)

 ∣∣∣∣ ≼ ∣∣∣∣ C′−1∑
j=0

∑
(O,x′,y′)∈Pj

f(T(x′,y′)(O))
∣∣∣∣ (36)

Then, since f is translation equivariant, and provides delta detections

|f(I)| ≼
∣∣∣∣ C′−1∑

j=0

∑
(O,x′,y′)∈Pj

f(T(x′,y′)(O))
∣∣∣∣ =

∣∣∣∣ C′−1∑
j=0

∑
(i,x′,y′)∈Pj

δ(j,x′,y′)

∣∣∣∣. (37)

Applying a global pooling operator to f(I) then gives

|zk| = | Pool(f(I))k| ≤ γk

∣∣∣∣ W ′−1∑
x=0

H′−1∑
y=0

f(I)(k, x, y)
∣∣∣∣ (38)

≤ γk

∣∣∣∣ W ′−1∑
x=0

H′−1∑
y=0

C′−1∑
j=0

∑
(i,x′,y′)∈Pj

δ(j,x′,y′)(k, x, y)

 ∣∣∣∣ (39)

≤ γk

∣∣∣∣ W ′−1∑
x=0

H′−1∑
y=0

∑
(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x, y)
∣∣∣∣ (40)

≤ γk

∣∣∣∣ ∑
(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x′, y′)
∣∣∣∣ (41)

≤ γk|Pk| (42)

A.7 Corollary 1.1

Proof. The Lp norm of z is defined as

||z||p =

C′−1∑
k=0

|zk|p
 1

p

(43)
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for p > 0. Since each |zk| is positive and upper bounded by γk|Pk| (by Theorem 1), we have

C′−1∑
k=0

γk|Pk|p ≥
C′−1∑
k=0

|zk|p (44)

which gives C′−1∑
k=0

γk|Pk|p
 1

p

≥

C′−1∑
k=0

|zk|p
 1

p

= ||z||p (45)

A.8 Corollary 1.2

Proof. This proof follows the same steps as the proof of Theorem 1, but without absolute values, and with
equality instead of inequality.

Since f is a strict detector, we have

f(I) = f

C′−1∑
j=0

∑
(O,x′,y′)∈Pj

T(x′,y′)(O)

 (46)

=
C′−1∑
j=0

∑
(O,x′,y′)∈Pj

(
f(T(x′,y′)(O)) + T(x′,y′)(A)

)
(47)

= nPA +
C′−1∑
j=0

∑
(O,x′,y′)∈Pj

f(T(x′,y′)(O)) (48)

where nP =
∑C′−1

j=0 |Pj | − 1. Then, since f is translation equivariant, and provides delta detections

f(I) = nPA +
C′−1∑
j=0

∑
(O,x′,y′)∈Pj

f(T(x′,y′)(O)) = nPA +
C′−1∑
j=0

∑
(i,x′,y′)∈Pj

δ(j,x′,y′). (49)

Applying a global pooling operator to f(I) then gives

zk = GAP(f(I))k = 1
W ′H ′

W ′−1∑
x=0

H′−1∑
y=0

f(I)(k, x, y) (50)

= 1
W ′H ′

W ′−1∑
x=0

H′−1∑
y=0

nPA(k, x, y) +
C′−1∑
j=0

∑
(O,x′,y′)∈Pj

δ(j,x′,y′)(k, x, y)

 (51)

= 1
W ′H ′

W ′−1∑
x=0

H′−1∑
y=0

nPak +
∑

(O,x′,y′)∈Pk

δ(k,x′,y′)(k, x, y)

 (52)

= 1
W ′H ′

∑
(i,x′,y′)∈Pk

δ(k,x′,y′)(k, x′, y′) + nPak (53)

= 1
W ′H ′ |Pk| + nPak (54)
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Figure 3: Distributions of representation norms for MNIST digits with different upsampling factors.

Table 4: Experiments with Dense Contrastive Learning.

Dataset Model Fill Labels s0.25 s0.5 s0.75 p0.25 p0.5 p0.75

STL-10 DenseCL
(ResNet-50)

Blur Mixed 0.257 0.204 0.152 0.000 0.000 0.000
Single 0.237 0.191 0.144 0.000 0.000 0.000

Random Mixed 0.190 0.200 0.210 0.000 0.000 0.000
Single 0.181 0.195 0.209 0.000 0.000 0.000

Zeros Mixed 0.174 0.207 0.240 0.000 0.000 0.000
Single 0.171 0.202 0.232 0.000 0.000 0.000

VOC DenseCL
(ResNet-50) – Mixed -0.022 -0.014 -0.006 1.000 1.000 0.839

Single -0.000 -0.002 -0.004 0.518 0.590 0.612

COCO DenseCL
(ResNet-50) – Mixed 0.006 -0.004 -0.014 0.001 0.804 0.970

Single 0.023 -0.008 -0.039 0.000 0.852 0.999

B Experiments with varying object size

Figure 3 shows distributions of representation norms of MNIST digits with varying upsampling factors. The
images are resized to a random integer factor in {1, . . . , 6}, and placed in an empty (168 × 168) image. The
plot shows a negative correspondence between size and feature norm, meaning that object size and count
influence the feature norm in different ways.

C Experiments with Dense Contrastive Learning

The results in Table 4 shows that there is a monotonically increasing relationship between norm and count
on STL-10, and on low counts on COCO. On VOC and higher counts on COCO we do not observe the same
trend. This is likely caused by the ImageNet models being approximately count invariant, as described in
Section 4.
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